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Abstract

The weighted independent domination problem is an NP-hard combinatorial optimization
problem in graphs. This problem has only been tackled in the literature by integer linear
programming approaches, by Greedy heuristics, and by different versions of a population-
based iterated greedy algorithm. In this project, we first improve over the existing Greedy
heuristics. This is done by implementing the rollout versions of these heuristics, and by
testing them in a multistart framework in which they are applied in a probabilistic way.
Second, we implement three versions of a biased random key genetic algorithm. The
difference between these versions is found in the way in which individuals are decoded
into feasible solutions to the problem. Moreover, we study the rollout versions of the
corresponding decoders. Our results show that the developed algorithms can compete
with the state of the art in the group of rather small-scale problem instances. However,
with a growing size of the problem instances, our algorithms can not quite match the results
of the current state-of-the-art algorithm. Nevertheless, our algorithms can potentially be
improved in several different ways, which we explain in detail. Therefore, we believe that
our algorithms should be further studied in future work.



Resum

El problema de la dominació independent ponderada és un problema NP-hard d’optimit-
zació combinatòria en grafs. Aquest problema només ha estat abordat a la literatura per
enfocaments de programació lineal entera, heurístiques voraces i diferents versions d’algo-
ritmes voraços iteratius basats en poblacions. En aquest projecte, primer apliquem una
millora sobre les heurístiques voraces existents. Això ho fem implementant les versions ro-
llout d’aquestes heurístiques i provant-les en un marc multistart on són aplicades de forma
probabilística. En segon lloc, implementem tres versions d’un algorisme genètic esbiaixat
de clau aleatòria. La diferència entre aquestes versions es troba en la forma en què els
individus són descodificats en solucions viables del problema. Els resultats mostren que
els algorismes desenvolupats poden competir amb els que són estat de l’art en el conjunt
d’instàncies relativament petites. No obstant això, amb una mida creixent de les instàncies
del problema, els nostres algorismes no poden arribar al nivell dels resultats obtinguts per
l’algorisme més punter. Tot i això, els nostres algorismes poden ser millorats de moltes
formes diferents, les quals expliquem en detall. Per tant, creiem que els nostres algorismes
haurien de ser més estudiats en treballs futurs.



Resumen

El problema de la dominación independiente ponderada es un problema NP-hard de opti-
mización combinatoria en grafos. Este problema sólo ha estado abordado en la literatura
por enfoques de programación lineal entera, heurísticas voraces y diferentes versiones de
algoritmos voraces iterativos basados en poblaciones. En este proyecto, primero aplicamos
una mejora sobre las heurísticas voraces existentes. Esto lo hacemos implementando las
versiones rollout de estas heurísticas y probándolas en un marco multistart donde son apli-
cadas de forma probabilística. En segundo lugar, implementamos tres versiones diferentes
de un algoritmo genético sesgado de clave aleatoria. La diferencia entre estas versiones se
encuentra en la forma en la que los individuos son decodificados en soluciones del problema.
Los resultados muestran que los algoritmos desarrollados pueden competir con los que son
estado del arte en el conjunto de instancias relativamente pequeñas. No obstante, con un
tamaño creciente de las instancias del problema, nuestros algoritmos no pueden llegar al
nivel de los resultados obtenidos por el algoritmo más puntero. Aún así, creemos que nues-
tros algoritmos pueden ser mejorados de muchas formas distintas, las cuales explicamos
en detalle. Por lo tanto, creemos que nuestros algoritmos deberían ser más estudiados en
trabajos futuros.
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Chapter 1

Introduction

Graphs have been, for years, a major topic of study in discrete mathematics and computer
science. Since it was first introduced back in the 18th century, the subject of graph theory
has made an incredible progress.

Nowadays, uncountable real-life problems can be modelled as graphs, and applications
range from technical (computer science and mathematics) to social areas. However, many
of these problems cannot be efficiently solved to optimality. This phenomenon accentuates
with the arrival of the information era and Big Data, mostly due to the massive size of prob-
lem instances. Nonetheless, in practical uses, instead of spending computational resources
looking for an optimal solution, a good enough (but potentially suboptimal) solution may
often be found in a reasonable amount of time by using approximation methods.

In this project, we are going to tackle one of these hard optimization problems, called
the “Weighted Independent Domination Problem”.

In this first chapter, we introduce the reader to the subject under study. We start by
explaining the basic concepts, allowing us to correctly define the tackled problem. Then,
we present the current state of the problem and its applications, along with a review of
the related literature. Finally, we define the main objective of this thesis.

1.1 Terms and concepts

Before describing the problem, let us introduce the necessary graph concepts:

Graph basics: An undirected graph G = (V,E) is a set of vertices V and a set of
undirected edges E. An edge e = (u, v) ∈ E connects two vertices u 6= v ∈ V , and may
be equivalently denoted by (v, u). It is said that e = (u, v) is incident to u and v, and
that these two vertices are the endpoints of e. Furthermore, the set of edges incident to
a vertex v is denoted by δ(v). In addition, two edges are called adjacent if they share a
common vertex. Similarly, two vertices are called adjacent if they share a common edge.
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Neigborhoods: When referring to the neighborhood of a vertex v, we may refer to the
open neighborhood N(v) := {u ∈ V | (v, u) ∈ E}, i.e. the vertices adjacent to v, or to the
closed neighborhood N [v] := N(v) ∪ {v}.

Given a vertex u ∈ V and another v ∈ V with u 6= v, u is called a neighbor of v if
and only if u ∈ N(v). As usual, the degree of a vertex is the number of edges incident to
it, i.e. deg(v) = |N(v)|. Additionally, we define the D-restricted neighborhood of a vertex
v ∈ V \D as the open neighborhood of v restricted to all its neighbors that are in D, i.e.
ND(v) := N(v) ∩D.

Dominating and independent sets: Given an undirected graph G = (V,E), a domi-
nating set is a subset D ⊆ V such that each vertex v is either in D (v ∈ D) or has at least
one neighbor in D (∃u ∈ N(v) | u ∈ D). Furthermore, an independent set is a subset I ⊆ V
such that for any pair v 6= u ∈ I, it holds that they are not connected by an edge e ∈ E.
An independent set is called maximal if by adding any extra vertex from V \I to I, the set
would lose its property of being independent. Note that every maximal independent set
is also a dominating set. Thus, a maximal independent set is also called an independent
dominating set.

Examples for dominating and independent sets are shown in Figure 1.1. In (a) we
can see an undirected graph, where circles represent vertices and the lines joining them
represent edges. In (b), a possible independent set is constructed. A darker color indi-
cates the vertices belonging to the set. In (c), the chosen vertices form a dominating set.
Thicker lines indicate edges connecting vertices not in the dominating set to vertices in the
set. Finally, (c) shows an independent and dominating set. Note that it is also maximal
independent (by definition).

1.2 Problem formulation

The Weighted Independent Domination (WID) problem is an NP -hard combinatorial op-
timization1 problem [13, 9] where we are given an undirected graph G = (V,E) with vertex
and edge weights (denoted by w(v) and w(e) respectively), which are integers greater or
equal than 0. The WID problem consists in finding an independent dominating set D in
G minimizing the following objective function:

f(D) :=
∑
v∈D

w(v) +
∑

u∈V \D

min{w(u, v) | v ∈ ND(u)} (1.1)

The objective function value is calculated as the sum of the weights of the vertices in D
plus the sum of the weights of the minimum-weight edges that connect the vertices not in
D to the ones in D.

1Combinatorial optimization problems consist on finding an optimal object from a finite set. See
Chapter 2 for further information.

2



(a) Undirected graph (b) Independent set

(c) Dominating set (d) Independent dominating set

Figure 1.1: Examples of independent and dominating sets in undirected graphs

In Figure 1.2 we can see an Example. Consider the input graph in (a). Numbers inside
nodes illustrate their weights. Similarly, edge weights are indicated by the value beside
them. (b) shows the optimal solution to the WID problem. A darker colour is used to
indicate the vertices that are part of the solution, and the minimum-weight edges connect-
ing vertices not in the set to vertices from the set are marked with bold. In this case,
the objective function value is 11, obtained by adding the weight of the selected vertices
(2 + 3 + 1) and the edge weights (1 + 2 + 2).

Applications which can be modelled in terms of finding independent and/or dominating
sets in graphs are abundant in real life settings. According to [30], finding minimum
independent dominating sets has, in particular, applications in the context of clustering
approaches and the placement of actors in their respective clusters in wireless networks.
Another application is in the context of virtual backbone generation in mobile wireless
ad-hoc networks. As pointed out in [23], the WID problem may arise in the context of
clustering algorithms whenever a cost function is known for connecting non-selected nodes
to cluster heads.

3
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(a) Weighted undirected graph
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(b) Optimal solution to the WID problem

Figure 1.2: Example of the WID problem

1.3 State-of-the-art and related problems

Hard combinatorial optimization problems in which solutions are subsets of the nodes of
a given input graph are abundant in the scientific literature.

The WID problem was initially introduced by Chang in [9], where he records an unpub-
lished result of 20 years ago stating that the problem is NP-complete for chordal graphs.
Later on, Chang, Liu and Wang proposed a linear time algorithm for the problem in
series-parallel graphs [27].

The most recent paper in the WID at the time of the inscription of this bachelor the-
sis project was authored by its co-director Christian Blum [23], being one of the fewest
tackling the problem from a non-theoretical point of view. The contribution consisted of
the development of three integer linear programming models, two greedy heuristics and
a population-based iterated greedy metaheuristic applied in two different ways, with the
respective experimental evaluation.

Although not much work has been done on this specific problem, others closely related
need to be considered in this thesis:

• Maximum independent sets. The currently most successful algorithms tackling this
problem include the general swap-based multiple neighbourhood tabu search pro-
posed in [17], the fast local search routines in [1] and the iterated local search pre-
sented in [22], currently the best metaheuristic for the node-weighted variant of the
problem.

• Minimum dominating sets. Some of the currently best metaheuristics solving this
problem are an ant colony optimization and a genetic algorithm from [25], a hybrid
approach combining iterated greedy algorithms and an integer linear programming
solver in a sequential way [8], a local search based on two-level configuration checking
from [28] or a hybrid evolutionary algorithm in [10].

4



• Minimum independent dominating sets. Recently tackled by an adaptive search
procedure in [30] and a memetic algorithm from [29].

1.4 Project description and outline

Objective

Our main goal is to develop new heuristics that improve the performances of the ones
already existing, as well as modifying them by applying new techniques. Our work will
be centred on the implementation of a genetic algorithm, a metaheuristic inspired by the
process of natural selection.

In summary, we hope to find some algorithmic technique which achieves a new state-of-
the-art for the WID problem. Although improvement will be sought, it is not a mandatory
requirement for this bachelor thesis.

Scope

As this project is a research thesis, no final product will be presented. Like any other
investigation work, the scope will entirely depend on the performance of our solutions.

Good quality algorithms will allow us to go further into the problem while testing
potential improvements to be applied. On the other hand, poor results will lead to a
change of perspective and a look for other potential solutions. Although this may seem a
hindrance to success, the wide range of possibilities will let us explore different paths if we
get to a dead end.

Project outline

The document is structured in the following way:

1. In Chapter 2, we explain what a Combinatorial Optimization problems are and in-
troduce different methods to solve them.

2. In Chapter 3, an extensive description of our developed algorithms is presented.

3. In Chapter 4, we present and evaluate the obtained results.

4. In Chapter 5, we conclude the thesis by making an overview of the work and intro-
ducing some ideas for future work,

5. Appendices A and B contain the planning of the project and its sustainability anal-
ysis, respectively.

5



1.5 Scientific publications

A paper about one of our developed approaches (specifically the one proposed at Sec-
tion 3.2.4) has been accepted and will be presented at the Student Workshop of the Ge-
netic and Evolutionary Computation Conference (GECCO) 2019 in Prague. GECCO is
one of the best conference from the field of evolutionary computation. It is included in the
CORE conference ranking database and ranked as an A-conference (where the range, with
increasing quality, goes from C to A*).
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Chapter 2

Metaheuristics for Combinatorial
Optimization

As explained in [7], a Combinatorial Optimization (CO) problem P = (S, f) consists of
finding an optimal object s∗ within a finite set of objects S. An objective function f : S 7→ R
assigns a value to each of the objects s ∈ S. The goal is, then, to find an object s∗ with a
minimal (or maximal) cost value. Furthermore, the set of all possible components of which
solutions to P are composed is denoted by C. Thus, a valid solution S to the problem is a
subset of the complete set of solution components C (S ⊆ C).

Problems of this type are abundant in scientific literature. Well-known application
areas where CO problems can be found are routing, scheduling, packing, network design
and bioinformatics.

Unfortunately, most of these CO problems are in NP, thus solving them to optimal-
ity is very difficult in practice. Over the last decades, a wide variety of algorithms and
mathematical approaches have emerged to tackle CO problems. These can be essentially
classified in two types: exact or approximate methods.

2.1 Exact algorithms

These type of algorithms guarantee that the optimal solution to a problem is found in
bounded time. However, unless P = NP , an exact algorithm trying to solve an NP-
hard CO problem cannot run faster than worst-case exponential time. This issue leads
to remarkably high computation times for practical purposes, specially as the size of the
instances grows.

Nevertheless, the property that a given CO problem is NP-hard does not imply that an
exact algorithm cannot be applied in practice. This method might obtain proven optimal
solutions for instances with a small size or exploitable structures in reasonable time.

Some of the most popular exact approaches are:

• Tree Search Methods.
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Consist on exhaustively enumerating all potential solutions by recursively dividing
the search space into disjunct subspaces. This partitioning can then be associated
with a rooted directed tree, where different graph traversal techniques can be applied
on the search for the optimal solution.

• Dynamic Programming (DP).

Follows the same partitioning principle as Tree Search Methods, but instead makes
use of the overlapping properties of some subproblems by storing their results in
order to probably reuse them lately, avoiding repeated calculations.

• Integer Linear Programming (ILP).

Seeks to minimize a linear cost function subject to a set of linear equalities and
inequalities in which variables are restricted to be integers.Mixed Integer Linear Pro-
gramming (MILP) models also allow continuous variables.

• Constraint Programming (CP).

Technique oriented to solving problems involving complicated constraints.

2.2 Approximate algorithms

Approximation algorithms, in contrast to the exact approaches, sacrifice the guarantee of
finding optimal solutions for the sake of obtaining relatively close solutions in a feasible
amount of time.

The interest in these methods has increased in recent decades. Although they do
not assure optimal solutions, it does not mean they cannot be obtained. Furthermore,
they can achieve high-quality solutions in instances which would be intractable with exact
approaches.

These can be essentially divided into two types: heuristics and metaheuristics.

2.2.1 Heuristics

Heuristics are fast computational methods that can obtain acceptable solutions taking
full advantage of the particularities of the tackled problem. Therefore, they are problem-
dependent techniques. However, heuristic approaches are usually too greedy, thus getting
easily trapped in local minima. Heuristic methods can be classified in two big families:

• Constructive heuristics:

In constructive heuristics, solutions are build from scratch by adding, at each it-
eration, a solution component to a partial solution, which is initially empty. This
procedure is repeated until a stopping criteria is met, usually when the actual solution
cannot be further extended.
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Greedy algorithms are particular cases of constructive heuristics. They follow the
problem solving heuristic of making the locally optimal choice at each stage with the
intent of finding a global optimum. In many problems, a greedy strategy does not
usually produce an optimal solution, but nonetheless a greedy heuristic may yield
locally optimal solutions that approximate a globally optimal solution in a reasonable
amount of time. In general, greedy algorithms have five components:

– a candidate set, from which a solution is created,
– a selection function, which chooses the best candidate to be added,
– a feasibility function to determine if a candidate can be used to contribute to a

solution,
– an objective function, which assigns value to a solution (partial o complete) and
– a solution function, which will indicate when the solution is complete.

Greedy algorithms produce good solutions on some mathematical problems, but not
on others. Most problems for which they work will have two properties: the so-called
Greedy choice property1 and Optimal substructure.2

Some of the algorithms proposed for the WID problem in this work are based on
greedy strategies or make use of them.

• Local Search (LS):

These algorithms, on the contrary, start from an initial solution and replace it, at
each step, with a better one from its neighborhood. This process is repeated until
no better solution exists in the neighborhood.

2.2.2 Metaheuristics

Metaheuristics, on the other hand, are problem-independent techniques tan can be applied
to a large range of problems. As their name suggests, they are superior-lever frameworks
that try to use heuristics or other methods to effectively explore the search space and thus
hopefully getting an optimal or near-optimal solution. In contrast to standard heuristics,
they use a certain trade-off between randomization and local search, which allows them
to explore more thoroughly the solution space. Although they are problem-independent
methods, note that it is nonetheless necessary to adapt the technique to the problem at
hand.

1The choice made by a greedy algorithm may depend on choices made so far, but not on future choices
or all the solutions to the subproblem. It iteratively makes one greedy choice after another, reducing each
given problem into a smaller one. In other words, a greedy algorithm never reconsiders its choices. This is
the main difference from dynamic programming, which is exhaustive and is guaranteed to find the solution.
After every stage, dynamic programming makes decisions based on all the decisions made in the previous
stage, and may reconsider the previous stage’s algorithmic path to solution.

2A problem exhibits optimal substructure if an optimal solution to the problem contains optimal solu-
tions to the sub-problems.
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Based on Local Search

Simple LS methods are usually characterized by getting easily stuck in local minima.
Furthermore, the quality of the obtained solution is strongly subjected to the starting
point of the search process and, generally, the basin of attraction of the global minimum
is not known.

Therefore, different metaheuristic techniques have been developed in order to include
an exploration component to the iterative improvement, whose purpose is to guide the
exploration through the search space trying to achieve better and better local minima. For
these reason, though, some stopping criteria other than finding a local minumum is needed.
Reaching a maximum number of iterations or finding a solution of sufficient quality are
some of the most used termination criteria.

Some of the most important local-search based metaheuristics are the following ones.
Since these techniques are not directly related with the algorithms proposed in this work,
only the main idea of their behaviour is cited. For a more detailed description of each of
them, the reader is referred to the bibliographic citations:

• Greedy Randomized Adaptive Search Procedures (GRASP) [12]:

Repeatedly generates stochastic greedy solutions, subsequently improving them through
the application of a local search method.

• Iterated Greedy (IG) [26]: Iterates through the partial destruction of a complete
solution in a probabilistic way and its subsequent reconstruction, making use of the
same construction mechanism as for the generation of the initial solution.

• Iterated Local Search (ILS) [21]:

LS method that, at each iteration, starts with a solution obtained by randomly
perturbing a previous one. This alteration should move the search to another basin
of attraction while staying close to the neighborhood of the initial solution. The
obtained solution is then improved by using a standard LS method.

• Simulated Annealing (SA) [19]:

Starting from an initial random solution, at each step, the algorithm randomly selects
another solution from the neighborhood. If the new solution is better than the current
one, the algorithm moves to that point in the search space. Otherwise, the new
solution is accepted with a given probability that decreases as the algorithm explores
the search space.

• Tabu Search (TS) [14]:

Enhances the performance of a standard local search by allowing moves to worse
positions in the search space. Furthermore, some prohibitions in the neighborhood
are introduced based in previously visited solutions, making use of a short-term
memory (also called a tabu list).
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Population-based

These metaheuristics deal with multiple solutions rather than with a single one. This set
of solutions is then modified by the application of certain operators to produce subsequent
populations. Population-based metaheuristics are usually inspired by natural methods for
effectively exploring the search space.

The two most studied population-based metaheuristics are:

• Ant Colony Optimization (ACO) [11]:

A colony of agents (artificial ants) construct solutions by moving on the search space
guided by pheromone values that are updated at runtime.

• Evolutionary Algorithms (EA) [2]:

Inspired by the evolution of living beings and their environmental adaptation, an
initial population of individuals is generated and altered through several iterations
by the recombination and mutation of their genetic information.

Some of the algorithms proposed for the WID problem in this work are based on
evolutionary algorithms; more precisely, in a relatively new type of Genetic Algorithms
called Biased Random-Key Genetic Algorithms. The reader is referred to the next chapter
for a detailed description of them.

2.3 Hybrid algorithms

A hybrid algorithm is one that combines two or more algorithms for solving the same
problem. The goal is to take profit of the desired features of each, making the overall
algorithm perform better than its individual components. These algorithms are widely
used in optimization problems, specially making use of recursive algorithms (such as divide
and conquer) to slice the problem into smaller instances, where a better performing (but
time-consuming) one is used. The main motivation behind these approaches, then, is
exploiting the complementary character of different optimization techniques (or synergy).

One example could be the hybridization of metaheuristics with other techniques, in
particular with the above sketched exact methods. This particular case has proven effective
in many CO problems [6]. Unfortunately, developing hybrid approaches is a difficult task,
requiring expertise in different areas. In addition, hybrid algorithms seem to be problem-
dependent, which means that a given algorithm might perform greatly for specific problems
but poorly on others. They are, in general, nontrivial to generalize.

For further information about optimization and hybrid metaheuristics, we refer the
interested reader to [7].
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Chapter 3

New Algorithmic Approaches for the
WID Problem

As previously mentioned, the WID problem is a CO problem. Given an undirected graph
G = (V,E), S corresponds to all possible dominating and independent sets of vertices in G.
The objective function value of a set S ∈ S is calculated by Equation 1.1. Moreover, the set
C is equivalent to the set of vertices from the input graph. In addition, the vertices forming
an independent dominating set D compose the set of solution components contained in S.

In this chapter, we present an extensive description of the new algorithms that we
have designed for solving this problem, making use of approximate methods: starting with
constructive heuristics and finishing with some variants of an evolutionary algorithm.

3.1 Greedy algorithms

Greedy algorithms (also called Greedy heuristics) are probably the most well-known ex-
ample of constructive heuristics, which are, usually, the fastest approximate methods.

Greedy heuristics make use of the so-called greedy function to determine which com-
ponent is added at each step. This function measures the estimated quality of a solution
component, and serves as an indicator for the effect on the objective value if the component
would be included into the solution. Before describing our developed approaches, let us
introduce two greedy heuristics from [23] that will be used in the forthcoming approaches.
Both algorithms (henceforth denoted as Greedy1 and Greedy2) share the same frame-
work, but they differ in the heuristic function employed to determine which vertex is chosen
at each step.

Given an input graph G = (V,E), the algorithm starts with an empty solution S = ∅
and the so-called remaining graph G′ = (V ′, E ′), which is initially a copy of G.

At each iteration, exactly one vertex v from the remaining graph G′ is added to S.
After that, all the vertices from NG′ [v] (the closed neighborhood of v in G′) are removed
from V ′. Additionally, all their incident edges are removed from E ′. By doing so, we ensure
that S maintains the property of being independent.
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The algorithm finishes when V ′ is empty. At this point, we can clearly see that S is
independent and dominating, as the vertices that were not added to the solution were those
adjacent to the chosen ones.

The pseudo-code of this procedure is shown in Algorithm 1.

Algorithm 1 Pseudo-code of Greedy1 and Greedy2

1: input: an undirected weighted graph G = (V,E,w)
2: S := ∅
3: G′ := G
4: while V ′ 6= ∅ do
5: Choose v∗ ∈ V ′ by using greedy function η1 (for Greedy1) or η2 (for Greedy2)
6: S := S ∪ {v∗}
7: Remove from G′ all nodes from NG′ [v∗] and their incident edges
8: end while
9: output: An independent dominating set S of G

Greedy function η1 of Greedy1. In this heuristic, vertices with a high degree in
the remaining graph G′ and a low vertex weight are preferred. The function is defined as
follows:

η1(v) :=
degG′(v)

w(v)

At each step, the vertex v ∈ V ′ with the highest η1-value is chosen, so v∗ := argmax{η1(v) |
v ∈ V ′} (see line 5 of Algorithm 1).

Note that this heuristic does not consider edge weights. They are only taken into
account when calculating the objective function of the final solution S.

Greedy function η2 of Greedy2. In contrast to Greedy1, this second heuristic is
designed to consider the edge weights while constructing the solution. Before describing
the function, it is necessary to introduce the following notations.

First, let wmax be the maximum weight of all the edges, hence wmax := max{w(e) | e ∈
E}. Second, let S be a partial solution. Then, an auxiliary objective function f aux(S) is
defined as

∑
v∈V cS(v), where cS(v) is called the contribution of vertex v with respect to

the partial solution S and is defined as follows:

cS(v) :=


w(v) if v ∈ S
wmax if v /∈ S and N(v) ∩ S = ∅
min{w(e) | e = (v, u), u ∈ S} if v /∈ S and N(v) ∩ S 6= ∅

Then, greedy function η2 is defined as follows:

η2(v) := f aux(S ∪ {v})

14



At each step, the vertex v ∈ V ′ with the lowest η2-value is chosen, so v∗ := argmin{η2(v) |
v ∈ V ′} (see line 5 of Algorithm 1). Note that, in the case of S being a complete solution,
it holds that f(S) = f aux(S). For more information, we refer the interested reader to [23].

In the following subsections, two modifications of these greedy algorithms are detailed.
Henceforth, when using η, we may refer to η1 or η2, depending on the greedy heuristic used
(Greedy1 or Greedy2 respectively).

3.1.1 Rollout mechanism

Rollout is a form of sequential optimization in DP (see Section 2.1 for further informa-
tion). Using some given heuristic, the rollout mechanism makes use of this heuristic in a
subordinate way, often obtaining much better performance than the original heuristic. It
uses a lookahead approach and benefits of the repeated application of the greedy heuristic
in an intelligent way [4].

The rollout mechansim is explained in Bertsekas (2013) as follows. Consider the mini-
mization of a function f(x1, ..., xn) of discrete variables x1, ..., xn that take values each from
some finite set. This minimization task can be rephrased as a sequence of minimization
tasks as follows. First, the optimal value of x1 (denoted by x∗1) is obtained by minimizing
F1(x1) = min

x2,...,xn

f(x1, ..., xn). Afterwards, x∗1 is fixed and the same is done for x2, resulting

in x∗2, etc. In general, for every k = 1, ..., n, given the optimal values x∗1, ..., x∗k−1, the
optimal value of xk can be found by the minimization

x∗k = argmin
xk

Fk(x
∗
1, ..., x

∗
k−1, xk) (3.1)

where
Fk(x

∗
1, ..., x

∗
k−1, xk) = min

xk+1,...,xn

f(x1, .., xn) (3.2)

In DP, functions Fk are called optimal cost-to-go functions. However, calculating and
storing them in tables becomes intractable in practice, especially in the context of large
instances.

In the rollout approach, the Fk functions are approximated by other, more affordable,
alternatives. In particular, function Fk, for k = 1, ...n, is exchanged by a much cheaper,
so-called, base heuristic Hk that produces a (possibly suboptimal) value x̂k. Hence, the
rollout algorithm achieves a (possibly suboptimal) value x̂k by replacing Fk with Hk in Eq.
(3.1):

x̂k = argmin
xk

Hk(x̂1, ..., x̂k−1, xk) (3.3)

Notice that the result obtained in this way is at least as good as constructing the solution
by just applying the base heuristic once to the whole problem. Although this procedure is
done in expense of a considerable increase in computational time and space, results show
that a significant improvement is obtained over the application of just the base heuristic.
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The rollout algorithm will now be formalized for the WID problem.
Given an undirected graph G = (V,E), let Sk ⊂ V be the partial solution at iteration

k (which are the set of vertices chosen at previous iterations) and V ′ be the set of vertices
from the remaining graph G′.

Furthermore, H denotes a heuristic construction algorithm which, given a partial solu-
tion Sk, constructs a complete solution (a dominating and independent set in G). Hence-
forth, H will also be referred to as the base heuristic. In our case, the heuristics used are
Greedy1 and Greedy2.

Finally, let H(S) be the final solution obtained by applying the base heuristic H to the
corresponding partial solution S. Recall that f(H(S)) denotes its objective function value.
Given a vertex v, we denominate the projection of v under H in iteration k, denoted by
pk(v), to the objective function value of the final solution obtained by applying the base
heuristic to the partial solution Sk ∪ {v}. Therefore, pk(v) := f(H(Sk ∪ {v})). In words,
the projection is the objective value of the solution obtained if we would add the vertex to
the current partial solution and completed it using one of the greedy heuristics.

Our algorithm, then, starts with an empty solution S := ∅ and, at each iteration k,
adds the vertex in the remaining set V ′ with the lower projection value pk. The vertices
from the closed neighborhood of v∗ in G′ (and their incident edges) are then removed from
G′. We proceed until the set of remaining vertices V ′ is empty. The pseudo-code of this
algorithm can be found in Algorithm 2. Figure 3.1 visually describes the process carried
out during an iteration.

Note that this algorithm only differs from the base greedy heuristics in the way it selects
which vertex is added at each iteration, adding a superior layer to the procedure.

In the case of Greedy1, the algorithm stores a partial objective function value during
the construction of the solution. At each iteration, the algorithm adds the weight of the
selected vertices. When the solution is completed, the objective function value is increased
by the weight of the minimum-cost edges that connect vertices not in the solution set to
vertices in the set. Then, as the value starts at 0 and increases at each iteration, we can
stop the calculation of a given projection if its partial objective value is higher than the
best-so-far projection. This phenomenon is called a cut. Note that this cannot be applied
to Greedy2, as it makes use of an auxiliary objective function that starts at a maximum
theoretical value and decreases as vertices are added to the solution.

Two rollout versions of the two Greedy base-heuristics are henceforth called Greedy1-
Rollout and Greedy2-Rollout.

3.1.2 Multistart mechanism

In this approach, we make use of the two previously mentioned greedy heuristics in order
to generate probabilistic solutions to the problem. The main idea is to constantly build
solutions from scratch and store the best one encountered, which will be returned by the
algorithm.

For this purpose, we require values for two parameters: the determinism rate drate ∈
[0, 1] and the list size lsize ∈ N+, which determine the degree of greediness of the constructed
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v1 v2 vk−1 vk

∀vi ∈ V ′

vi vi+1 vn−1

pk(vi) = f(Si)

vn

Iteration k

Partial solution Sk

Si := Sk ∪ vi Complete Si using
greedy heuristic H

Figure 3.1: Rollout procedure.

Algorithm 2 Pseudo-code of Greedy-Rollout

1: input: an undirected weighted graph G = (V,E,w)
2: S := ∅
3: G′ := G
4: while V ′ 6= ∅ do
5: v∗ = argmin{pk(v) | v ∈ V ′} {note: Iteration k}
6: S := S ∪ {v∗}
7: Remove from G′ all nodes from NG′ [v∗] and their incident edges
8: end while
9: output: An independent dominating set S of G

solutions.
The algorithm starts with an empty set Sbest := ∅, representing the best solution found

so far. Initially, as Sbest is not a valid solution to the problem, we suppose f(Sbest) returns
the maximum possible objective function value.

The procedure of building a solution differs from the standard greedy algorithms in the
way it selects the vertex added to the solution at each construction step (see line 5 of
Algorithm 1).

We also start with an empty set S := ∅. At each iteration, a vertex from the remaining
graph is added to the solution, which is chosen in the following way. First, a uniformly
distributed random number r ∈ [0, 1] is generated. If r ≤ drate, we add the vertex with
the best greedy function value to the set S. Otherwise, we add one at random from the
min{lsize, |V ′|} vertices in V ′ with the best greedy function value, which are the ones with
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the maximum η1 value in case of Greedy1 or the minimum η2 value in case of Greedy2.
Note that using a drate value of 1 is equivalent to constructing the solution using the
standard greedy heuristics. Once finished, the vertices from NG′ [v] are removed from the
remaining graph. This procedure is repeated until we run out of vertices in G′.

If the obtained solution is better than the best-so-far (f(S) < f(Sbest)), then the newly
build solution becomes the best-so-far (Sbest := S).

We keep building probabilistic solutions until a certain time limit is reached, and Sbest

is then returned. The pseudo-code of this algorithm can be found in Algorithm 3 .

Algorithm 3 Pseudo-code of Greedy-Multistart

1: input: an undirected weighted graph G = (V,E,w)
2: Sbest := ∅ {note: Suppose f(Sbest) is, initially, the maximum possible value}
3: while computation time limit not reached do
4: S := ∅
5: G′ := G
6: while V ′ 6= ∅ do
7: Random r ∼ U(0, 1)
8: if r ≤ drate then
9: Choose v∗ ∈ V ′ by using greedy function η
10: else
11: Choose v∗ ∈ V ′ at random within the lsize vertices with the best greedy function

values
12: end if
13: S := S ∪ {v∗}
14: Remove from G′ all nodes from NG′ [v∗] and their incident edges
15: end while
16: if f(S) < f(Sbest) then
17: Sbest := S
18: end if
19: end while
20: output: an independent dominating set Sbest of G

Two multistart versions were constructed (one for each greedy heuristic), henceforth
called Greedy1-Multistart and Greedy2-Multistart.
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3.2 Biased Random-Key Genetic Algorithm

In the forthcoming subsections, a general explanation about Genetic Algorithms is pro-
vided, along with a more specific description of the sub-type used in this thesis. Then, we
present how this method was applied to the WID problem and discuss different approaches.

3.2.1 Genetic Algorithms

A Genetic Algorithm (GA) is a metaheuristic inspired by the process of natural selection
(survival of the fittest) introduced by John Holland in [16]. It is frequently used to generate
high-quality (optimal or near optimal) solutions to CO problems. It belongs to the larger
class of EA (see Section 2.2.2 for further information).

In a GA, we have a set of individuals called population. These individuals are potential
solutions to the problem. Each individual is encoded as a vector or string of variables
(genes), called chromosome. Each gene can take on a value, called allele. See Figure 3.2 for
a visual representation. Furthermore, individuals assigned a fitness value, which measures
how suitable they are. Commonly, the value of the objective function in the optimization
problem being solved is used.

5

Individual 1

1 4 3 2

3

Individual 2

5 2 4 1

2

Individual 3

3 1 5 4

Population

Gene

Chromosome

Allele

Figure 3.2: Terms of a Genetic Algorithm.

The algorithm starts with an initial population (usually randomly generated individu-
als) and then evolves it over a number of generations. At each generation, a new population
is created by producing offspring of the current population, with the fittest individuals (the
ones with highest fitness) having more probability to reproduce and pass on their char-
acteristics to the next generation. Thus, each successive generation is more suited than
the previous ones. The algorithm terminates when some defined criteria is met (frequently
after a fixed number of generations or a satisfactory level of quality is reached).

A GA uses three main operators to evolve the population:
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Algorithm 4 Pseudo-code of a GA
1: Generate initial population
2: Compute fitness
3: while termination condition not satisfied do
4: Select parents from population
5: Generate offspring population by crossover
6: Apply mutation to the generated individuals
7: Compute fitness of the new population
8: end while

• Selection: In each generation, a portion of the population is selected to pass their
genes to successive generations by producing offspring. These individuals, called
parents, are picked depending on their fitness value (fitter solutions are more likely
to be chosen). Typical selection methods are roulette wheel or tournament selection.

• Crossover: Once the parents are chosen, pairs are combined to form children for
the next generation. It is analogous to what happens during sexual reproduction in
biology. The genetic information of the two parents (genes) are exchanged, creating
a new individual (offspring). Typical crossover methods are single-point, two-point
or uniform crossover.

• Mutation: In order to avoid premature convergence and maintain diversity within
the population, random changes are applied to the offspring individuals. Usually,
some genes in a chromosome are altered according to a defined probability.

A pseudo-code for the GA can be found in Algorithm 4

3.2.2 Biased Random Key Genetic Algorithms

A Biased Random-Key Genetic Algorithm (BRKGA) [15] is a steady-state genetic algo-
rithm and a variant of a Random-Key Genetic Algorithm (RKGA) [3]. A RKGA differs
from a classic GA in the following:

• Individuals are represented as a vector of real numbers between 0 and 1. A determin-
istic algorithm, the so-called decoder, is used to translate any chromosome to a valid
solution of the tackled problem, where the objective value (or fitness) of the individ-
ual can be computed. Note, then, that this type of genetic algorithm consists of a
problem-independent part (the evolution of the population) and a problem-dependent
part (the decoder). This allows for the reuse of code, as only the problem-dependent
part has to be modified when changing between problems.

• It uses an elitist strategy. The population is divided in two groups: elite individuals
(those with the highest fitness values) and non-elite individuals. All of the elite
individuals at each generation are preserved for the subsequent. The purpose is to
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store good quality solutions found during previous iterations to positively influence
future generations.

• Mutation is implemented by introducing mutants (random generated individuals)
into the population at each generation. They are usually generated in the same way
as in the initial population, thus can be decoded into valid solutions of the problem.

A BRKGA differs from a RKGA in the way parents are selected for mating. In a
RKGA, both are selected at random from the entire population. However, in BRKGAs,
one parent is always an elite individual.

3.2.3 A BRKGA for the WID problem

We will now describe more precisely the problem-independent part of the BRKGA applied
to the WID problem, whose pseudo-code is provided in Algorithm 5. Our BRKGA depeds
on several parameters:

• The number of genes in the chromosome of an individual, denoted by n.

• The number of individuals in the population, denoted by psize.

• The fraction of elite individuals in the population, denoted by pe.

• The fraction of mutants introduced at each generation, denoted by pm.

• The probability that a given offspring inherits the allele from its elite parent, denoted
by probelite. This value is required to be, at least, 0.5. We will see its purpose later.

The algorithm starts by generating a population P (made up of psize random generated
individuals) in GenerateInitialPopulation(psize). Each individual π ∈ P is a vector of length
n = |V | (where V is the set of vertices from the input graph). Allele i of π (denoted by
π(i)) is generated uniformly at random in the real interval [0, 1].

Afterward, the fitness of each individual of the initial population is evaluated in function
Evaluate(P ). Each one is assigned an objective function value (denoted by f(π)) by the
decoder, which is the problem-dependent part. Different decoder implementations are
discussed in section 3.2.4.

At each iteration, the algorithm performs the following actions, which can be visualised
in Figure 3.3:

1. First of all, the max{bpe · psizec, 1} individuals with the best fitness values are copied
to Pe (elite population) in function EliteSolutions(P, pe).

2. Second, a set of max{bpm ·psizec, 1} so-called mutants are generated and stored in Pm

(mutant population), produced in the same way as the individuals from the initial
population.
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Figure 3.3: Transition from generation k to generation k+1 in a BRKGA. Extracted from
[15].

3. Then, psize − |Pe| − |Pm| offspring individuals are generated by crossover in function
Crossover(P, Pe, probelite) and stored in Pc (crossover population). A parametrized
uniform crossover is used, proceeding as follows:

(a) An elite parent πe is chosen uniformly at random from Pe.

(b) A non-elite parent πne is chosen uniformly at random from P \ Pe

(c) An offspring πoff is generated by combining πe and πne. The value of πoff(i) is
set to πe(i) with probability probelite, and to πne(i) otherwise. Therefore, the
offspring individual is more likely to inherit characteristics from its elite parent.

Figure 3.4 shows an example of this procedure. Note that, since pe is required to

Figure 3.4: Parametrized uniform crossover: mating in BRKGAs. Extracted from [15].
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Algorithm 5 A BRKGA for the WID Problem
1: input: an undirected weighted graph G = (V,E,w)
2: input: parameter values for psize, pe, pm and probelite

3: P := GenerateInitialPopulation(psize)
4: Evaluate(P )
5: while computation time limit not reached do
6: Pe := EliteSolutions(P, pe)
7: Pm := Mutants(P, pm)
8: Pc := Crossover(P, Pe, probelite)
9: Evaluate(Pm ∪ Pc) {note: Pe is already evaluated}
10: P := Pe ∪ Pm ∪ Pc

11: end while
12: output: Best solution in P

be less than 0.5, the probability that a given elite individual is selected for mating
(1/(psize · pe)) is greater than that of a given non-elite individual (1/(psize(1 − pe)).
Therefore, the given elite individual is more likely to pass on its genetic information
to forthcoming generations.

4. After generating the offspring and mutant populations (Pc and Pm respectively), both
are evaluated in Evaluate(Pm ∪ Pc). Note that the individuals in Pe were already
evaluated in previous generations.

5. Finally, the population of the next generation is determined to be the union of Pe

with Pm and Pc.

The algorithm terminates when some computation time limit is reached.

3.2.4 Evaluation of an Individual

As we previously mentioned, a decoder is used to map solutions from the hypercube to
solutions in the solution space, where fitness is computed.

In the following sections, we propose three different decoders for the problem. In all our
versions, individuals are represented as chromosomes of size n = |V |, where V is the set of
vertices of the input graph. Furthermore, we will consider an individual π = π1, π2, ..., πn,
where πi ∈ [0, 1].

Decoder 1

In this first implementation, the decoder generates a permutation of vertices of the input
graph in order to obtain an independent and dominating set S.

Given an individual π, we translate it into a permutation P of vertices P = p1, p2, ..., pn,
where pi ∈ {1, |V |}. .
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In this case, the ith position of P corresponds to the ith position of π, and the jth
lowest value in π corresponds to vertex j in P . More formally, let `j(π) be the index of
the jth lowest value in π. Then, pi := j, where i = `j(π). Figure 3.5 shows an example of
this process.
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Highest value
corresponds

to vertex |V |

Lowest value
corresponds
to vertex 1

4th lowest value
corresponds
to vertex 4

Figure 3.5: Decoding process of an individual (version 1).

Once this permutation is obtained, we need to construct the solution S. To do so, we
start with an empty solution S := ∅. At each iteration, we add the first vertex v from P
to the solution S (S := S ∪ v) and remove NG′(v) from the permutation. We proceed until
we get to the empty set P = ∅. Note that S is now an independent and dominating set in
G.

The only thing left is to calculate the fitness of the individual using the objective
function previously stated in Equation 1.1.

Decoder 2

This second decoder also generates a permutation of vertices, but it proceeds in a different
way.

In this case, the value of the nth position of π states the "priority" of vertex n in the
permutation. More formally, let Lj(π) be the index of the jth largest value in π. Then,
Pj := i, where i = Lj(π). Figure 3.6 shows an example of this process.

From this point, we proceed by obtaining the solution S and calculating the fitness in
the same way as in the previous decoder.

Decoder 3

In this third decoder, the process involves the application of the two previously mentioned
greedy heuristics (see Section 3.1), using the values of the individual to bias the original
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Figure 3.6: Decoding process of an individual (version 2).

greedy function weights.
However, the following changes have to be applied to the original greedy functions in

order to implement this method:

• Greedy function η′1 of Greedy1.

Greedy function η1 is replaced by the following:

η′1(vi) :=
degG′(vi) + 1

w(vi)
· πi

Note that we add 1 to the numerator so the allele can still influence the result when
degG′(vi) = 0.

Greedy1 is then applied using the new function η′1. We will denote the the objective
function value of the solution produced by Greedy1 on the basis of π as f1(π).

• Greedy function η′2 of Greedy2.

A similar procedure is used for the evaluation of an individual by means of Greedy2.
However, Greedy2 differs from Greedy1 in the way it selects the vertex at each
iteration, choosing the one with the lowest greedy function value instead of the largest.
If we proceeded as in Greedy1 (by simply multiplying the original greedy function
by the value of the individual), the same value of π would affect oppositely on both
functions. To fix this, we simply multiply η2 by −1.
Nonetheless, we are now facing with a different problem, as η2 now actually produces
negative values. For this reason, when given a partial solution S, we first calculate:

ηmax
2 := max{η2(v) | v ∈ V ′}
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Then, η2 is replaced by the following greedy function:

η′2(vi) := (−η2(vi) + ηmax
2 + 1) · πi

Note that we also add 1 to the function’s value (for the same reason as before). We
will denote the objective function value of the solution produced by Greedy2 on
the basis of an individual π as f2(π).

Then, for the evaluation of an individual π, and once these changes are applied to the orig-
inal greedy functions, our BRKGA assigns to an individual π the value min{f1(π), f2(π)}.

3.2.5 Rollout mechanism

By observing the good performance of the rollout mechanism on this problem, regarding
its application on both greedy algorithms, we decided to apply it to the three different
decoders designed for the genetic algorithm. This technique seems to work well when
stuck in a local minima, as it explores the search space around the individual. In this
problem, this phenomenon is more accentuated, as choosing one vertex over another can
drastically change the solution due to the property of the set being independent.

The rollout applies in a similar way as before (see Section 3.1.1). However, the tem-
poral cost of the mechanism is rather high, so applying it to the evaluation of the whole
population would be extremely time consuming and would make the population not able
to evolve over sufficient generations. For this purpose, the following three parameters were
added to the algorithm in order to control its usage:

1. rsize. Stands for rollout size, and controls the amplitude of the application. More
specifically, in each iteration, instead of calculating the final objective function ob-
tained by adding each one of the possible vertices to the solution, it is only calculated
for the rsize nodes with the best value (according to the greedy function or other
means, depending on the decoder).

2. rportion. Stands for rollout portion, and indicates the percentage of the crossover
population to which the mechanism is applied. In order to shorten the duration of a
generation, we decided it is not necessary to evaluate all of the individuals this way.
To this end, we decided to discard elite and mutant individuals, as the former are
already evaluated and the latter can be in any point of the search space, so they are
not of great interest. The rollout mechanism, then, is only used on a portion of the
offspring individuals.

3. rstop. Stands for rollout stop and determines the percentage of vertices added to the
solution (or discarded) at which the rollout is no longer used. Recall that, at each
iteration of the solution construction, the mechanism is applied in order to choose
which vertex is added to the set. It is clear to see that, when there are only few
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vertices remaining, the mechanism effectiveness decreases, as little to non variation
occurs when selecting one vertex over another. Consequently, the rollout can be
stopped earlier in order to reduce resource consumption.

Decoders 1 & 2

The mechanism is applied in the same way in both, once the permutation P of vertices
has been created. Recall that the solution S is constructed by adding, at each step, the
front element from P and removing the vertices adjacent to it from the permutation. This
is repeated until P is empty.

With the application of the rollout mechanism, we instead proceed this way.
Let size := min{rsize, |P |} and P [size] be the first size elements from permutation P .

Given a vertex v ∈ P , we denominate the projection of v under P (p(v)) to the objective
function value of the final solution obtained if we moved vertex v to the front of the
permutation and proceeded as normal (until P is empty).

Then, at each iteration, we take the vertex v ∈ P [size] with the lowest p(v) value,
add it to the solution S and remove the vertices in the closed neighborhood of v from the
permutation. This process is repeated until |P | <= (1− rstop) · |V | (meaning that the rstop

of the vertices have either been chosen or discarded). At this point, subsequent iterations
are completed as in the standard decoder versions.

The pseudo-code of this procedure can be found in Algorithm 6.

Algorithm 6 Pseudo-code of the rollout implementation of decoders 1 and 2.
1: input: an undirected weighted graph G = (V,E,w)
2: input: a permutation of vertices P
3: input: parameter values for rsize and rstop {note: rportion is used outside the

decoding process}
4: S := ∅
5: while P 6= ∅ do
6: if |P | > (1− rstop) · |V | then
7: size := min{rsize, |P |}
8: v∗ := argmin{p(v) | v ∈ P [size]}
9: else
10: v∗ := p0 {note: p0 is the first element in P}
11: end if
12: S := S ∪ {v∗}
13: Remove from P all nodes from N [v∗]
14: end while
15: output: An independent dominating set S of G
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Decoder 3

In this version, the rollout mechanism is applied to the two greedy algorithms used to
evaluate an individual in the same way as in their standalone version (see Section 3.1.1).
It is obvious, though, that we are using the modified greedy functions instead.

However, we have to take into account the new parameters. First, the rollout mechanism
is only applied until V ′ <= (1 − rstop) · |V |. Second, only the rsize vertices with the best
greedy function value are considered when selecting the one with the lowest projection
value.
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Chapter 4

Experimental evaluation

In this chapter, we present the experimental evaluation of our algorithms. First, the set
of benchmark instances is described. Then, an explanation of the tuning process of our
algorithms is provided. Finally, the results obtained are presented and discussed.

The following ten algorithmic approaches have been considered: The two greedy rollout
versions (1) Greedy1-Rollout and (2) Greedy2-Rollout; the greedy multistart ap-
proaches (3) Greedy1-Multistart and (4) Greedy2-Multistart; the BRKGA with
its three different decoders (5) Brkga-v1, (6) Brkga-v2 and (7) Brkga-v3 and their
respective rollout versions (8) Brkga-v1-Rollout, (9) Brkga-v2-Rollout and (10)
Brkga-v3-Rollout.

The algorithms were implemented in ANSI C++, using GCC 7.4.0 for compiling the
code. The experimental evaluation was performed on a cluster of computers with “Intel R©

Xeon R© CPU 5670” CPUs of 12 nuclei of 2933 MHz and (in total) 32 Gigabytes of RAM.

4.1 Benchmark instances

For a fair experimental evaluation of our algorithms, we considered the same problem
instances as in [23], generated as described in the following.

Graphs are divided into two types: (1) random graphs and (2) random geometric graphs,
both of different properties (density, size, etc.). More specifically, for each type, graphs
of order |V | ∈ {100, 500, 1000} were generated. In addition, three different schemes for
generating node and edge weights were considered:

1. Neutral graphs : Both node and edge weights are integers drawn uniformly at random
from {0...100}.

2. Node-oriented graphs : Node weights are integers w chosen uniformly at random from
{0..1000}, while edge weights were chosen uniformly at random from the interval
{0...100}. Note that, in these graphs, node weights directly impact the choice of
nodes themselves.
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3. Edge-oriented graphs : Edge weights are integers w chosen uniformly at random from
{0..1000}, while node weights w are chosen uniformly at random from the interval
{0...100}. Note that, in this case, the weights connecting non-chosen nodes to chosen
ones greatly influence the selection of nodes.

For the density, a different approach was used for each type of graph:

1. Random graphs : In these graphs, any two nodes may be connected. To control
the density, edges were generated between any pair of nodes with probability ep ∈
{0.05, 0.15, 0.25}.

2. Random geometric graphs : Here, only nodes that are placed close together may be
connected. Graphs were created as follows. First, |V | nodes were assigned random
coordinates from the unit square. Then, each pair of nodes at a distance smaller or
equal than a given radius r were connected. To produce graphs with similar densities
than the random graphs the settings for r were as follows: r ∈ {0.14, 0.24, 0.34}.

For each combination of graph type, number of nodes, edge probability (or radius) and
weight generation scheme, 10 problem instances were generated, resulting in a total of 540
graphs: 270 for each type (random graphs and random geometric graphs).

4.2 Tuning

Before evaluating our approaches, an adjustment of the algorithms’ parameters was needed.
For this purpose, the irace tool was used [20]. Its main purpose is to automatically
configure optimization algorithms by finding the most appropriate settings given a set of
problem instances. In the following subsections, we describe the tuning setups and results.

4.2.1 General considerations

We applied the tuning to each algorithm with parameters to configure: the two greedy
multistart algorithms, the three different versions of the BRKGA and their respective
rollout implementations. This makes a total of 8 algorithms to tune.

For each one, the irace tool was applied 3 times (one for each graph order |V |).
For each tuning run, 18 different instances were used, selecting the first one of the 10
available instances for each combination of type of graph, weight generation scheme and
edge probability (or radius).

BRKGA rollout tunings were given a budget of 2000 applications of the algorithm per
tuning run, while the others were given a maximum of 1000 applications. This was decided
because the former algorithms have more parameters to adjust than the latter ones. For
each application, a time limit of 3 · |V | CPU seconds was given.
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4.2.2 Tuning of the multistarts algorithms

The following parameters and ranges were considered:

• drate ∈ {0.5, 0.6, 0.7, 0.8, 0.9}

• lsize ∈ {2, 3, 5, 10, 20}

Results obtained for both the multistart versions of Greedy1 and of Greedy2 are
shown in Table 4.1 and Table 4.2, respectively.

Table 4.1: Results of tuning Greedy1-Multistart

|V | drate lsize

100 0.5 20
500 0.5 20
1000 0.6 20

Table 4.2: Results of tuning Greedy2-Multistart

|V | drate lsize

100 0.5 20
500 0.5 10
1000 0.6 10

The results show that a lower drate and a higher lsize are preferred. In addition, both
greedy algorithms tend to become slightly more deterministic as the order of the graphs
increases.

4.2.3 Tuning of BRKGAs

For the BRKGA, four parameters were considered for tuning, with the following value
ranges:

• psize ∈ {10, 20, 50, 100, 200, 500}

• pe ∈ {0.05, 0.1, 0.15, 0.2, 0.25}

• pm ∈ {0.1, 0.15, 0.2, 0.25, 0.3}

• probelite ∈ {0.5, 0.6, 0.7, 0.8, 0.9}

Note that the ranges of the last three parameters correspond to the ones recommended in
[15].

Results obtained from the tuning process are presented in Table 4.3 (Version 1),
Table 4.4 (Version 2) and Table 4.5 (Version 3).
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In this case, however, the trends differ greatly among versions.
In the first version, the population size (psize) is rather low for versions 2 and 3. The

size of the mutant population (pm) starts at the minimum value and increases with the
graph order. The size of the elite population (pe) and the elite allele inheritance probability
(probelite) values are quite average, with the latter being slightly lower in the case |V | = 500.

Table 4.3: Results of tuning Brkga-V1

|V | psize pe pm probelite

100 100 0.15 0.1 0.8
500 20 0.2 0.2 0.6
1000 50 0.1 0.3 0.8

Concerning the second version, the trends seem to be similar regardless of the order of
the graph. A high psize, pe and pm resulted best in all three cases.

Table 4.4: Results of tuning Brkga-V2

|V | psize pe pm probelite

100 500 0.25 0.3 0.8
500 500 0.2 0.3 0.6
1000 500 0.25 0.3 0.7

Finally, the results of the third version show that, for graphs of small order, a small
population is preferred. Otherwise, big populations are chosen. The mutant population
is rather large, and increases with |V |, along with probelite. On the contrary, the elite
population size decreases.

Table 4.5: Results of tuning Brkga-V3

|V | psize pe pm probelite

100 20 0.2 0.2 0.6
500 500 0.15 0.2 0.6
1000 500 0.1 0.25 0.7

4.2.4 Tuning of BRKGAs rollout version

In addition to the five parameters of the default Brkga versions, the following three
parameters (with their respective value ranges) must be tuned in the case of the rollout
versions:

• rsize ∈ {2, 5, 10, 20}

• rportion ∈ {0.25, 0.5, 0.75, 1.0}
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• rstop ∈ {0.25, 0.5, 0.75, 1.0}

As in the three BRKGA standard approaches, the trends are distinct depending on the
algorithm version.

Concerning the first version, the results, presented in Table 4.6, show that the size of
the population must be kept low (except when the graph has a small order). Interestingly,
when the rollout size (rsize) increases, rportion and rstop seem to follow the same trend, while
the elite population size (pe) tends to decrease. In addition, probelite is minimum when the
graph order is 100. Other parameters have intermediate values.

Table 4.6: Results of tuning Brkga-V1-Rollout

|V | psize pe pm probelite rsize rportion rstop

100 100 0.15 0.15 0.5 5 0.25 0.25
500 20 0.05 0.2 0.7 20 0.75 1.0
1000 20 0.25 0.1 0.7 2 0.25 0.5

Table 4.7 shows the tuning results for the second version. In general, large values for
the population and rollout size are preferred. Note that one slightly increases when the
other decreases. The elite allele inheritance probability is kept low. On the contrary, the
size of the elite and mutant populations must be rather high (with the exception of pe when
|V | = 100). Finally, the rportion value is inversely proportional to the order of the graph.

Table 4.7: Results of tuning Brkga-V2-Rollout

|V | psize pe pm probelite rsize rportion rstop

100 100 0.05 0.3 0.5 20 1.0 0.75
500 500 0.2 0.3 0.5 10 0.75 1.0
1000 500 0.25 0.25 0.6 10 0.5 0.25

The third version seems to have a clear trend. The size of the rollout (rsize) and the
fraction of the offspring population to which the rollout is applied (rportion) increase with the
order of the graph, whilst the population size, the size of the elite population and the elite
allele inheritance probability (probelite) decrease. This makes a lot of sense as, the larger
the rollout size, the more time it takes to evaluate an individual, so the population must
be smaller in order to maintain a reasonable duration of an iteration. Other parameters,
such as pm and rstop, are rather high. These results are shown in Table 4.8
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Table 4.8: Results of tuning Brkga-V3-Rollout

|V | psize pe pm probelite rsize rportion rstop

100 500 0.25 0.25 0.9 2 0.25 0.75
500 50 0.2 0.3 0.6 5 0.5 1.0
1000 20 0.1 0.2 0.5 20 0.75 1.0
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4.3 Results

All the implemented algorithms have been applied once to each problem instance, with
a maximum computation time of 3 · |V | seconds for all of the applications (except for
Greedy1-Rollout and Greedy2-Rollout, which do not have a time limit).

For the evaluation of the results, the algorithms were grouped in two: greedy algorithms
and genetic algorithms. The forthcoming tables follow the same format as in [23] for the
sake of a clear comparison. The first three columns indicate the order of the graph (|V |),
the weight generation scheme (N for neutral graphs, V for vertex-oriented and E for edge-
oriented) and the graph density (indicated by the edge probability ep for random graphs
and the radius r for random geometric graphs).

The results for each algorithm are presented in two columns. The first one (labeled
result) indicates the average result obtained by applying the algorithm to the 10 corre-
sponding instances. The best result for each row is marked with a gray background. The
second column (labeled time) has distinct readings. In the case of Greedy1-Rollout
and Greedy2-Rollout, it indicates the average computation time in seconds. For the
others, it illustrates the average time at which the best solutions of each application were
encountered.

Notched boxplots were generated to offer a more visual representation of the algorithms’
performance (Figures 4.1 to 4.6). These are divided by graph type and weight generation
scheme.

Tables 4.9 and 4.10 contain the experimental results for the Greedy approaches con-
cerning random graphs and random geometric graphs, respectively. The following analysis
can be made by examining them:

• The multistart version of Greedy2 is clearly the one which performs best. It is
followed by Greedy2-Rollout, specially in high order graphs. In general, the
versions using the second greedy heuristic work better than those using the first one,
even though the latter ones can compete in the case of node-oriented graphs.

• Concerning the two types of graphs (random graphs and random geometric graphs),
no major differences can be observed regarding the performance of our algorithms.
Greedy2-Rollout, however, seems to work slightly better in random geometric
graphs of higher order.

• Greedy2-Rollout outperforms Greedy1-Rollout except when nodes have higher
weights than edges. This can be observed in Figure 4.2. This does not apply to the
multistart versions, as Greedy2-Multistart obtains better results than its analo-
gous version Greedy1-Multistart in every single run.

• Concerning computation time, both greedy rollout versions are by far the fastest
ones of the new approaches. Greedy1-Rollout tends to take more time as graphs
become denser, while Greedy2-Rollout has an opposite tendency.
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Figure 4.1: Notched boxplots for random graphs with a neutral weight scheme.
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Figure 4.2: Notched boxplots for random graphs with a node-oriented weight scheme.
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Figure 4.3: Notched boxplots for random graphs with an edge-oriented weight scheme.
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Figure 4.4: Notched boxplots for random geometric graphs with a neutral weight scheme.

r=0.14 r=0.24 r=0.34

n=100
n=500

n=1000

G
R

EE
DY

1_
m

ul
tis

ta
rt

G
R

EE
DY

2_
m

ul
tis

ta
rt

G
R

EE
DY

1_
ro

llo
ut

G
R

EE
DY

2_
ro

llo
ut

BR
KG

A_
v1

BR
KG

A_
v2

BR
KG

A_
v3

BR
KG

A_
v1

_r
ol

lo
ut

BR
KG

A_
v2

_r
ol

lo
ut

BR
KG

A_
v3

_r
ol

lo
ut

G
R

EE
DY

1_
m

ul
tis

ta
rt

G
R

EE
DY

2_
m

ul
tis

ta
rt

G
R

EE
DY

1_
ro

llo
ut

G
R

EE
DY

2_
ro

llo
ut

BR
KG

A_
v1

BR
KG

A_
v2

BR
KG

A_
v3

BR
KG

A_
v1

_r
ol

lo
ut

BR
KG

A_
v2

_r
ol

lo
ut

BR
KG

A_
v3

_r
ol

lo
ut

G
R

EE
DY

1_
m

ul
tis

ta
rt

G
R

EE
DY

2_
m

ul
tis

ta
rt

G
R

EE
DY

1_
ro

llo
ut

G
R

EE
DY

2_
ro

llo
ut

BR
KG

A_
v1

BR
KG

A_
v2

BR
KG

A_
v3

BR
KG

A_
v1

_r
ol

lo
ut

BR
KG

A_
v2

_r
ol

lo
ut

BR
KG

A_
v3

_r
ol

lo
ut

2500

3000

3500

13000

14000

15000

16000

26000

28000

30000

32000

34000

Algorithm

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

43



Figure 4.5: Notched boxplots for random geometric graphs with a node-oriented weight
scheme.
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Figure 4.6: Notched boxplots for random geometric graphs with an edge-oriented weight
scheme.
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• In general, the results obtained from our developed greedy algorithms are not far
from the ones achieved by the genetic algorithms, specially in graphs with a neutral
or vertex-oriented weight generation scheme (see Figures 4.2 and 4.5).

Tables 4.11 and 4.12 show the results obtained by all Brkga versions. An extra column
provides the best result found by the existing algorithms from the literature, in addition
to the information by which algorithm this result was achieved. Furthermore, inequality
and equality symbols are used to indicate if our approaches performed better, equal or
worse than this best result from the literature. The results allow us to draw the following
conclusions:

• Some minor differences are observed regarding the behaviour of our algorithms in
random and random geometric graphs. In the latter ones, the obtained results seem
to be closer to the best-known result than in the former ones.

• In random graphs, Brkga-V2 and Brkga-V2-rollout are, in general, the best-
performing algorithms of the ones proposed in this thesis, followed by Brkga-V3
with its respective rollout adaptation. In random geometric graphs, Brkga-V2-
rollout and Brkga-V3-rollout outperform the other approaches. They are
followed by their respective standard versions, especially in smaller graphs.

• The third decoder seems to outperform the others for graphs in which the vertices
have higher weights than the edges (see Figure 4.2). However, the results obtained
in graphs generated with an edge-oriented scheme are worse compared to the ones
achieved by the second decoder (see Figure 4.3). These differences are not as clear
in geometric graphs.

• Version 1 of the Brkga algorithms is only competitive in the context of small in-
stances (specially in random graphs). However, its performance decays as the number
of nodes increases. This difference is emphasized in node-oriented graphs (see Fig-
ures 4.2 and 4.5)

• Nothing significant can be said regarding computation time, as a clear trend is not
perceived.

• In general, the Brkga algorithms perform similarly to Ilp and to Pbig (including
the Cmsa version) in graphs of smaller order.

• Concerning larger instances, our proposed algorithms do not perform as well as Pbig-
Cmsa, which is the best-performing algorithm from the literature. In graphs of order
500, the results obtained by Brkga-V2-Rollout and Brkga-V3-Rollout are
comparable to the ones from Pbig, and even superior in some cases.
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Chapter 5

Final words

5.1 Conclusions

In this thesis, we have developed and implemented ten different algorithmic approaches for
solving the WID problem using different techniques. A deep experimental evaluation was
performed in order to test and compare our proposals to the ones from the literature.

On the one hand, four new greedy-based approaches were developed using two deter-
ministic greedy heuristics from the literature. A rollout mechanism was applied to both.
Additionally, we developed a generator of probabilistic greedy solutions. The experimental
results show that these modifications far exceed the performance of the original heuristics.

On the other hand, we proposed three different decoders for a BRKGA. This element
translates any vector of random numbers into valid solutions to the problem. The first two
proceed by generating a permutation of vertices, while the third one uses the values of the
individual to bias the original greedy function weights. Furthermore, a rollout mechanism
was also applied to each of these decoders. The obtained results conclude that the BRKGAs
are competitive to the state-of-art algorithm in small order graphs.

Although our approaches could not outperform the state of the art in larger graphs, we
hope that the observations from this work will help future studies on this problem.

5.2 Future work

Due to the limited time available to carry out this thesis, we could not implement many
of the ideas we had during its development.

The most important pending work, undoubtedly, is to carry out a more fine-grained
tuning. As we explained in the previous section, the set of available instances was split
into three subsets (concerning the graph sizes) for which the parameters of the algorithms
were then adjusted. Nonetheless, the approaches from the literature were tuned in a more
fine-grained way. In particular, the available instances were split into nine different subsets,
one for each combination of graph type, number of nodes and weight generation scheme.
For this reason, we think that the comparison was not totally fair, as a finer tuning would

47



surely improve the performance of our algorithms in certain cases. Although we would
have liked to carry out the same process, it was impossible due to the lack of time, as our
simpler tuning process already took too long (around three weeks).

In the following subsections, we introduce some thoughts that could be explored in
future works.

5.2.1 Parallel computing

Parallelism has long been employed in high-performance computing. Lately, it has gained
interest due to the physical constraints preventing frequency scaling. In this subsection, we
present some ideas for improving the performance of our algorithms by using two different
hardware approaches.

CPU

The first option is to make use of multi-core systems and architectures. On the one hand,
genetic algorithms have a natural parallel implementation. One way to proceed is by
parallelizing certain genetic operations, while the other is by using multiple populations
that evolve independently.

1. Parallelization of genetic operators
Some of the operations performed during the evolution of a population can be com-
puted in parallel, since they perform independent operations. In a BRKGA, these
involve:

• Generating the initial population (of size p).

• Generating pm mutants in each iteration.

• Crossover (combining parents to produce offspring).

• Fitness evaluation (decoder).

The first three operators are not as computationally expensive as the fourth, so their
parallelization would not produce a noticeable improvement. However, the decoding
and evaluation of an individual accounts for most of the overall execution time. Thus,
a significant speedup could be expected.

2. Multiple populations
Another way to take advantage of having multiple processors is by having more than
one population at once. Although this is also possible in sequential environments
(pseudo-parallel execution), this implementation shines brighter when they are pro-
cessed concurrently. This approach usually delivers better results when compared to
single-population algorithms, finding the global optimum more frequently.

In this model, each population evolves independently from the others. At the end, the
individual with the best fitness value is selected as the proposed solution. This design
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is often called island model, because it resembles real-life situations where individuals
of a kind may evolve separately by living isolated. Therefore, a population is also
called an island.

As these multiple populations do not depend on each other, they can all run in
parallel in various cores. Note that individuals from different populations can differ
remarkably, as they have divergent mutation and crossover history. These differences
can be even more accentuated by using distinct genetic operators in each island.
For example, one could change the way an offspring is created, the allele inheritance
probability or even the population size. This diversity helps when exploring the
search space, making it harder to get stuck in local minima. To maintain a uniform
evaluation criterion for every individual, the same fitness function must be used.

Although this independent evolution has some advantages, it might also be beneficial
that some individuals from an island could move to others. This would allow fitter
individuals to prevent and assist other populations getting permanently stuck in
local minima by improving the quality of their individuals. For this purpose, these
models usually let the populations evolve independently and, after a certain number
of generations (called isolation time), a certain number of individuals is passed from
each population to the others.

The genetic operator in charge of exchanging solutions is called migration. To deter-
mine the level of genetic diversity, the following variables are used:

• Migration rate: Determines the number of individuals distributed.

• Selection method: Determines which individuals from an island are chosen to
migrate. Some examples are: selecting the fittest of the population or choosing
some in a random manner.

• Topology: Determines among which populations the exchange is produced. For
example, the migration could take place between all populations (unresticted)
or only in a pre-defined neighbourhood.

• Replacement policy: Determines which individuals are substituted in the des-
tination population. As islands usually have fixed sizes, they must make room
for the newcomers. The most usual ways to proceed are by replacing the worse
individuals or some at random.

It is important to point out that having, for example, a too permissive migration
policy could relax the property of independent evolution, causing the populations to
lose their diversity and converge to the same area in the search space, which is not
desired.

It is clear to see that the second option is far better than the first, as it allows for more
profitable alternatives. The multi-population approach, though, requires a framework that
needs to be adjusted, thus it was not possible for us to implement this framework in the
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limited time of this project. However, this second alternative could be applied to the best-
performing BRKGAs in order to improve their performance in the future.

On the other hand, parallelization techniques could also be applied to our greedy ap-
proaches. A reduction in the execution time of the Rollout versions could be achieved
by concurrently calculating the projections of each possible vertex at each iteration. Con-
cerning the Multistart versions, we could have multiple solution generators running in
parallel, returning the best solution found in general. Furthermore, each one could have
distinct parameter settings in order to work with different degrees of greediness.

One simple way to include parallelization in our code is by using OpenMP, an API1 that
supports multi-platform shared memory multiprocessing programming. Another option
could be an hybrid approach with both OpenMP and MPI (Message Passing Interface) for a
better parallelism in computer clusters.

GPU

As previously mentioned, better performances in CPUs cannot be achieved by increasing
their frequency. While consumption and heat dissipation deeply influences the design of
new processors, the usage of GPUs (Graphic Processing Units) has grown in popularity
over the last years.

Both units have completely opposed design philosophies. On the one hand, CPUs are
aimed to reduce latency, making use of large caches, branch predictors and powerful ALUs2.
On the other hand, the goal of GPUs is to increase the throughput. Despite having small
caches and simple control units, they make use of a massive number of threads to mask
their latency. GPUs are, thus, parallel by nature.

The main idea, then, is to adapt our BRKGA to exploit this power. Nowadays, the best
option is to use CUDA (Compute Unified Device Architecture), the most popular framework
(property of nVidia) designed for this purpose.

CUDA makes use of the following hardware model of a graphic card. The GPU is
divided into various SIMD3 multiprocessors. Accessing the main device memory is very
slow, but these multiprocessors contain fast shared memory to overcome this weakness.

This hardware is mapped to the CUDA software model. There, one thread corresponds
to a processor. A set of threads makes what is called a block (multiprocessor). These
threads within a block share some memory, and can be easily synchronized.

After looking closely at it, it is easy to notice the similarities between this model and
1Application Programming Interface
2Arithmetic Logic Unit, an electronic circuit that performs arithmetic and bitwise operations on binary

numbers.
3Single Instruction, Multiple Data. This refers to an instruction set available mostly on all processors,

where the same operation is performed on multiple data points simultaneously, as opposed to executing
multiple instructions.
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a GA. Threads could be seen as individuals inside a package (block) or population, and
these blocks could represent different islands. This is, then, an abstraction of the previously
mentioned island model.

The algorithm could be implemented as follows. To begin with, each block would map
to a population, which could be stored in shared memory for a better performance. Fur-
thermore, each thread inside a block would take care of one individual and its associated
calculations (randomly generating it, creating its offsprings, etc.). Therefore, all the neces-
sary operations in a generation would be done concurrently. The model and mapping can
be visualized in Figure 5.1.

Figure 5.1: Mapping CUDA hardware model to software model. Extracted from [24].

Nevertheless, our BRKGA has some characteristics that are not optimal for this paral-
lelism: load unbalance, idle threads, etc., the algorithm could be adapted to this purpose.
However, the need of constantly accessing the data structures where the graph information
is stored (in order to calculate the individuals’ fitness) would be a drawback. As it is
impossible to store the data in shared memory (due to its size) this results in additional
latency for accessing the main memory.

5.2.2 Generating greedy individuals

After observing the advantages of generating probabilistic greedy solutions, we thought
about incorporating them as individuals in our BRKGAs. This injection of solutions could
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guide the algorithm through better areas in the search space than randomly generated
ones, especially in those instances where the solutions provided by the greedy algorithms
are close to the best ones obtained.

To achieve that, we have to translate solutions from the solution space to the hypercube,
where the random-key individuals reside. Note that this is the exact opposite process of
that performed by the decoder. We will only explain how to proceed for versions 1 and 2
of the algorithm, as version 3 is already influenced by the greedy heuristics.

To generate an individual π, we start by obtaining a solution S ⊆ V using one of the
multistart greedy versions. Note that V \S (the relative complement of S in V ) represents
the set of non-selected vertices, here denoted by ��S. Once completed, sets S and ��S are
shuffled independently, and a permutation P of vertices is created by concatenating S
and ��S Now, we have a permutation of vertices where the selected nodes appear before
the non-selected. Note that shuffling the previous sets does not affect the solution itself,
and it is done to avoid an undesired pattern. Furthermore, a vector R of size |V | with
uniformly distributed random values in range [0,1] is generated. The vector is then sorted in
increasing order. Once we have all these elements, we proceed in a different way depending
on which decoder (version) for the BRKGA is used.

Version 1

In this version, a vertex v in the permutation is translated to the random-key individual by
taking the value in the vth position of the random vector. More formally, if v is the vertex
in position i of permutation P (v := pi), then πi := rv. See Figure 5.2 for an example.

Version 2

Here, if v is the vertex in position i of permutation P (pi), then πv := r|V |−i (that corre-
sponds to the ith bigger value in the random vector R). See Figure 5.3 for an example.

5.2.3 Other improvements

After observing the behaviour of our proposed algorithms, we came up with some ideas
that could be of interest, with a special focus on the BRKGA.

While testing the algorithm we noticed that, occasionally, the elite population got filled
with identical or extremely similar individuals after some generations. This phenomenon is
likely to happen, as there is no control over repeating individuals. This problem causes the
algorithm to lose diversity, as elite individuals are preserved and influence offspring cre-
ation during forthcoming generations. One possible solution could be to adjust the value
of some of the parameters during execution time. For example, if the algorithm detects
that the number of identical or quasi-identical individuals surpass a given threshold, it
could reduce the size of the elite population or decrease the allele inheritance probability
so the offspring individuals are more likely to obtain genetic information from mutants.
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Figure 5.2: Example: transformation from solution space to the hypercube (version 1).

This could also be applied when the algorithm gets stuck during certain generations in a
local minimum.

Another interesting point is related to the behaviour of the third decoder and the
influence of both greedy heuristics. Recall that this version takes the best value obtained
by one of the two biased versions of the greedy algorithms. It could happen that, in some
instances, one greedy heuristic dominates the other one, meaning that, most individuals are
better evaluated by this greedy heuristic. Thus, the computation time wasted calculating
the value of the other heuristic could be saved. One example could be that, in graphs with
a vertex-oriented weight scheme, the evaluation with Greedy1 resulted superior.

Two ways of controlling this aspect came to our mind. One would be the use of only one
greedy depending on the characteristics of the instances to which the algorithm is applied.
Therefore, the programmer itself would select the greedy version beforehand. The other is
to let the algorithm learn which heuristic results better during the algorithms’ execution.
This branch of EA are called Co-Evolutionary Algorithms (CoEAs), whose main idea is
having more than one evaluation criteria and changing them dynamically according to en-
vironmental changes [18].
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Figure 5.3: Example: transformation from solution space to the hypercube (version 2).

The last improvement could be the application of the BRKGA within the Constuct,
Merge, Solve & Adapt (CMSA) framework, which was introduced in [5]. This framework
divides tackled problem instances into smaller sub-instances and then solves them by apply-
ing a metaheuristic or other algorithmic approaches, taking profit of the fact that moderate
size instances can be solved rather fast to optimality (even by using exact solvers). This
higher-level framework has been proved to improve the performance of many approaches.
In fact, the CMSA was used in [23], where it achieved better results than the standalone
version of the Pbig algorithm. Therefore, we think that the application of our genetic al-
gorithm within this framework would enhance its performance. This is especially because
results showed that this approach performs well in instances of small size.

5.3 Technical competences

At the beginning of the project, we established, in agreement with the thesis director, some
technical competences to comply with. Now that the work has come to an end, we report
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if these requirements have been accomplished.

• CCO1.1: To evaluate the computational complexity of a problem, know about al-
gorithmic strategies which can lead to its resolution and recommend, develop and
implement the one that guarantees the best performance according to the established
requirements. [In depth]

The goal of this thesis completely coincides with the description of this technical
competence. Our approaches were designed to comply with the time requirements
while trying to achieve good quality solutions to the tackled problem. Hence, its
achievement is justified.

• CCO3.1: To implement critical code following execution time, efficiency and security
criteria. [Enough]

As previously stated, approximate algorithms are a good balance between complete
(exact) results and a reasonable execution time, being a more appropriate option in
large-size problems where exact algorithms take too long to compute. Concerning
the implementation of our algorithms, we focused on being as efficient as possible,
using suitable data structures for this purpose.

• CCO3.2: To program considering the hardware architecture, both in assembly and
high-level. [A little bit]

Even though our algorithms are designed to work on any architecture, we have con-
sidered the possibility of optimizing them by parallelizing certain areas of the code in
order to take profit of architectures with multiple processors or the power of graphic
cards. These ideas were already discussed in Section 5.2.1.
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Appendix A

Project management

This appendix contains all the work done during the Project Management course, including
the initial planing and estimated cost of the project and the comparison with the final ones.
Note that this was carried out at the beginning of the project, so a future tense is used.
However, sections contrasting estimations with definitive versions are written in present.

A.1 Project planning

In this section, we aim to describe the tasks in which the project will be divided in,
specifying the action plan we will follow in order to finish the project in the desired time.

Being this a research project, and due to the use of agile methodologies, the initial
planning is subject to modifications and could be revised and updated during the course
of the thesis.

A.1.1 Schedule

The estimated duration of this project is of 5 months, from the beginning of February until
July, where the final thesis presentations take place.

A.1.2 Methodology

As the development time of the project is relatively tight, an agile methodology seems
the best way to approach it. Weekly meetings with the director and co-director will be
held, offering a vision of the current state of the project and whether it is found within
the expected planning or not. In addition, constant feedback from them will be received
to solve the problems as briefly as possible.

The nature of our project involves constant changes to its objective and requirements.
This factor leads us to the use of an agile methodology, such as Extreme Programming
(XP). Extreme programming is intended to improve responsiveness to changing customer
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requirements, using short development cycles and introducing checkpoints at which the
new requirements can be adopted.

In order to follow this schema, we will divide our planning in cycles of about 1 or 2
weeks. In each cycle, we will begin by defining the objectives and tasks to be achieved,
changing the previously fixed requirements if needed.

A.1.3 Task description

Acquiring background

As in any research project, the first thing to do is gathering information about the subject
of study. Therefore, before starting the proper project development, I read some documen-
tation about the topic (such as previous papers tackling this problem or relevant related
work) in order to get a better understanding of the field of study.

In addition, I checked the code of the previously developed algorithms in [23] so I could
have a clear idea of the starting point of our project.

• Estimated Time
The process took around two weeks.

• Resources
This task mainly required human resources (to read and understand the documents).

Project planning

This task is completely covered by the GEP course. Here, we will make an overview of
the project, planning and scheduling the work involved in order to complete the thesis in
time. It is divided into the following sections:

1. Context and scope of the project: Defining the scope of the project, specifying the
stakeholders (target audience, users and beneficiaries) and doing a deep literature
review on the subject under study.

2. Project planning: Describing the main tasks to be completed and its order of exe-
cution, as well as looking for alternative solutions and studying potential deviations.
Required resources will be specified.

3. Budget and sustainability. Analyzing the sustainability of the project on its three
different dimensions and estimating the project costs and budget.

• Estimated Time
The estimated time for each section is one week. This task will end with an oral
presentation of the delivered reports.

• Resources
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1. Human resources: A project manager, responsible for the project roadmap and
documentation.

2. Material resources: A personal computer and a word processor, such as Mi-
crosoft Word, Google Docs or LATEX.

Implementation of the algorithms

In this phase, we will develop new algorithms to solve the problem, with special focus on
tackling large graphs. It can be divided into three main stages:

1. Research: Finding and studying documentation about the kind of algorithm to be
implemented.

2. Design and implementation: Constructing and coding the selected algorithm and/or
its modifications.

3. Test: Checking the correct behaviour of the proposed solution.

Note that this phase will be cyclic, as we will be repeating it for each algorithm or modi-
fication we implement. In addition, a short documentation of the performed work will be
written at the end of each cycle.

Our initial plan is to apply a rollout mechanism [4](a form of sequential optimization)
to the greedy algorithms already implemented in the article we base our work in (which
will take us around two or three weeks).

The next step will be the implementation of a Biased Random-Key Genetic Algorithm
[15], focusing on building the problem specific decoder. This sub-task will take us about
one and a half month, as potential improvements will be sought.

• Estimated Time
Around two months.

• Resources

1. Human resources: A software developer (responsible for implementing the algo-
rithms) and a project manager (responsible for controlling the guidelines).

2. Material resources: A personal computer, an IDE (such as Cloud9) and a file
hosting service (Dropbox).

Experimentation and results

In this task, a deep experimental evaluation will be performed, in order to check the
correctness and performance of the developed algorithms. Each one will be tested with
graphs of different types, sizes and densities, to get a real numerical comparison about
their efficiency and effectiveness. This will also help us to monitor the evolution of the
project and possible deviations.

59



• Estimated Time
The approximate duration of this task will be of one month, but may vary depending
on the number of algorithms finally implemented and its execution time.

• Resources

1. Human resources: A person in charge of testing the required algorithms and
recording the results.

2. Material resources: A computer cluster (such as the High Performance Cluster
(HPC) at the UPC), where we can send out tests to execute (as, otherwise, it
would take an excessive amount of hours).

Documentation

This will be the last stage of the project, where the final thesis report will be written. It
will include an explanation of the context of study, the implementation of our algorithms
and the evaluation of the obtained results. This task (and the entire project) will end with
an oral defence of the thesis in a public session.

• Estimated Time
Around one month.

• Resources

1. Human resources: A project manager, responsible for writing the required re-
port.

2. Material resources: A personal computer and a word processor, such as Mi-
crosoft Word or LATEX.

A.1.4 Estimated Time

Table A.1 summarizes the estimated number of hours dedicated to each task.

A.1.5 Final planning

Now that the project has come to an end, we can compare the initial task planning (pre-
sented as a Gantt Chart in Figure A.1) and the final version (Figure A.2) in order to make
an analysis of the changes.

As we can observe, both plannings are quite similar. At the beginning of the project we
did not know which algorithms were going to be implemented, so we left room for potential
changes in the third section. At the end, though, the implementation time was shorter
than expected, as the project got on track once we started designing the genetic algorithm.
The tuning phase was moved to the experimental section and lasted longer than expected
(more than three weeks). However, the quickness of the experiments compensated that
deviation, so the project has been finished within the expected time.
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Task Estimated duration (h)

Acquiring background 20

Project planning 90

Implementation of the algorithms 200

Experimentation and results 100

Documentation 40

Total 450

Table A.1: Summary of the estimated time spent on each task

A.2 Budget

In the following section, we aim to make an estimation of the total budget needed to carry
out our project. Costs will be calculated taking into account the project planning (Gantt
chart) and resources stated in the previous section.

For the budget, we will consider human, hardware and software resources. In addition,
indirect and unexpected costs will be contemplated. To conclude, an analysis of potential
deviations will be made in order to know how they can affect our initial calculation.

This budget is subject to changes depending on the project development. A comparison
between this initial estimation and the real costs is explained in Section A.2.7.

A.2.1 Human resources

Although this project will be developed by one person, he will take three different roles:
project manager, software developer and tester. The following table provides an estimation
of the human resources costs, taking into account the tasks and hours assigned to each role,
tasking as a reference the mean salary received for this kind of jobs in I&T companies.
Table A.2 contains the cost for the human resources.

Role Hours(h) Price per hour (e/h) Cost (e)

Project manager 90 50 4500

Software developer 230 30 6900

Tester 130 30 3900

Total 450 - 15300

Table A.2: Human resources budget.
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Considering this is a kind of project usually done by a research fellow from a university,
costs could be adapted to the gross salary they receive. In addition, this project could also
be developed by a student granted a research scholarship (with an estimated 7e/h salary),
considerably reducing the costs for human resources.

A.2.2 Hardware resources

In order to carry out our project, we will need a workstation where we can develop the
algorithms and write the reports. A laptop will be used for this purpose, as they are more
energy-efficient than a desktop computer and will allow us to work in different places.
Although a computer cluster will be needed, its cost will not be included here, as the one
we will be using (the High-Performance Cluster at the UPC) belongs to the Computer
Science Department (and maintained by the RDlab).

Table A.3 contains the cost of the hardware that we are going to use in the project.

Product Price(e) Units Lifespan Amortization (e)

Laptop 9501 1 5 years 80

Total 950 - - 80

Table A.3: Hardware resources budget.

A.2.3 Software resources

In this project, we will be using the following software:

1. Cloud9, an online integrated development environment.

2. LATEX/ Google Docs, a word processor.

3. TeamGantt, an online Gantt chart software.

4. Dropbox, a file hosting service.

Note that they are completely free tools, so there is no cost associated to software
resources. In addition, all programs used at the implementation phase (such as previously
developed algorithms or packages) are of free use (under the GNU General Public License).

A.2.4 Direct costs

Table A.4 contains an estimation of the direct costs mentioned above, split for the different
tasks:
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Task Estimated cost (e)

Acquiring background 610

Project planning 2800

Implementation of the algorithms 6030

Experimentation and results 3930

Documentation 2010

Total 15380

Table A.4: Direct costs.

A.2.5 Indirect costs

Table A.5 contains an estimation of indirect costs not included in any of the previous
categories, such as electricity, Internet and office supplies (paper, etc.).

Product Price Units Cost (e)

Electricity 0.12e/kWh 60kWh 17.76

Internet 50e/month 5 months 250

Office supplies 100e - 100

Total - - 367.76

Table A.5: Indirect costs.

A.2.6 Total budget

By adding all the previously provided budgets, we get the total estimated for this project,
as shown in table 6. A 5% of contingency has been added in order to cover unexpected
expenses (mainly to handle an increase in the developer’s working hours). We think this
quantity is enough, as a high deviation from the initial planning is not expected.

A.2.7 Budget deviations

As the project has been completed in the estimated time and no major deviations from the
initial planning have been detected, the cost of the project is within the stipulated budget.
Although the computer cluster was free to use (as members of the university), we asked for
an invoice to the RDlab in order to know the real cost of it if we were an external group
not linked to the department.
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Concept Estimated cost (e)

Human resources 15300

Hardware resources 80

Software resources 0

Indirect costs 367.76

Subtotal 15747.76

Contingency(%) 787.4

Total 16535.16

Table A.6: Total budget.

The cluster has used a total of 66237943 seconds (18399.4 hours). Approximately, all of
our processes employed 1 core and consumed almost 12Gbytes. A pack is equivalent to 60
minutes with 1 CPU core and 4Gbytes of RAM and costs 0.16e+V AT . We used 3 packs per
hour (12Gbytes/4GBytes), so the total cost is 18399.4h·3packs·0.16e+V AT = 8831.71e+
V AT (21%) = 10686.37e. To this value, we have to add the RDlab support price during
the 3 months with granted access to the cluster (20e/month · 3months+ V AT = 72.6e).
The disk space cost was almost 0e, so it is not taken into account.
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Appendix B

Sustainability report

B.1 Environmental dimension

It is clear to see that the main environmental impact of the project is the electricity
consumption derived from the use of personal computers. In addition, computer clusters
usually consume much energy, since they need to be well refrigerated.

In order to minimize the impact, energy consumption can be minimized by using the
energy-saving mode, which reduces the computer’s performance when possible.

Another major problem is that, for the obtainment of resources such as electricity or
paper fabrication, processes which leave substantial ecological footprints on the environ-
ment are used. Although those issues go beyond our reach, we can contribute with small
gestures, such as recycling or reusing paper and other materials.

On the other hand, being this an optimisation problem, it can be indirectly positive to
the environment, as an improvement would enhance the performance of real-life applica-
tions modelled in terms of finding dominating sets in graphs.

B.2 Economic dimension

In previous sections, a detailed planning and estimated budget have been presented, includ-
ing the resources needed to carry out the project and the quantified cost of the development
phase.

We tried to use and adapt existing technologies for the implementation and testing of
our proposed algorithms, reducing the cost of creating new ones.

The project was finished within the expected time. Therefore, no additional cost in-
volving human resources has been considered. As we didn’t create a product, there was
no need to handle extra costs related to it, such as maintenance, commercialization or
distribution.
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B.3 Social dimension

Research projects of this kind do not have many social implications. Nevertheless, our
proposed algorithms may serve as an example for other optimization problems, helping
other researchers already investigating this problem (or similar ones). The use of open
source software will facilitate this by giving access to the results to everyone interested.

B.4 Sustainability matrix

The sustainability matrix from the project is presented in Table B.1. The analysis is
divided in three parts, corresponding to different stages or aspects of the project:

• Project put into production (PPP): Includes the planning, developing and implemen-
tation of the project.

• Exploitation: Once the project has been implemented until its dismantling.

• Risks: The eventualities that could impact more negatively than expected.

Environmental Economic Social Range

PPP 6 6 7 (0:10)

Exploitation -2 8 9 (-10:10)

Risks 0 0 0 (-20:0)

Final evaluation 34 (-90:60)

Table B.1: Sustainability matrix

On the environmental analysis, the planning stage has not left a remarkable ecological
footprint. The resources used where the necessary to carry out the thesis, and some actions
to reduce the energy consumption have been considered. Regarding the experimental
evaluation of our algorithms, the cluster has consumed more than expected, so a negative
mark is assigned.

When talking about the economic dimension, it is important to note that the final cost
of the project lies within the expected budget. During its exploitation, no additional costs
are required.

Finally, on the social dimension, the project has signified a personal a professional
growth. As mentioned in the previous section, the results and thoughts could be useful for
forthcoming works.

Considering this thesis is essentially a research project (with no more possible negative
implications), no risk has been associated to any of the three sustainability aspects.
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