
Universitat Politècnica de Catalunya (UPC) - BarcelonaTech

Facultat d’Informàtica de Barcelona (FIB)

Treball Final de Grau

Grau en Enginyeria Informàtica (GEI)

Enginyeria de Computadors

Improving nanos6 dependency subsystem

David Álvarez Robert
(david.alvarez@bsc.es)

Directors:
Vicenç Beltran Querol (vbeltran@bsc.es)

Eduard Ayguadé Parra (eduard@ac.upc.edu)

Computer Architecture Department (DAC)

Barcelona, June 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/231704644?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

The OmpSs-2 programming model extends the basic dependency model of OpenMP
with advanced features such as weak dependencies and dependencies over non-contiguous
memory regions. These features also work across different task-nesting levels, provid-
ing a general and fine-grained synchronization mechanism. In general, these advanced
features simplify the parallelization of complex applications and also improve perfor-
mance. However, the current implementation of the data dependency subsystem in
the Nanos6 runtime is complex and thus difficult to optimize for certain use cases.
In this work, a new alternative implementation of the dependency subsystem aiming
to provide a subset of the current features but focusing instead in performance and
simplicity is designed, developed and evaluated. Additionally, a mechanism to switch
between both implementations at execution time is also added to Nanos6.

ii

Resum

El model de programació OmpSs-2 amplia el model bàsic de dependències d’OpenMP
amb caracteŕıstiques avançades com dependències weak i en regions de memòria no
contigües. Aquestes caracteŕıstiques també funcionen a través de diferents nivells de
parentesc entre tasques, proporcionant un mecanisme de sincronització general i de gra
fi. En el cas general, aquesta funcionalitat avançada simplifica la tasca de paral·lelitzar
programes complexos i en millora el rendiment. No obstant això, la implementació ac-
tual del sistema de dependències a la llibreria Nanos6 és complexa i per tant dif́ıcil
d’optimitzar per a certs casos. En aquest treball es dissenya, desenvolupa i avalua una
nova implementació alternativa del sistema de dependències, amb l’objectiu de propor-
cionar un subconjunt de les caracteŕıstiques actual però centrant-se en el rendiment
i la simplicitat. Addicionalment, s’incorpora a la llibreria un mecanisme per canviar
entre ambdues implementacions en temps d’execució.

iii

Table of Contents

1 Introduction . 1

1.1 Motivation . 1

1.2 Actors . 2

2 State of the art . 3

2.1 Parallel programming models . 3

2.1.1 OpenMP . 3

2.1.2 OmpSs and OmpSs-2 . 4

2.1.3 Influence in OpenMP . 4

2.2 Data dependencies . 5

2.3 OmpSs-2 dependency model . 6

3 Scope . 9

3.1 Goal . 9

3.2 Requirements . 9

3.3 Scope . 9

3.4 Risks . 10

3.4.1 Deviation of the project plan 10

3.4.2 Introducing bugs to the runtime 10

3.4.3 Compilation and test times . 11

3.4.4 Result variance . 11

3.4.5 Debug difficulties . 11

iv

4 Methodology . 12

4.1 Time management . 12

4.2 Progress tracking . 12

4.3 Validation . 12

4.4 Final result . 13

5 Project plan . 14

5.1 Tasks . 14

5.1.1 Project management . 14

5.1.2 Runtime analysis . 15

5.1.3 Correctness tests . 15

5.1.4 Initial implementation . 15

5.1.5 Optimization . 15

5.1.6 Evaluation . 16

5.1.7 Thesis writing . 16

5.2 Timing . 16

5.3 Task dependencies . 17

5.4 Resources . 17

5.4.1 Hardware . 17

5.4.2 Software . 18

5.4.3 Human resources . 19

5.4.4 Spaces . 19

5.5 Workarounds and action plan . 19

5.6 Gantt diagram . 20

5.7 Deviations . 21

6 Economic management . 22

6.1 Direct costs . 22

6.1.1 Human resources . 22

6.1.2 Software . 22

6.1.3 Hardware . 23

6.2 Indirect costs . 23

v

6.3 Final budget . 24

6.4 Risk management . 25

7 Sustainability . 26

7.1 Economic dimension . 26

7.2 Social dimension . 27

7.3 Environmental dimension . 27

8 Analyzing the runtime and writing tests . 29

8.1 Compiling the runtime . 29

8.2 Writing and compiling OmpSs-2 programs 30

8.3 Runtime architecture . 31

8.3.1 Loader . 31

8.3.2 Dependency subsystem . 31

8.4 Writing correctness tests . 33

9 Adapting the runtime for different implementations 35

9.1 Designing the mechanism . 35

9.2 Implementing conditional compilation 36

9.3 Modifying the loader . 36

10 Initial implementation . 38

10.1 Initial design . 38

10.2 Task nesting . 41

10.3 Implementation details . 43

10.3.1 Locking . 44

10.3.2 Access top bit . 44

11 Optimization . 47

11.1 Allocating all the accesses with the task 47

11.2 Reductions . 50

11.2.1 Requirements . 50

11.2.2 Implementation . 51

vi

12 Evaluation . 54

12.1 Experimental design . 54

12.2 Benchmarks . 55

12.2.1 Multisaxpy . 55

12.2.2 Dot product . 56

12.2.3 Cholesky . 58

12.2.4 Heat Equation . 58

12.2.5 Matrix Multiply . 59

12.2.6 N-body . 60

12.2.7 HPCCG . 62

13 Conclusion . 64

14 Future Work . 65

Bibliography . 66

vii

List of Figures

2.1 OmpSs-2 features that have influenced the OpenMP standard. 5

2.2 Data dependencies without and with the weakin/weakout constructs. . 7

2.3 Examples of an OmpSs-2 annotated program 7

2.4 Example of OmpSs-2 reductions . 8

5.1 Gantt diagram of the project timeline. 20

8.1 Simple C sequential program without OmpSs-2 pragmas 30

8.2 Simple C parallel program annotated with OmpSs-2 30

8.3 Example of a correctness test with tasks depending on memory regions
with partial overlap . 34

9.1 Loader code to switch flavors and dependencies. 37

10.1 Sample code of a simple write-then-read program 40

10.2 Dependency graph of a simple write-then-read program 41

10.3 Sample code of a simple program with task nesting 42

10.4 Dependency graph of a simple program with task nesting 43

10.5 Double-check mechanism with locking to prevent race conditions. . . . 44

10.6 DataAccess structure and atomic top bit implementation. 45

11.1 Allocation of the TaskDataAccesses struct before optimization. 47

11.2 Task creation API with proposed change to pass access number. 48

11.3 Allocation of the TaskDataAccesses struct after optimization. 49

11.4 Code snippet of the nanos6 create task function showing adaptive mem-
ory allocation. 49

11.5 Sample code of a program that uses reductions 50

viii

11.7 BottomMapEntry layout after implementing reductions. 51

11.8 DataAccess layout after implementing reductions. 52

11.6 High-level illustration of a task reduction 53

12.1 Scalability and speedup plots of the Multisaxpy benchmark with a prob-
lem size of 1G elements . 56

12.2 Scalability and speedup plots of the Dot Product benchmark without
using reduction and a problem size of 512M elements 57

12.3 Scalability and speedup plots of the Dot Product benchmark using re-
duction and a problem size of 512M elements 57

12.4 Scalability and speedup plots of the Cholesky benchmark with a problem
size of 32*32K elements . 58

12.5 Scalability and speedup plots of the Heat Equation benchmark with a
problem size of 16*16K elements . 59

12.6 Scalability and speedup plots of the Matrix Multiply benchmark with a
problem size of 2*8*2K elements . 60

12.7 Scalability and speedup plots of the N-body benchmark with a problem
size of 16K particles and 10 time steps 61

12.8 Peak memory usage and total allocations of the N-body benchmark with
a problem size of 16K particles and 10 time steps 62

12.9 Scalability and speedup plots of the HPCCG benchmark with a problem
size of 250 nodes/processor . 63

ix

List of Tables

5.1 Estimated time in hours required to do each of the tasks. 16

5.2 Prerequisites for each task. 17

6.1 Cost of human resources. 22

6.2 Cost of software resources. 23

6.3 Cost of hardware resources. 23

6.4 Indirect costs. 24

6.5 Final budget. 25

7.1 Sustainability matrix and scores. 26

12.1 Software versions present on the CTE-KNL supercomputer during the
final evaluation . 55

x

1 | Introduction

Parallel programming is a difficult task. The process of transforming a sequential pro-
gram into a parallel one is not straightforward and, even then, achieving the maximum
degree parallelism and scalability for a given problem (and thus, the maximum per-
formance) is even more difficult. As it poses such a challenge, several programming
models exist with the goal of making this task easier to tackle.

Those programming models often offer different levels of abstraction. In the lowest
abstraction level we find the pthreads model, part of the POSIX.1 Standard [1], and
in the highest we find the domain-specific languages or DSLs. In between, there are
other models which aim to provide a balance between ease of use, generality and
performance, such as Cilk, Intel TBB, OpenMP, and the OmpSs family [2–5].

1.1 Motivation

This work focuses on the OmpSs-2 programming model [5], developed by the Barcelona
Supercomputing Center (BSC). This model features a data-flow execution schema, in
which the programmer adapts the software by using compiler annotations to split the
code into tasks and indicating for each task on which input and output data structures
it operates. Then the runtime system, based on the user provided annotations, executes
the program in parallel if it can guarantee that the result would be equivalent to a
sequential execution of the same program.

The data-flow execution model will ensure that the final result is correct by using the
information provided by the programmer about the tasks to schedule them in such a
way that doesn’t break the constraints of a sequential model, while providing as much
parallelism as possible. This is done through the concept of data dependencies inside
the OmpSs-2 runtime, called Nanos6. The runtime calculates the dependency graph
through the inputs and outputs declared by each task, and allows parallel execution
of all the tasks that can be scheduled without breaking the sequential model.

The section of the Nanos6 runtime that calculates the dependencies and allows or
holds the execution of the different tasks is the dependency subsystem, and it is one
of the most important components of the runtime, as it is responsible for the parallel
execution of the tasks and must ensure the equivalency of that execution to a sequential
one, and thus forms the core of the data-flow execution model.

1

However, the dependency subsystem already implemented in the Nanos6 runtime is
very complex, because it has to support all the features provided by the OmpSs-2
specification for the task construct, which are a lot since it is the main part of the
model, and some programs do not need such a complete set of features as they have
simpler data models.

This work focuses on the implementation of a simpler dependency subsystem for the
Nanos6 runtime with less features than the existing one, but achieving better perfor-
mance/scalability for certain task granularities. Additionally, the users of the runtime
will be able to select which implementation of the dependency subsystem they want
to use for different executions of their programs without the need to recompile all the
libraries nor their programs.

1.2 Actors

The following roles will be needed during the development of this project.

• Developer: Responsible for writing the implementation that has been designed
and agreed by both the developer and the director of the project. The Developer
will also be in charge of writing the final thesis, designing the project plan, code
analysis, coding, project management, research and documentation. In this case,
it’s the student doing the college thesis.

• Support Staff: Responsible of helping the developer carry out all tasks in the
project’s scope. In this case, the staff is the BSC’s Programming Models team
which works or has worked with the runtime and their experience will be of high
value to the developer.

• Directors: They will supervise the developer, mainly through face-to-face meet-
ings and emails. They will also have a strong influence in the technical decisions
made during the implementation.

• Users and beneficiaries: The beneficiaries of this project will be the users of the
Nanos6 runtime, which will be staff of the BSC, MareNostrum users that use
OmpSs-2 and anyone in the world that chooses to download the GPL-licensed
version of the runtime [6]. Also, this code may serve as a future reference for
newer versions or different parallel programming models, as it is open-sourced.

2

2 | State of the art

This chapter provides context for the project by introducing related work through
history and detailing the current state of the matter.

2.1 Parallel programming models

Parallel programming was born with the first supercomputers, that solved the need for
more performance by having several CPUs, which would allow to speed up software
as described by Amdahl’s Law [7]. As such, High Performance Computing was the
main motivation behind the first parallel programming languages and models, and it
allowed for asynchronous programming in single-core CPU machines as well.

During the 1990s, several models were created, but one of the first ones to gain rele-
vance was MIT’s Cilk [2], based on the concept of Work Stealing [8]. Cilk was the first
runtime for parallel programming that guaranteed near-optimal performance, strict
correctness and predictable runtime for writing parallel software. It was based on a
thread graph model where when one of the threads ran out of work, it would steal a
task from another. It ran on the supercomputers of the era and, most importantly, it
served as inspiration for future shared-memory based parallel models.

Shortly after some other standards such as OpenMP [9] and Intel Threading Building
Blocks [3] appeared, based on the same shared-memory communication mechanism
and the idea of annotating a sequential program to exploit parallelism while producing
the same results as the sequential version.

2.1.1 OpenMP

OpenMP is a case worth studying, because it has become a standard in writing parallel
programs. It was based on a fork-join execution model [4] that allows the programmer
to define regions in the program that will be executed in parallel, and everything can be
done by annotating the source code (in the case of C, with #pragma directives). The
idea to annotate a sequential program, that could still be valid without annotations,
and turn it into a parallel one, has been one of its main selling points.

3

Later, with the introduction of the task construct and dependencies, it also supported
a different data-flow execution model, where no explicit synchronization mechanisms
were needed.

There has been, however, some criticism during the years, specially regarding the
missing support for tasks at the start, and the non-asynchronous parallelism focus,
that have been enough to cause the creation of other programming models during the
years.

That being said, major compiler support for OpenMP [10] is outstanding, including:
GCC, Clang, Intel, IBM and more, so it is very established in the industry.

2.1.2 OmpSs and OmpSs-2

OmpSs, its successor OmpSs-2, and the StarSs model family in general, have been
some of the fore-runner programming models to the OpenMP standard [5]. Their
main goal is to be a testing ground for innovations and new concepts in the parallel
programming research. Concepts introduced first on this programming models have
later been adopted by the OpenMP standard, as explained in Subsection 2.1.3.

The StarSs family was created and is still being developed at the Barcelona Supercom-
puting Center. They feature only a data-flow execution model, simplifying over the
OpenMP model but inheriting the concept of transforming programs through compiler
annotation. Tasks are the main units of work in OmpSs and OmpSs-2, and they are
ordered into execution to guarantee sequential equivalency thanks to the input and
output data specified by the programmer.

Another of the main focuses of OpenSs-2 is the ability to offload work to different
architectures and devices, transferring execution of tasks to GPUs and FPGAs in a
way that is transparent for the programmer, becoming effectively a heterogeneous
model.

2.1.3 Influence in OpenMP

The OpenMP standard is alive and has added during its lifetime many features that
have been implemented before on other programming models. Specifically, many of
the features that have been proposed and developed at the Barcelona Supercomputing
Center for its OmpSs models have been later added to the standard, to see more
mainstream use. Figure 2.1 shows some of the features that have been added to
some versions of the OpenMP standard after being implemented first on OmpSs or its
predecessors.

4

OMP 3.0
OMP 3.1

OMP 4.0

OMP 4.5

OMP 5.0

+ Task
 prototyping

+ Task
 dependences

+ Task priorities
 + Taskloop
 prototyping

+ Task reductions
 + Taskwait
 dependences
 + OMPT impl.
 + Multideps
 + Commutative

+ Tasklop
 dependences
 + Data affinity

Fig. 2.1: OmpSs-2 features that have influenced the OpenMP standard.

The work done at the BSC on the OmpSs-2 model and its runtime, Nanos6, can
be understood as experimentation on features that may be later incorporated to the
standard if they prove to be able to be efficiently implemented and provide measurable
advantages.

2.2 Data dependencies

Parallel programming models often require the programmer to specify what data is
going to be accessed during a task, and what type of access will be done (read, write,
both...). This is so a dependency graph between the tasks can be calculated, and the
runtime can ensure the final result will be the same than a sequential program. If
the same data is used in two sibling tasks, those two tasks have a data dependency
between them.

In particular, we can distinguish three types of data dependencies that can cause race
conditions [11]:

1. True dependence (RAW). Read after write. Happens when a task T1 outputs
data that is going to be read by a task T2.

2. Antidependence (WAR). Write after read. Happens when a task T1 reads data
that is going to be overwritten by a task T2.

3. Output dependence (WAW). Write after write. Happens when a task T1 writes
data that is going to be overwritten by a task T2.

Altering the order of operations in any of the above cases can cause a data race and
hence an incorrect result in the execution of a program. Thus, any parallel program-
ming model that does data-flow execution needs to be able to know when a RAW, WAR
or WAW dependency can happen, and ensure correct synchronization to prevent races.

5

OpenMP supports a simple data dependency model through its task construct [4]. It
allows for discrete dependencies between tasks at the same level of nesting, and the
runtime will ensure correct execution constraints for those dependencies, by calculating
a dependency graph and identifying potential data race conditions.

Other models support more complex dependencies, which allow the runtime to take
more informed decisions about the task ordering, because they allow the programmer
to specify more precisely the nature of those dependencies in the code. OmpSs-2 is
one of those models [5], as data dependencies are the main mechanism to order task
execution.

2.3 OmpSs-2 dependency model

OmpSs-2 extends the discrete dependency model of OpenMP to allow more fine-
grained control through the weakin and weakout constructs [12]. In OpenMP’s model,
if task nesting is used, two tasks with different parents cannot be directly linked
through a data dependency, because they will only work with tasks on the same level.
Instead, the programmer is forced to define the dependencies between the parent tasks,
even if it is really the child tasks having the dependency.

This can cause a performance penalty, because at some point there may be tasks that
could have started the execution and are waiting due to the dependencies not being
fine-grained enough.

In Figure 2.2 it is clear that Task 2.1 could be executed before Task 1.2 finishes,
because they have no real dependencies. This would result in a performance penalty
in a model without the weakin and weakout clause. These two clauses are used between
the parent tasks (T1 and T2, for instance) and tell the runtime that those two tasks
have a dependency that is not caused directly by them, but by one of their child tasks,
that will make them explicit with the in and out constructs. With this, the runtime
has enough information to achieve a better performance, potentially.

In fact, even parent tasks that are dependent through weakdepend clauses can be
executed concurrently, because the runtime has the knowledge that as long as their
child tasks are not executed, the result will be correct because the parents have no real
dependency.

6

Fig. 2.2: Data dependencies without and with the weakin/weakout constructs

Another particularity of the OmpSs-2 dependency model is that the user can specify
dependencies for sections of memory (that do not need to be contiguous), not just
discrete points, and thus the runtime can track the dependencies by regions and have
more parallelism for some user cases. In figure 2.3 there are examples of the OmpSs-2
API for the different dependencies.

1 int main () {

2 int a[500];

3 int b[500];

4

5 // Discrete dependencies without weak constructs.

6 #pragma oss task in(a) out(b)

7 doSomething();

8 // Discrete dependencies with weak constructs.

9 #pragma oss task weakin(a) weakout(b)

10 doSomethingElse();

11 // Region dependencies

12 #pragma oss task in(a[0:499]) out(b[0:249])

13 anotherComputation();

14 }

Fig. 2.3: Examples of an OmpSs-2 annotated program

The OmpSs-2 spec also includes support for reductions in the task construct [5, 13],
which allow the programs to combine or accumulate results obtained in different tasks

7

without the need for any explicit synchronization mechanism, such as atomics or barri-
ers, increasing performance. The runtime suppors weakreductions as well, which enable
reduction nesting. Reductions are seen by the runtime as just another type of data
dependency, and they are registered as such through the API.

Figure 2.4 showcases a simple use of a task reduction to combine results of different
tasks without the need to explicitly synchronize access to data.

1 int a[500];

2

3 int main () {

4 /* A simple parallel sum of an array */

5

6 int sum = 0;

7

8 for(int i = 0; i < 500; ++i) {

9 #pragma oss task in(a[i]) reduction(+: sum)

10 sum += a[i];

11 }

12 }

Fig. 2.4: Example of OmpSs-2 reductions

A fully functional implementation of the OmpSs-2 spec for data dependencies already
exists, but because of the great amount of features supported, specially memory re-
gion dependencies, that implementation has a very high degree of complexity and the
overhead introduced might have a performance impact for some tasks with small gran-
ularities. The objective of this thesis is to develop a new implementation with less
features that will have better performance for some applications.

8

3 | Scope

3.1 Goal

The main goal of this project is to design and write a correct and efficient implemen-
tation of as much of the Nanos6 dependency subsystem as possible, applying parallel
techniques, algorithms and architecture-aware programming that have been learned
during the course of the student’s Informatics Engineering degree.

3.2 Requirements

• Design and code a correct implementation of the Nanos6 dependency subsystem.

• Adapt the code to the standards and style of the Nanos6 project.

• Test and verify the correctness of the implementation.

• Achieve better performance than older implementations in as much cases as
possible.

• Implement the maximum of dependency features without compromising that
performance.

• Study and evaluate the final result and suggest future work with the knowledge
gathered during the project.

3.3 Scope

At the beginning of the project, existing implementations will be analyzed by the
developer to gain knowledge about the runtime and understand what and how needs
to be changed, to discuss with the directors the nature of the changes to the runtime.

During this phase, as much tests as possible will be written, to stress the runtime in
different ways, and existing benchmarks will be prepared to be ran by the developer
as well. This has two goals: to understand the use of the programming model from a

9

user point of view and to use those tests further down the line to verify the correctness
of the new implementation. Both tests that use only one feature and tests that use
multiple features in conjunction will be coded.

Then, the second phase will be related to prepare the runtime to have two or more
different dependency subsystem implementations at the same time, and the user being
able to dynamically select one at run time. This is needed because the new implemen-
tation might not be feature-complete enough to be used in all of the user cases, and
thus it is not a drop-in replacement.

The next phase will be to design and code the new implementation, possibly based
on earlier versions but with the goal of being as simple as possible to start with,
allowing for more complex enhancements down the line. During this process, the tests
mentioned earlier will be executed at each step to verify the progress and prevent
regressions.

Finally, an evaluation will be carried out, with many different benchmarks and on
different systems, to get a general understanding of how the new version performs
and its limitation versus old implementations. At last, after the approval from the
directors, the thesis will be written.

3.4 Risks

3.4.1 Deviation of the project plan

If the chosen design performs worse than expected, the project timeline or cost might
change in order to accomplish the project goal.

Should this happen, the possibility of expanding the timeline would have to be ex-
plored, but this scenario can be prevented by doing a good job in the planning stage.

3.4.2 Introducing bugs to the runtime

Bugs are an integral part of software development, and they are caused by human
limitations. In this case, difficult to reproduce bugs could add complexity to the
project and endanger the project plan.

Software correctness cannot be totally guaranteed, but most bugs can be detected early
using established and proven development methods, such as Test Driven Development
[14], to detect them as soon as they enter the code. This is further explained in
Subsection 5.1.3

10

3.4.3 Compilation and test times

The full Nanos6 runtime takes several minutes to compile. Even if only one file has
changed, linking time is not negligible, and even then running all the tests and stressing
the runtime will take time out of actual development.

The development method can be adapted to the situation by trying to compile fewer
libraries of the runtime and do other tasks during compilation, but time will be lost
due to this risk specially when doing quick troubleshooting.

3.4.4 Result variance

As there are infinite use cases for the runtime, some programs might perform better
than others, and achieve different speedups.

Tests cases and performance benchmarks will feature as much variety as possible to
ensure most use cases are being evaluated, not just a few.

3.4.5 Debug difficulties

With parallel software with big degrees of concurrency and other complexities, dead-
locks or race conditions can be difficult to reproduce, find and solve.

The developer will have to learn how to use debugging tools in those cases and write
specific tests to trigger edge-case behavior.

11

4 | Methodology

4.1 Time management

To use the time as efficiently as possible, tasks in this project will be short and incre-
mental, having between them working versions of the software. This is similar to the
SCRUM philosophy, but other concepts of that methodology will not be used because
the project will not be done in a team environment. By doing it this way, with Sprints
of one week or two, the planning can be changed on the go and that will provide a lot
of flexibility with timing and planning [15].

4.2 Progress tracking

To keep track of the work that has been done, weekly (if possible) meetings will be
held with the director, and the status updated online on OneNote.

For code tracking, on the other hand, the Git version control system will be used,
in tandem with the GitLab online portal that is already used by the Programming
Models group at the Barcelona Supercomputing Center, both to monitor progress and
to exchange patches with other developers if needed.

4.3 Validation

Using a Test Driven Development approach, that is materialized because tests will
be written before a single line of runtime code, will help correctness to be ensured
during all steps of the project. That way, the implementation can also be defined as
functionally complete when all the tests pass.

For performance, a set of benchmarks will be prepared to be run on different systems
to gather speed-up statistics, and will also help finding bugs.

Finally, the final validation of the project will be done by the directors and the
Barcelona Supercomputing Center.

12

4.4 Final result

The result expected for this project would be to get the code that has been developed
merged into the master branch of OmpSs-2, reaching a release so that all the runtime
users can access a better performance for smaller task granularities. The performance
gain shall be quantified and proven through benchmark results in this thesis.

13

5 | Project plan

This chapter describes the different tasks that define the project, the dependencies
between them and the resources that will be used. All of this will be illustrated with
a Gantt diagram in Section 5.6.

Finally, the possible setbacks that can be encountered during the project will be dis-
cussed, in particular how they would affect the plan and the resources, and how they
can be worked around if need be.

5.1 Tasks

The following subsections specify the different tasks that comprise the project.

5.1.1 Project management

This tasks encompasses all the content of the Gestió de Projectes (GEP) subject, and
its different deliverables. In total, five different tasks will be delivered totaling 75 hours
of dedication, distributed the following way:

• Context and Scope: 24.5 hours

• Project plan: 8.25 hours

• Economical plan and sustainability: 9.25 hours

• Specialization module: 12.5 hours

• Oral presentation and final document: 18.25 hours

The tools Google Drive, Microsoft Office, Gantter, Google, Atenea and El Racó will
be used during the course of the subject.

14

5.1.2 Runtime analysis

Before starting to write new code, it is very important to analyze the code that is
already there, and what the rest of the system expects out of it. This will provide an
understanding of what needs to change and help prevent bugs down the road caused
by misunderstanding what the code really does.

This task will also encompass the time the developer will need to become familiar with
the compiler, debugging tools and environment needed for the runtime.

The following tools will be used during this task: Git, GitLab, Visual Studio Code,
Vim, CLion, Mercurium, GCC and Bash.

5.1.3 Correctness tests

As has been mentioned in earlier sections, tests will be created to ensure correctness.

The tests will be small and totally independent programs that will use the OmpSs-2
tasks and dependencies, each one in a different way, to get as much coverage as possible.
Each program will initialize the data, then do some parallel computation, and finally
verify the result sequentially. High number of iterations, excessive task granularity and
other techniques will be used in the tests to stress the runtime as much as possible.

The tests will be easy to run as well, so they can be ran automatically each time the
runtime is compiled to verify no bugs were introduced.

To create the tests C will be used as the programming language, the Mercurium
compiler and a code editor.

5.1.4 Initial implementation

Next, an initial implementation of the dependency subsystem will be designed and
written, either from scratch or based on an already-existing one. The focus will be
to keep it simple so optimizations and features can be introduced without a lot of
development effort.

C++ will be used as the implementation language, compiled with the GCC (GNU
Compiler Collection), and any of the code editors available.

5.1.5 Optimization

The optimization of the runtime consists on identifying the bottlenecks and address-
ing them one by one. The developer will have to find the bottlenecks and come up
with creative and simple ideas to solve them without introducing great amounts of
complexity. The goal will be to enhance the initial implementation, both with new
features and better performance.

15

C++ will be used as the implementation language, compiled with the GCC (GNU
Compiler Collection), and any of the code editors available.

5.1.6 Evaluation

With the correctness tests, explained in 5.1.3, and benchmarks readily available at
the BSC or sourced from elsewhere, the performance gains of the new dependency
subsystem versus the original will be evaluated objectively.

The benchmarks may be run at some of the different supercomputers available at the
BSC, and to make the task easier, an automatic build and run script will be created,
to collect and save the execution times and results of the different benchmarks.

The benchmarks implementation language may be C++ or C, they will be compiled
with Mercurium and any scripts that need to be written will be done in either Bash
or Python.

5.1.7 Thesis writing

Finally, with all the research, knowledge and results gathered during the project, the
final thesis will be written and future work may be proposed.

To write the thesis, LATEXwill be used, with Visual Studio Code as the editor, pdflatex
as the compiler, and any web search engines, books or sources that are needed.

5.2 Timing

Table 5.1 shows the estimated time to do each of the tasks specified in section 5.1.

Task Time (h)
Project management 75
Runtime analysis 32
Correctness tests 32
Initial implementation 126
Optimization 157
Evaluation 32
Thesis writing 101

Table 5.1: Estimated time in hours required to do each of the tasks.

16

5.3 Task dependencies

Some of the tasks that have been defined in 5.1 require other tasks to be completed
before they can be started. Table 5.2 shows prerequisites for each task, if applicable.

Task Prerequisite
Project management -
Runtime analysis Project management
Correctness tests Project management

Initial implementation
Runtime analysis
Correctness tests

Optimization Initial implementation
Evaluation Optimization
Thesis writing Evaluation

Table 5.2: Prerequisites for each task.

5.4 Resources

Different types of resources will be needed for this project, mainly human, hardware,
and software.

5.4.1 Hardware

A laptop will be provided by the Barcelona Supercomputing Center, as well as a screen,
for the purpose of this project. Also, the developer may work at home with a more-
powerful home PC for any reason. Finally, more than one supercomputer may be
used to check performance and correctness, but only the CTE-KNL supercomputer is
specified here, as it will be the main resource used during the final evaluation task.

For each system, CPU and memory available is specified, as well as any other notable
features.

• BSC Laptop

– CPU: Intel® Core™ i7-5600U (2 cores, 4 threads, 2.6GHz)

– Memory: 16GB

• Home PC

– CPU: AMD® Ryzen™ 7 1700X (8 cores, 16 threads, 3.8GHz)

17

– Memory: 16GB

– GPU: NVIDIA GTX1060

• CTE-KNL Supercomputer:

– Login nodes: CTE-KNL has 1 login node with the following configuration.

∗ CPU: Intel ®Xeon™ E7-8850 (80 cores, 8 NUMA nodes)

∗ Memory: 2TB

∗ Interconnect: GPFS 10GBit/s (fiber)

– Compute nodes: CTE-KNL has 16 compute nodes with the following con-
figuration.

∗ CPU: Intel ®Xeon Phi™ 7230 (64 cores, 256 threads, 1.30 GHz)

∗ Memory: 96GB of main memory (90 GB/s), 16 GB of high bandwidth
memory (480 GB/s) in cache mode

∗ Interconnect: 100 Gbit OmniPath interface, GPFS 1Gbit

5.4.2 Software

This project will use a wide variety of software for the different tasks, as well as
many libraries and such required for the runtime to compile. For this reason, only the
main software is specified in this section, but other programs and tools with no cost
associated will be used during the project.

• KDE Neon 16.04: GNU/Linux distribution on the student’s Home PC.

• Manjaro Linux: GNU/Linux distribution on the BSC laptop. It was chosen
because of its bleeding-edge versions of tools and compilers.

• Microsoft Windows 10: Used for the GEP subject.

• Git: Decentralized version control system, used for code and the final thesis
writing.

• GitLab: Git repository management server, already used by the BSC.

• GDB: the GNU Project Debugger, used to find and troubleshoot bugs in the
runtime.

• Mercurium: source-to-source compiler, used in the BSC, to transform OmpSs-2
annotated code into valid C/C++.

• GCC: the GNU Compiler Collection, both used to compile the nanos6 runtime
and by back-end of the Mercurium compiler.

• C, C++, Bash and Python: Programming languages used.

18

• Vim: Console-based text editor.

• Visual Studio Code: Text editor.

• CLion: C/C++ Integrated Development Environment.

• LATEX: Computer typewriting system used to write the final thesis.

• Microsoft Office: Office package used for the GEP subject.

• Gantter: Online service used to create Gantt diagrams and do general project
management.

5.4.3 Human resources

As was explained more in depth in Section 1.2, this project will count with a director
and co-director, support staff, and the main resource that will be the developer. In
this case, the student doing his final thesis.

5.4.4 Spaces

The developer will work from a desk at the BSC, which will allow for direct contact
with other runtime developers, and will make it easy to have weekly meetings with the
project director.

5.5 Workarounds and action plan

In the hypothetical case of deviations to the project plan, the workaround would be
different if it is just a setback in the normal development workflow, for example not
finishing one of the tasks planned for a week of development, or a bigger setback that
endangers the project plan.

In the event of a setback inside the normal development workflow, because of unex-
pected complexity, bugs, personal problems, etc., the planning can be adapted because
of the flexibility that our Agile development model and week to week planning give.
As such, it could be rethought how to spend the remaining time and the requirements
for the next development cycle can be changed.

In case of something major, that affected possibly the hole project, for instance bu-
reaucracy problems or one task becoming much bigger than expected, time could be
cut on the optimization and features included in the runtime, at the cost of less per-
formance / functionality than expected, but that would be addressed in future work
if need be. That way, further effects on the project plan would be prevented.

19

5.6 Gantt diagram

2018 2019

September October November December January February March April May June

Project management

Context and Scope

Project plan

Economical plan

Specialization module

Final document

Runtime analysis

Correctness tests

Initial implementation

Optimization

Evaluation

Final thesis

Fig. 5.1: Gantt diagram of the project timeline

20

5.7 Deviations

The Gantt diagram presented in Section 5.6 represents the final timeline of the project.
On the initial plan, the student was due to start working at the BSC on October, but
several bureaucratic issues caused this not to be possible. This was due to a change
in the BSC policies for visitors, and it took a lot of time of coming and going between
the University and the center. When all those issues were finally dealt with, it was
possible to start working on the project in February.

Aside from that delay in the starting date, the rest of the project plan has been
fairly respected. Although the exact count of hours spent in the project is difficult to
calculate, the dates that were estimated for the start and end of the different tasks
have been accurate and there was no rush at the end to finish the thesis in time.

21

6 | Economic management

This chapter breaks down all the costs related to the project and how to tackle possible
deviations in the budget.

6.1 Direct costs

Direct costs are derived directly from the project. In this case, it is the human re-
sources, the hardware and the software needed.

6.1.1 Human resources

The cost of labor for a Informatics Engineering student is approximated using the
minimum wage of a student cooperation contract for the UPC as reference. As such,
a cost of 8€/h is assumed. The hours of the BSC support staff invested in the student
are added up as well, which have been estimated in 16 hours at market price.

Resource Price (€/h) Amount (h) Total (€)
Informatics Engineering student 8 555 4440
BSC Support staff 20 16 320
Total 4760

Table 6.1: Cost of human resources.

6.1.2 Software

The price of the software will be calculated estimating the useful life of the licenses to
obtain a price per hour, that can then be factored in for each task.

It is worth mentioning that most of the software in this project is free and open source,
and thus it has no cost. This software will be omitted in the final budget for brevity,
but is displayed here.

22

Resource Price (€) Life (years) Amortization (€/h)
KDE Neon, Manjaro 0 - 0
Windows 10 (Student) 0 - 0
Git, GitLab 0 - 0
GDB, GCC, Mercurium 0 - 0
Vim, VSCode 0 - 0
CLion (Student) 0 - 0
LATEX 0 - 0
Microsoft Office 150 3 0.026
Gantter (Trial) 0 - 0
Total 0.026

Table 6.2: Cost of software resources.

6.1.3 Hardware

There are two main hardware resources: the BSC laptop and the home PC. The
amortization of the CTE-KNL supercomputer is calculated as well, but based only in
one node (as only one at a time will be used during the project). However, its use is
estimated at 12h/day, as the supercomputer has a lot of users inside and outside the
BSC.

Resource Price (€) Life (years) Amortization (€/h)
Home PC 1200 4 0.16
BSC Laptop 2000 4 0.26
CTE-KNL (node) 10000 4 0.57
Total 0.99

Table 6.3: Cost of hardware resources.

6.2 Indirect costs

Indirect costs are caused by the project but not as a direct cause of its activities. In
our project, the main indirect cost is the electricity used by the spaces and computers,
and the home internet.

The assumptions made for this cost are that the home PC uses about 400 W, the BSC
laptop about 50W and, based on the CTE-KNL CPU’s TDP of 215W, 500W for the
full node accounting for cooling and other systems.

23

Resource Price Amount Total (€)
Home PC Power 0.13847 €/KWh 400Wh * 75 h 4.15
BSC Laptop Power 0.13847 €/KWh 50Wh * 480 h 3.32
CTE-KNL Power 0.13847 €/KWh 500Wh * 40 h 2.77
Internet 40 €/month 5 months 200
Total 210.24

Table 6.4: Indirect costs.

6.3 Final budget

With the costs calculated earlier, and having an overall contingency of 10% and special
budget for hiccups on the main tasks, the final project budget is presented in Table
6.5.

Resource Units Price (€/unit) Total (€)

Project management

Home PC 75h 0.16 12

Microsoft Office 75h 0.026 1.95

Student 75h 8 600

Runtime analysis

BSC Laptop 32h 0.26 8.32

Student 32h 8 256

Correctness tests

BSC Laptop 32h 0.26 8.32

Student 32h 8 256

Initial implementation

BSC Laptop 126h 0.26 32.76

Student 126h 8 1008

Support Staff 8h 20 160

Setbacks 30h at 10% 0.8 24

Optimization

BSC Laptop 157h 0.26 40.82

CTE-KNL 20h 0.57 11.4

Student 157h 8 1256

Support Staff 8h 20 160

Setbacks 30h at 20% 1.6 48

Evaluation

BSC Laptop 32h 0.26 8.32

24

CTE-KNL 20h 0.57 11.4

Student 32h 8 256

Thesis writing

BSC Laptop 101h 0.26 26.26

Student 101h 8 808

Indirect costs

Home PC Power 75h 0.055 4.15

BSC Laptop Power 480h 0.007 3.32

CTE-KNL Power 40h 0.07 2.77

Internet 5 months 40 200

Subtotal 5203.79

Contingency 10% 520.38

Total without VAT 5724.17

VAT 21% 1202.08

Total 6926.25

Table 6.5: Final budget.

6.4 Risk management

Two different forms of risk contingencies are included in the final budget, just in case
setbacks happen and threaten to deviate the costs.

First, in the two main development tasks, that have more changes of having hiccups
because a lot of variables that affect those tasks cannot be accurately predicted, a 10%
and 20% risk has been included, adding each risk a total of 30 hours of the student’s
time in case it is needed.

Second, a 10% contingency item has been added to the final budget. The percentage
is low because it is not foreseeable that any other material would need to be bought
in any setback scenario, and thus the project would only need more time and the
corresponding software/hardware amortization for the extra work. This will cover any
other incidents that may happen and have not been accounted for in advance, and
ensure the budget is respected regardless.

25

7 | Sustainability

It is important to make an analytical reflection on the sustainability of the project to
be able to justify its existence. This sustainability must not be just economical, but
also social and environmental.

Table 7.1 represents the sustainability matrix of the project, where there is a brief
summary of each of the elements and then a subjective score determined by the student.
In the following sections on this chapter each of the elements of the matrix will be
elaborated on.

PPP Lifespan Risks

Environmental
74KWh of partly
renewable energy
+ commuting

Reduction of emis-
sions proportional
to speedup

Deviation from
project plan or low
speedup

8/10 10/10 6/10

Economic
6926.25 € Efficiency increase

proportional to
speedup

Deviation from
project plan

10/10 8/10

Social
Learning and ex-
perience

Enhancement for
users

None

10/10 10/10 10/10

Table 7.1: Sustainability matrix and scores.

7.1 Economic dimension

The cost of the project is not too high for being a five month endeavor, but under-
standable as the main resource is a single student and almost no material is needed. In
fact, the cost of the project to the BSC will be limited to just the space and a laptop,
plus the hours of the director, as there is no internship involved.

As has been explained in Chapter 3, the focus of the project is to enhance the per-
formance of the Nanos6 runtime. The runtime is currently used at the MareNostrum

26

supercomputer, and potentially many more systems around the world, as it is free
software. Any improvement in performance will result in decreased software execution
times, and time in a supercomputer is expensive. That way, it will cost less money to
obtain the same results, because the software will be faster.

Aside from this, OmpSs has influenced the OpenMP spec heavily [5]. Many features
that were first introduced in OmpSs have then been incorporated to the standard, and
some of the reference implementations for those features were developed in the BSC.
As such, the importance of having a good implementation is key, and it could decide
if this features end up in OpenMP and benefit a much wider audience of users.

7.2 Social dimension

As an Informatics Engineering student, the main goal for the project is to learn. Being
able to work side by side with the BSC and develop free software in a runtime used by
other many developers, is a big learning opportunity and a great added value to the
project. This is the main benefit the student will get from the college thesis.

The enhancement of a runtime will also affect directly to the quality of life of its users,
now and in the future, as they will be able to write faster software retaining a lot of
control over the data dependencies on their code. They will also gain confidence in
the ability for Nanos6 to execute their code with good performance.

This new implementation also answers direct need of BSC staff, that need faster im-
plementations with less features for certain cases, and simple code to be able to adapt
to their needs easily.

7.3 Environmental dimension

All projects have an environmental impact, but the goal is to negate that impact with
the benefits of the project during its lifespan. However, power used for the computers,
and even fuel needed for commuting to and from the BSC, will create a footprint that
cannot be ignored.

It will be a priority to reduce the environmental impact of the project as much as
possible. This will include, among other things, using public transportation whenever
possible for commuting. It is important to mention that the student’s home uses
electricity sourced on its entirety from renewable energy, which will help reduce the
CO2 emissions.

Once the modification to the runtime has been deployed, OmpSs-2 programs may have
less execution time, and that is positive for the environment. A faster program is one
that also, incidentally, uses less energy in order to execute. That will reduce the CO2

footprint of the programs.

27

Another effect will be towards supercomputer amortization. As there are always pro-
grams running in the MareNostrum, the power bill is unlikely to be reduced, but if the
software that runs on the supercomputer is faster, greater efficiency is achieved, more
programs will be executed in the same amount of time. That is better for equipment
amortization, not only economically, but environmentally as well.

28

8 | Analyzing the runtime
and writing tests

This chapter covers the process of familiarizing with the current Nanos6 runtime and
the coding of tests to check that different features related to the dependency subsystem
behave correctly.

This starts all the way from the instrumentation and source to source compilation done
by the Mercurium compiler, a high level overview of the OmpSs-2 runtime, reading
the spec and user interfaces, and then writing valid C OmpSs-2 programs.

8.1 Compiling the runtime

The first step of this process will be to get a system ready to execute OmpSs-2 pro-
grams. It will be assumed that the Mercurium compiler is already installed on the
system, as it is not the focus of this thesis. The importance of understanding the
runtime compilation process will become apparent in Chapter 9.

The Nanos6 runtime uses the GNU Build System [16], also known as Automake to
generate the different pieces needed for compilation. This allows developers to cre-
ate makefiles and configure scripts for a wide variety of UNIX-like operating systems
without having to hand-write all of them.

There are two important files for this process: the configure.ac file, which defines
configuration options that the user will be able to specify when compiling the runtime,
and the Makefile.am file, which is a higher-level Makefile that can use the flags defined
in the configure script. All the files a developer wants to include in the final library
must be added to that file.

The current compilation script includes an option to include different dependency
subsystem implementations in the final binary. As there have been several iterations
of the OmpSs-2 spec [5], several options can be chosen. However, due to the fact that
there was a default value to be chosen and then the rest of implementations weren’t
even compiled, they were outdated to the point they couldn’t be built anymore.

The rest of the compiling process is the standard for any UNIX software tarball.
Running the configure script, compiling the source and installing.

29

8.2 Writing and compiling OmpSs-2 programs

The process to write and compile C programs that use OmpSs-2 is very similar to
writing programs with OpenMP, but instead of using the GCC compiler, Mercurium
is used. This section will walk through that process with a simple program, which
without any parallelization, is shown in Figure 8.1.

1 int main(int argc, char *argv[])

2 {

3 for(int i = 0; i < 1000000; ++i) {

4 doComputation();

5 }

6 return 0;

7 }

Fig. 8.1: Simple C sequential program

Assuming doComputation() is expensive, this program may take a long time to execute.
For the purpose of this example, it is assumed that all the calls to doComputation()
have no data dependencies between them. As such, this program is parallelizable, and
it can be annotated with OmpSs-2 pragmas to achieve parallel execution [5]. Figure
8.2 shows the same program annotated with OmpSs-2.

1 int main(int argc, char *argv[])

2 {

3 for(int i = 0; i < 1000000; ++i) {

4 #pragma oss task

5 doComputation();

6 }

7 return 0;

8 }

Fig. 8.2: Simple C parallel program

If the program in Figure 8.2 is compiled with the Mercurium compiler, it will be
modified to dynamically load the runtime upon execution, and then execute the do-
Computation() calls in parallel. More information on the OmpSs-2 API is available in
the spec [5].

30

8.3 Runtime architecture

The Nanos6 runtime is a complex system composed of different parts with a high level
of integration and interconnection between them. As it has many components, and
the developer is not familiar with many of them, only some are highlighted, and then
the ones that are relevant for the project are explained in more detail.

• Scheduler: Distributes and assigns tasks (work units) between the different
threads when they are ready to be executed. It will accept hints from other
subsystems to decide what order the tasks are executed in.

• Instrumentation: Receives calls from all of the different systems signaling events
and situations. Then, depending on the compile flags, it will use that information
to print it, display it as a graph, pass it to other programs such as Extrae [17],
or do nothing on the optimized version.

• Loader: Binary the annotated programs are linked with. Explained in detail in
8.3.1.

• Dependency subsystem: Keeps track of the data dependencies and decides what
tasks are allowed to start execution. Explained in detail in 8.3.2

8.3.1 Loader

The loader is a small binary that is compiled with the Nanos6 runtime, and it is the
one all annotated programs are linked against. Its main task is to then load the correct
Nanos6 library depending on the environment variables the program has been executed
with.

This is because the runtime has different flavors. Those flavors are essentially compi-
lations of the runtime done with different flags that enable or disable certain verbosity,
debug features, optimizations, etc. In its current form it is used by the user through
NANOS6 environment variable. Depending on that variable a certain flavor will be
dynamically linked, and this way the user can enable different instrumentations.

Essentially, the loader is just a stub to link the real runtime, but it will link differ-
ent flavors without having to recompile it. Some examples of the currently available
runtime flavors are: verbose, debug, stats, stats-papi, profile, extrae and graph.

8.3.2 Dependency subsystem

The dependency subsystem is the one that will receive all the information regarding
the task’s data accesses, and then decide if that task can start execution, or it can’t
because it would violate the dependency model.

31

During the project no deep dive into the details of the current implementation was
done, because it is of little value as it is going to change, and because it would probably
influence the design of the new implementation. However, it is really important to
understand the entry points to the system, both internally and externally, and what
its responsibilities are.

To save its state, the dependency subsystem has a class called TaskDataAccesses that
is a member of the main Task class. There, any relevant data structures are created
to store the dependencies of the current task, and it will be allocated and destroyed
with the task.

To maintain the state, the system has a series of functions that it exposes, either to the
rest of components or even to the annotated program. They will be called in a specific
order for each task, and allow the implementation to do any relevant operations on
the data to ensure the dependency model is respected. Those functions are briefly
explained here, and are called in the following order:

1. nanos6 register * depinfo: The * is substituted by the type of access (for example
write or read), and this functions are exposed through the loader and called
directly from the annotated program. One call will be made for each data access
that task has declared.

2. DataAccessRegistration::registerTaskDataAccess : This function is called from in-
side the earlier one for each invocation, but is internal.

3. DataAccessRegistration::registerTaskDataAccesses : Called from the nanos6 sub-
mit task function, only once per task, when all the accesses have been registered.
This is where the dependencies and order are calculated.

4. DataAccessRegistration::handleEnterTaskwait / DataAccessRegistration::handle-
TaskExitTaskwait : Called when the tasks enters or exits a taskwait. Is is worth
mentioning that implicit taskwaits (ones at the end of a task code block) also
call this function.

5. DataAccessRegistration::unregisterTaskDataAccesses : Called when the data ac-
cesses of the task have been finished and dependencies can be satisfied.

6. DataAccessRegistration::handleTaskRemoval : Called whenever a task is being
deleted from memory because it is not needed anymore.

To communicate to the rest of the runtime the status of the dependencies of a task,
two counters in the Task class are changed:

1. Task::increasePredecessors / Task::decreasePredecessors : Marks the unsatisfied
dependencies a task is pending on. When it reaches 0, the task can be scheduled.

32

2. Task::increaseRemovalBlockingCount / Task::decreaseRemovalBlockingCount :
Keeps track on how many subsystems depend on that task remaining in memory
to work, and hence are blocking the deallocation of the task. When it reaches 0,
the task is deleted.

It must be noted that in the Nanos6 runtime, it is assumed that if a subsystem decreases
to zero one of the counters of the earlier list, it is that subsystem’s responsibility to
either enqueue the task in the Scheduler or call the task destructor and deallocate it.

8.4 Writing correctness tests

With all the information obtained and after reading the OmpSs-2 Spec[5], the test
writing phase can be started. They are written as simple self-contained C programs,
that might or might not have a useful purpose, but that its correct execution can be
checked easily in a sequential manner.

The coded tests check many different features of the dependency model but in iso-
lation. To enumerate some of those features, there are discrete dependencies, task
nesting, reduction, reduction nesting, weak tasks, totally overlapping regions, par-
tially overlapping regions in different ways, etc. The main goal has been to cover as
many cases as possible with the tests, to ensure that if a bug is introduced it breaks a
test.

During all of the project, if a bug is found that doesn’t break a test, a broken test just
for that bug is created. After it, it is fixed, and checked with the new test that it is
not introduced ever again. This is commonly known as regression testing [18].

In Figure 8.3 the typical layout of a correctness test is displayed. It sets up the needed
data, does some work, checks the result, and then displays wether it was a success
or a failure. Then, with a shell script, all tests can be ran and regressions are easily
spotted. This specific test focuses on partially overlapping memory regions.

33

1 ...

2 #define LENGTH 1024

3 #define TIMES 10

4

5 void sum_array(int* arr, size_t length, int from) {

6 for(size_t i = from; i < length; ++i)

7 arr[i]++;

8 }

9

10 int check_array_is_asc(int* arr, size_t length, int times) {

11 for(size_t i = 0; i < length; ++i) {

12 if(arr[i] != ((i+1)*times))

13 return 0;

14 }

15

16 return 1;

17 }

18

19 int main(int argc, char *argv[])

20 {

21 int* arr1 = init_int_arr(LENGTH);

22 int* arr2 = init_int_arr(LENGTH);

23

24 for(int i = 0; i < TIMES; ++i) {

25 for(int j = 0; j < LENGTH; ++j) {

26 #pragma oss task inout(arr1 [j:LENGTH-1])

27 sum_array(arr1, LENGTH, j);

28 #pragma oss task inout(arr2 [j:LENGTH-1])

29 sum_array(arr2, LENGTH, j);

30 }

31 }

32 #pragma oss taskwait

33

34 if(check_array_is_asc(arr1, LENGTH, TIMES) && check_array_is_asc(arr2

, LENGTH, TIMES))

35 printf("tasks_partial_overlap test 1: OK");

36 else

37 printf("tasks_partial_overlap test 1: FAIL");

38 ...

39 }

Fig. 8.3: Example of a correctness test with tasks depending on memory regions
with partial overlap

34

9 | Adapting the runtime
for different implementations

This chapter explains how the runtime has been adapted, through a method of condi-
tional compilation, to house two different implementations of the dependency subsys-
tem that the user can switch without having to recompile.

The main purpose of this task is to be able to have both (original and new) versions
of the dependency subsystem at the same time, as the next version may not have all
the features the OmpSs-2 spec [5] requires, exchanged for performance in applications
with low task granularity.

Please note, from this point onward, the original implementation will be referred as
linear-regions-fragmented, which is its internal name, and the new implementation as
discrete-simple.

9.1 Designing the mechanism

In the initial brainstorming phase, it had to be decided how to switch versions, and
decide what technique was going to be used.

The first idea was to adapt the linear-regions-fragmented version to use the C++
version of an interface (an abstract class), that all the future versions could inherit
from. That way versions can be switched at execution time, by having every current
call to the dependency subsystem go through an implementation-agnostic interface.

That idea, however, had several issues that made it unsuitable. First, the time invest-
ment required to adapt the runtime in such a way was too much, as the Instrumentation
subsystem relied on a lot of internal details of the linear-regions-fragmented version
that could be easily mocked by other versions but was too time-consuming to abstract
through interfaces.

The second issue, and the biggest one, was that all the data structures for the sub-
system, housed in the TaskDataAccesses class, were allocated with the main task, and
thus the size of those structures had to be known on compilation time. While decou-
pling them to be allocated on a separate call would be possible, memory allocation is

35

very expensive and all the references to that structure across the whole runtime would
have to be changed as well.

Another idea was to use a similar conditional compilation method that was already
used for the different Nanos6 flavors and has been explained in Section 8.3.1. That way,
the existing loader is repurposed to switch dependency implementations depending on
environment variables, and this idea has none of the issues of the first one, because
the two versions would be compiled to different libraries.

The conditional compilation method was not free of drawbacks, though. By having to
compile all the different Nanos6 flavors as well with each implementation, the number
of binaries generated and the already long compilation time is doubled. That, however,
was acknowledged as an acceptable trade-off and thus this approach was chosen.

9.2 Implementing conditional compilation

In Section 8.1 it was explained what tools were used to compile the runtime, and
the relevant files. To get all the flavors to compile with both implementations, the
configure.ac file was modified to provide switches to compile or omit each version.
That way, if a user or developer is only interested in using one of the versions but not
the other, they can be excluded from compilation, resulting in fewer binaries and lower
compilation times.

The most important part, however, was to change the Makefile.am file and add defini-
tions to build all the libraries twice, one for each version. That was done while trying
to make it as easy as possible to add even more dependency implementations in the
future, but the Automake tool has some limitations on its ability to define macros to
be that portable (it doesn’t even have loops, for example).

After the adaptations both versions could compile at the same time, but adapting the
Nanos6 loader was still necessary.

9.3 Modifying the loader

The Nanos6 loader, explained in Subsection 8.3.1, allows the dynamic linking of dif-
ferent flavors by switching on environment variables. To be able to select the depen-
dencies as well, a new environment variable NANOS6 DEPENDENCIES was added,
with two possible values: linear-regions-fragmented and discrete-simple. Depending
on that variable, the correct library will be linked to the annotated executable.

For that, the existing loader, which already had support for different flavors, was
modified by adding the dependency implementation name to the loaded library as
well, and if no environment variable was set, defaulting to the feature-complete linear-
regions-fragmented, so the user had a spec-compliant library if nothing was specified.
Figure 9.1 shows a code snippet of the new modification included in the loader.

36

1 void _nanos6_loader(void)

2 {

3 ...

4

5 // Flavor switch

6 char const *variant = getenv("NANOS6");

7 if (variant == NULL) {

8 variant = "optimized";

9 }

10

11 ...

12

13 // Dependencies switch

14 char const *dependencies = getenv("NANOS6_DEPENDENCIES");

15 if(dependencies == NULL) {

16 dependencies = "linear-regions-fragmented";

17 }

18

19 ...

20

21 // Load the library with name libnanos6-[variant]-[dependencies].so

22 _nanos6_loader_try_load(verbose, variant, dependencies, lib_path);

23 ...

24 }

Fig. 9.1: Loader code to switch flavors and dependencies.

37

10 | Initial implementation

This chapter covers the base design and code of the discrete-simple implementation.
This was built based on another simple implementation that was developed earlier just
to cover the needs of one particular use case. As the base code was adopted to cut
down on development time, but does not represent the final design, details about it
will be omitted.

10.1 Initial design

The basic idea of the implementation is that each task will have only two basic struc-
tures to keep its dependencies:

• A Bottom map, which will have entries pointing to the last access to a certain
memory address. That way, when registering its dependencies, a child task can
go to its parent’s bottom map and determine if any of its siblings are accessing
to the same memory addresses, and stablish a dependency relationship. The key
of the map is the address. Inside one node of the bottom map, the following
data is stored:

– The last access that has been registered to that address.

– A boolean indicating if that last access is satisfied.

• An array of accesses, that represent all the declared depend clauses of the current
task. The actual addresses are stored in another array with the same indexes, to
prevent long searches due to cache misses. For each memory access, the following
information is:

– The access type, being for now either read, write, or readwrite.

– The successor task, which is the next sibling task that has registered an
access to that address.

– An boolean indicating if the access is the top of a chain of read accesses.

At one given point in time, there can only be one write/readwrite access to the same
address, or n read accesses. This is the basic constraint the system will operate on.

38

Whenever a task registers its accesses, a counter described in Subsection 8.3.2 will be
increased one time for each access that has dependencies blocking the task from starting
execution. An access is only considered satisfied whenever one of this conditions is met:

• There is no bottom map entry for the address being accessed.

• The current access is a read, and the bottom map entry points to a satisfied read
access.

Note that write accesses will always be unsatisfied when they have predecessors, be-
cause only one can be run at a time. Even when satisfied, the accesses will link their
predecessors to them and change the bottom map entry.

When a read task is registered, its top bit will be set if the task is the first one (there
is no bottom map entry).

When a task releases its dependencies, it has to iterate through its accesses and satisfy
its successors. Different types of accesses will have different responsibilities as well.
Whenever a access is released, the following things can happen:

• The task is a read.

– If the task has the top bit set, it will mark itself as deletable and find its
successor.

∗ If there is no successor, it’s bottom map entry will be deleted.

∗ If the successor is a write, it will be satisfied.

∗ If the successor is a unfinished read, the top bit will be set to true.

∗ If the successor is a finished read, it will be marked as deletable, and
the same logic will be applied recursively to the next successor.

– If it is not the top read, it will not mark itself as deletable and will do
nothing, because other reads are pending.

• The task is a write or readwrite

– It will mark itself as deletable and satisfy its successor. If the successor is a
read, all subsequent reads will be satisfied as well and the first one marked
as top.

Note that tasks may not be deleted just as they release their dependencies, because in
the model, accesses are an integral part of the dependency control data structures, and
cannot be deleted until they are not needed anymore. This adds some more complex
logic to the system, but is very efficient in terms of space.

To sum up the design, let’s look at a simple yet real example. Figure 10.2 shows a
dependency graph that corresponds to the sample code of Figure 10.1. Note that Task
1 has two Write accesses, to address A and B and drawn as circles, and Task 2 and

39

1 int main() {

2 int* A, B;

3 initialize(A, B);

4

5 #pragma oss task out(*A, *B)

6 {

7 do_calculation(A);

8 do_calculation(B);

9 }

10

11 #pragma oss task in(*A)

12 print_by_screen(A);

13

14 #pragma oss task in(*A)

15 output_to_file(A);

16 }

Fig. 10.1: Sample code of a simple write-then-read program

Task 3 have read accesses to address A, drawn as diamonds. The figure represents a
snapshot of the structures just as all tasks have been registered.

A possible event timeline would go on in this example, following the design:

1. Task 1 is created. Accesses to A and B are registered. Since there are no entries
in the bottom map for those accesses, they are created, with the satisfied bit set
to true. Task 1 has no dependencies, so it can start.

2. Task 2 is created. Access to A is registered, and an entry is found in the bottom
map. As the earlier access is a write, Task 2 cannot start. The bottom map
entry now points to Task 2 and is not satisfied.

3. Task 3 is created. Access to A is registered, and an entry is found in the bottom
map. As the earlier access is a unsatisfied read, Task 3 cannot start. The bottom
map entry now points to Task 3 and is not satisfied.

4. Figure 10.2 represents this point in time.

5. Task 1 finishes. During its dependency release, it will satisfy Task 2, place it in
the Scheduler queue, and mark A as a Top access. As Task 2 is a read, it will
travel down the dependency chain, and satisfy any other read access, as they
can be concurrent. Task 3 will be satisfied as well, and the bottom map entry
marked as satisfied.

6. Task 2 finishes. As it was marked as top, it will pass down the ”Top” bit to the
next unfinished access in Task 3, and will delete itself.

40

T1

T2

T3

A

Bottom Map

Tim
e

B

A

A

Successor

Successor

Write Read

Fig. 10.2: Dependency graph of a simple write-then-read program

7. Task 3 finishes. As it is marked as top, will delete itself and the corresponding
entry from the bottom map.

10.2 Task nesting

So far, it has been described how the system allows for dependencies between siblings,
but nothing has been said about nesting. However, when the data structures were
described, it was said that the bottom map is allocated on each task. That is because
that map is only used by children of that task, and in the Nanos6 runtime even first-
level tasks have a parent, called the main task.

It is also important that the OmpSs-2 spec [5] makes it mandatory to declare de-
pendencies of child tasks at the parent level as well, either through the depend or
weakdepend clauses. With that, task nesting already works in the implementation.

If Figure 10.4, corresponding to the sample code of Figure 10.3, is considered, it can be
seen that through the already defined mechanisms, the dependencies will be respected.
As dependencies are declared at parent level as well, Task 1 will always execute before

41

Task 2, and then the dependencies between the children of Task 1 will be allocated in
the Task 1 bottom map, which was empty, and will be executed in order.

1 int main() {

2 int* A, B;

3 initialize(A, B);

4

5 #pragma oss task out(*A, *B)

6 {

7 #pragma oss task out(*A)

8 do_calculation(A);

9 #pragma oss task out(*A)

10 do_calculation(A);

11

12 do_calculation(B);

13 }

14

15 #pragma oss task in(*A)

16 print_by_screen(A);

17 }

Fig. 10.3: Sample code of a simple program with task nesting

42

T1

T2

A

Bottom Map
Tim

e B

A

Write Read

T1.2

T1.1

A

A

Bottom Map (T1)

Bottom Map (T2)

Successor

Successor

Fig. 10.4: Dependency graph of a simple program with task nesting

As there is an implicit taskwait at the end of each task, Task 1 will never finish before
Task 1.1 or Task 1.2, and thus will never release its dependencies before their children
finish.

This features even allow to enable support for weakin and weakout clauses by treating
them as normal in and out clauses, altough none of the benefits from the early release
mechanisms is obtained, and parent tasks will most likely be just serialized.

10.3 Implementation details

In this section, only non-trivial or particularly interesting implementation details will
be discussed, and code examples will be included for clarity.

43

10.3.1 Locking

In a concurrent environment, each time a data structure is used it has to be considered
if it is possible for multiple threads to access that structure simultaneously, and if
explicit synchronization of those threads is needed.

For the bottom map structure, as it is implemented as a C++ STL unordered map [19],
it is only thread-safe for concurrent reads, and as such some sort of synchronization
mechanism must be used. A lock that already exists and is used on the Nanos6 runtime
will be repurposed for this case: a Ticket Spinlock, which is a ticket-based busy wait
lock, designed to reduce contingency and prevent context-switching.

Every task will have its own spinlock for its bottom map, and all the child tasks will
take the lock when reading or writing to it. As the implementation has been designed
to touch only the bottom map when registering tasks and when the last access finishes,
such coarse locking scheme should not be a problem.

This lock will also be taken to double-check when a task accesses its successor and
finds there is none, as there could be another thread changing that at the same time.
Figure 10.5 shows a code snippet of one of those double-check mechanisms.

This very basic one-lock scheme will contribute to the overall simplicity of the imple-
mentation, as there is no possibility to create deadlocks if just one lock is in use at any
time.

1 if (successor != nullptr) {

2 ...

3 } else {

4 // Could be false positive. We need a lock on the bottomMap.

5 std::lock_guard<TaskDataAccesses::spinlock_t> guard(accesses.

_lock);

6 if (pAccess->getSuccessor() == nullptr) {

7 // No race.

8 bottom_map_t::iterator itMap = accesses._accessMap.find(

address);

9 ...

10 return;

11 }

12 // Race. Try again, we now are not last

13 }

Fig. 10.5: Double-check mechanism with locking to prevent race conditions.

10.3.2 Access top bit

The access top bit is one of the most important features of the design, and the main
reason just two data structures are needed. It keeps the information flow in a top-

44

down direction and eliminates the need to maintain a Top Map, which is a view on the
current dependency graph from above. Nonetheless, its implementation is non-trivial.

Figure 10.6 shows a code snippet of the DataAccess structure internal implementa-
tion. Even though the top bit was described as a boolean, it is implemented as a
std::atomic<int> [19]. This STL type will perform atomic increments and decrements,
and allows the code to execute, in this case, an atomic fetch sub.

1 struct DataAccess {

2 private:

3 //! The type of the access

4 DataAccessType _type;

5

6 //! Next task with an access matching this one

7 Task * _successor;

8

9 //! Is this the top read access

10 std::atomic<int> _isTop;

11 ...

12 public:

13 DataAccess(DataAccessType type, ...) : ..., _isTop(1)

14 { ... }

15

16 inline bool decreaseTop() {

17 int res = _isTop.fetch_sub(1, std::memory_order_relaxed);

18 assert(res >= 0);

19 return (res == 0);

20 }

21 }

Fig. 10.6: DataAccess structure and atomic top bit implementation.

Atomic decrements are more lightweight than locks, as no thread is blocked, accesses
are just ordered according to cache coherency mechanisms (1). In this case, it is used
to implement a decreaseTop() call that returns true the second time it is called.

This fulfills the requirements for the top bit. It is only checked two times: when a read
access finishes, to check if it is the top read, and when a top read is passing along its
top bit.

In the code, the finishing task assumes it is the top read whenever this call returns
true, as it means the bit has been set to true.

The implementation also assumes the next read has finished if decrementing its top
counter returns true, as that would mean that access has already checked if it was the
top read, and that is only done when finishing.

(1)This is true for the fetch_sub implementation x86-64 and similar architectures [20]

45

This mechanism is used to prevent race conditions. If this was a standard boolean,
the value could be changed by one thread while the another has just checked the value
and is about to change it.

That means as well that this counter is decremented as well when a read task is created
and has no predecessor, because no task will decrement that counter otherwise, and
the runtime would hang.

46

11 | Optimization

This chapter describes all the modifications that have been done to the discrete-simple
dependencies after the initial implementation has been completed, both to enhance
performance and add more functionality.

11.1 Allocating all the accesses with the task

On the initial implementation code, both the bottom map and the access array are
dynamic structures. The bottom map is dynamic because there is no way of knowing
how many accesses any of a tasks’ children will have, and the access array is dynamic
because the is no way to know how many accesses the current task will have at the
moment it is being allocated, because they are created individually later, as explained
in Subsection 8.3.2.

When thousands of tasks with many dependencies are being allocated, this can become
a problem. Both structures used, a unordered map and a vector, will allocate memory
somewhere else and store a pointer to it. Then, if more elements are added, and no
memory is left, a resize will happen, which will allocate a bigger chunk of memory
and move every element there. This is a big performance penalty, and on very small
granularity tasks can account for a sizeable amount of time. Figure 11.1 shows a
diagram of where the access data is allocated in relation to the TaskDataAccesses
struct.

TaskDataAccesses

unordered_map<Node>

vector<Access>

Bottom Map Nodes

Accesses

Fig. 11.1: Allocation of the TaskDataAccesses struct before optimization.

47

At this point, not enough information is available at the runtime to find a better
solution to this problem. However, an API change to Nanos6 could be proposed, and
implemented in the Mercurium compiler, to pass the number of accesses that a task
has at the moment the runtime is allocating it, because the compiler has the ability
to get that information at compile time (runtime in the case of multidependencies).

The current call that prompts the runtime to allocate space for a Task, and thus
allocate the TaskDataAccesses struct, is nanos6 create task, called from the anno-
tated program, and the proposed change would be to add an extra parameter to
send the number of accesses that are expected to register. Figure 11.2 shows the
nanos6 create task call with the new parameter.

1 void nanos6_create_task(

2 nanos6_task_info_t *task_info,

3 nanos6_task_invocation_info_t *task_invocation_info,

4 size_t args_block_size,

5 /* OUT */ void **args_block_pointer,

6 /* OUT */ void **task_pointer,

7 size_t flags,

8 /* NEW PARAMETER */ size_t num_deps

9);

Fig. 11.2: Task creation API with proposed change to pass access number.

With the new parameter, the exact space needed for each task with its dependencies
can be allocated, and only the bottom map is dynamic. This enables the runtime to
prevent at least one and potentially more dynamic allocations when resizing the array.

Furthermore, it is possible to allocate the array of tasks with the same call to the
Memory Allocator subsystem and have that array live in the bottom of the Task-
DataAccesses struct, by modifying the array pointer to that address. Figure 11.3
shows the data allocation in memory, where it can be clearly seen that now the access
array is part of the same chunk of memory than the TaskDataAccesses struct. This
way, another allocation per task can be prevented.

48

TaskDataAccesses

unordered_map<Node>

Access *

Bottom Map Nodes

Accesses

Fig. 11.3: Allocation of the TaskDataAccesses struct after optimization.

Figure 11.4 is a code snippet from the runtime entry point for the nanos6 create task
call, where tasks are allocated. There, the needed space for the dependencies is calcu-
lated based on the number of accesses.

1 #ifdef DISCRETE_SIMPLE_DEPS

2 // We use num_deps to create the correctly sized vector for storing

the dependencies.

3

4 size_t seqsSize = sizeof(DataAccess) * num_deps;

5 size_t addrSize = sizeof(void *) * num_deps;

6 #else

7 size_t seqsSize = 0;

8 size_t addrSize = 0;

9 #endif

10

11 // Allocation and layout

12 *args_block_pointer = MemoryAllocator::alloc(args_block_size +

taskSize + seqsSize + addrSize);

Fig. 11.4: Code snippet of the nanos6_create_task function showing adaptive
memory allocation.

49

11.2 Reductions

11.2.1 Requirements

One very important feature of the OmpSs-2 task model [5] is the support for reductions
in the task clause. The dependency subsystem is responsible for providing each thread
with a private space to accumulate the results, and then combine all of them when the
reduction has finished. As such, the runtime needs to keep track of each reduction,
and manage its lifetime inside the data structures.

On a very high level, the reductions have the following peculiarities:

• Reductions can always start (never block the task) because they operate on
private memory. This also means they execute concurrently.

• Reductions cannot be combined until they are closed and all accesses have fin-
ished.

• A reduction is closed when there are no more tasks of that same reduction access-
ing that address immediately after the last. That can happen if a non-reduction
access is registered, or if a Taskwait happens on the parent.

• All other accesses have to block if a reduction precedes them.

1 int main() {

2 int A = 0;

3

4 for(int i = 0; i < 5; ++i) {

5 #pragma oss task reduction(+: A)

6 {

7 A += 1;

8 }

9 }

10

11 #pragma oss task in(A)

12 {

13 std::cout << A << std::endl;

14 }

15 }

Fig. 11.5: Sample code of a program that uses reductions

Figure 11.6 illustrates the concepts that have been explained, by representing the sam-
ple code of Figure 11.5. All accesses to the same address A will execute concurrently,
and the reduction will be closed upon a different access or a taskwait (in our case, a
different access). Note that the concept of top is also included in the figure, as it will
be necessary for the implementation.

50

11.2.2 Implementation

Reductions are implemented on our version of the dependency subsystem very similarly
to read accesses, but with some key differences. They share the same top bit logic
explained on Section 10.1 and 10.3, but additional logic has to be added to manage not
only the task lifespan but also the reduction lifespan, because all the reduction tasks
might be deleted but until that reduction is closed (by another access or a taskwait),
it cannot be combined and deallocated.

To achieve this, the task and reduction’s lifespans will be tracked separately. Tasks will
work just like read accesses, but reductions pending to be combined have to be checked
every time a reduction task finishes, a taskwait is issued, or a new access is registered.
Keeping track of what is the current reduction to be closed for each address will be
done with the addition of a new field in the BottomMapEntry class, which represents
a node of the bottom map. This field will contain the current reduction information
for that address. With that, Figure 11.7 shows the structure of the BottomMapEntry
class.

1 struct BottomMapEntry {

2 DataAccess * access;

3 bool satisfied;

4 ReductionInfo * reductionInfo;

5 };

Fig. 11.7: BottomMapEntry layout after implementing reductions.

Some more information is needed as well for each reduction, which is passed to the
runtime when registering a reduction access. That information includes the reduction
operator, and the length of the region that needs to be reserved for allocating the
intermediate results. The extra fields will be saved in the DataAccess structure, for
posterior use. In that same class a pointer to a new struct called ReductionInfo will
also be saved. This structure includes all the specific information for that reduction
sequence as well as counters to know if the reduction is finished.

With all the earlier changes, Figure 11.8 shows the layout of our DataAccess structure
ready to store everything needed to implement reductions.

51

1 struct DataAccess {

2 private:

3 //! The type of the access

4 DataAccessType _type;

5

6 ...

7

8 //! Reduction-specific information of current access

9 ReductionInfo *_reductionInfo;

10

11 bool _closesReduction;

12

13 //! Reduction stuff

14 size_t _reductionLength;

15

16 reduction_type_and_operator_index_t _reductionOperator;

17

18 //! Next task with an access matching this one

19 Task * _successor;

20

21 //! Is this the top read access..

22 std::atomic<int> _isTop;

23

24 ...

25 };

Fig. 11.8: DataAccess layout after implementing reductions.

To keep track when a reduction has finished, a similar technique as other places
in the runtime is used with a std::atomic<int> in the reduction-specific structure,
and functions that will return true to whoever is in charge of combining the reduc-
tion through the calls ReductionInfo::incrementRegisteredAccesses() and Reduction-
Info::incrementUnregisteredAccesses(). This will be used to manage the reduction
lifespan.

With all those details sorted and clear logic to follow, reduction support in the runtime
can be implemented. It has to be noted that unlike normal data accesses, reductions
will not be able to be nested with our implementation without modifications, as that
would mean in essence implementing the weakreductions feature that the OmpSs-2
spec details.

52

T1

T2

T3

T4

T5

A

A

A

A

A

A Taskwait

closes closes

Concurrent
Execution

Opens
reduction

TOP

S
tartTim

e

Fig. 11.6: High-level illustration of a task reduction

53

12 | Evaluation

This chapter dives into the experimental design used for evaluating the performance
of the discrete-simple implementation and presents the result of those experiments.

12.1 Experimental design

The evaluation of the performance of the discrete-simple implementation versus the
earlier linear-regions-fragmented implementation has been done in the CTE-KNL Su-
percomputer of the Barcelona Supercomputer Center. Each node of the supercomputer
has an Intel® Xeon™ Phi processor (a x86 manycore) with 64 cores and configured
without hyperthreading and in quadrant cluster mode. This processors, being based
on Intel Atom architecture, normally exhibit low per-core performance but their core
count will show better the scalability of the implementations, which is the determining
factor [21].

Several benchmarks, detailed in Section 12.2, will be run on individual nodes of the
supercomputer. All the benchmarks are programmed adhering to the OmpSs-2 Spec
[5], they make use of data dependencies and are designed to be a representative example
or real-world workloads. They were not created for this project specially, but rather
are already available on the BSC and used to monitor the performance of the runtime
across different versions.

The benchmarks will be run with a fixed problem size and varying block sizes, serving
the purpose of evaluating the scalability of each implementation. It is expected that
for an implementation to be considered better in performance, it should show greater
performance in small block sizes. For very big block sizes, as very few tasks will
be issued and the benchmarks will run out of parallelism, not much difference in
performance should exist.

Finally, Table 12.1 shows the different versions of software that were present in the
CTE-KNL supercomputer during the tests. This is important because results of this
benchmarks might change if done under different versions of this software.

54

Software Version

OmpSs-2 git (1b94838300a8)
GNU Compiler Collection 6.3.0
Boost 1.63.0
Intel® MKL (Cholesky) 2017.0002
Linux Kernel SUSE 4.4.21-69

Table 12.1: Software versions present on the CTE-KNL supercomputer during the
final evaluation

12.2 Benchmarks

All the results of the benchmarks are based on the average of thirty executions, having
had a warm-up execution before. The code inside every benchmark would do the
following:

1. Execute the benchmark once as a warm-up.

2. Start the timing.

3. Execute thirty runs of the benchmark.

4. Stop timing and divide the result by thirty.

12.2.1 Multisaxpy

A SAXPY operation is a Single-Precision A*X Plus Y, which is a simple function,
present in the standard Basic Linear Algebra Subroutines [22] which combines scalar
multiplication and vector addition. It takes two vectors X and Y, and a scalar a and
performs the following operation for each element:

Yn = a ·Xn +Yn

The Multisaxpy variant developed in the BSC is only a variant that performs multiple
iterations of the SAXPY operation on a very large vector, to create a benchmark that
represents extremely memory-bound applications.

55

214 216 218 220 222 224 226

Granularity (block size)

2 1

20

21

22
Pe

rfo
rm

an
ce

 (G
Up

da
te

s/
s)

Multisaxpy

discrete-simple
linear-regions-fragmented
prob. size: 1G

(a) Scalability

214 216 218 220 222 224 226

Granularity (block size)

1.0

1.2

1.4

1.6

1.8

Sp
ee

du
p

Multisaxpy

(b) Speedup

Fig. 12.1: Scalability and speedup plots of the Multisaxpy benchmark with a
problem size of 1G elements

Figure 12.1 shows the result of the Multisaxpy benchmark for both dependency im-
plementations. It is clear that the discrete-simple implementation outperforms the
existing one by a wide margin in scalability, having much better performance for small
block sizes and reaching peak performance for three runs more than linear-regions-
fragmented. It also shows almost a 2X speedup for those small chunks.

12.2.2 Dot product

In linear algebra, the dot product of two equal-length vectors a and b is defined as the
sum of the products of each element of the vectors:

a · b =
n∑
i=0

ai · bi

The dot product benchmark does so with very long vectors, simulating in a similar
way to Multisaxpy a memory-bound application. Moreover, the BSC version of the
dot product benchmark has two different implementations that are interesting for
the dependency subsystem: a simple one with normal dependencies and one with
reductions. This will allow to evaluate the reduction implementation in discrete-simple
that was described in Section 11.2.

56

25 28 211 214 217

Granularity (block size)

27

Pe
rfo

rm
an

ce
 (M

Up
da

te
s/

s)
Dot Product (wo/ reduction)

linear-regions-fragmented
discrete-simple
prob. size: 512M

(a) Scalability

25 28 211 214 217

Granularity (block size)

1.0

1.1

1.2

1.3

1.4

Sp
ee

du
p

Dot Product (wo/ reduction)

(b) Speedup

Fig. 12.2: Scalability and speedup plots of the Dot Product benchmark without
using reduction and a problem size of 512M elements

Figure 12.2 shows the scalability of the dot-product in the regular dependency version
(without reduction). It is clear that the overhead reduction of the discrete-simple
implementation in this case translates to better scalability and earlier reach of peak
performance, measurable speedups over the linear-regions-fragmented implementation.

26 28 210 212 214 216

Granularity (block size)

210

211

212

Pe
rfo

rm
an

ce
 (M

Up
da

te
s/

s)

Dot Product (w/ reduction)

linear-regions-fragmented
discrete-simple
prob. size: 512M

(a) Scalability

26 28 210 212 214 216

Granularity (block size)

1.00

1.03

1.05

1.08

1.10

1.12

1.15

1.18

1.20

Sp
ee

du
p

Dot Product (w/ reduction)

(b) Speedup

Fig. 12.3: Scalability and speedup plots of the Dot Product benchmark using
reduction and a problem size of 512M elements

Figure 12.3 shows the same benchmark but implemented using the reduction feature of
OmpSs-2. Again, the discrete-simple implementation shows better scaling, achieving
peak performance with smaller block sizes and 1.2X speedups on the smaller granu-
larities.

57

12.2.3 Cholesky

The Cholesky algorithm is used to decompose a Hermitian positive-definite matrix A
into the product of the a lower triangular matrix L and its conjugate transpose L*,
resulting in the following equality:

A = L ·L∗

The version of the Cholesky decomposition used as a benchmark in the BSC uses
the provided functions on the BLAS and LAPACK libraries [22, 23] to calculate the
decomposed matrices. In the CTE-KNL, the implementation of such libraries that has
been used is the Intel® MKL (Math Kernel Library) [24].

This benchmark is used to simulate a CPU-bound application, in which most of the
work is done on computation rather than memory access. This is why problem sizes
are smaller as well.

26 27 28 29 210 211 212

Granularity (block size)

25

26

27

28

29

210

Pe
rfo

rm
an

ce
 (G

Fl
op

s)

Cholesky

linear-regions-fragmented
discrete-simple
prob. size: 32*32K

(a) Scalability

26 27 28 29 210 211 212

Granularity (block size)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Sp
ee

du
p

Cholesky

(b) Speedup

Fig. 12.4: Scalability and speedup plots of the Cholesky benchmark with a problem
size of 32*32K elements

In Figure 12.4, it is clear that even on CPU-bound applications, the discrete-simple
implementation provides better than the linear-regions-fragmented, with more than
a 2X speedup on low block sizes and achieving again for this benchmark a better
potential peak performance for a block size of 28.

12.2.4 Heat Equation

The heat equation is a parabolic partial differential equation that describes the distri-
bution of heat in a region over time. It has important real-life usages like the study of
Brownian Motion and chemical diffusion. The BSC benchmark that implements the
heat equation solves it using an iterative Gauss-Seidel method [25]. It provides a good
example of a CPU-bound application that does iterative computations in a matrix.

58

26 28 210 212

Granularity (block size)

26

27

28

29

210

211

Pe
rfo

rm
an

ce
 (M

Up
da

te
s/

s)
Heat Equation

linear-regions-fragmented
discrete-simple
prob. size: 16*16K

(a) Scalability

26 28 210 212

Granularity (block size)

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

Heat Equation

(b) Speedup

Fig. 12.5: Scalability and speedup plots of the Heat Equation benchmark with a
problem size of 16*16K elements

Figure 12.5 shows the scalability plot for the benchmark. Very similarly to other
benchmarks, the discrete-simple implementation comes ahead on scalability, reaching
again peak performance with smaller block sizes, and achieving more than 3X speedups
in some cases.

12.2.5 Matrix Multiply

A classic case study in parallelism is the performance of matrix multiplication. Instead
of using a simple non-parallelizable iterative matrix multiply, we can split matrices into
blocks and use a blocked matrix multiply algorithm [25]. This can only be done with
matrices that fit certain constraints.

For instance if we have two matrices A(m,n) and B(n,p), a block size that divides all sizes
and we partition both matrices by the given block sizes, we can express the following
product

C(m,p) = AB

Using only the partitions

Cij =
∑
k

AikBkj

Those are the mathematical grounds for the benchmark of matrix multiply chosen in
this project. Using the different blocks, we can express the multiplication through
task dependencies between blocks of memory and the dependency subsystem can dis-
cover the parallelism for those operations at runtime. This is generally a CPU-bound
benchmark.

59

24 25 26 27 28 29

Granularity (block size)

219

220

221

222

223

224

225
Pe

rfo
rm

an
ce

 (M
Fl

op
s)

Matmul

linear-regions-fragmented
discrete-simple
prob. size: 2*8*2K

(a) Scalability

24 25 26 27 28 29

Granularity (block size)

1.0

1.2

1.4

1.6

1.8

2.0

Sp
ee

du
p

Matmul

(b) Speedup

Fig. 12.6: Scalability and speedup plots of the Matrix Multiply benchmark with a
problem size of 2*8*2K elements

Figure 12.6 is the scalability plot for matrix multiply on the CTE-KNL supercomputer.
We observe 2X speedups for low granularities, and in this case even some slight speedup
during peak performance. It is, however, different to some other benchmarks in the
sense that the discrete-simple implementation does not reach the best performance
before than the linear-regions-fragmented implementation. As this is similar to the
Cholesky benchmark, it is a clear example of how different workloads produce very
different speedups with each dependency subsystem, and the importance of having a
great variety of benchmarks.

12.2.6 N-body

The N-body benchmark is a simulation that approximates the evolution of a system
of bodies in which each body interacts with every other body. For example, this could
be used as an astrophysical simulation in which each body is a star, and all the bodies
attract each other through gravity.

N-body simulation is used in several computational science problems, such as protein
folding, fluid flow simulation, and global illumination in computer graphics. In this
case, the BSC benchmark uses the aforementioned gravity body example, and simulates
a number of particles through a number of time steps.

60

26 28 210 212

Granularity (block size)

27

28

29

210

Pe
rfo

rm
an

ce
 (M

Up
da

te
s/

s)
NBody

discrete-simple
linear-regions-fragmented
prob. size: 16K

(a) Scalability

26 28 210 212

Granularity (block size)

1

2

3

4

5

6

Sp
ee

du
p

NBody

(b) Speedup

Fig. 12.7: Scalability and speedup plots of the N-body benchmark with a problem
size of 16K particles and 10 time steps

Figure 12.7 is the scalability plot of the simulation in the CTE-KNL supercomputer.
It shows an unusually high speedup in the first data point, and in the case of this
benchmark that is due to the high memory usage of the linear-regions-fragmented
implementation. High memory usages pose a problem because the memory allocator
has a harder time finding suitable chunks of memory for the program and slows down
the execution greatly. This can also cause the node to go into thrashing, slowing every
program running on it exponentially.

To better illustrate this point, it is possible to collect the number of allocations and
the peak memory usage (resident set). Figure 12.8 shows plots corresponding to those
metrics. It is clear that for high granularities the maximum memory used by the
program spikes, but the discrete-simple implementation will use close to a third for
small block sizes in this case. In fact, it was not possible to collect metrics for smaller
block sizes due to the linear-regions-fragmented version getting killed by the system
due to high memory usage.

61

26 28 210 212 214

Granularity (block size)

0

10

20

30

40

50

M
em

or
y

Us
ag

e
(G

B)
NBody

linear-regions-fragmented
discrete-simple

(a) Memory Usage

26 28 210 212 214

Granularity (block size)

0

100

200

300

400

500

600

Al
lo

ca
tio

ns
 (M

illi
on

s)

NBody
linear-regions-fragmented
discrete-simple

(b) Allocations

Fig. 12.8: Peak memory usage and total allocations of the N-body benchmark with
a problem size of 16K particles and 10 time steps

Allocations, also shown in Figure 12.8, show a similar story. The number of memory
allocations (calls to malloc, realloc and memalign) spikes for low granularities in an
exponential fashion, reaching almost 700 million during the execution of the NBody
benchmark with the linear-regions-fragmanted implementation.

The memory usage explains really well the performance degradation in Figure 12.7.
In the case of the CTE-KNL, each node has 16GB of high bandwidth memory that
is configured in a cache mode. This means that programs only using less than 16GB
of memory will be fully cached in the faster memory and thus exceeding that amount
will penalize heavily the program. This accounts for the higher than normal speedup
in the smallest granularity.

This is another of the benefits of the new discrete-simple implementation. It does less
allocations (thus having less memory fragmentation) and uses less memory overall,
reducing overhead due to memory usage and leaving more resources for the actual
program to consume. In the specific case of the NBody benchmark, the discrete-
simple implementation averaged 4 memory allocations per each task created, while
the linear-regions-fragmented did an average of 15 allocations per task.

12.2.7 HPCCG

The HPCCG benchmark stands for High Performance Computing Conjugate Gradi-
ents [26] and is a simple and open-sourced conjugate gradient benchmark. Conjugate
Gradients are methods to solve n linear equations with n unknowns, particularly tar-
geted at cases where that n is big [27]. In the particular case of our benchmark, the
implementation is designed to be very scalable, and is a great test case mixing a lot of
tasks with discrete dependencies and several reductions on different variables.

In real world applications, the Conjugate Gradients method is used for solving linear
equations on systems too big for other algorithms such as the Cholesky decomposition

62

we described in Subsection 12.2.3, and can be used for optimization problems.

214 215 216 217 218 219 220

Granularity (block size)

28

29

210

211

212

213

Pe
rfo

rm
an

ce
 (M

FL
OP

S)

HPCCG

discrete-simple
linear-regions-fragmented
prob. size: 250 n/p

(a) Scalability

214 215 216 217 218 219 220

Granularity (block size)

1

2

3

4

5

6

Sp
ee

du
p

HPCCG

(b) Speedup

Fig. 12.9: Scalability and speedup plots of the HPCCG benchmark with a problem
size of 250 nodes/processor

Figure 12.9 shows that similarly to other benchmarks, the discrete-simple implemen-
tation can have speedups of more than 6X on small granularities, and finally the
difference levels out when the block size is bigger than ideal. This is a great exam-
ple of a use case where the decision to use discrete-simple dependencies would prove
beneficial for the user regardless of the chosen block size.

This is explained because apparently the new implementation does not only provide
better scaling, but in some cases reduces the per-dependency creation overhead enough
to see a significant speedup. This will only happen, however, on benchmarks where
dependency creation accounted for a big enough portion of the total execution time
(which is not common), as per Amdahl’s Law [7].

63

13 | Conclusion

This project has introduced a new dependency subsystem implementation to the
Nanos6 runtime for the OmpSs-2 programming model. This implementation has been
tested through a series of programs prepared during the runtime analysis and by the
benchmarks done in the evaluation phase. Using different dependency subsystems is
also easier now, because the user can switch between them using environment variables
without the need of recompiling the full runtime.

The new dependency subsystem has also been optimized and enhanced through the
addition of elements to the API with the compiler that allow for more effective memory
allocation and support for reductions.

It has been proved through experimentation with help of the hardware resources at
the BSC that the new implementation can perform and scale better in a variety of
scenarios, in both CPU-bound and memory-bound high performance applications.

This enhancement will be incorporated in a future release of OmpSs-2 and users of
the runtime that use only dependency features that are included in the discrete-simple
implementation will be able to switch to it for a potential speedup. With this, all the
requirements specified in Section 3.2 have been fulfilled.

For the student, this project has been an invaluable learning experience that has
led him to apply techniques, algorithms and knowledge in general that was acquired
during the Informatics Engineering degree, as well as to acquire new skills and even
more knowledge.

64

14 | Future Work

This chapter covers possible future work that may be done on the runtime based on
the changes made by this project, but that either was not on the scope or there wasn’t
enough time to implement.

First of all, the next logical step would be to add support in the discrete-simple im-
plementation for the weakdepend clause, as it is estimated that can be incorporated
without causing a significant amount of overhead and would increment the use cases
that can be handled. This would include possibly as well support for weakreductions
(nested reductions).

Secondly, this work could be integrated with other research currently ongoing at the
BSC that is centered on providing hints to the runtime, either coming from the pro-
gramming or a subsystem that recollects statistical data based on passed iterations,
that could be used by the dependency subsystem to apply optimizations for certain
usage patterns that would allow for significant performance increments. One exam-
ple of this would be to hold off child task execution if the parent task is a simple
task-creation loop, to prevent locking between child and parent tasks.

Finally, another possible optimization to dampen dependency creation overhead would
be to offload task dependency registration to a worker thread, so that the thread
creating the tasks doesn’t get blocked while the subsystem is registering dependencies.

65

Bibliography

[1] Ieee standard for information technology–portable operating system interface
(posix(r)) base specifications, issue 7. IEEE Std 1003.1-2017 (Revision of IEEE
Std 1003.1-2008), pages 1–3951, Jan 2018. doi: 10.1109/IEEESTD.2018.8277153.
1

[2] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leis-
erson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime
system. SIGPLAN Not., 30(8):207–216, August 1995. ISSN 0362-1340. doi:
10.1145/209937.209958. 1, 3

[3] Intel Corporation. Threading Building Blocks, . URL https://www.

threadingbuildingblocks.org/. Accessed: 2019-06-03. 3

[4] OpenMP Architecture Review Board. OpenMP Application Programming Inter-
face. Version 5.0, November 2018. URL https://www.openmp.org/wp-content/

uploads/OpenMP-API-Specification-5.0.pdf. Accessed: 2019-05-14. 3, 6

[5] Barcelona Supercomputing Center. OmpSs-2 Specification, . URL https://pm.

bsc.es/ompss-2-docs/spec/. Accessed: 2019-05-07. 1, 4, 6, 7, 27, 29, 30, 33,
35, 41, 50, 54

[6] Barcelona Supercomputing Center - Programming Models. Nanos6 GitHub Mir-
ror. URL https://github.com/bsc-pm/nanos6. Accessed: 2019-05-07. 2

[7] Gene M. Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the April 18-20, 1967, Spring
Joint Computer Conference, AFIPS ’67 (Spring), pages 483–485, New York, NY,
USA, 1967. ACM. doi: 10.1145/1465482.1465560. 3, 63

[8] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by
work stealing. In Proceedings 35th Annual Symposium on Foundations of Com-
puter Science, pages 356–368, Nov 1994. doi: 10.1109/SFCS.1994.365680. 3

[9] OpenMP Architecture Review Board. OpenMP Fortran Application Program
Interface 1.0, October 1997. URL https://www.openmp.org/wp-content/

uploads/fspec10.pdf. Accessed: 2019-05-07. 3

66

https://www.threadingbuildingblocks.org/
https://www.threadingbuildingblocks.org/
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://pm.bsc.es/ompss-2-docs/spec/
https://pm.bsc.es/ompss-2-docs/spec/
https://github.com/bsc-pm/nanos6
https://www.openmp.org/wp-content/uploads/fspec10.pdf
https://www.openmp.org/wp-content/uploads/fspec10.pdf

[10] OpenMP Architecture Review Board. OpenMP Compilers & Tools. URL https:

//www.openmp.org/resources/openmp-compilers-tools/. Accessed: 2019-05-
16. 4

[11] John L. Hennessy and David A. Patterson. Computer Architecture, Fifth Edition:
A Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 5th edition, 2011. ISBN 012383872X, 9780123838728. 5

[12] J. M. Perez, V. Beltran, J. Labarta, and E. Ayguadé. Improving the integration
of task nesting and dependencies in openmp. In 2017 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pages 809–818, May 2017. doi:
10.1109/IPDPS.2017.69. 6

[13] Ferran Pallarès Roca. Extending ompss programming model with task reduc-
tions: A compiler and runtime approach. Bachelor’s thesis, Barcelona School of
Informatics, Universitat Politècnica de Catalunya, 1 2017. 7

[14] Kent Beck. Test Driven Development. By Example. Addison-Wesley Longman,
Amsterdam, 2002. ISBN 0321146530. 10

[15] Robert Cecil Martin. Agile Software Development: Principles, Patterns, and
Practices. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2003. ISBN
0135974445. 12

[16] GNU Project. Automake. URL https://www.gnu.org/software/automake/.
Accessed: 2019-05-11. 29

[17] Barcelona Supercomputing Center. Extrae, . URL https://tools.bsc.es/

extrae. Accessed: 2019-05-20. 31

[18] M. Pezze and M. Young. Software Testing and Analysis: Process, Principles and
Techniques. Wiley, 2008. ISBN 9780471455936. 33

[19] ISO. ISO/IEC 14882:2011 Information technology — Programming languages
— C++. International Organization for Standardization, Geneva, Switzerland,
February 2012. 44, 45

[20] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual
- Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D and 4, May 2019. 45

[21] A. Sodani, R. Gramunt, J. Corbal, H. Kim, K. Vinod, S. Chinthamani, S. Hut-
sell, R. Agarwal, and Y. Liu. Knights landing: Second-generation intel xeon
phi product. IEEE Micro, 36(2):34–46, Mar 2016. ISSN 0272-1732. doi:
10.1109/MM.2016.25. 54

[22] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear
algebra subprograms for fortran usage. ACM Trans. Math. Softw., 5(3):308–323,
September 1979. ISSN 0098-3500. doi: 10.1145/355841.355847. 55, 58

67

https://www.openmp.org/resources/openmp-compilers-tools/
https://www.openmp.org/resources/openmp-compilers-tools/
https://www.gnu.org/software/automake/
https://tools.bsc.es/extrae
https://tools.bsc.es/extrae

[23] LAPACK Team. LAPACK - Linear Algebra PACKage. URL http://www.

netlib.org/lapack/. Accessed: 2019-05-29. 58

[24] Intel Corporation. Intel® MKL - Math Kernel Library, . URL https://

software.intel.com/en-us/mkl/. Accessed: 2019-05-29. 58

[25] Gene H. Golub and Charles F. Van Loan. Matrix computations (3. ed.). Johns
Hopkins University Press, 1996. ISBN 978-0-8018-5414-9. 58, 59

[26] Michael A. Heroux. HPCCG: High Performance Computing Conjugate Gradients.
URL https://github.com/Mantevo/HPCCG. Accessed: 2019-06-08. 62

[27] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear
systems. J Res NIST, 49(6):409–436, 1952. doi: 10.6028/jres.049.044. 62

68

http://www.netlib.org/lapack/
http://www.netlib.org/lapack/
https://software.intel.com/en-us/mkl/
https://software.intel.com/en-us/mkl/
https://github.com/Mantevo/HPCCG

	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Actors

	2 State of the art
	2.1 Parallel programming models
	2.1.1 OpenMP
	2.1.2 OmpSs and OmpSs-2
	2.1.3 Influence in OpenMP

	2.2 Data dependencies
	2.3 OmpSs-2 dependency model

	3 Scope
	3.1 Goal
	3.2 Requirements
	3.3 Scope
	3.4 Risks
	3.4.1 Deviation of the project plan
	3.4.2 Introducing bugs to the runtime
	3.4.3 Compilation and test times
	3.4.4 Result variance
	3.4.5 Debug difficulties

	4 Methodology
	4.1 Time management
	4.2 Progress tracking
	4.3 Validation
	4.4 Final result

	5 Project plan
	5.1 Tasks
	5.1.1 Project management
	5.1.2 Runtime analysis
	5.1.3 Correctness tests
	5.1.4 Initial implementation
	5.1.5 Optimization
	5.1.6 Evaluation
	5.1.7 Thesis writing

	5.2 Timing
	5.3 Task dependencies
	5.4 Resources
	5.4.1 Hardware
	5.4.2 Software
	5.4.3 Human resources
	5.4.4 Spaces

	5.5 Workarounds and action plan
	5.6 Gantt diagram
	5.7 Deviations

	6 Economic management
	6.1 Direct costs
	6.1.1 Human resources
	6.1.2 Software
	6.1.3 Hardware

	6.2 Indirect costs
	6.3 Final budget
	6.4 Risk management

	7 Sustainability
	7.1 Economic dimension
	7.2 Social dimension
	7.3 Environmental dimension

	8 Analyzing the runtime and writing tests
	8.1 Compiling the runtime
	8.2 Writing and compiling OmpSs-2 programs
	8.3 Runtime architecture
	8.3.1 Loader
	8.3.2 Dependency subsystem

	8.4 Writing correctness tests

	9 Adapting the runtime for different implementations
	9.1 Designing the mechanism
	9.2 Implementing conditional compilation
	9.3 Modifying the loader

	10 Initial implementation
	10.1 Initial design
	10.2 Task nesting
	10.3 Implementation details
	10.3.1 Locking
	10.3.2 Access top bit

	11 Optimization
	11.1 Allocating all the accesses with the task
	11.2 Reductions
	11.2.1 Requirements
	11.2.2 Implementation

	12 Evaluation
	12.1 Experimental design
	12.2 Benchmarks
	12.2.1 Multisaxpy
	12.2.2 Dot product
	12.2.3 Cholesky
	12.2.4 Heat Equation
	12.2.5 Matrix Multiply
	12.2.6 N-body
	12.2.7 HPCCG

	13 Conclusion
	14 Future Work
	Bibliography

