

2019

Control resilience in a
F2C scenario

MASTER IN INNOVATION AND RESEARCH IN INFORMATICS
(MIRI) – MASTER THESIS

Computer Networks and Distributed Systems

ALEJANDRO JURNET BOLARIN

THESIS TUTOR: BEATRIZ OTERO CALVIÑO

THESIS SUPERVISOR: XAVI MASIP BRUIN

Department of Computer Architecture (DAC)

THESIS DEFENSE DATE: 01-05/07/2019

mailto:botero@ac.upc.edu
mailto:xmasip@ac.upc.edu

MIRI – Master in Innovation and Research in Informatics

1 Control resilience in a F2C scenario

TABLE OF CONTENTS
ABSTRACT (1000 Words) ... 4

01. Introduction .. 6

1.1. What is fog/edge computing .. 6

1.2. Fog-to-Cloud Paradigm .. 8

1.3. Real Time Services .. 9

1.4. Problem Definition and Motivation ... 10

1.4. Structure of the Project .. 10

02. Objectives .. 11

03. State of the Art .. 12

3.1. Fog-to-Cloud ... 12

3.1.1. mF2C .. 12

3.1.2. OpenFog Reference Architecture .. 14

3.2. Resilience in Distributed Systems .. 15

3.2.2. Controller Election... 16

3.2.3. Zookeeper ... 16

04. Global Functional Blocks Design ... 17

4.1. System Architecture ... 17

Leader Election .. 18

4.2. Design Challenges... 19

4.3. Functional Blocks Architecture... 19

Discovery ... 21

External Orchestration .. 21

05. Design of a Leader Protection Strategy ... 23

5.1. Area Resilience ... 23

5.1.1. Backup Election and Keepalive Protocol ... 24

5.1.2. Control Data Replication ... 25

5.2. Leader Reelection ... 29

06. Policies Design ... 31

6.1. Rule Based Systems .. 31

6.2. Dynamic Policies ... 33

6.3. Replication of the Policies .. 33

07. Blocks Implementation and integration .. 34

7.1. Technology and Methodology ... 34

7.2. Leader Protection ... 35

7.3.1. Area Resilience .. 35

MIRI – Master in Innovation and Research in Informatics

2 Control resilience in a F2C scenario

7.3.2. Leader Reelection .. 39

7.3. Policies .. 40

7.3.1. Policies Distribution... 40

7.3.2. Specific Policies Definition .. 41

7.4. Discovery .. 41

7.4.1. Light Discovery .. 42

7.5. API and CRM Core .. 43

7.6. Illustrative Use Case: mF2C Integration ... 47

08. Project Results and Validation .. 50

8.1. API GUI ... 50

8.2. Resilience .. 52

8.3. Policies .. 61

8.4. Dynamic Policies study ... 62

8.5. Validation in the mF2C Use Case.. 63

09. Future Work .. 64

10. Conclusions ... 66

11. Acknowledgements ... 67

12. References ... 68

TABLE OF FIGURES

Fig. 1 Sensor network architecture example .. 7

Fig. 2 A F2C scenario and architecture example ... 8

Fig. 3 The mF2C architecture .. 13

Fig. 4 mF2C Agent architecture ... 14

Fig. 5 The OFRA scenario architecture example ... 15

Fig. 6 ZooKeeper architecture example .. 16

Fig. 7 An architecture example of the project .. 17

Fig. 8 Control Resilience Management design architecture ... 20

Fig. 9 Integration of the CRM into the mF2C Agent .. 21

Fig. 11 Agent Start flow design.. 22

Fig. 11 Area Resilience Design Flow .. 25

Fig. 13 Zero-Knowledge architecture and procedure. .. 26

Fig. 14 Keep-Updating architecture and procedure. ... 27

Fig. 14 External Keep-Updating architecture and procedure. .. 28

Fig. 16 Leader Reelection designed flow ... 30

Fig. 16 Area Resilience selecting and managing Backups (Leader view)..................................... 37

Fig. 17 Area Resilience Leader Failure ... 38

Fig. 18 Leader Reelection implementation and integration diagram ... 39

Fig. 19 Policies Distribution transfer diagram ... 40

Fig. 20 Light Discovery communication diagram .. 42

Fig. 22 API Keepalive endpoint code example .. 44

file:///E:/Usuarios/ALEJANDRO/Dropbox/UPC/MASTER/2.%20TFM/1.%20Project%20Memory/tfm-memory.docx%23_Toc11704748
file:///E:/Usuarios/ALEJANDRO/Dropbox/UPC/MASTER/2.%20TFM/1.%20Project%20Memory/tfm-memory.docx%23_Toc11704750
file:///E:/Usuarios/ALEJANDRO/Dropbox/UPC/MASTER/2.%20TFM/1.%20Project%20Memory/tfm-memory.docx%23_Toc11704751
file:///E:/Usuarios/ALEJANDRO/Dropbox/UPC/MASTER/2.%20TFM/1.%20Project%20Memory/tfm-memory.docx%23_Toc11704753
file:///E:/Usuarios/ALEJANDRO/Dropbox/UPC/MASTER/2.%20TFM/1.%20Project%20Memory/tfm-memory.docx%23_Toc11704759

MIRI – Master in Innovation and Research in Informatics

3 Control resilience in a F2C scenario

Fig. 22 API and Core integration graph ... 44

Fig. 23 mF2C Agent Start integration (Agent) ... 48

Fig. 24 mF2C Agent Start integration (Leader) .. 49

Fig. 25 API CRM website .. 50

Fig. 26 Beacon reply payload model ... 50

Fig. 27 Keepalive API documentation ... 51

Fig. 28 Get current Policies execution example .. 51

Fig. 29 Experiment Results: Left) Database update over number of node. Right) Network usage

overhead ... 62

Fig. 30 mF2C docker internal deployment of the Agent ... 63

TABLE OF TABLES

Table 1 Relation between Policies and Mechanisms .. 31

Table 2 Area Resilience interface specification ... 36

Table 3 Leader Reelection interface specification .. 39

Table 4 Policy Distribution interface specification .. 41

Table 5 Policy General Interface Definition .. 41

Table 6 Light Discovery interface specification ... 43

Table 7 API endpoint specification .. 47

MIRI – Master in Innovation and Research in Informatics

4 Control resilience in a F2C scenario

ABSTRACT (1000 WORDS)

With the actual Internet-of-Things (IoT) trend and the early adoption of 5G technologies, we are

foreseeing an explosion on the number of mobile devices and “things”. As the amount of

connected gadgets in the extreme of the network is growing, network traffic and infrastructure

will also evolve to provide better connectivity and new paradigms. For instance, as the data is

generated at the edge of the network, services can be deployed near to the data source to

reduce delays and decentralize the execution, impacting on the overall energy consumption and

efficiency of the resources. This trend supposes new challenges in terms of mobility of the

devices in the network, big data storage and management, network dimensioning and

capability, and energy consumption or environmental impact between other issues.

Edge computing is already proposing scenarios and solutions to some problems, and the

progression of the Fog-to-Cloud (F2C) concept provides the integration of mobile devices with

cloud infrastructure in a single platform. F2C proposes the coordination of devices at the edge

up to the cloud following a hierarchical model on control communications, coordinated by

devices elected dynamically. Yet, mobility supposes a serious concern regarding the availability

and reliability of the system to execute services with an enhanced Quality-of-Service (QoS). The

control on the different clusters of devices at the edge, in a F2C scenario, supposes a major

concern in terms of protection and recovery in case of failure.

As an example, the execution of an emergency detection and resolution service is a perfect use

case of a critical real-time service that can be executed in a F2C context. Let’s suppose a scenario

with a car crash in the middle of a metropolitan and intelligent city, where immediate actions

should be taken. Being able to directly change street lights to redirect the traffic out of the site

of the emergency, collect direct data from the persons injured and send it directly to the

hospital, or direct coordination between emergency vehicles and normal automobiles are great

benefits that can improve the actual emergency procedure and potentially save more lives.

That amount of communications and actions require the coordination of such amount of

heterogeneous devices, that is very difficult to reestablish any static policy or procedure. In fact,

if the element controlling the execution of the service fails due a connectivity error with some

of the devices participating in the operation, the service cannot be executed properly if no

recovery mechanisms is activated with a very low delay, and restarting the service from scratch

should be not an option. Protecting the service starts with the protection of the infrastructure.

Control Resilience in a F2C scenario project proposes a novel architecture and a proof-of-

concept implementation to provide resilience of this structures, and the set of rules applied to

them. The provided solution of the project, called Control Resilience Management (CRM), can

be deployed as a standalone component or integrated into any F2C application to help with the

reliability issues and profit from other capacities. Its main components focus on the protection

of the control elements on the clusters or also called areas, and the incorporation and spreading

of rules into them. As F2C is also a new and evolving technology, the architecture of the CRM is

designed to be expandable or modified to fit in a variety of different scenarios and architectures.

The CRM module is able to surveil a control element and overtake its responsibilities if a failure

is detected, by providing a strategy and architecture to constantly be ready and change the

fastest as possible. Additionally, if the current policies of the system enable that the controller

element should be changed when some specific parameter is no longer meetup or by a manual

MIRI – Master in Innovation and Research in Informatics

5 Control resilience in a F2C scenario

decision of the system manager, the controller (or also known as Leader in this project), is

replaced by another selected device. Moreover, the set of rules applied to the area and enforced

by the Leader are replaceable and expandable thanks to the design and mechanisms provided

in the CRM. Furthermore, to make the CRM independent to any third-party component or static

configuration of the creation and management of the area topology (set of devices that are

managed by the Leader), it also includes a discovery mechanism that provide dynamicity and

control when deployed alone. Finally, to allow the integration of the CRM into another F2C

application, a specific component is designed to allow such behavior and provide newer

functionalities and enhanced mechanisms.

The developed prototype of the design of the project has been validated with a set of individual

tests, on specific scenarios and situations that are specially created as the baseline that the

project should accomplish. Such tests have been executed in devices with different resource and

computing capabilities, as it is found in a real scenario. Moreover, the project has been also

validated integrating the solution into a real F2C application called mF2C agent, actually in its

final development phase, to fulfil the required resilience functionalities on the proposed

architecture. The documentation and implementation of an API in the CRM allows an easy

integration and management of the solution without entering into the code, as it also provides

a web frontend that allow the creation and dispatch of message requests to the module.

CRM is conceived to be a building block from where it can be expanded or used, contributing to

the creation and evolution of the F2C systems. The open code and design allow the

customization of its internal procedures and mechanisms, the addition of newer functionalities.

Moreover, the project also proposes some further steps that can be done in the future, and

provide a new whole set of functionalities that may improve the overall system.

Keywords:

Edge Computing, Fog Computing, Resilience, Protection Mechanisms, Fog-to-Cloud, F2C, Policies,

Leader Election, Leader Protection, Policies Distribution

MIRI – Master in Innovation and Research in Informatics

6 Control resilience in a F2C scenario

01. INTRODUCTION

Nowadays, society is living on an evolving world full of new technologies and improvements.

From the agricultural revolution and the industrial revolution to the creation of the Internet,

mankind has never been so close and connected. In fact, since the beginning of the Internet, we

have transitioned from the fixed Internet and websites to the current Internet of Things (IoT)

and the forthcoming Internet of Everything (IoE) [1] paradigms. IoT changed the relationship

with humans and machines [2], putting the focus of the data sources on the “things” rather on

the people. In other words, today machines generate more information that humans have

generated ever.

Data availability is a great deal, as new services emerge and society evolves. Unfortunately, data

is not information, therefore requiring some processing to become useful information –data are

useless if is not processed. Services and applications transform data into meaningful

information. Specifically, this huge amount of data (in the order of Petabytes or even Zettabytes)

is distributed along a diverse collection of devices, sensors and databases, with different syntax

and different ways to access. Moreover, data is usually located at the extreme of the network,

along with sensors and other devices, and commonly sent to Cloud infrastructures to be stored

and processed.

Mobility is another concern on the actual paradigm. In 2017, the amount of wired devices was

estimated to be around 48% and predicted to be drastically reduced to 29% by 2022 [3].

Moreover, the data traffic will increase astronomically up to 77.5 Exabytes per month on 2022

worldwide only in mobile communications.

Traditional cloud solutions are becoming inefficient to handle this picture. But solutions are

already there.

1.1. What is fog/edge computing
The concept of fog computing first appeared in 2012, coined by Cisco as an extension of the

cloud computing paradigm (i.e. Platform-as-a-Service (PaaS)) down to the edge of the network

[4]. The main rationale behind fog computing is rooted on the benefits brought in by deploying

IT capacities close to both data sources and users, in terms of low latency, security, optimal

performance and proximity (geographic distribution), to existing but also innovative services yet

to come. For instance, a wind farm [5] can benefit from this platform to optimize the operation

thanks to the low and predictable latency between turbines, data collection from source or near

sensors, and in-place actions.

Previous to fog computing, there were two similar areas that also use the resources at the edge

of the network to provide new services and are worth to mention: Sensor Networks and

Vehicular Networks.

Motivated by the unstoppable evolution in electronics, it is currently possible to create small

low-cost low-power sensors capable of collecting data and sending the data to another device.

Sensor Networks [6] are groups of large number of sensors interconnected between them in a

non-stable network topology, prone to failures and very limited on their capabilities. These

platforms allow to deploy a large amount of sensors preconfigured to sense and send data across

the entire platform to a point where can be stored, referred to as sink. An illustrative example

is shown in Fig. 1.

MIRI – Master in Innovation and Research in Informatics

7 Control resilience in a F2C scenario

Fig. 1 Sensor network architecture example1

One difference with fog computing is that Sensor Networks’ primary goal is to provide a platform

to collect data from cheap, easy to deploy sensors without a heavy setup. On the other hand,

fog computing is concerned on the data processing and storage required to execute services,

leveraging the data collected by the Sensor Network.

Vehicular networks, or Vehicle-to-Vehicle (V2V) communications, share most of the challenges

and objectives of fog computing, but oriented on car driving applications [7]. For instance,

availability, mobility or security are some of the main challenges to solve. One illustrative use

case is the cooperative collision warning [8] along vehicles on the road, improving safety on the

roads. Here the service is executed on each car and the different actions to be done are

transmitted to other cars directly.

The next step in V2V communications leverages 5G technologies turning into the Vehicle-to-

Everything (V2X) [9]. V2X is the connection of the vehicle to any other capable device or “thing”,

such as pedestrians, infrastructures, or other vehicles, that can sense real-time information to

be transmitted to the vehicle.

It is worth mentioning the similarities between fog computing and edge computing. Existing

similarities lead to the use of the two paradigms to describe similar concepts. There are some

efforts discussing about the similarities and differences between them both (see Cisco report in

[10], describing fog computing as the standard and edge computing as the concept, the

definitions proposed by the OpenFog Consortium in [11] or the discussion in [12]). In the scope

of this project, both terms are used to define the concept of bringing intelligence to the extreme

of the network, also known as edge, and use all the available resources to collect data and

execute services.

And is with this definition that we can see the main differences from all the other technologies.

Edge computing does not care about the communication standards between devices or specific

applications, but provide a general infrastructure using the available and closer resources to

execute nonspecific applications or services.

1 Figure extracted from [6]

MIRI – Master in Innovation and Research in Informatics

8 Control resilience in a F2C scenario

However, even cloud computing and edge computing are different paradigms that does not

work under the same context, the use of both opens up the possibility to a new scenario where

edge computing can be more extensible and mobile.

1.2. Fog-to-Cloud Paradigm
The use of cloud computing in connection with edge computing coins the definition of the Fog-

to-Cloud (F2C) concept [13]. The proposed F2C architecture consists in the slicing of the network

into layers. Each layer is formed by devices with similar characteristics or by proximity [14].

Moreover, in each layer, there are also divisions of blocks called Areas or clusters, that are

managed by some controlled element.

In Fig. 2, an illustrative example of a F2C scenario is provided where, on top of everything, there

is the cloud datacenter that connects to all other areas on the layer bellow. On the left part of

the figure, we have a city scenario with high capable and static devices, such as buildings or

factories and on the right side there is an airport. Each scenario has its peculiarities, like the

amount of mobility expected or the type of services and data.

For each area, it is necessary a controller element responsible for coordinating and managing

the cluster. The control communications follow a hierarchical structure, even inside each area.

Controllers are the element at the top of each area with the exception of the cloud that is at the

bottom of the upper layer (i.e. layer 0), allowing to have multiple datacenters as the cloud

computing allows.

Fig. 2 A F2C scenario and architecture example

MIRI – Master in Innovation and Research in Informatics

9 Control resilience in a F2C scenario

The F2C architecture does not specify a limit on the number of layers. Conversely, for each added

layer, the granularity of the system increases, leading to execute a service in multiple areas and,

at the end, using a superior layer for the coordination. As the goal is to maximize Quality of

Service (QoS) to be able to execute low-latency real-time services, it is necessary to reduce at its

maximum all the delay that is possible.

Edge computing solves some of the problems that cloud actually has, but there are still

challenges that cannot overcome. For instance, the mobility feature, a key aspect of the edge

context, leads to the volatility of the infrastructure and constant changes that make the

execution of a distributed service a laborious task.

Another analogous issue is the reliability of the system in such scenario. The topology may be

changing continuously, meaning that devices are constantly entering or leaving the system in an

unpredictable or non-deterministic way. Battery consumption, lack of connectivity, or device

shutdown are some of the causes.

Controller elements need to be reliable to avoid the loss of control and the system need the

sufficient mechanisms to assure that, in case of failure, there is a process that can recover the

control.

1.3. Real Time Services
5G technology [15], proposed on 2013 – 2014, is an evolution of the actual 3G/4G mobile

technologies, to address the current challenges on that field and the increasing amount of

mobile devices. 5G is designed to provide communication transportation in scenarios with

hundreds of machines per base station, increase of data rate by several orders of magnitude,

reduction of delay, lower energy consumption, etc.

The deployment of 5G infrastructure is planned to be done beyond 2020, in some places even

before. For instance, the European Union has proposed that all the state members deploy 5G

networks towards a large scale introduction on 2020 and align all the roadmaps to fulfil this

objective [16].

Operators, companies and institutions are already proposing use cases where this technology is

a key feature, and most of them are related to the real-time concept. As an example, the

Government of Catalonia at the 2019 Mobile World Congress Edition presented the “Ambulance

of the Future” [17], a connected ambulance that uses the 5G technology. It has two cameras

that stream the image directly to the hospital where the doctor can advise the professionals at

the ambulance.

Related to the F2C scenario, there is a huge need on provide top-notch service allocation

algorithms to reduce to its minimum all the infrastructural delays and focus only on time

execution [18]. There are also other concerns such as the localization of the data and IoTs, to

decrease communication delays and network usage. Different and adaptive strategies can

reduce the overall time and making possible to be deployed with a better behavior.

More services will appear, requiring to be executed in a distributed fashion way, closer to the

data source or receiver, non-prone to failures and connected to multiple devices on different

locations.

MIRI – Master in Innovation and Research in Informatics

10 Control resilience in a F2C scenario

1.4. Problem Definition and Motivation
As the 5G technology will provide a large set of different devices and IoTs interconnected with

faster and ubiquitous networks, edge computing and F2C solutions will take an important role

in service deployment.

Among all the different challenges that F2C architecture proposes to solve, mobility and

reliability of the system are important ones, as fit pretty well on the present paradigm. In terms

of mobility, there are different issues and necessary mechanisms to be provided. It also happens

with the reliability. In specific, the coordination of the areas supposes one of the big issues to

answer in terms of protection and dynamicity.

To make the F2C system reliable and preserve the mobility feature, there is a need to provide

different sort of mechanisms that provide protection procedures in case of failure. Moreover,

due to the changing context of the devices, there is also a need to create recovery procedures.

These two concepts can be merged into one called resilience.

The formal definition of the resilience concept is “the ability of a substance to return to its usual

shape after being bent, stretched, or pressed”2. Applied to the project domain, it refers to the

ability of the area or the system to return to a stable state and working as nothing has happened.

Archiving this propriety in a non-stable heterogeneous system is a great challenge, but so are

the benefits.

The lack of existent deployed solutions in this specific context is a great opportunity to

contribute with some proposals and put another brick in the creation of this architecture.

Specifically, the lack of consolidated solutions that provide resilience on F2C scenarios in a

dynamic and customizable way. By accomplishing this, the F2C architecture can increase the

overall QoS and be even more suitable for critical real-time services such as emergency

management operations or self-driven cars. The goal of this project is to address this specific

problem and develop a solution that can be applied in such scenarios, focusing on the provision

of resilience of the areas, and the rules that manage the overall system.

1.4. Structure of the Project
In accordance to the previous explained, the project is focused on developing a theoretical

proposal and a proof-of-concept solution (as explained in detail in the objectives at the next

section). The project, structured accordingly, follows the following schema:

The structure is divided in four main chunks. First, a presentation of the objectives and the state

of the art of the scenario is presented in sections 2 and 3. Second, the overall project context

and proposed architecture, provided in section 4. Third, the main designed components of the

project: Leader Protection and Policies, in sections 5, and 6 respectively. Fourth, the description

of the solution implementation and the provided validation, presented on sections 7 and 8.

Finally, some further extensions and conclusions of the project are provided on sections 9 and

10.

2 Definition of “resilience” from the Cambridge Advanced Learner's Dictionary & Thesaurus © Cambridge
University Press

MIRI – Master in Innovation and Research in Informatics

11 Control resilience in a F2C scenario

02. OBJECTIVES

One key aspect in a F2C scenario is the control of the different areas, following a hierarchical

control plane structure, where each area has a node that coordinates all the control messages.

F2C scenarios are designed to allow real-time services, that require high resilience level and

support the mobility of the devices.

The scope of the project is to design and develop an application or module that allows the

management of the resilience with protection and recovery mechanisms in the F2C context,

especially focused on the edge. The design of the application should provide a clean and

extensible architecture, compliant with the F2C paradigm, while the development of the

application should be a proof-of-concept of the proposed design, with the key features

implemented and validated.

Another point that is related with the protection is the election of the control elements in each

area or cluster and finally the ability to spread rules or policies into the system.

To validate this project, besides the testing and validation of the standalone features of the

application, one of the objectives is to design and integrate the result into a real F2C application

or device. The mF2C European project, explained in the next section, is the selected use case to

integrate the result and validate that the project works in a real F2C application.

In summary, the list of objectives of this project is the following:

 Designing and implementing a closed solution that provides resilience over a F2C

architecture, with a main focus on the edge. This solution should work as a standalone

module that can be used without other applications or be integrated.

 Providing the design and proof-of-concept implementation of protection mechanisms

for the controller device, also called Leader.

 Providing the design and proof-of-concept implementation of the different policies,

related with the resilience of the F2C scenario.

 Validating the project into a real F2C application, integrating the solution and fulfilling

the expected functionalities.

MIRI – Master in Innovation and Research in Informatics

12 Control resilience in a F2C scenario

03. STATE OF THE ART

Distributed systems models are diverse on architecture and points of view. Some models focus

on the data distribution while others on distributed execution. The F2C paradigm aims to

execute services in a distributed and reliable way, on a heterogeneous and mobile scenario.

To understand better the context and some related technologies, this section gives some of the

background where the project is based.

3.1. Fog-to-Cloud
Nowadays, F2C is a proposal yet in a development state, but still there is not an extended

commercial version. Some institutions and companies are founding projects and research

initiatives to create a F2C application or system and try to bring closer companies that adopt this

technology.

For instance, the European Union in the frame of the Horizon 2020 research founding program,

has a budget of around 3.000 million euros on the Information and Communication Technologies

area [19], destined on projects oriented on 5G technologies, improving the digital market,

artificial intelligence, cloud computing, IoT, big data, digital transformation, etc...

More related to the F2C scenario, there are two projects that are worth to mention and analyze,

that define the F2C application and scenario architecture.

3.1.1. mF2C
“Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management

Ecosystem”, often named the mF2C project3, is a European Project founded under the Horizon

2020 framework [20]. The goal of the project, inside the F2C context, is to design an “open,

secure, decentralized, multi-stakeholder management framework, including novel programming

models, privacy and security, data storage techniques, service creation, brokerage solutions, SLA

policies, and resource orchestration methods”. Aside from the design, there is also the objective

to develop a proof-of-work system and platform, tested and validated with real-life use cases,

and to set the groundwork for a distributed system architecture.

This project started on early 2017 and is planned to be finished on end 2019. As an ongoing

project, there are still some work in progress and newer definitions, but the main architecture

is completely defined.

The mF2C proposed scenario [21] [22] is a layered hierarchical structure from the cloud to the

edge, where in each layer the devices participating on the system are clustered into areas and

managed from another device in a superior layer. All the devices with the mF2C application

installed are called Agents, that can have different roles. For instance, a node managing an area

is acting as the leader of that area, so it can be called Leader Agent or Leader. A graphical

example of the proposed architecture is showed in Fig. 3, where all the blue boxes represent

Agents with different roles depending on the location. The backup is defined as the protection

3 Official Website: https://www.mf2c-project.eu/

https://www.mf2c-project.eu/

MIRI – Master in Innovation and Research in Informatics

13 Control resilience in a F2C scenario

element of the Leader, and the microagent is a reduced light version of the agent with less

capabilities and functionalities.

Fig. 3 The mF2C architecture

The internal architecture of the mF2C Agent is sub-divided into two big blocks: The Agent

Controller, in charge of the control of the device itself and the agents bellow due to the

hierarchical view of the system; and the Platform Manager, in charge of the logic of the system

regarding the service execution and orchestration. A more detailed schema of the architecture

is presented in Fig. 4.

The Agent architecture follows a modular approach, divided in blocks depending on the

responsibility. As transversal components, the agent interface and the security are present in all

the design.

MIRI – Master in Innovation and Research in Informatics

14 Control resilience in a F2C scenario

Fig. 4 mF2C Agent architecture

The mF2C Agent is an open-source application and can be downloaded4 and used by anyone.

Moreover, the agent is designed to work as a Docker service, making easier the deployment and

setting up the scenario.

3.1.2. OpenFog Reference Architecture
The OpenFog Consortium 5 (recently integrated into the Industrial Internet Forum 6) is an

organization formed by different organizations and companies, some of them key on the

definition of the fog computing. The main aim is to create “an open reference architecture for

fog computing, build operational models and testbeds, define and advance technology, educate

the market and promote business development through a thriving OpenFog ecosystem”. In other

words, the focus is to provide an open framework that defines what fog computing should be

and the interaction with the cloud [23].

In specific, this synchronization between the fog and the cloud on services, called cross-fog

applications, follow the F2C principle of using both of the best benefits that edge and cloud can

provide on the system.

The resultant architecture from this board of members is called the OpenFog Reference

Architecture (OFRA). This architecture follows a set of principles or so-called pillars that set the

4 Github Repository: https://github.com/mF2C/mF2C
5 OpenFog Official Website: https://www.openfogconsortium.org/
6 Industrial IOnternet Forum: https://www.iiconsortium.org/cambridge/index.htm

https://github.com/mF2C/mF2C
https://www.openfogconsortium.org/

MIRI – Master in Innovation and Research in Informatics

15 Control resilience in a F2C scenario

general lines of the design of the architecture. In Fig. 5, an example of a possible type of scenario

is provided.

Fig. 5 The OFRA scenario architecture example

The scenario follows the F2C slicing and hierarchical principle, with the nodes at the bottom near

to the data sources and the higher ones closer to the cloud. Another interesting point is that, as

the mF2C, the OFRA proposes the deployment of the same application in all the nodes of the

architecture.

Without going any further, as it is not the propose of this section or project to make a research

work on the proposals of both projects, it’s easy to see that there is a trend on both projects on

how the F2C should be developed. Both follow the same approach and scenario architecture,

with some variation on the internal architecture and different points of view on applications and

hardware involvement.

However, it is clear that mobility and reliability challenges are an important issue to solve and

both projects have some components or ideas, where the solution of this project can bring

benefits.

3.2. Resilience in Distributed Systems
The project focuses on designing an innovative solution aimed at providing resilience leveraging

a novel architecture rather than integrating an existing one, given that not many solutions exist

on this context. Alternatively, there are similar scenarios or solutions that can be used as a

reference for the design proposal of the project.

On this subsection, there are two illustrative cases related with the resilience on distributed

systems.

MIRI – Master in Innovation and Research in Informatics

16 Control resilience in a F2C scenario

3.2.2. Controller Election
The election of the controller in peer-to-peer (P2P) networks is a research topic from long time

ago. Innumerable amount of proposals have been submitted on different collaborative ways to

elect a controller from a group of interconnected nodes.

For instance, some of the most influential algorithms, Bully Algorithm and Token Ring Algorithm

[24], are based on the communication between nodes following a specific procedure.

Accordingly, all nodes participate on this election process to archive a consensus and are equally

electable.

However, in a F2C scenario, this type of election is not possible. As the architecture is defined to

be hierarchical on the control messages between devices, if the controller element is not

present, there is no possibility to establish a communication. Moreover, controller elements

may be defined by the system manager and not all devices may be suitable for that duty.

Some of the election algorithms have rules on how the election is done (e.g. the device with the

higher ID is the coordinator) or some other discretionary mechanism to avoid conflict.

A new mechanism should be designed to fit into the F2C model, to provide election of a Leader

and in case of failure, the selection of a newer one without conflicts. Some lessons can be applied

from these algorithms and used.

3.2.3. Zookeeper
Zookeeper [25] is a commercial solution that provides high reliable distributed coordination

among a set of devices. The architecture consists on a set of nodes (or servers in ZooKeeper

notation) that are reachable and clients can make requests. Data is stored in an atomic and

reliable way along all the other active servers and the load requests are automatically balanced.

This solution is especially popular in cloud environments, as services does not need to concern

about the race condition or high availability [26]. To see an example, in Fig. 6 there is a system

working with ZooKeeper, with five servers clustered and eight clients making requests spread

among all the servers.

Fig. 6 ZooKeeper architecture example7

ZooKeeper provides an interface to facilitate the entry point of the clients, the atomic data

management and load balancing of the nodes. However, it requires all the servers to create a

cluster and share all the information.

The implications on the F2C architecture, especially at the edge, are that more than one device

shares all the information implying that each area have more than one Leader that can attend

requests from Agents. Another counterpart is the loss of specific control over the Leader

selection process and other modules involved. However, the design of ZooKeeper and its use on

the cloud cannot be discarded.

7 Original picture from [26]

MIRI – Master in Innovation and Research in Informatics

17 Control resilience in a F2C scenario

04. GLOBAL FUNCTIONAL BLOCKS DESIGN

One of the first things to do on the project is the design itself. Previous to the protection

mechanisms and the policies definitions, it is important to understand the scenario and the

functional architecture of the project. In this section, first the scenario is presented, followed by

the design challenges to face and finally presenting the proposed architecture with its functional

blocks.

4.1. System Architecture
Before the definition of the functional blocks, it is necessary to define a scenario. As F2C is the

concept and only stablishes some guidelines, it is important to specify the architecture of the

system that the project is using. Although, the design of the project does not rely on a specific

architecture, as it should be transparent on any specific scenario configuration.

For this project, the scenario uses as reference the mF2C architecture (see section 3.1.1. mF2C)

for its definition, but with some modifications. Specifically, the scenario only has three layers:

Cloud layer, Leader layer and edge devices or normal agents layer. Regarding the backups, the

proposed design allows to set dynamically the amount of active ones, but in normal conditions

the project will use only one as the main backup.

The control element, called Leader in our F2C scenario, has similar functionalities and

responsibilities as the Coordinator or Cluster Head in distributed systems or clustering. On the

context of the project, these names are used to describe the device in charge of the

management of an area and their use should be understood as a synonym. Also, the Backup is

the device that provides protection of the area (specified with more detail in the design of the

Leader Protection in next section), not to be confused with a literal data replica or database. The

terminology used has the same meaning as the one at the mF2C project.

Fig. 7 An architecture example of the project

To better understand, a graphical architectural example is provided in Fig. 7. The cloud, at the

upper layer, controls and synchronizes all the leaders between areas. On the second layer,

Leaders manage the area and a Backup is active. Finally, on the bottom layer, the rest of agents

of the system.

MIRI – Master in Innovation and Research in Informatics

18 Control resilience in a F2C scenario

The scope of the project is focused on the reliability of the edge part of the architecture. That

means that the cloud is not crucial for the design as it already has its own resilience mechanisms.

This architecture can scale horizontally as many devices and areas the system manager wants to

create.

To setup this architecture, the system only needs a Leader to start clustering devices into an

area.

Leader Election
The election of a device capable to manage all the control messages in the area is an important

step. In fact, before protecting the control of the cluster or area, we need first to assure that the

control element that is in charge is suitable for that duty.

The resilience of the area and the protection of the Leader, explained in Section 5, require the

leader election to select a leader or a backup inside the protection and reelection mechanisms

of the leader.

Leader Responsibilities:

The main finality expected for a F2C system is the execution of services with an improvement of

the performance and using the resources at the edge. The coordination elements for each area

are expected to manage, execute and return the result of service requests.

As the service execution is the primary goal, all the devices in the system are expected to

participate on this procedure. Focusing on the Leader, there are some added responsibilities:

 Service Management and Orchestration: The leader must coordinate the execution of

a service distributed in more than one device in its area, as a consequence of the lack of

horizontal communication between devices of the area at the deployment and

finalization phases.

 Resource Mapping: In order to send services to be executed, the leader must know the

actual state of the area, the available resources and the number and location of services

executing.

 Resource Management: The management of the area can be done exclusively from the

Leader. The Leader has to maintain the topology of the area, decide who is allowed to

be part of, the policies applied to, and other management tasks.

 Resource Aggregation: The resources and data observed from above should be like a

big orb of combined information about the available assets.

 SLA and Monitoring: Check that the service is behaving correctly and being compliant

with the service terms.

 Security: As the Leader controls the access of the devices and service executions, it can

directly analyze to check for suspicious behaviors and block devices from the area.

Leader Requirements

To fulfill all the responsibilities, a Leader requires a sufficient amount of available resources. For

each scenario, the set of requirements may be different. Moreover, the edge paradigm describes

such scenarios as heterogeneous and changing over the time, making inviable the static default

setting of policies or requirements.

MIRI – Master in Innovation and Research in Informatics

19 Control resilience in a F2C scenario

The evaluation of the required amount of resources for the Leader depends on the specific

implementation of the system and is out of the scope of this project. However, there are two

main group of requirements that can be modeled, incorporated into the following policies:

 Leader Mandatory Requirements (LMR): Set of requirements defined in the system that

a device needs to fulfill in order to be eligible as Leader.

 Leader Discretionary Requirements (LDR): Set of requirements defined in the system

that give a score to the device to sort along all other devices.

This two set of requirements can include a set of different characteristics such as CPU usage over

time, virtual memory available, storage capacity, mobility, remaining battery, etc.

LMR and LDR are included into the Leader Election Policies (LEP), defined in Section 6.

Selection Process

The selection process is the mechanism that implements the leader election defined by the

current policies of the system. This procedure is divided into two main categories:

 Selection at the device startup: Each time the device starts the application, the

algorithm tries to find a leader or become one, following the Leader Election Policies.

 Selection at running time: If the leader fails or the leader is no more suitable, a new

leader is selected. These mechanisms are defined in Section 5.

4.2. Design Challenges
To design the internal architecture of the project, there are some challenges that are present on

the whole design process, which are worth to specify.

 First, the design should be modular and isolated from other components. The provided

architecture must be a closed block that can run standalone, with its own required

mechanisms to provide the expected functionality.

 Second, the design should be able to be integrated into the mF2C agent using the same

architecture. A clean and specific interface must be present into the architecture to

facilitate this task.

 Third, the design should be scalable to allow added functionalities, especially on the

policies definition to allow new specifications.

 Fourth, related to the context proprieties, the design should work in a mobile and non-

stable scenario.

The required main functionalities of the project are the resilience of the system and the spread

of policies. The resultant design should provide solutions for both finalities and overcome the

specified challenges.

4.3. Functional Blocks Architecture
As one of the objectives of the project is to provide a closed solution, one first step before the

individual design of the components is to present the full picture of the project internal

architecture. That includes how the different functional blocks are placed together inside the

solution.

MIRI – Master in Innovation and Research in Informatics

20 Control resilience in a F2C scenario

The Control Resilience Management (CRM) application or module is the resultant designed

architecture of the project. The design follows a modular schema based on the expected

responsibilities and functionalities. The CRM is designed to be used as a standalone application

that provides resilience and policies distribution along a set of specific devices and scenario, or

as an integrated module inside another application that provides some or all the expected

functionalities to the system.

The overall design consists in four principal sub-modules, the core, and the API. A graphical

representation of the internal architecture can be found in Fig. 8.

Fig. 8 Control Resilience Management design architecture

Each sub-module has a set of different components, isolating the specific responsibilities into

smaller pieces. The four sub-modules are:

 Leader Protection: Contains all the mechanisms in charge of the area resilience and the

leader reelection.

 Policies: Contains the policies distribution mechanism and all the defined group of

policies of the system.

 Discovery: In charge of the topology management and acquisition.

 External Orchestration: Orchestration and integration between other external modules

that require coordination or actions from the CRM module. This sub-module allows the

integration of the CRM into other systems.

The design and implementation of the sub-modules is explained with more detail in the

following sections. In specific, the Leader Protection and the Policies proposed design and

functionalities due to the complexity inside of them, are explained in separated sections.

All the sub-modules are designed following the isolation principle, meaning that are completely

independent and can be substituted for others if the interface specification is followed. The CRM

itself follows the same principle, making possible this dual-behavior between standalone

application or module. The API specification is designed to act as a frontend for the system

manager to set-up the configurations or the interface of other modules to the CRM integration.

MIRI – Master in Innovation and Research in Informatics

21 Control resilience in a F2C scenario

Discovery
The discovery is a sub-module in charge of the provision of the topology. This module makes

possible the deployment of the CRM without the manual insertion of the devices that conform

the cluster.

The discovery protocol is based on the broadcasting of messages over the current attached

network and the reply of the agents that receive the messages to the Leader with the own

resource information embedded. Each time that the Leader receives a message, the topological

database stores or updates the device.

The approach used on the design of this protocol is a simplified procedure of [27] without the

use of the 802.11 protocol. This makes that only devices that are connected to the same network

as the Leader can be discovered.

This sub-module can be deactivated if other external mechanism supplies the CRM with the

topology information. For instance, the mF2C has a module that already provides a better way

of discovering agents.

External Orchestration
The External Orchestration is the sub-module in charge of the integration and coordination of

the CRM into another application as a module. This means that the design and implementation

of this sub-module is specific for each application and added functionalities.

For instance, for the integration with the mF2C, the CRM substitutes the Policies block of the

mF2C architecture, as shown in Fig. 9.

Fig. 9 Integration of the CRM into the mF2C Agent

The integration of the CRM into the mF2C, explained in detail on section 7.6. Illustrative Use

Case: mF2C Integration, implies that for instance, the coordination of the startup procedure and

the role control of the agent is performed by this sub-module inside the CRM, as mF2C defined

these responsibilities in the architecture.

MIRI – Master in Innovation and Research in Informatics

22 Control resilience in a F2C scenario

The design of the Agent Start module, illustrated in Fig.

10, follows the unique code with different

functionalities principle of the CRM general design.

Modules inside the mF2C application require different

triggers depending the actual role.

The flow starts requesting the Identification module to

generate the unique deviceID of the Agent. Once the

information is received, the Passive Leader Promotion

(PLP) mechanism decides if the device is set to start as

Leader or normal Agent. If PLP is not set or result in a

normal start, the Automatic Leader Promotion (ALP)

starts. ALP determine that if a Leader is not successfully

discovered in a defined number of attempts, the device

if capable becomes a Leader. Once the Leader of the

area is detected, the agent proceeds with some

authentication steps and finally starts the

Categorization module, the Area Resilience module

(located inside the CRM) and other required

interactions with the mF2C API.

If the device has become a Leader, a set of specific

procedures must be done, including the switch of the

Discovery module into Beaconing mode and Leader

Authentication procedures with the mF2C architecture.

In case of a Leader failure, promotion or reelection, the Agent Start flow is designed to be

executed many times. The PLP and ALP mechanisms with the provided information and policies

are able to decide the role of the Agent.

Finally, as the design is specific for each project, there are only some guidelines specified for that

sub-module in order to keep the design principles:

- This sub-module shall not interfere with the other existent modules in a way that

can make crash the correct working of the application.

- The sub-module has to be isolated from the others and it must provide the specific

interfaces to interact with.

- This sub-module, like the others, is under the interface of the CRM API and its core,

and it cannot define any new external interface.

- If there is a need to interact with other modules, the trigger should be sent to the

API rather than to the sub-module itself.

- API specifications can be changed to cover new required messages and integration

with the API.

Fig. 10 Agent Start flow design

MIRI – Master in Innovation and Research in Informatics

23 Control resilience in a F2C scenario

05. DESIGN OF A LEADER PROTECTION STRATEGY
Protecting the Leader in a F2C scenario represents the protection of all the areas bellow the

cloud, as the Leader is the control element for each one of them. Cloud already has its own

developed and successful mechanisms to assure a high availability and resource escalation to

satisfy the requests. Edge is completely different from cloud, as it is a heterogeneous scenario

with flexible availability, requiring new mechanisms to protect such control elements in a

practical, faster, dynamic and reliable way.

For each area at the edge, a coordinator device is needed. For real-time services, a high-

availability and high-reliability are key features. For instance, services concerning emergency

scenarios such as catastrophe management, terrorism threats, climatic events, environmental

hazards… have some common points: high amount of devices at the edge that have data to send

and receive, services that need that data and to be executed on the available and near resources.

For example, the OpenFog Consortium (see section 3.1.2. OpenFog Reference A), proposes as

one of their use cases the healthcare patient monitoring [28]. Using the data proximity and

scalability agility edge features, real-time services can benefit from and increase the overall

performance. It’s easy to see why is important to protect the area of this scenario.

One critical part to protect the leader is the election itself, as an awful decision could lead to a

malfunction of the area and the loss of control. However, even if we are able to predict and

select the best suitable device for that duty, devices are mobile.

Mobility is one of the causes that make the edge dynamic and changes the topology

continuously. Another factor is energy consumption and non-plugged devices, leading to

disconnections of devices while services are executing.

For this and other reasons, the edge needs some mechanisms that safeguard the control of the

area by the device that has the control over it in runtime. This project proposes two main

mechanisms that suites that definition: The protection of the area by adding devices that

oversee the correct behavior of the Leader and that can, at any given time, overtake the

responsibility when an error occurs; and the replacement of the Leader to prevent error and

replace the current control element with one more suitable.

This section explains in depth this two different and coexistent mechanisms. In section 7.2, the

implementation of them is explained in detail.

5.1. Area Resilience
Resilience in the project context refers to the ability to keep the system working in the event of

the loss of a controller element. Especially, the resilience focuses on events related to

malfunctions and unexpected behaviors. For example, loss of connectivity, out of battery,

unexpected crash…

The resilience of the area depends on the reliability of the Leader and the capability of the

system to keep a functional Leader coordinating the cluster. As the context is the execution of

time sensitive services, is very important to prepare the scenario for this kind of events, or in

other words, implement a proactive strategy instead of a reactive one.

On the reactive approach, electing a new Leader when a failure is detected requires an

enormous amount of time, with the inconvenience of synchronizing all the devices along them

with different detection periods. F2C aims to create a hierarchical architecture, where all the

MIRI – Master in Innovation and Research in Informatics

24 Control resilience in a F2C scenario

control communications are through the Leader, following a vertical line from the cloud to the

bottom of the edge. This approach leads to a non-scalable amount of connections for each

device (most of them are expected to have minimal computing power), more network messages

and power consumption.

On the other hand, a proactive approach can consist on a “backup” device that will overtake the

Leader responsibilities in case of a failure detection. Other devices will detect that a new device

is now the Leader of the area and only proceed with the connection procedures. This mechanism

can be repeated anytime if there are devices capable to be “backups”.

Given the benefits and the type of scenario, the approach selected for this project is the

proactive one. On the mF2C project, all the devices have the same mF2C application, but

different responsibilities, or in other words, depending on the responsibility there is a different

role. Following this approach, the “backup” is a role of the device in our system, like the Leader

but with different duties.

5.1.1. Backup Election and Keepalive Protocol
The backup election is the process triggered by the Leader to select a capable device. The

capable decision proceeds from the Leader Election Policies (LEP) specifications. The Leader is

continuously self-checking if the number of active backups is satisfactory and selecting newer

ones if is not enough.

The Backup Election starts with the acquisition of the topology. The topology is a list of devices

that belong to the same area and is stored in each Leader. In addition, the topology can contain

the available resources of the device or other categorization data, used to select the best

backup.

The lack of resource information or related policies will fall into a random election. Although, if

the scenario requires a most precise and limited election, the LEP policies and a Leader Selection

may be used.

As a normal device (or Agent in the mF2C context), if by policies is considered a capable device,

it waits until an election message is sent by the Leader. When transitioning to the backup state,

some internal procedures may be triggered, as some components act on a different behavior

depending on the role. Then the backup uses the self-defined Keepalive Protocol, explained

bellow. As the backup checks the Leader, it gets also some information on the response from

the Leader.

When a Leader is detected down by one of the backups, the one with a lower preference number

starts the transition from backup to leader. If this procedure fails, the next backup with a lower

preference number starts the procedure again, if there are more than one backup. Alternatively,

the Automatic Leader Promotion (ALP) may elect a new Leader if any backup is not successful

on the procedure, if the policy is setup.

The flow in Fig. 11 illustrate the design of the area resilience flow for all the devices. The

monitorLeader and monitorBackup states are the ones when the Keepalive Protocol is in action,

and are the core functionality of this module.

MIRI – Master in Innovation and Research in Informatics

25 Control resilience in a F2C scenario

Fig. 11 Area Resilience Design Flow

The Keepalive Protocol is defined by a challenge message sent from the Backup to the Leader

and a response back from the Leader. Defined by a policy, if a threshold is overcome, either the

Leader or the Backup are considered out of the area and some action needs to be done. Those

protocol messages need to be send periodically, where the period is defined by the policy.

The content of the challenge message must contain the identification of the device and may

contain other information, as the protocol is designed to be extensible depending on the

context. On the other side, the response message must contain the identification of the leader

and the preference of the backup assigned by the leader and, same as the challenge message, it

can be extended depending on the required functionality, as explained in next subsection.

Finally, the backups can be demoted, returning to the normal state (or normal Agent in mF2C

terminology). This can happen at any time due to a reelection of the Leader (as explained in 5.2.

Leader Reelection) or triggered by policy. In any case, the decision it can be only taken by the

Leader or the device itself in case of disconnection or change of area.

5.1.2. Control Data Replication
As the new Leader is establishing, the topology information and services status are lost if no data

backup or replication is made. This means that the Leader needs to regenerate all the

information and services that are in execution are lost and relaunched. To minimize the overall

MIRI – Master in Innovation and Research in Informatics

26 Control resilience in a F2C scenario

time between a Leader failure and the area restoration, a control data replication strategy may

be necessary in some scenarios.

Mainly, there are two ways of transmitting the information: Direct transfer between the leader

and other selected devices or using a distributed database.

Direct Transfer
Direct transfer does not exclude the use of a database, but is designed to send specific

information to a set of specific devices at some intervals of time, and managed by each device.

The direct transfer is designed to work along the keepalive protocol, on the reply from the leader

to the backup as a piggybank information.

This approach has four different strategies of data replication between the leader and the

backups. Depending on the scenario and context, the impact of the performance and available

resources may be factors to decide between one of them, as the preliminary study provided in

8.4. Dynamic Policies study shows.

Zero-Knowledge

Properly, the Zero-Knowledge (ZK) strategy does not send any control data to other devices. This

strategy specifies that the backup regenerate all the control information from scratch and any

executing services are lost.

To illustrate the architecture and

procedure, a simple scenario is

provided in Fig. 12. In basal state, the

topology is already setup and the

Leader has already a backup. The area

information is stored into the Leader

and updated each time that a change is

detected, without any notification to

the backup device.

On the second state of the figure, the

Leader has failed and the Backup has

already take the leader responsibilities,

but without any area information.

When the new Leader has the

complete topology, it can reelect a new

Backup and attend to service requests.

Finally, in the third state, the area is

stable again and all the area

information is coherent with the actual

situation.

In terms of design, this strategy is the most basic one, as only requires to restart the topology

acquisition from scratch.

Fig. 12 Zero-Knowledge architecture and procedure.

MIRI – Master in Innovation and Research in Informatics

27 Control resilience in a F2C scenario

Keep-updating

The Keep-updating (KU) strategy synchronizes any detected change in the stored data with the

backups. This sync interval is defined by the Leader Protection Policies (LPP). On leader failure,

the Backup already has the last available information of the area, making possible to recover the

state of the services and resume the activity. However, as there is a sync period, exists the

possibility of discrepancies between the real state of the area and the stored state in the Backup.

The consequence may be the

consideration of devices that are no

longer present on the area or services

that are not considered. In any case,

those cases will eventually be revolved

or discarded as the state of the area

gets revaluated or services executions

be discarded.

Using the same scenario than the

previous strategy, in Fig. 13, the KU

strategy is represented. The principal

changes are the apparition in the

Backup of the area information

(represented with the blue cylinder)

and the green arrow of the data

transfer.

As the Backup already has all the area

information, the selection can start

immediately at the second stage. The

area information is up to date at the

third stage and synchronized with the

Backup.

External Keep-updating

The External Keep-Updating (EKU) or High-layer Download (HLD) strategy uses the same

principle of the Keep-updating strategy, but outsourcing the storage of the information to an

external device. This device is not necessary inside of the area or the system, more like an

external repository.

In Fig. 14, with the same scenario proposed earlier, now the information is stored locally into

the Leader and externally. When a change in the area is stored, a copy is sent to the external

repository, with the same sync procedures previously explained.

When the Leader fails in the second stage, the Backup retrieves the stored information and

select a new Backup of the area.

The same errors exposed in the previous strategy may occur. However, this strategy makes easy

the synchronization in a scenario with multiple backups.

Fig. 13 Keep-Updating architecture and procedure.

MIRI – Master in Innovation and Research in Informatics

28 Control resilience in a F2C scenario

Fig. 14 External Keep-Updating architecture and procedure.

Cloud External Keep-updating

The Cloud External Keep-Updating (CEKU) strategy is a little extension where all the areas store

their information into the cloud. Nevertheless, this strategy only uses the cloud as a repository,

and the cloud should not access to that information to take any decision. The cloud vision must

use the aggregated information of the areas and not their individual devices, as the Leaders of

each area are the responsible of the resource management and service orchestration.

Distributed Database
Using a distributed database to synchronize all the data along all the nodes is another solution

that can rely on trusted products already in the market. Using this mechanism, the area

resilience component redistributes the responsibility of the control data transference to the

database and rely on its own coherence and synchronization mechanisms.

For this project, there are two different options to be considered: A distributed Cassandra

Database or the object oriented distributed data store Dataclay. However, there are other

suitable options that are nowadays raising like the Apache Hadoop [29] for big-data distributed

computing.

Cassandra Database

Cassandra [30] is a distributed database designed to manage large amounts of data and devices

spread in location on different clusters or datacenters. The benefits of Cassandra are the

performance enhancement, hierarchical namespaces, and high scalability and availability.

One use case that show the potential of this technology is presented in [30], where Facebook

implemented a inbox search for the expected 100 millions of users and billions of requests,

across all the globe.

MIRI – Master in Innovation and Research in Informatics

29 Control resilience in a F2C scenario

Casandra is a good candidate for the F2C scenarios, as a tested and scalable solution. However,

the Casandra structure does not support full mobility of their structures or transactions.

Regarding the mobility, Cassandra is designed to operate in cloud computing environments, with

a fixed set of datacenters and protection mechanisms in case of link failure and inconsistencies.

In a scenario where devices are expected to have a high level of mobility, it can be exhaustive

and consume a huge amount of network bandwidth.

Dataclay

Dataclay [31] is a distributed object oriented database, used in the mF2C project as the database

for each agent. It provides the storage of data in classes with their methods and open

management among different organizations.

The interesting property used on the F2C scenario is the synchronization between nodes, done

in a hierarchical way. This property allows the control data synchronization between agents,

transparent to the agent development and using the already secure and authenticated

communications provided by the database.

On the mF2C integration of the project, Dataclay is not accessed directly from the modules, but

instead using the CIMI interface, explained on Section 7.6. Illustrative Use Case: mF2C

Integration.

5.2. Leader Reelection
Leader Reelection is another brick in the protection of the system and follows a proactive

approach. As the Leader can be elected manually following the PLSP policies and the PLP

mechanism, and automatically if ALSP and ALP are set in case of failure (see sections External

Orchestration and Leader Selection Policies), a mechanism that can replace a Leader by other

device without involving a failure or startup is necessary.

However, as the Leader is the coordinator element of the area, by definition should not be any

other device except in the upper layer that can provoke a change of the current area rather than

the Leader itself. This leads to the consequence that the only allowed device to make a Leader

reelection is the Leader of the area. Still, the architecture can be modified to allow another

behavior in some specific contexts. For instance, an area below another area (or a Leader

managed by another Leader), the management of the election could be externally

accomplished, being this especially useful on highly mobile scenarios.

Another aspect to take into account is the active backups of the area. As far as the Leader is

demoted by the reelection of the new Leader, the Backups will promote to become a Leader as

the resilience mechanism specifies. A previous demotion of the backups during the reelection

procedure is necessary. Although, if the Leader does not have any active backup, in case of a

reelection failure, the area may loss all the control until a new Leader arises.

In summary, the reelection mechanism should be a procedure that involves and is executed by

the Leader of the affected area, allowing to receive the trigger from outside of the device. The

backup should be notified and reelected as well but keep the resilience of the area in acceptable

levels. At the end, the effect on the area should be minimal.

MIRI – Master in Innovation and Research in Informatics

30 Control resilience in a F2C scenario

The designed reelection mechanisms use a trick to

select a new Leader while having an active Backup. As

the selected device has to become the Leader when the

actual one is not acting anymore, the new device can

use part of the resilience mechanisms to be promoted

as one.

To graphically explain the designed procedure, a flow of

the submodule is presented in Fig. 15.

First, the reelection starts with a proposed device to

become the new Leader. As explained above, the

receiver of such request is the Leader, which

coordinates the full procedure until the demotion. The

Leader checks if the device is already an active backup.

If not, the device is promoted as one.

Second, the new backup is selected as the preferred

one in case of Leader failure. Third, all the other

backups that are active proceed to be demoted by the

leader.

Finally, if all the procedure has been successful, the

leader demotes itself to a normal agent and the new

Leader be promoted and ready.

The new reelected Leader will follow the normal startup or takeover procedure, as specified in

Section 5.1. Area Resilience. If failure happens at any time, the resilience mechanisms assure

that the area is protected. However, protection may fail in a critical zone between the demotion

of the Leader, as the new Leader can fail and no other backup is locking for it. This will lead to

the delay of having a Leader controlling the area and the loss of information depending on the

control replication strategy used.

Fig. 15 Leader Reelection designed flow

MIRI – Master in Innovation and Research in Informatics

31 Control resilience in a F2C scenario

06. POLICIES DESIGN
The policies are the rules that affect directly the behavior of all the devices in the system. These

rules usually are static and universal for all the devices or applications. As an example, in the

cloud, the service manager can set the rules for the resource escalation, load balance and

permissions. However, in a heterogeneous and changing scenario as the edge is, a more fined

and customizable way to control is preferable.

Moreover, the policies are based on the necessities of the system and the application context.

In other words, if there are no mechanisms that use the policies, it makes no sense to define

them.

Policies sub-module design include a module called Policies Distribution, in charge of the

replication and reception of new policies, with the subsequent treatment and addition into the

current active ones.

On this section, the proposed policies for the resilience of the area itself and the mechanisms

that use them are explained. Furthermore, the proposed mechanism to spread the rules is also

provided and a brief definition on what the project considers as dynamic policies.

6.1. Rule Based Systems
For each system, may be a different set of policies and grouped by responsibility or functional

block. This leads to distinguish between two different groups of policies: First, the policies

directly involved on the resilience of the area, and second, the added policies that are not

involved on the resilience.

For the first ones, in Table 1, for each submodule or a transversal functionality (e.g. Leader

election), there is a set of policies.

 Policy Mechanism

Leader
Election

Leader Election Policies (LEP)

 Leader Mandatory Policies (LMP)

 Leader Discretionary Policies (LDP)

Leader Selection (LS)
(inside the Agent start for the mF2C)

Leader
Selection

Passive Leader Selection Policies (PLSP) Passive Leader Promotion (PLP)

Automatic Leader Selection Policies (ALSP) Automatic Leader Promotion
(ALP)

Area
Protection

Leader Protection Policies (LPP) Area Resilience (AR)

Leader Reelection Policies (LRP) Leader Reelection (LR)

Distr.
Policies

Distribution Policies (DP) Policies Distribution (PD)

Table 1 Relation between Policies and Mechanisms

Leader Election Policies

Set of policies related to the election process of a leader, sub-divided into two groups:

- Leader Mandatory Policies (LMP): Policies that require a set specific amount of

resources or capabilities to be electable as Leader. It also includes policies related to the

MIRI – Master in Innovation and Research in Informatics

32 Control resilience in a F2C scenario

mechanism associated to these policies.

- Leader Discretionary Policies (LDP): Policies that specify the best amount of resources

and optional capabilities to be ranked on a higher position to be a Leader. As in LMP, it

also includes policies related to the mechanism associated.

The implementation of these policies is specific for each system, as the responsibility to select a

Leader (as explained in the next point), affects the behavior of the components. However, the

Area Resilience sub-module uses these policies to determine if the device is capable to

participate into the resilience process (see 5.1.1. Backup Election and Keepalive Protocol).

Leader Selection Policies

Set of policies related to the selection of the leader itself. Using the Leader Election Policies or

other specifications, it defines the rules regarding the selection process itself (i.e. become a

Leader). Sub-divided into two set of policies:

- Passive Leader Selection Policies (PLSP): Policies that specify the conditions for when a

device becomes a Leader by a static parameter without requiring an external change.

For example, if the system manager establishes the condition that a specific device

should act as a Leader of the area, only if it fits the requirements to be a Leader, the

device will be the Leader at the startup.

- Automatic Leader Selection Policies (ALSP): Policies that specify the conditions for when

a device becomes a Leader by an automatic trigger when a condition is reached or some

external change. For example, if the device tries to reach a Leader but does not succeed,

if is capable and the policy is defined, it becomes the new Leader.

On the CRM design, the Leader selection is located inside the External Orchestration (see 7.6.

Illustrative Use Case: mF2C Integration), as is a coordinated process with other modules and has

an impact on the behavior of the whole device and application. A detailed explanation is

provided in next section.

Area Protection Policies

Set of policies related to the protection mechanisms of the Leader and the area. For instance,

there are two main sub-groups corresponding to the two main mechanisms:

- Leader Protection Policies (LPP): Policies that specifies the parameters related to the

protection of the Leader and the backup strategy. Some of the proposed policies are the

following:

o Minimum number of backups required for the area.

o Maximum number of backups required for the area.

o Time-to-Live (TTL) for the backups to be considered alive w/o any

communication.

o Maximum retry reconnection attempts between the Backup and the Leader

before takeover.

o Period of time between backup selection processes (if backups missing).

o Keepalive challenge messages period.

o Decrease TTL speed rate.

MIRI – Master in Innovation and Research in Informatics

33 Control resilience in a F2C scenario

- Leader Reelection Policies (LRP): Policies that specifies the parameters related to the

reelection of the Leader and the takeover procedure. For instance, the policy that allows

this procedure to be enabled.

On the CRM design, the mechanism that directly uses the LPP policies is the Area Resilience

while the LRP policies are used by the Leader Reelection.

Distribution Policies

Set of policies related to the distribution of the policies across the system. As an example,

synchronization intervals and the activation of the periodic transmission.

Besides the proposed policies, the Policy sub-module is designed to be extensible to any new

mechanism, internal or external to the CRM application/module. That means that any new

policy can be added to the existent ones or a whole new group of them, without any specific

modification of the existing design.

6.2. Dynamic Policies
As explained before, the definition of dynamic policies on the edge can potentially enhance the

overall performance and reduce service delays. In such heterogeneous and changing scenario,

customized rules for each device is a preferable solution.

The design of the policies consists on the definition of a name for each new rule added and a

value that the mechanism uses. As external mechanisms may access to that information, the

design of the module must not define any static schema. Given that, it is allowed to add any new

rule to the existent groups without any code modification. Although, the addition on a new

group require some code specifications and implementation following the proposed design and

interfaces, explained with more detail on 7.3.2. Specific Policies Definition.

The CRM by itself does not have any specific mechanism to evaluate service performance.

However, other modules can use or define new policies inside and use the proposed mechanism

to distribute the rules over the area.

6.3. Replication of the Policies
Another related point with the dynamicity of the policies is the ability to spread new rules on

the system. To do that, the Leader has the view of the area and the control over it to enforce

the policies.

Policies Distribution module design contains a mechanism in charge of formatting and send the

current selected policies to the targeted Agent, and also a mechanism to receive new policies.

This replication can be triggered at the Leader to spread the rules over the area, or to a specific

agent externally without the spread into the area.

MIRI – Master in Innovation and Research in Informatics

34 Control resilience in a F2C scenario

07. BLOCKS IMPLEMENTATION AND INTEGRATION

In this section, the implementation for each one of the components and the integration with the

mF2C is presented. Moreover, a summary of the technologies and methodology used and the

reasons behind these decisions is also provided.

The code can be found in the GitHub public repository of the project8 under the Apache-2.0

license. The code on this repository has been imported from a private one, used for the early

development of the project.

7.1. Technology and Methodology
The programming language used to implement this project is Python [32], specifically the

version 3.7. The reason behind this decision is that Python is a very powerful tool for fast

prototyping and cross platform development, ideally for testing and to deploy the solution in

multiple devices and operative systems, without specific compilation problems.

For the deployment of the solution, the CRM module provides a Docker image (that can be built

using the source code or downloaded from DockerHub). Docker [33] is a platform-as-a-service

(PaaS) platform that provide the ability to package and run any application in a virtual isolated

environment called container [34] in all supported operative systems without changes in the

application. The use of this tool allows to develop, test and deploy any solution in an easy and

scalable way. One strong point on using Docker is that the consumption of resources in

comparison to a virtual machine is way more reduced.

For the API development, the project uses Swagger UI [35] to represent in a graphical and

interactive way the module interface. The specific library implementing Swagger and the REST

server used for the project implementation is Flask-RESTPlus [36]. This library also allows the

creation of a graphical documentation from the implemented code. More on that in section 7.5.

API and CRM Core.

Other libraries used are logging [37] and colorlog [38] to provide useful and compressible logs

of the application, and psutil [39] as a cross-platform library for obtaining the system and

process information.

The used methodology to organize the project is Kanban [40] with the help of the Trello [41]

application tool. The main philosophy of the project is to provide modular incremental pieces to

archive the final product and change over time. Following that line, all the code is versioned

using Git [42] to record all changes and GitHub [43] public release repository or GitLab [44] for

private early development repository, in order to store the code.

Moreover, for the integration inside the mF2C project, other tools used to work in the project

are Slack [45] for communications; Waffle [46] and GitHub Projects [47] for task planning;

distribution and documentation; and Travis CI [48] as a continuous development/integration

tool. The mF2C project organization follow the Scram [49] methodology with weekly meetings

and sprints of two weeks for development.

8 Repository address: https://github.com/ALEJANDROJ19/ControlResilienceManagement

https://github.com/ALEJANDROJ19/ControlResilienceManagement

MIRI – Master in Innovation and Research in Informatics

35 Control resilience in a F2C scenario

7.2. Leader Protection
The Leader Protection sub-module is the core of the resilience that the CRM brings to the area.

Following the design, there are two main modules inside: The Area Resilience and the Leader

Reelection.

7.3.1. Area Resilience
The Area Resilience implementation follow the general approach described in the design, where

the module is the same regardless of the actual role of the Agent. The implications in terms of

the development are that a common structure should be created with the necessary subroutines

to address the specific responsibilities for each role.

The area resilience implementation consists on a primary thread or common flow where all the

agents regardless of the role execute. On this routine, the agent self-evaluates if is capable to

be a Leader and if it is started as Leader. If the device does not have the capability to be a Leader,

the execution of the area resilience is resumed. On the other side, if is capable, some preliminary

operations are executed and the agent enters into a wait state to be selected as Backup by the

Leader. This procedure is represented in a diagram in Fig. 11.

If the agent started as Leader (or Backup becomes Leader), the flow directly skips to the leader

flow execution. This flow consists of two threads: One that is continuously checking if there are

sufficient backups according to the active policy, and the other one that is checking if backups

are alive.

As the Keepalive designed protocol consists on a constant stream of requests to the Leader, each

time that a Backup challenges the Leader, the Leader reset the TTL of the Backup. If no challenge

message is received from the Backup, the Leader removes the Backup from the internal

database.

A more detailed view can be found on Fig. 16. The backup promotion thread and the backup

keepalive procedure are represented as the two big loops of the diagram. Messages 1 and 2 in

the diagram are common for all the agents. In case of backup promotion failure (message 5), the

leader tries with the next device on the list.

When a Leader fails, the Backup in charge of the takeover starts the procedure, as shown in Fig.

17. Here there are three devices on the topology: one Leader, one active Backup and a normal

agent. When the failure is detected by the Backup, the KeepAlive thread (message 1) changes

to the leader pre-configuration and backup selection procedure (message 3), while the backup

watcher (also named Keeper) is started. The remaining agent then is selected to be the new

active backup and the area resume its current activity (messages 6 to 9 plus keepalive on

message 11). If Light Discovery is present in CRM, the module is also triggered to start the

beaconing process (message 4).

Depending on the active policy regarding the control data replication, there is another thread in

charge. For instance, in the CRM standalone implementation, the KU is piggybacked into the

KeepAlive response message, but by default the ZK is enforced.

MIRI – Master in Innovation and Research in Informatics

36 Control resilience in a F2C scenario

Another implementation aspect of the module is the interface specification to preserve the

isolation design principle. In Table 2, all the interface methods of the module are described.

Area Resilience Interfaces

Function Name Arguments Functionality

start deviceID <string>: self-ID of
the agent.

Start the Area Resilience threads and
flows.

stop Stop all the threads and current
activity on the module.

promotedToBackup leaderIP <string>: IP of the
Leader.

Promote from normal agent to Backup.

deleteBackup deviceID <string>: ID of the
backup.

Remove an active Backup from the
database. (Only on the Leader)

addBackup deviceID <string>: ID of the
new backup.
deviceIP <string>: IP of the
new backup.
priority <integer>: Assigned
priority.

Add a device as an active Backup. (Only
on the Leader)

getBackupDatabase Get a copy of the actual state of the
active backups in the area. (Only on the
Leader)

imBackup Get if the agent is in Backup state in the
Area Resilience.

imLeader Get if the agent is in Leader state in the
Area Resilience.

receive_keepalive deviceID <string>: ID of the
backup sending the
Keepalive.
payload <string>: Payload of
the challenge message
(optional)

Receive a Keepalive from an active
Backup. (Only on the Leader)

Table 2 Area Resilience interface specification

All the different messages used to communicate between CRM APIs follow the REST definition.

The requests are sent via TCP, with the payload formatted in JSON and all the packet encoded

with the HTTP definitions (e.g. headers, status codes, request headers…). The internal calls to

the module interface, that are not sent to the API, are done in code and does not use any

network message. However, the module interface must be followed, or an exception may raise.

MIRI – Master in Innovation and Research in Informatics

37 Control resilience in a F2C scenario

Fig. 16 Area Resilience selecting and managing Backups (Leader view)

MIRI – Master in Innovation and Research in Informatics

38 Control resilience in a F2C scenario

Fig. 17 Area Resilience Leader Failure

MIRI – Master in Innovation and Research in Informatics

39 Control resilience in a F2C scenario

7.3.2. Leader Reelection
The Leader reelection implementation uses some of the area resilience functionalities and

interfaces to work. The execution of the reelection consists on a single thread that execute the

designed reelection flow.

In Fig. 18, a reelection process is triggered on the Leader to select agent/4 as the new Leader.

As the selected agent is not an active Backup, is selected with preference 0 (the highest one).

Then, if the selection has been successful, the active backup is demoted and finally the leader is

self-demoted. The active backup, the agent that has been reelected to be the Leader, is

promoted to be the new Leader.

Fig. 18 Leader Reelection implementation and integration diagram

The interface to this module consists on only one that triggers the whole procedure, checking

that the parameters are correct and the device is a Leader, as described in Table 3.

Area Resilience Interfaces

Function Name Arguments Functionality

reelection areares <AreaResilience>:
Module object reference.
deviceID <string>: ID of the
new Leader
deviceIP <string>: IP of the
new Leader

Start the Leader Reelection thread and
flow. The specified agent enters into
the reelection process and become the
new Leader if successful.

Table 3 Leader Reelection interface specification

MIRI – Master in Innovation and Research in Informatics

40 Control resilience in a F2C scenario

7.3. Policies
As the design of the policies specifies an open and extensible framework, that make possible the

addition of new policies and change the current values, the implementation follow the same

lines. The policies sub-module of the CRM has two different blocks:

- Policies Distribution: Module in charge of the replication and dynamicity of the policies.

- Specific Policies: Set of modules that specify a group of policies to be applied over a

mechanism.

The implementation of the policies distribution and the general schema for the policies is

discussed on next subsections.

7.3.1. Policies Distribution
The distribution of the policies consists on a sequential mechanism that send a copy of the

current policies at the Leader to the selected agents of the area. The used channel for the

communication is via TCP REST messages to the API of the targeted Agent.

The payload of the message must follow the model specified in the API: a JSON that contain the

key of the policy to change and the value must contain another JSON. This inner-JSON is a

dictionary where each key contains the name of the policy to change and the new value. The

payload importation is made in such way that all the keys are optional. In other words, there is

not the need to send all the policies to change only one.

In Fig. 19, there is an scenario with a Leader and two agents. The Leader receives a trigger to

change some specific policy (message 1) and its applied after its check (message 1.1). A normal

agent it can also receive the same trigger (message 2) and does the same process. Then the

Leader receives the trigger to spread the policies on the area (message 3) and proceeds to send

the policies to the agents (messages 3.1). These triggers can be send by any module, internally

or externally to the Policies Distribution.

Fig. 19 Policies Distribution transfer diagram

MIRI – Master in Innovation and Research in Informatics

41 Control resilience in a F2C scenario

Policy Distribution Interface

Function Name Arguments Functionality

getPolicies Return all the current policies in the
Agent.

receivePolicies payload <dict>: Dictionary
composed of a set of keys
with the name of the policy
group and the value in JSON
format.

Set the new policies in the Agent.

distributePolicies listIPs <list<string>>: List
with the IPs of the targeted
agents.

Send all the current policies to the
agents on the listIPs

Table 4 Policy Distribution interface specification

7.3.2. Specific Policies Definition
For each group of policies (e.g. Leader Protection Policies, Leader Election Policies, etc…), there

is a common implementation that each one of them must follow, and use the same interface.

For the definition of the policies themselves, there are no restrictions as well as the values are

accepted by the JSON standard.

The policy definition consists on a standard interface and a dictionary where the policies should

be stored by defining a unique key and a valid value. Optionally the name of the keys can also

be defined to make easier the integration with the mechanisms and other modules. The

interface specification can be found in Table 5.

Policy General Interface Definition

Function Name Arguments Functionality

get key <string>: Name of the
policy.
default <T>: Value in case of
policy not set. T refers to the
type of the returned value.

Return the value for the specified
policy.

get_json Return the JSON with all the policies.

set_json json <string>: JSON with a
key and value for each policy
to modify or add.

Set or add the new policies to the
system.

Table 5 Policy General Interface Definition

7.4. Discovery
As described in the design, the discovery sub-module of the CRM is a basic topology

builder/scanner plus a little resource categorizer of the device. All the implementation is inside

a unique module called Light Discovery. As the main design lines, this module can be substituted

by a more elaborated one or completely removed if an external one take the responsibility.

MIRI – Master in Innovation and Research in Informatics

42 Control resilience in a F2C scenario

7.4.1. Light Discovery
Light Discovery module is a single thread flow that can be either beaconing in the network the

Leader messages or scan them as a normal Agent. In Fig. 20, the whole procedure can be

observed. As a normal agent, the flow starts each time a beacon (message 1) is received. Then

the agent first stores the leader ID inside the beacon and the IP of the device (step 1.1), and

proceeds to run the resource categorization function (step 1.2). Once the information is

correctly generated, a request is sent to the Leader via the API (message 1.3) with all the

information inside. The Leader update the database with the discovered device (step 1.3.1) and

returns a positive response.

Fig. 20 Light Discovery communication diagram

The beacon message strategy implemented is the broadcast of UDP datagrams addressed to the

broadcast network addresses. Each Light Discovery module inside the CRM of the Agents has an

UDP server that is waiting for the beacons. For each beacon received, a new reply is generated.

This UDP server does not go through the API. However, the reply follows the normal procedure

as all the other messages.

The beaconing flow only starts when the agent becomes a Leader while the scanning flow only

when the Agent is normal or an active Backup. In any circumstance, both modes can be active,

or have two Leaders in the same network.

The interface defined for this module, specified in Table 6, does not include the beacon entry

(i.e. the scan server) as is an entry defined for this specific Discovery design and implementation,

and others will not necessarily need such mechanism, while the interface is required by the CRM

to work properly.

MIRI – Master in Innovation and Research in Informatics

43 Control resilience in a F2C scenario

Light Discovery Interfaces

Function Name Arguments Functionality

startBeaconing Start the Light Discovery module in
beaconing mode.

stopBeaconing Stop the Light Discovery beaconing.

startScanning Start the Light Discovery module in
scanning mode.

stopScanning Stop the Light Discovery scanning.

recv_reply payload <dict>: Device
information from the beacon
scan reply.
deviceIP <string>: IP of the
device replying.

Receive reply from Agent and
add/modify the information to the
database. (Only on the Leader)

get_topology Get a copy of the current topology of
the area.

leaderIP IP of the detected Leader.

leaderID ID of the detected Leader.
Table 6 Light Discovery interface specification

7.5. API and CRM Core
The interface to the CRM module is the API. Here, all the allowed operations from outside can

be performed in an isolated and controlled way. The API is implemented to be RESTful service,

or in other words, all the requests must follow the REST standard architecture plus the API

specifications on the interface.

The webserver has been implemented using a modified version of Flask, which contains more

support for REST API documentation and Swagger for the graphical representation. These

modules allow the creation of the documentation and graphical interface, without any specific

module development.

Adding an endpoint to the API is simple. First, a class must be created where the API object is

defined. On top of the class definition, is necessary to specify the route of the API endpoint.

Second, inside of the class, the HTTP method used for the request is specified creating a class

method with the method as the function name. Third, specify using the API object the expected

received models, expected result codes and documentation for each one of them. Finally, inside

the method, the interface operations. An example of the Keepalive endpoint is provided in Fig.

21.

All the returned codes in the API follow the HTTP response status codes standard convention

[50], a three-digit number that specify the result of the request. For each response in the API,

there is an associated code. Most of the replies are completely accurate with the code meaning,

but others are more specific. However, the documentation of the API removes any possible

doubt, as all the replies must have a description. As a general rule, the first digit is the important

one, as defines the class of response. The API only use codes contained into the 2xx (Successful)

and 4xx (Client error) classes, as the default 5xx (Server error) for when the API is not available.

MIRI – Master in Innovation and Research in Informatics

44 Control resilience in a F2C scenario

Another important component of the CRM module is the core itself. It contains all the common

operations (log formatting, parameter definitions, etc…) and the creation of the sub-module

objects. Working together with the API interface, the module interoperability and lifecycle is

controlled.

To represent the API, Fig. 22 show all the implemented and active endpoints of the API,

explained in more detail in Table 7.

Fig. 22 API and Core integration graph

@pl.route('/keepalive')

class keepalive(Resource):

 """Keepalive entrypoint"""

 @pl.doc('post_keepalive')

 @pl.expect(keepalive_model)

 @pl.marshal_with(keepalive_reply_model, code=200)

 @pl.response(200, 'Leader alive')

 @pl.response(403, 'Agent not authorized (Not recognized as backup)')

 @pl.response(405, 'Device is not a Leader')

 def post(self):

 """Keepalive entrypoint for Leader"""

 if not arearesilience.imLeader():

 # It's not like I don't want you to send me messages or anything, b-baka!

 return {

 'deviceID': agentstart.deviceID,

 'backupPriority': arearesilience.PRIORITY_ON_FAILURE}, 405

 correct, priority = arearesilience.receive_keepalive(api.payload['deviceID'])

 if correct:

 # Authorized

 return {'deviceID': agentstart.deviceID, 'backupPriority': priority}, 200

 else:

 # Not Authorized

 return {'deviceID': agentstart.deviceID, 'backupPriority': priority}, 403

Fig. 21 API Keepalive endpoint code example

MIRI – Master in Innovation and Research in Informatics

45 Control resilience in a F2C scenario

Keepalive

Description Keepalive entrypoint for Leader. Backups send message to this address
and check if the Leader is alive. Only registered backups are allowed to
send keepalives, others will be rejected.

Endpoint POST /crm-api/keepalive

Payload {"deviceID": "agent/1234"}

Responses 200 - Success
 403 - Agent not authorized
 405 - Device is not a Leader
 Response Payload:
{ "deviceID": "leader/1234", "backupPriority": 0 }

Leader Info

Description Check if the agent is a Leader or Backup.

Endpoint GET /crm-api /leaderinfo

Payload -

Responses 200 - Success
 Response Payload:
{ "imLeader": false, "imBackup": false }

Reelection

Description Send a message to trigger the reelection process. The specified agent
will be the reelected Leader if it accepts.

Endpoint POST /crm-api/reelection

Payload { "deviceID": "agent/1234" }

Responses 200 - Reelection Successful
 401 - The Agent is not authorized to trigger the reelection
 403 - Reelection failed
 404 - Device not found or IP not available
 Response Payload:
{ "imLeader": false, "imBackup": false }

Start Area Resilience

Description Starts the Area Resilience module

Endpoint GET /crm-api/startAreaResilience

Payload -

Responses 200 - Started
 403 - Already Started

Start Agent (External Orchestration)

Description Starts the Agent Start module.

Endpoint GET /crm-api/startAgent

Payload -

Responses 200 - Started
 403 - Already Started

Role Change

Description Change the agent from current role to specified one (leader, backup or
agent).

MIRI – Master in Innovation and Research in Informatics

46 Control resilience in a F2C scenario

Endpoint GET /crm-api/roleChange/{role}

Parameters role <string>:
- agent
- leader
- backup

Payload -

Responses 200 - Successful
 403 - Not Successful
 404 - Role not found

Light Discovery Module control

Description Management of the Light Discovery module status and mode.

Endpoint GET /ld/control/{mode}/{operation}

Parameters mode <string>:
- beacon
- scan

operation <string>:
- start
- stop

Payload -

Responses 200 - Successful operation
 403 - Not Successful operation
 404 - Mode/Operation not found

Beacon Reply

Description Reception of the reply to a received beacon.

Endpoint POST /ld/beaconReply

Payload {
 "deviceID": "string",
 "deviceIP": "string",
 "cpu_cores": 0,
 "mem_avail": 0,
 "stg_avail": 0
}

Responses 200 - Device added/modified on the topology
 400 - Error on beacon reply message

Get current Topology

Description Get the current topology of the Area (Leaders only).

Endpoint GET /ld/topology

Payload -

Responses 200 - Successful operation
 Response Payload:
{“topology”: [(“agent/1234”, 127.0.0.1)]}

Distribute Policies

Description Distribute the current policies to the attached devices.

Endpoint GET /crm-api/PoliciesDistributionTrigger

Payload -

Responses 200 - Trigger accepted

MIRI – Master in Innovation and Research in Informatics

47 Control resilience in a F2C scenario

Set new active Policies

Description Define new active policies for the Agent.

Endpoint POST /crm-api/receiveNewPolicies

Payload {
 "LMR": "string",
 "LDR": "string",
 "PLSP": "string",
 "ALSP": "string",
 "LPP": "string",
 "LRP": "string",
 "DP": "string"
}

Responses 200 - Policies correctly received
 400 - Message malformation

Get current active Policies

Description Retrieve the active policies on the device.

Endpoint GET /crm-api/getCurrentPolicies

Payload -

Responses 200 - Policies correctly received
 Response Payload:
{
 "LMR": "string",
 "LDR": "string",
 "PLSP": "string",
 "ALSP": "string",
 "LPP": "string",
 "LRP": "string",
 "DP": "string"
}

Table 7 API endpoint specification

Besides the utility itself of the API as the interface for the CRM and the webserver to attend the

REST requests, the API also provides an interactive website. The documentation of the API is

displayed into the website, automatically updated from the definitions in the code. Moreover,

the API provide for each endpoint a test feature to send messages directly from it, with the

correct format and protocol. The results are displayed, along with the HTTP headers, code and

returned payload.

7.6. Illustrative Use Case: mF2C Integration
Finally, the integration of the CRM into the mF2C agent application is presented here with all

the required additions and changes on the project. As displayed in Fig. 9, the CRM module can

substitute the already Policies module defined on the Agent. In order to accomplish that, the

External Orchestration sub-module is in charge of the integration and fulfil the missing

functionalities, explained in detail on section 4.3. Functional Blocks Architecture. On this section,

the specific integration of the CRM into the mF2C is explained.

MIRI – Master in Innovation and Research in Informatics

48 Control resilience in a F2C scenario

All internal modules of the mF2C Agent are deployed inside Docker containers, attached to the

same docker network using the docker-compose receipt. That implies that all internal

communications are done directly using the docker name resolver while external

communications are made using the API, preserving the network isolation. CRM is already

designed and provide a Dockerfile to be deployed using Docker, meaning that no big changes

are required. The required communications, implemented inside the Agent Startup module are

graphically displayed in Fig. 23, using the mF2C module names and architecture.

Fig. 23 mF2C Agent Start integration (Agent)

Policies module, or Agent Start on the CRM architecture, receives the request to start the

module (message 1) and sends the trigger to Identification module (message 2), returning the

deviceID and IDkey used for identification of the agent and authentication procedures. For the

sake of the explanation, the PLP mechanism return that the device is not set to be a Leader.

Discovery is triggered to start scanning for a Leader in the vicinity (message 3). The discovery

procedure is different from the one explained in the CRM design. Discovery on the leader send

802.11 wireless beacons (message 4), and if the agent detects one of them, establishes a

wireless connection (message 4.1). If the connection is successful, the Discovery module returns

the detected ID of the leader and other internal parameters.

Once this is done, the authentication mechanism is triggered (messages 5.x), categorization

module is started (message 6) and the Area Resilience inside is triggered as well (message 7).

Finally, internal received values of the overall operation are updated into the Agent database

using the common interface CIMI (message 8), and the agent keeps checking if the Leader is still

broadcasting.

A similar procedure is done with the Leader flow, shown in Fig. 24. The same trigger is sent to

the Agent Start (message 1), running the Identification request (message 2) and startup of the

Discovery module as Leader (message 3). The specific authentication procedures are done in the

CAU client module (message 4) and finally, the categorization and area resilience modules are

triggered (messages 5,6), storing all the procedure results into the database (message 7).

MIRI – Master in Innovation and Research in Informatics

49 Control resilience in a F2C scenario

Fig. 24 mF2C Agent Start integration (Leader)

The implementation of both flows inside the Agent Start module uses a single-threaded strategy,

as if any of the steps fails, the agent must be stopped. Although, for testing purposes, if the

debug flag is set at the deployment of the module, if a module fails the whole process is not

interrupted but notified. This thread can be switched depending if the agent is acting as normal

or leader. However, being an active Backup does not have any implication on the execution of

the flow, rather than the incompatibility with the Leader flow.

Same as the other CRM components, calls to the modules interfaces are done using specified

APIs and using REST standards. CRM API has been modified to provide the necessary information

to other mF2C components, such as the actual state of the agent or current policies.

MIRI – Master in Innovation and Research in Informatics

50 Control resilience in a F2C scenario

08. PROJECT RESULTS AND VALIDATION
On this section, individual results of the project objectives are displayed. In specific, the

resilience objective and the policies distribution are evaluated with a set of tests. Moreover, an

analytical experiment of applying different policies and the effect in the area is presented.

Finally, the validation of the project into the mF2C project is also demonstrated.

8.1. API GUI
One of the first results of the project is the graphical part of the CRM application. As designed

and implemented, the CRM API also provides a website with the documentation and interactive

request builder. The actual look of the website can be seen in Fig. 25.

Fig. 25 API CRM website

The website is divided into two main sections: All the endpoints grouped into the defined

categories, and the defined payload models associated for each endpoint.

Starting with the first section, an example with the Keepalive endpoint is provided in Fig. 27. For

each endpoint, there is a documentation of the required parameters and the possible results.

For instance, Keepalive require a specific JSON payload that contain the deviceID of the sender.

At the return, if successful, the received payload follows the specified model.

The endpoint can be tested or send real commands using the “Try it out” button in each

endpoint. For example, in Fig. 28, the current active Policies are received when the command is

executed. On the response part, the curl command and URL used are displayed and at the

bottom the result, with the status code and the returned payload.

For the model specification, the specified model for the beacon reply is shown in Fig. 26. Each

required key field (represented with a red asterisk), has an associated value type. Moreover, an

example can be provided into the API documentation as reference.

Fig. 26 Beacon reply payload model

MIRI – Master in Innovation and Research in Informatics

51 Control resilience in a F2C scenario

Fig. 27 Keepalive API documentation

Fig. 28 Get current Policies execution example

With this graphical and easy-to-use interface, the whole CRM can be controlled and modified,

at manager level without modifying the code.

MIRI – Master in Innovation and Research in Informatics

52 Control resilience in a F2C scenario

8.2. Resilience
To verify that the CRM provides resilience in a F2C scenario, there are a set of tests to evaluate

if in the proposed situations, the CRM works as intended and provides a solution to the problem.

There are three groups of tests: Firsts, some basic functionality tests about the functionality of

the modules itself; Second, the tests regarding the Area Resilience functionality and some corner

cases of the scenario; Third, the tests for the Leader Reelection.

All the tests are provided with a screenshot of the CRM output, and in some of them with the

API website as well.

Basic Functionality Tests of module startup:

Area Resilience on Leader alone

Test Description Area Resilience starts as Leader. The Leader tries to select a Backup in
an empty topology.

Expected Result Area Resilience successfully started acting as Leader. Backup promotion
retry until a backup is selected or stopped.

Test Result Success

Screenshot

Observations

Area Resilience on Agent alone

Test Description Area Resilience starts as Agent. The agent, set as a capable device,
should wait for a Leader election.

Expected Result Area Resilience successfully started acting as Agent. Wait to be selected
or stopped.

Test Result Success

Screenshot

Observations

Leader Reelection of a non-existent Agent

Test Description Trigger the reelection with a non-valid or non-existent agent ID.

Expected Result Error code on request, as specified on the API.

Test Result Success

Screenshots

MIRI – Master in Innovation and Research in Informatics

53 Control resilience in a F2C scenario

Observations Screenshot at top is from log output of the agent, the one at the

bottom is from the API dashboard at the agent.

Leader Reelection on a non-Leader device

Test Description Trigger the reelection in an agent that is not a Leader.

Expected Result Error code on request, as specified on the API.

Test Result Success

Screenshots

Observations Screenshot at top is from log output of the agent, the one at the

bottom is from the API dashboard at the agent.
Error was detected while the realization of this test that caused a
different error code than the one expected, due to topology search
before role checking. A patch was created to solve it.

All tests have successfully passed, meaning that the basic standalone CRM can work and be

deployed.

Area Resilience Tests

Leader promote a Backup

Test Description Leader select a device from the topology and promotes to Backup.

Expected Result An agent is promoted to Backup and Keepalive protocol start sending
messages while Leader check that Backup is active.

Test Result Success

Screenshot Leader view:

MIRI – Master in Innovation and Research in Informatics

54 Control resilience in a F2C scenario

Agent/Backup view:

Observations Discovery procedure is also validated with this test.

Leader failure

Test Description Leader fails and the backup become the new leader.

Expected Result Backup become the Leader.

Test Result Success

Screenshot

Observations No new backup is selected, as in the scenario there are no available

devices.

Backup Failure

Test Description Backup fails and the Leader detect it.

Expected Result The Leader remove the Backup from the database.

Test Result Success

Screenshot

MIRI – Master in Innovation and Research in Informatics

55 Control resilience in a F2C scenario

Observations Device demotion cannot be done due to the disconnection of the
device. Device is not removed from the topology, but Leader is not
affected, as selection cannot be done/not considered if a positive code
is not given back from Backup.

Leader failure and new backup election

Test Description Leader fails and the Backup must detect it and take action.

Expected Result Backup becomes the new Leader and selects an available device as new
Backup.

Test Result Success

Screenshot

Observations New active Backup send the Keepalive challenge before the Leader add

it to the accepted database. At the next Keepalive it gets correctly the
new value. Does not affect the Backup nor the Leader.

Backup failure (with new Backup)

Test Description Backup failure is detected by the Leader.

Expected Result A new available device is promoted as Backup of the Leader.

Test Result Success

Screenshot

Observations Old device still not removed from topology. Demotion of the failed

backup failed, but expected as the device is no more present on the
network.

MIRI – Master in Innovation and Research in Informatics

56 Control resilience in a F2C scenario

Multiple backups

Test Description Multiple backups can coexist in the same area with the same Leader.

Expected Result Normal election and keepalive, with correct priority assignment.

Test Result Success

Screenshot

Observations

Leader failure and new backup election (with multiple active Backups)

Test Description Leader fails with multiple active backups.

Expected Result The backup with greater preference becomes the new Leader while the
other backups become normal agents (or Backups of the new Leader).

Test Result Success

Screenshot Backup with Priority = 1

Backup with Priority = 2

MIRI – Master in Innovation and Research in Informatics

57 Control resilience in a F2C scenario

Observations Active backups take more time to recover rather than non-active ones.

Consider some wait time reduction. Higher priority number implies a
lower preference.

All the situations tested for the Area Resilience have successfully passed, some of them with

known caveats that does not influence the expected result and the overall procedure is

satisfactory.

Leader Reelection Tests

Leader reelection (new Leader not backup)

Test Description Agent selected to be the new leader is not an active Backup of the area.

Expected Result The Agent becomes the new Leader and select a new Backup. Old
leader and backup are demoted before being electable again.

Test Result Success

MIRI – Master in Innovation and Research in Informatics

58 Control resilience in a F2C scenario

Screenshot Leader view:

Old backup view:

New Leader view:

MIRI – Master in Innovation and Research in Informatics

59 Control resilience in a F2C scenario

New backup view:

Observations

Leader reelection (new Leader active backup)

Test Description Agent selected to be the new leader is an active Backup of the area.

Expected Result The Agent becomes the new Leader and select a new Backup. Old
leader is demoted before being electable again. No active backup
demotion is performed.

Test Result Success

MIRI – Master in Innovation and Research in Informatics

60 Control resilience in a F2C scenario

Screenshot Leader view:

New Leader view:

Observations Keepalive reply gets a 405 code, corresponding to a device that is not

an active Leader has been challenged. As the Leader is demoted but is
still reachable by network (is not down), keepalive can reach out, but
non positive reply is given.

Finally, the Leader Reelection also work as intended on the proposed test scenarios with a

satisfactory behavior.

MIRI – Master in Innovation and Research in Informatics

61 Control resilience in a F2C scenario

8.3. Policies
Continuing with the verification of the CRM core functionalities, the other pillar is the Policies

and its distribution into the system. As this functionality does not imply any situational case or

role, the tests are simpler.

Receive new Policies

Test Description Agent receive policies from the Leader.

Expected Result New policies are stored.

Test Result Success

Screenshot

Observations

Policies Distribution

Test Description Leader spread the policies among all the Agents in the area.

Expected Result Policies successfully setup.

Test Result Success

Screenshot Leader view:

Agent view:

Observations

Dynamic Policies on action (Area Resilience)

Test Description The Keepalive interval policy is modified in the area

Expected Result The backup send keepalive challenge messages faster than before.

Test Result Success

MIRI – Master in Innovation and Research in Informatics

62 Control resilience in a F2C scenario

Screenshot

Observations

The result is that the policies design and implementation work as expected, without any other

concern.

8.4. Dynamic Policies study
On the early state of the project, an emulation was conducted to study if applying dynamic rules

into a F2C system was significant enough to create such mechanism or not. The selected

mechanism to conduct the experiment was the Control Data Replication inside the Leader

Protection. Given the applied policy in a specific scenario, the expected behavior should be

different. These different designed strategies are explained with more detail in section 5.1.2.

Control Data Replication.

Fig. 29 Experiment Results: Left) Database update over number of node. Right) Network usage overhead

The experiment setup is a scenario with virtual machines as nodes, each with a simple client to

reply to the discovery messages. A master node, emulating a Leader, is in charge of sending

MIRI – Master in Innovation and Research in Informatics

63 Control resilience in a F2C scenario

messages to the devices and update the database. To compare between different strategies, the

used parameter is the time taken to fill correctly the database with the state of the area when a

failure of the Leader is induced.

Results shown in Fig. 29 verify that the enforcement of different rules have an overall impact on

the system and being able to tune the rules is a desirable functionality. On the left side, it can

be appreciated that the Zero-Knowledge (ZK) strategy is good at small scenarios, but keeps

increasing when new devices are added. Keep-Updating (KU) or High-Layer Download (HLD) are

preferable strategies in large scenarios. However, at the right side the network impact is

analyzed, showing that in an area with multiple backups, the KU strategy impact the network

bandwidth incrementally only for this duty.

As a conclusion, it has been proven that there is a real necessity to provide dynamic policies to

F2C systems. CRM already includes the distribution and the possibility to change policies on real-

time and spread them into the area.

8.5. Validation in the mF2C Use Case
mF2C is an ongoing project, currently ending the development stage to enter into the use cases

integration. The implications are that some procedures are still changing or still to be

implemented.

The project has been already incorporated into the project with successful results, as is actually

working without any integration error at this moment. Recently, the project is already testing

the formation of the areas and the failure mechanisms, procedures provided by the integrated

CRM along other modules.

Besides the individual testing performed by members of the project consortium, the project

integration has been also validated in a local instance of the mF2C agent inside a virtual machine.

In Fig. 30, the Policies block (name of the CRM module inside the mF2C architecture) is working

and the agent starts as expected.

Fig. 30 mF2C docker internal deployment of the Agent

MIRI – Master in Innovation and Research in Informatics

64 Control resilience in a F2C scenario

09. FUTURE WORK
Even if this project covers all of the proposed objectives, there are more improvements and

added functionalities that can be done that emerged during the development of the project. On

this section, a list of topics or ideas to be developed in a continuation of the project are

presented.

 Security:

All the communications between devices are insecure; no authentication nor encryption

is provided. This is a serious thread, specially to the protection of the area and the

policies distribution mechanisms, that take control of the behavior of the device.

To address the encryption of the data transferred device-to-device, a simple TLS

connection should be enough. However, authentication is required to make it possible.

Devices need to trust each other, specially the Leader that coordinates and sends

instructions.

As a possible solution, the traditional certification process where a Certificate Authority

(CA) issues certificates to trusted domains and users can trust them can be

implemented, as in the mF2C project is the followed strategy [51]. However, in a mobile

and heterogeneous scenario, is not the best way to provide authentication and security

to edge devices. Another possible solution is the use of the Blockchain as a tool to

distribute along all the devices rules and authentication, as explained in the next point.

 Blockchain incorporation:

Blockchain [52] [53] is commonly defined as a data structure distributed across multiple

peers. The data structure is formed by a sequenced list of blocks, with data structured

in transactions. Blocks are “chained” with the anterior block using a hash as pointer [54].

Moreover, Blockchain also refers to the networking architecture and consensus

algorithm that provides peer-to-peer (P2P) data distribution in a trusted and

consensuated way. Its use has been popularized with the appearance of Bitcoin, the

anonymous cryptocurrency over blockchain [55]. One drawback of this technology is

that it can be only used is some specific scenarios, very well described in [56].

Using blockchain itself will require a set of modifications on the data format stored, how

is managed and the consensus algorithm used. For instance, adding new policies to the

system will require to modify how this information is stored and interpreted and most

important, how the device can trust that the other device is allowed to change

information in the system.

One possible solution here is using the Secure Edge Network (SEN) proposal [57]. SEN is

a framework over blockchain that stablishes a set of rules that specifies the permissions

on the system. Moreover, this framework is designed to be an optimal solution on edge

deployment as a transversal solution for authentication across all the devices besides

their capabilities.

MIRI – Master in Innovation and Research in Informatics

65 Control resilience in a F2C scenario

 Machine Learning on Policies:

The dynamic policies proposed are very static in the sense of even if are automatic, still

there is not any learning on which policies are the best in different instants of time or

status of the system.

Applying machine learning to the policies will suppose a next step on the system

performance and better use of its resources.

 Module Integration:

The integration with other applications require that an entire sub-module is substituted

with a specific code, which is not bad at all. An extensive implementation of the API

covering most of the CRM functions and allowing some callbacks to be setup will make

even more independent and closed the solution.

 Code Re-factorization:

Remove some of the unused code, optimization tasks and other minor actions in the

overall structure are required, caused in part by the incremental development and

proof-of-concept product philosophy.

MIRI – Master in Innovation and Research in Informatics

66 Control resilience in a F2C scenario

10. CONCLUSIONS

To conclude the project, the proposed Control Resilience Management (CRM) design and proof-

of-concept implementation has successfully accomplished all the proposed objectives, and has

been validated into a real F2C application.

Providing resilience in such described scenario is a difficult task and requires a lot of different

procedures. CRM can solve some of the current challenges regarding the resilience of the

system, allowing mobility of the devices without the degradation of system, and benefit F2C

applications, just integrating the solution into their architectures. The dynamic policies designed

can also bring more control over the system, without relaunching applications or stopping whole

clusters. Together, they suppose a powerful tool.

In specific, all the objectives that have been proposed in the project are accomplished:

 The project has provided the design and implementation of a closed solution that

provides resilience over a F2C architecture, with a main focus on the edge. This solution

works as a standalone module that can be used without other applications and can be

integrated.

 The design and proof-of-concept implementation of protection mechanisms for the

Leader.

 The design and proof-of-concept implementation of the different policies, related with

the resilience of the F2C scenario.

 Validated into a real F2C application, integrating the solution and fulfilling the expected

functionalities, with the required changes.

The proposed architecture, compliant with the F2C definitions, is completely modular thanks to

the interface specification. This brings the added value of changing any of the internal

components with a different one without an extensive integration task. A new CRM

implementation can be done with other procedures or added functionalities to adapt the

solution to the required necessities.

As F2C is an evolving concept, new paradigms will arrive. The CRM design can be used as the

structural base for newer functionalities. In the standalone mode or the integrated module, the

CRM can be adapted or increased from the open source code provided, or deployed with the

standard version.

We know for sure that scenarios where the edge has more relevance are the future. Contributing

on the creation of new blocks into the overall wall is a fulfilling task and a great responsibility,

that this project has the privilege to participate in.

MIRI – Master in Innovation and Research in Informatics

67 Control resilience in a F2C scenario

11. ACKNOWLEDGEMENTS

This project has been possible in part thanks to the guidance and comments from Xavi Masip-

Bruin, director of “Centre de Recerca Avançada en Arquitectures de Xarxa (CRAAX)”9 research

group, professor at Department of Computer Architecture in Universitat Politèncica de

Catalunya (UPC) and thesis supervisor; and Beatriz Otero Calviño, director of the Department of

Computer Architecture in Universitat Politèncica de Catalunya (UPC) and thesis tutor.

Special thanks to Sergi Sanchez López, Eva Marín Tordera, and Jordi Garcia Almiñana, professors

at Department of Computer Architecture in Universitat Politèncica de Catalunya (UPC) and

researchers at CRAAX, for the comments on the project.

Thanks to Pau Marcer Albareda, master student and cybersecurity researcher at CRAAX, for the

comments on the project and the security counsels, especially on the Blockchain opportunities

of the project.

Thanks to the members of the mF2C European Project consortium for the help and implication

on the integration of the project into the mF2C Agent.

Finally, thanks to the GUAU10 National Project and the CRAAX research group for the provided

infrastructure for the development and testing of the project.

9 CRAAX website: https://craax.upc.edu
10 Project code reference: TEC2015-66220-R

https://craax.upc.edu/

MIRI – Master in Innovation and Research in Informatics

68 Control resilience in a F2C scenario

12. REFERENCES

[1] D. Evans, "The Internet of Everything; How More Relevant and Valuable Connections Will

Change the World," 2012. [Online]. Available:

https://www.cisco.com/c/dam/global/en_my/assets/ciscoinnovate/pdfs/IoE.pdf.

[Accessed 23 May 2019].

[2] K. Ashton, "That 'Internet of Things' Thing," RFID Journal, p. 1, 2009.

[3] Cisco, "Cisco Visual Networking Index: Forecast and Trends, 2017-2022," 2019. [Online].

Available: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-

networking-index-vni/white-paper-c11-741490.pdf.

[4] F. Bonomi, R. Milito, J. Zhu and S. Addepalli, "Fog Computing and Its Role in the Internet of

Things," Proceedings of the first edition of the MCC workshop on Mobile cloud computing,

pp. 13-16, 2012.

[5] F. Bonomi, R. Milito, P. Natarajan and J. Zhu, "Fog Computing: A Platform for Internet," in

Big data and internet of things: A roadmap for smart environments, Springer, 2014, pp.

169-186.

[6] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, "A survey on sensor networks,"

in IEEE Communications magazine, vol. 40, IEEE, 2002, pp. 102-114.

[7] B. Parno and A. Perrig, "Challenges in securing vehicular networks," in Workshop on hot

topics in networks (HotNets-IV), Maryland, USA, 2005, pp. 1-6.

[8] X. Yang, L. Liu, N. H. Vaidya and F. Zhao, "A vehicle-to-vehicle communication protocol for

cooperative collision warning," The First Annual International Conference on Mobile and

Ubiquitous Systems: Networking and Services, 2004. MOBIQUITOUS 2004., pp. 114-123,

2004.

[9] S. Chen, J. Hu, Y. Shi, Y. Peng, J. Fang, R. Zhao and L. Zhao, "Vehicle-to-Everything (v2x)

Services Supported by LTE-Based Systems and 5G," IEEE Communications Standards

Magazine, vol. 1, no. 2, pp. 70-76, 2017.

[10] D. Linthicum, "Edge computing vs. fog computing: Definitions and enterprise uses,"

[Online]. Available: https://www.cisco.com/c/en/us/solutions/enterprise-networks/edge-

computing.html. [Accessed 4 May 2019].

[11] OpenFog Consortium, "OpenFog Architecture Overview," 2016.

[12] E. Marín-Tordera, X. Masip-Bruin, J. García-Almiñana, A. Jukan, G.-J. Ren and J. Zhu, "Do

we all really know what a Fog Node is? Current trends towards an open definition,"

Computer Communications, vol. 109, pp. 117-130, 2017.

MIRI – Master in Innovation and Research in Informatics

69 Control resilience in a F2C scenario

[13] X. Masip-Bruin, E. Marín-Tordera, G. Tashakor, A. Jukan and G.-J. Ren, "Foggy clouds and

cloudy fogs: a real need for coordinated management of fog-to-cloud computing systems,"

IEEE Wireless Communications, vol. 23, no. 5, pp. 120-128, 2016.

[14] W. Ramírez, X. Masip-Bruin, E. Marin-Tordera, V. B. C. Souza, A. Jukan, G.-J. Ren and O. G.

de Dios, "Evaluating the benefits of combined and continuous Fog-to-Cloud architectures,"

Computer Communications, vol. 113, pp. 43-52, 2017.

[15] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. Soong and J. C. Zhang, "What

Will 5G Be?," IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pp. 1065 -

1082, 2014.

[16] European Commission, "5G for Europe Action Plan," [Online]. Available:

https://ec.europa.eu/digital-single-market/en/5g-europe-action-plan. [Accessed 1 March

2019].

[17] Generalitat de Catalunya, "The ambulance of the future," .catalonia Land of digital

revolutionaries, pp. 64 - 69, 2019.

[18] V. B. Souza, X. Masip-Bruin, E. Marín-Tordera, W. Ramírez and S. Sanchez, "Towards

distributed service allocation in fog-to-cloud (F2C) scenarios," 2016 IEEE global

communications conference (GLOBECOM), pp. 1-6, 2016.

[19] "Horizon 2020 - Work Programme 2018-2020: 5.i. Information and Communication

Technologies," 13 November 2018. [Online]. Available:

http://ec.europa.eu/research/participants/data/ref/h2020/wp/2018-2020/main/h2020-

wp1820-leit-ict_en.pdf.

[20] European Commission, "CORDIS | H2020: Towards an Open, Secure, Decentralized and

Coordinated Fog-to-Cloud Management Ecosystem," [Online]. Available:

https://cordis.europa.eu/project/rcn/206164/factsheet/en. [Accessed 14 Feb 2019].

[21] mF2C Consortium, "Technical Whitepaper mF2C Project," 2018.

[22] mF2C Consortium, "mF2C D2.7 mF2C Architecture (IT-2)," 2019.

[23] OpenFog Consortium, "OpenFog Reference Architecture for Fog Computing," 2017.

[24] M. Shirali, A. H. Toroghi and M. Vojdani, "Leader election algorithms: History and novel

schemes," 2008 Third International Conference on Convergence and Hybrid Information

Technology, vol. 1, pp. 1001 - 1006, 2008.

[25] Atlassian, "ZooKeeper Wiki," [Online]. Available:

https://cwiki.apache.org/confluence/display/ZOOKEEPER/Index.

[26] Apache Foundation, "ZooKeeper: Overview," [Online]. Available:

https://zookeeper.apache.org/doc/r3.5.5/zookeeperOver.html. [Accessed 17 March

2019].

[27] Z. Rejiba, X. Masip-Bruin, A. Jurnet, E. Marin-Tordera and G.-J. Ren, "F2C-aware: Enabling

discovery in Wi-Fi-powered fog-to-cloud (F2C) systems," 2018 6th IEEE International

MIRI – Master in Innovation and Research in Informatics

70 Control resilience in a F2C scenario

Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud), pp. 113

- 116, 2018.

[28] OpenFog Consortium, "OpenFog Consortium Use Cases," [Online]. Available:

https://www.openfogconsortium.org/resources/#use-cases. [Accessed 1 March 2019].

[29] Apache Software Foundation, "Apache Hadoop Wiki," [Online]. Available:

https://wiki.apache.org/hadoop. [Accessed 5 March 2019].

[30] A. Lakshman and P. Malik, "Cassandra - A Decentralized Structured Storage System," ACM

SIGOPS Operating Systems Review, vol. 44, no. 2, pp. 35-40, 2010.

[31] J. Martí, A. Queralt, D. Gasull, A. Barceló, J. J. Costa and T. Cortes, "Dataclay: A distributed

data store for effective inter-player data," in Journal of Systems and Software, vol. 131,

Elsevier, 2017, pp. 129-145.

[32] "Python.org," [Online]. Available: https://www.python.org/.

[33] "docker," [Online]. Available: https://www.docker.com/.

[34] "Docker Overview," [Online]. Available: https://docs.docker.com/engine/docker-

overview/. [Accessed 5 March 2019].

[35] "Swagger UI," [Online]. Available: https://swagger.io/tools/swagger-ui/.

[36] "Flask-RESTPlus," [Online]. Available: https://flask-restplus.readthedocs.io/en/stable/.

[Accessed 14 March 2019].

[37] "logging documentation," [Online]. Available:

https://docs.python.org/3/library/logging.html. [Accessed 5 March 2019].

[38] "colorlog documentation," [Online]. Available: https://pypi.org/project/colorlog/.

[Accessed 15 March 2019].

[39] "psutil documentation," [Online]. Available: https://pypi.org/project/psutil/. [Accessed 5

March 2019].

[40] M. Rehkopf @Maxrehallday, "What is Kanban? - Agile Coach Ep. 11 (2019)," Atlassian Agile

Coach, 2019.

[41] "Trello," [Online]. Available: https://trello.com.

[42] "Git," [Online]. Available: https://git-scm.com/.

[43] "GitHub," [Online]. Available: https://github.com.

[44] "GitLab," [Online]. Available: https://gitlab.com/.

[45] "Slack," [Online]. Available: https://slack.com.

[46] "Waffle," [Online]. Available: http://waffle.io/.

MIRI – Master in Innovation and Research in Informatics

71 Control resilience in a F2C scenario

[47] "About GitHub Project Boards," [Online]. Available:

https://help.github.com/en/articles/about-project-boards. [Accessed 20 March 2019].

[48] "Travis CI," [Online]. Available: https://travis-ci.org/.

[49] Scrum.org, "What is Scrum?," [Online]. Available:

https://www.scrum.org/resources/what-is-scrum.

[50] Internet Engineering Task Force (IETF), "Hypertext Transfer Protocol (HTTP/1.1): Semantics

and Content," June 2014. [Online]. Available: https://tools.ietf.org/html/rfc7231#section-

6.

[51] mF2C Consortium, "D2.5 mF2C Security/Privacy Requirements and Features (IT-2)," 2017.

[52] M. E. Peck, "Blockchains: How They Work and Why They’ll Change the World," 28

September 2017. [Online]. Available:

https://spectrum.ieee.org/computing/networks/blockchains-how-they-work-and-why-

theyll-change-the-world. [Accessed 27 May 2019].

[53] Z. Zheng, S. Xie, H. Dai, X. Chen and H. Wang, "An overview of blockchain technology:

Architecture, consensus, and future trends," 2017 IEEE International Congress on Big Data

(BigData Congress), pp. 557-564, 2017.

[54] X. Xu, I. Weber, M. Staples, L. Zhu, J. Bosch, L. Bass, C. Pautasso and P. Rimba, "A Taxanomy

of Blockchain-Based Systems for Architecture Design," 2017 IEEE International Conference

on Software Architecture (ICSA), pp. 243-252, 2017.

[55] S. Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash System," 2008.

[56] K. Wüst and A. Gervais, "Do you need a Blockchain?," 2018 Crypto Valley Conference on

Blockchain Technology (CVCBT), pp. 45-54, 2018.

[57] P. Marcer Albareda, "Fog - Applying blockchain to secure a distributed set of clusters,"

Universitat Politècnica de Catalunya, To be published on July 2019.

	ABSTRACT (1000 Words)
	01. Introduction
	1.1. What is fog/edge computing
	1.2. Fog-to-Cloud Paradigm
	1.3. Real Time Services
	1.4. Problem Definition and Motivation
	1.4. Structure of the Project

	02. Objectives
	03. State of the Art
	3.1. Fog-to-Cloud
	3.1.1. mF2C
	3.1.2. OpenFog Reference Architecture

	3.2. Resilience in Distributed Systems
	3.2.2. Controller Election
	3.2.3. Zookeeper

	04. Global Functional Blocks Design
	4.1. System Architecture
	Leader Election
	Leader Responsibilities:
	Leader Requirements
	Selection Process

	4.2. Design Challenges
	4.3. Functional Blocks Architecture
	Discovery
	External Orchestration

	05. Design of a Leader Protection Strategy
	5.1. Area Resilience
	5.1.1. Backup Election and Keepalive Protocol
	5.1.2. Control Data Replication
	Direct Transfer
	Zero-Knowledge
	Keep-updating
	External Keep-updating
	Cloud External Keep-updating

	Distributed Database
	Cassandra Database
	Dataclay

	5.2. Leader Reelection

	06. Policies Design
	6.1. Rule Based Systems
	Leader Election Policies
	Leader Selection Policies
	Area Protection Policies
	Distribution Policies

	6.2. Dynamic Policies
	6.3. Replication of the Policies

	07. Blocks Implementation and integration
	7.1. Technology and Methodology
	7.2. Leader Protection
	7.3.1. Area Resilience
	7.3.2. Leader Reelection

	7.3. Policies
	7.3.1. Policies Distribution
	7.3.2. Specific Policies Definition

	7.4. Discovery
	7.4.1. Light Discovery

	7.5. API and CRM Core
	7.6. Illustrative Use Case: mF2C Integration

	08. Project Results and Validation
	8.1. API GUI
	8.2. Resilience
	Basic Functionality Tests of module startup:
	Area Resilience Tests
	Leader Reelection Tests

	8.3. Policies
	8.4. Dynamic Policies study
	8.5. Validation in the mF2C Use Case

	09. Future Work
	10. Conclusions
	11. Acknowledgements
	12. References

