
FOG – Applying Blockchain to Secure a 
Distributed Set of Clusters 

 

MASTER IN INNOVATION AND RESEARCH IN INFORMATICS, COMPUTER NETWORKS AND 

DISTRIBUTED SYSTEMS, FACULTAT D’INFORMÀTICA DE BARCELONA (FIB), UNIVERSITAT 

POLITÈCNICA DE CATALUNYA (UPC) – BarcelonaTech 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pau Marcer Albareda 

Date: 01-05/07/2019 

Tesis tutor: Beatriz Otero Calviño 

Tesis supervisor: Eva Marin Tordera 

Arquitectura de Computadors (AC) 

  



2 
 

INDEX 
Abstract ....................................................................................................................................................................................... 4 

Keywords ............................................................................................................................................................................... 4 

1 Introduction, motivation and objectives .................................................................................................................... 5 

1.1 Introduction ................................................................................................................................................................... 5 

1.2 Motivation ...................................................................................................................................................................... 5 

1.3 Objectives ....................................................................................................................................................................... 6 

2 Background ............................................................................................................................................................................ 7 

2.1 Fog Computing ............................................................................................................................................................. 7 

2.1.2 Fog scenario in this project ............................................................................................................................. 8 

2.2 Blockchain ...................................................................................................................................................................... 8 

2.2.1 Functionality Overview .................................................................................................................................... 8 

2.2.2 Blockchain Architecture ................................................................................................................................... 9 

2.2.3 Block structure ................................................................................................................................................... 13 

2.3 Consensus ..................................................................................................................................................................... 14 

2.4 Security models overview ..................................................................................................................................... 17 

2.4.1 Introduction ........................................................................................................................................................ 17 

2.4.2 PKI (Public Key Infrastructure) [15] ........................................................................................................ 17 

2.4.3 Kerberos [16] ..................................................................................................................................................... 17 

2.4.4 BCTrust: A decentralized authentication blockchain-based mechanism [17]: ....................... 18 

2.5 Blockchain Frameworks ......................................................................................................................................... 19 

3 Security challenges on the Fog ..................................................................................................................................... 20 

3.1 Mobility issues ............................................................................................................................................................ 20 

3.2 Centralized security models ................................................................................................................................. 20 

3.3 Centralized data ......................................................................................................................................................... 20 

4 Applying Blockchain to Secure a Distributed Set of Clusters .......................................................................... 21 

4.1 Objective ....................................................................................................................................................................... 21 

4.2 Components ................................................................................................................................................................. 26 

4.2.1 Secure Edge Node (SEN) ................................................................................................................................ 26 

4.2.2 Device .................................................................................................................................................................... 26 

4.2.3 Gateway ................................................................................................................................................................ 26 

4.2.4 Simple Device ..................................................................................................................................................... 26 

4.2.5 Anonymous device ........................................................................................................................................... 27 

4.2.6 Resume of component characteristics ..................................................................................................... 27 

4.3 Proposed architecture ............................................................................................................................................. 29 



3 
 

4.3.1 Network ................................................................................................................................................................ 29 

4.3.2 Blockchain: Blocks ............................................................................................................................................ 30 

4.3.3 Blockchain: Consensus ................................................................................................................................... 33 

4.3.4 Webinterface....................................................................................................................................................... 36 

4.3.5 Architecture integration ................................................................................................................................ 39 

4.4 Functionality ............................................................................................................................................................... 41 

4.4.1 First key distribution. ...................................................................................................................................... 41 

4.4.2 SEN0 ....................................................................................................................................................................... 41 

4.4.3 Sens ......................................................................................................................................................................... 42 

4.4.4 Devices .................................................................................................................................................................. 46 

4.4.5 Authentication .................................................................................................................................................... 50 

4.4.6 Validation ............................................................................................................................................................. 51 

4.4.7 Extensions ............................................................................................................................................................ 52 

4.6 Programming language used ................................................................................................................................ 53 

4.7 Prototype code structure ....................................................................................................................................... 53 

5 Validation of the use cases ............................................................................................................................................. 54 

5.1 Methodology ................................................................................................................................................................ 54 

5.2 Validation...................................................................................................................................................................... 55 

5.3 Testing scenario replication ................................................................................................................................. 63 

6 Future work ......................................................................................................................................................................... 63 

7 Conclusions .......................................................................................................................................................................... 64 

8 Acknowledgments ............................................................................................................................................................. 65 

9 References ............................................................................................................................................................................ 66 

10 Annex ................................................................................................................................................................................... 67 

 

  



4 
 

ABSTRACT 

5G has already been presented and shown in major congresses, thus it’s just a matter of time that this 

technology comes to the enterprise and public usages. Therefore, we can affirm that we are moving 

towards a world where everything will be connected (i.e. our cars, our houses, our wearable devices). 

Consequently, the number of devices connected to the Fog will be around the billions. This drastic increase 

in connected devices at the Fog layer promotes a change in the Internet architecture, that requires new 

technologies to manage the newly Fog devices. Despite the cloud being a powerful model, at the end it’s 

a centralized architecture, thus it fails to scale with the addition of millions of Fog devices. The Fog presents 

a great amount of architectural and management challenges, such as who will run the Fog infrastructure, 

or how the Fog nodes will provide services by themselves, and a sometimes forgotten but critical aspect, 

the security. The current centralized security architectures do not scale well enough in order to be applied 

on the Fog. Those models such as Certificate Authorities (CA’s) are centralized, usually on cloud providers, 

and offer a much more static security (i.e. a website secured with a CA, that barely changes IP and doesn’t 

move). At the end this kind of security approaches are invalid in environments where devices are moving 

and changing networks constantly, like the fog scenario, because the same nature of the approach makes 

it invalid for such scenarios. 

Therefore, we require new and completely distributed security architectures, capable of being flexible and 

scalable, while at the same time providing fault proof security to the Fog. A new technology that has been 

growing lately is the blockchain, this technology really shines on completely distributed systems. The 

blockchain is capable of keeping an immutable set of data distributed across multiple peers on a network. 

Then the peers can use that data and update it through a consensus procedure, performed following a 

consensus algorithm criteria. 

The main objective of this project is the proposal of a novel blockchain architecture that will contain all 

the Fog session information. This information will be used to provide security to the Fog devices, and it 

will be capable of providing authentication and verification mechanisms to those devices, ensuring the 

integrity of the data provided. To accomplish this objective a Fog profile will be used. Each new device will 

be able to register its profile in the Fog session, with a required set of public keys, and by providing an 

extensible Rule-set field that will contain all the required information in order to identify a device (i.e. the 

device specs such as CPU or RAM), to later on execute services on the Fog, based on such specs and 

information. 

 

 

Keywords 
Blockchain, Distributed ledger, Fog, Edge, Security, Authentication, Session architecture, Device 

profiling. 
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1 INTRODUCTION, MOTIVATION AND OBJECTIVES 
In this first section the project will be introduced with its motivation and an overview of the projects 
objectives. 

1.1 Introduction 
With the arrival of 5G, the increase on smart car production and the latest smart house devices that 
can be actually bought from most relevant stores, we can affirm that we are moving towards a world 
where devices will be everywhere and everything around us and will have sensors. Consequently, 
there will be a major number of devices connected to the Internet. This huge amount of devices can 
be more than just connected devices. They can be part of a Fog network able to self-orchestrate and 
provide services at the Fog level, without relying on the centralized cloud services. But this proposes 
a change in the actual Internet architecture used to provide services that has been used since the first 
days of the net, from centralized to distributed. This change towards a decentralized Internet 
presents a whole set of new challenges, such as who will be the owner/s of the Fog infrastructure or 
who will be the Fog operator/s. Moreover, it presents the need for a new decentralized security 
architecture, as the actual security architectures are based on centralized cloud services, thus are 
unreliable and do not scale well enough for a Fog system. In addition, we believe that for the Fog to 
become a valid and used technology, it has to be able to orchestrate itself, security included, without 
completely relying on the cloud, thus introducing the need of a new completely distributed security 
architecture, because if the Fog relies on the cloud in order to securely operate, it’s not Fog at all, it’s 
just an extension of the cloud. 

1.2 Motivation 
Nowadays there is no distributed architecture that can be used to secure a Fog area. We define a Fog 
area as any area with enough IoT devices to form a cluster (i.e. Building with sensors, cameras and 

smartphones). All of the available technologies highly rely on centralized cloud services, such as 
Certificate Authorities (CAs) and its certificates or centralized profile servers. The motivation of this 
project is to fill this technological gap, for this reason we propose a novel distributed security 
architecture, that could be applied on Fog areas in order to make them secure. To do so, we will use 
the newly and promising blockchain technology. 

The blockchain technology provides a distributed and immutable set of data in form of transactions, 
distributed across all peers in a blockchain network. Usually blockchain is associated with 
cryptocurrencies, but blockchain has much more uses than that, for example Sovrin[1] a distributed 
identity platform, or the projects under the Hyperledger framework[2]. Blockchain is a relatively new 
technology thus its usages are still being explored. We aim to test this technology on a simulated Fog 
scenario, and validate if it’s a valid technology in order to secure it.  
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1.3 Objectives 
The final objective of this project is to propose a new security model for the Fog using blockchain 
technologies. We will define and deliver the architecture for the security model plus the prototype, 
which will prove if the proposed model is valid in order to provide security to the Fog. The objective 
of the architecture is to define all the required aspects of the security model to be applied. On the 
other hand, the objective of the prototype is to prove the functionality of the proposed security model. 
The resulting project will be able to verify each device identity in the Fog system, establish secure 
connections between authenticated devices and verify the integrity of the data provided by the Fog 
devices, while being completely distributed and cloud/connection independent. 

In order to accomplish the previous objectives, we propose to use the blockchain as a session holder 
for the Fog. Therefore the blockchain will store all the relevant information for the Fog session, to 
provide authentication and security to the Fog devices. Since all the actions performed on the 
blockchain are called transactions, we will call a transaction to each action performed on the Fog 
session. The transaction will have a public key, which will identify the device related to the 
transaction, and a set of actions performed on the session, we call this set of actions the rule-set (i.e. 
registration of a device). At the end, this project will be the beginning of a base where to build a secure 
Fog platform. The project will provide the base authentication and tools in order to secure a huge 
amount of Fog projects.  Moreover, we expect the rule-set to be extendible with custom fields, so this 
project can fit in almost any Fog related project out there, which needs a distributed security 
architecture. 

Overview of objectives: 

 Proposing a new blockchain model to secure a Fog area. 

 Delivering the architecture plus the prototype code for the proposed model. 

 Using the prototype to test the model validity with a series of testing and validation scenarios. 

 The model must secure a Fog area, and provide Fog profiles to the Fog devices. 

 The blockchain will be the Fog session holder. 

 All the devices must be able to register into the session. 

 All the devices must be abler to use the session to establish secure connections. 
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2 BACKGROUND 
In this chapter, we will present the background for this project. The content goes as following: In 
section 2.1 we will present a brief overview of the Fog paradigm and we will introduce the most 
related concepts of Fog with our project. Next, on section 2.2, we will present the blockchain 
technology, with a review of functionality, architecture and the standard block structure. Then, in 
section 2.3, we will review the most relevant consensus algorithms for this project, and we will point 
the best candidates for later using in our architecture. The 2.4 point reviews the security models that 
can be used nowadays on any architecture, and a proposal that uses the blockchain to secure devices, 
but that follows a different approach. Finally on the point 2.5 we will review the main blockchain 
frameworks that could be used in order to implement our architecture into a prototype. 

2.1 Fog Computing 
With the arrival of 5G, it’s just a matter of time that Fog computing becomes a hot topic, if it’s not 
already one. We cannot deny that we will need new architectures in order to manage all the upcoming 
IoT devices, and that those architectures will have to be based on distributed systems, as it’s not 
feasible to keep the same centralized cloud architecture to manage billions and billions of devices. 

Fog computing[3] was first mentioned by CISCO and its base proposal is an infrastructure at the edge 
of the network, capable of using the resources at the extreme of the network. This infrastructure is 
composed by smart grids, smart cars and a huge diversity of connected devices. 

Since the Fog infrastructure is placed near to the user, it will be capable of providing a near zero 
latency connection, that for example could be used to perform real time video streaming, or 
augmented reality support to its users. 

This opens the Fog for a new branch of operators, which could compete in order to provide services 
on the Fog infrastructure. Fog is tied to the cloud, but in our opinion, in order to survive it should not 
rely on the cloud for everything, as this makes the cloud a better choice for most users and services. 
The Fog should be able to orchestrate itself and the services it provides to the users, and then and 
only when a service needs it should be scaled to the cloud. But this scaling decision should be taken 
on the Fog and not on the cloud. 
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2.1.2 Fog scenario in this project 
Our project is focused on providing a distributed authentication model to any distributed 
architecture, but in the Fog is where this kind of approach makes more sense, as the amount of 
devices will be high, heterogeneous and constantly growing and moving, a centralized architecture 
is not suitable for this kind of environment. 

The Fog is meant to execute and provide services closer to the user, compared to the cloud, and those 
services will need a valid trust model, in order to correctly operate without security vulnerabilities 
that will compromise the whole system. The model used to provide security to the Fog can be this 
project proposal, as this project target is enabling security on distributed systems and it’s intended 
to operate on any Fog environment, thanks to its extensible properties. Therefore, the project can be 
extended in order to provide security to the services executing on the Fog, even if the Fog is composed 
by various different subsystems. In conclusion we present the Fog as the main objective architecture 
for this project to secure, but this doesn't mean that this project can only be used on Fog scenarios, 
instead this project can be used on other kind of distributed architectures, where security is required, 
and devices can have a profile. 

2.2 Blockchain 
Blockchain technology is a trend nowadays, as more researchers are exploring its capabilities applied 
to a huge amount of different use cases. Indeed, it's really powerful when applied to highly distributed 
systems, as the blockchain is completely distributed while at the same time its data is immutable. 

2.2.1 Functionality Overview 
Blockchain is a technology found in distributed systems, it enables multiple peers to keep a copy of 
the same data-set across the network. The data-set is formed by blocks, and these are linked to each 
other by the previous block hash, thus forming a chain that cannot be altered. Usually blocks are 
signed by one or multiple peers depending on the consensus protocol used (see illustration 1). 

 

Once we have the linked blocks, we can start storing data in those blocks, that data is usually refereed 
as a transaction, since the blocks have a timestamp, and no block can be deleted, it creates an 
immutable register of transactions. This is especially useful in cryptocurrencies, as it is used to store 
financial operations. However, it can be used to store any kind of data. In a high level we can divide 
the blockchain in two parts: 

 
Illustration 1: Blockchain linked blocks by previous block hash 
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The block structure, explained above, that ensures the integrity of the blockchain data and defines 
which data we can be stored as a transaction. 

The consensus protocol, which distributes the blockchain over the peers and enables the consensual 
addition of new blocks or transactions, into the blockchain, ensuring the distribution and integrity of 
the blocks across all peers. 

 

2.2.2 Blockchain Architecture 
Blockchain architecture can be cut into three main architectures: Permissionless, permissioned, and 
hybrid or consortium. Diverse blockchain frameworks use different architectures depending on their 
final objective. For example, Etherum[4] and Bitcoin[5] use a permissionless architecture, while on 
the other hand, Hyperledger Fabric [2]  supports consortium architectures. There aren’t any major 
blockchain framework that use a permissioned architecture[6], as some argue that it goes against the 
blockchain basics. 

On the following points we will introduce and overview the three main blockchain architectures. In point 

2.2.2.1 we introduce and review the permissionless blockchain architecture. Later on in point 2.2.2.2 we 

introduce and review the permissioned blockchain architecture. Finally in point 2.2.2.3 we introduce and 

review the permissionless blockchain architecture.  
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2.2.2.1 Permissionless 
In the permissionless blockchain architecture, anyone can join the blockchain network and 
participate in the consensus, since there is no authentication required against other devices when 
performing consensus operations. Illustration 2, illustrates the permissionless architecture, being 
the blue cloud the blockchain network, and the blue nodes the devices belonging to it. As defined in 
the permissionless architecture all nodes can participate in the consensus. 

This architecture perfectly suits anonymous cryptocurrency networks where participants want to be 
anonymous to each other, and is the basis of the first blockchain ever, that is bitcoin. Well-known 
consensus algorithms belonging to this architectural group used on this kind of blockchain networks 
are Proof of work and Proof of Stake[7].  

  

 
Illustration 2: Public blockchain 
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2.2.2.2 Permissioned 
Unlike the permissionless architecture presented in the subsection above, in the permissioned 
architecture, the access to the blockchain network is controlled and, consequently, only 
authenticated devices can join the blockchain network. Illustration 3, depicts the permissioned 
blockchain network, and shows the two main important differences vs illustration 2. First, while 
similarly to the permissionless architecture shown in illustration 2, the blue cloud, represents the 
network, and the blue nodes represent the devices belonging to the blockchain network, additional 
red nodes come up representing the set of nodes outside the private network not enabled to access 
the blockchain. Second, in this permissioned architecture approach only the blue validator nodes can 
participate in the consensus. 

In this kind of architectures, consensus is controlled by one single organization, putting together 
either one node or a set of nodes to manage all consensus related tasks, depending on the used 
consensus algorithm. This makes this architecture a non-optimal choice for scenarios where a large 
set of distributed nodes and multiple networks are together. In addition the fact that the consensus 
it’s controlled by a single organization means that such organization will have all the power on the 
blockchain and this is a bad approach on blockchains. 

 

 

  

 

Illustration 3: Permissioned blockchain 
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2.2.2.3 hybrid/Consortium 
In this architectural approach, any device is allowed to read the blockchain, any device can verify its 
data, but only a controlled set of ‘validators’ is allowed to perform consensus operations and commit 
blocks. Similarly to the two previous architectures, illustration 4 represents the blockchain network 
as the blue cloud and the devices belonging to it as blue nodes. As in illustration 2 (i.e. permissionless 
architecture), any device can join the network, but differently, not all devices can participate in the 
consensus. Indeed, two types of devices may be defined, normal devices (belong to the blockchain 
network but that can’t participate in the consensus), and validators (that can participate in the 
consensus)[7]. 

Acting as a hybrid approach between the two described before, seems a reasonable solution to 
provide security with no need to lose the complete control. Indeed, this approach enables all network 
devices to review and verify the blockchain data, while simultaneously enabling a consortium of 
organizations to control the blockchain through a set of validators owned by the consortium 
members. By doing so, the blockchain cannot be altered by any attacker as long as the majority 
validators are secure (this majority is specified by the consensus algorithm). 

 

 

  

 
Illustration 4: Consortium blockchain 
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2.2.3 Block structure 
The block structure is the data that a block contains, and it completely defines the characteristics of the 

resulting blockchain, the transactions it can accept and the security of those transactions. 

Depending on the final purpose of the blockchain, the block structure will have to be modified in order to 

fulfill such purpose. The definition of the schema is something that cannot be altered in the future, it is 

preserved with the blockchain. The block structure is highly related to the consensus algorithm used, as it 

has to tolerate such protocol. 

There are some common block fields that are present on almost all the blockchains (see illustration 5), 

those fields are defined as following: 

 

Index, although this one is not strictly required, most blocks contain its index inside the blockchain. 
The index is used to help store the block following an order and help fasten query operations.  

Timestamp, it contains the time of creation of a block. This is done to force an order on the 
blockchain, and keep control of the timings, usually to know when a transaction had happened, and 
to establish a time order between blocks and block transactions. 

Transaction, The data payload of the block. The information contained here might change depending 
on the blockchain purpose. The transaction must contain at least one signature from the issuer of the 
transaction, and a payload of data that could be almost everything. 

Nonce, blocks may contain this field in order to increase security. This field is a random array of bytes 
that introduces noise to the block in order to strength its cryptographic hash, it’s most useful in small 
or repetitive blocks where the hash function can be weaker. 

Previous block hash, which stores the hash of the previous block. This is done to keep the blockchain 
integrity safe, as there is no previous block that could be altered, even with the signing keys, without 
creating an incoherence in the following block that could be easily detected by any participant device. 

To obtain the block hash, a hashing algorithm is used. The block hash is obtained from the block 
headers, which usually take all the fields inside the block. 

Signature, the block must contain at least one signature from the validator that creates it in the 
consensus phase, to verify the block and know who issued it. 

Illustration 5: Blockchain block example 
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2.3 Consensus 
A consensus algorithm is a mechanism used to keep a set of data distributed across multiple network 
peers, and controls the data addition and distribution. 

Blockchain is the perfect example of a distributed system where various consensus algorithms can 
be applied, resulting in the same result or state for the system, a consensus between the nodes on a 
certain action, usually which transaction or set of transactions should be applied to the next block. 
But to achieve that result, there is a huge amount of algorithms following different strategies that, as 
everything in architecture design, have a tradeoff. Some of them are faster but not great fault tolerant, 
while others have a logarithmic overhead of communication messages but are byzantine fault 
tolerant. Moreover, some of them are permissioned while others are open to everyone. 

In resume, one of the things that distinguish each blockchain framework is the use of different 
consensus algorithms. For example, Hyperledger Indy[8] uses a modified implementation of the 
RBFT consensus algorithm[9], Tendermint uses the Tendermint consensus algorithm[7], 
Hyperledger Fabric uses the PBFT consensus algorithm[10] while other blockchain frameworks 
more related to cryptocurrencies use more generalized algorithms, such as Etherum[4] that uses 
Proof of Work[11] on its mainline and its testing the usage of Proof of Stake[11] and Bitcoin[5] that 
uses Proof of Work. 

The objective of the following sections is to introduce the most know or common consensus 
algorithms, in order to later on choose one consensus algorithm or algorithms for our proposal. 

We can abstract the consensus algorithms and divide them into two subgroups: the ones that are 
open, and allow everyone to participate into the consensus phase, and the ones that are permissioned 
and require the peers to meet a certain requirement in order to join the consensus phase [7]. 

Property PBFT RBFT Zyzzyva Tendermint PoW PoS 

Peer Identity 

management 

Permissioned Permissioned Permissioned Permissioned open open 

Fault 

Tolerance 

< 33.33 % 

byzantine voting 

power2 

< 33.33 % 

byzantine 

voting power2 

< 33.33 % 

byzantine 

voting power2 

< 33.33 % 

byzantine 

voting power2 

< 25% 

computing 

power 

< 51% stake 

Optimal 

power usage 

yes yes yes yes no partial 

Example Hyperledger 

Fabric [2] 

-- -- Tendermint 

[12] 

Bitcoin[5] Peercoin[13] 

Table 1: Comparasion of the consensus algorithms properties. 

2Byzantine voting power: The minimum required nodes to fail in order to alter a byzantine fault tolerant algorithm. 

  



15 
 

PBFT Practical Bizantine Fault Tolerant [10] 

PBFT is the most basic Byzantine fault tolerant protocol, the following protocols Zyzzyva and PBFT 
part from this protocol base. 

This byzantine fault tolerant protocol is distributed in rounds, each adding a new block. The process 
starts by first, selecting a primary out of the set of possible validators. To that end, some policies are 
applied customized to the final objective and environment of the protocol. Once the primary is 
selected, it becomes responsible for setting the order for the different transactions as they are being 
received by the primary. Then, when the primary receives a petition to add a new block, the primary 
runs the commit protocol, which is structured into three different phases, pre-prepared, prepared 
and committed, moving a necessary condition for a node to pass each phase to receive votes from 
2/3 of the validator nodes. Certainly, the PBFT protocol requires every node to be known by the 
blockchain network. 

This protocol could be usable by our project, as it fits into our needs of a permissioned Byzantine 
fault tolerant protocol, but in our opinion there are similar options that offer better performance as 
we will see in the following points. 

Zyzzyva: Speculative Byzantine Fault Tolerance [14] 

Zyzzyva protocol introduces the usage of speculation in order to reduce the cost and simplify the 
design of byzantine fault tolerant algorithms. The clients respond automatically to any requests, 
skipping the three phase commit proposed in PBFT. To do so, they follow the order of the so called 
‘primary’, thus minimizing the network communications to the theoretical minimums. However 
some inconsistencies may come up on the system, those inconsistencies must then be addressed by 
the clients. 

This protocol could be usable by our project, as it fits into our needs of a permissioned Byzantine 
fault tolerant protocol. 

RBFT Redundant Bizantine Fault Tolerant [9] 

RBFT protocol targets the performance problem when the faulty or malicious replica is in fact the so 
called ‘primary’. To do so, it makes all the clients to be a ‘primary’, and introduces the concept of the 
‘master instance’. All validators/primary instances are responsible to order the requests, but only 
the master instance order is actually executed. The results presented in [9] are promising as the 
performance when no failure occur is similar to the top protocols, and when a failure occurs, the loss 
of performance is only a 3%, while in other protocols is a major 78%. 

This protocol could be usable by this project, as it fits into our needs of a permissioned Byzantine 
fault tolerant protocol and it’s actually far better in performance than zyzzyva if a failure occurs. 
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Tendermint [12] 

This protocol is based on the byzantine fault tolerant consensus protocol idea, it uses a set of 
validators that sign blocks, and blocks require a set of signatures in order to be committed. The 
consensus phase consists of rounds, each round has three steps: Propose. Prevote and Precommit. 
Additionally, validators issue three different votes: Prevote, Precommit, Commit. A block is 
committed by the network when in a round there are 2/3 of majority of commits. 

This protocol is permissioned because in order to become a validator, a user first must put coins in a 
bound deposit. But, anyone can be a validator if the coins are deposited. This is good for public 
blockchains, but is not that suitable by our blockchain goals, as this project demands a total control 
on validators. 

PoW Proof of Work [11] 

In proof of work consensus algorithms, there is the concept known as miners. Miners are the peers 
that try to create or mine new blocks in order to be added to the blockchain. In order for those blocks 
to be accepted by others they require to meet a special hash, starting with 4 consecutive zeros , thus 
miners must try different combinations of transactions and calculate multiple hashes of a block since 
they find the required pattern. Once the pattern is found, the block is distributed by others and 
committed. This peculiar consensus algorithm requires a high amount of computational power, as by 
2019 this consensus algorithm is using more power than some small countries. 

This protocol requires too much computational power and is only usable on totally public networks. 
In conclusion, it’s not valid for our needs. 

PoS Proof of Stake [11] 

This consensus algorithm rewards the users with most stake in the system, (i.e. usually more money), 
and allow those users to validate or create new blocks from the transaction set. This approach follows 
the theory that the users owning the most part of the money are the ones that one to keep the network 
alive and won’t go against it, as they are the ones with more to lose. 

As PoW algorithm, this protocol is only usable on totally public networks and it’s not valid for our 
needs. 
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2.4 Security models overview 

2.4.1 Introduction 
In this chapter, we aim to present some of the most used and relevant (to our project) security models 
on the cloud and its limitations within a Fog environment. The first model to be presented will be the 
Public Key Infrastructure or PKI. This is the actual model that provides security to most of the 
Internet websites right now. Another model we will review is the Kerberos authentication server, 
which is an example of a centralized authentication cloud server. At the end, we will review a model 
that makes use of blockchain in order to provide decentralized authentication.  

2.4.2 PKI (Public Key Infrastructure) [15] 
One of the most used security models nowadays on the cloud is the PKI (Public Key Infrastructure). 
PKI model is usually based on certificates, where each certificate has a public key associated to a 
domain name or IP and the whole certificate is signed by one or multiple CA (Certificate Authority). 
Thus if a client trusts a CA, then it trusts that when a domain provides a public key with a certificate 
and that certificate is signed by a trusted CA then the domain is trusted. Therefore, certificates are 
really good in providing security on the cloud. However, certificates are linked to domain names to 
verify the identity of the machines and can’t provide any extra information on a host. Hence CAs are 
not suitable for the Fog, due to the highly mobility of the devices and should not be linked to domain 
names. 

Even though some can argue that certificates could be customized in order to keep the required 
information for a Fog device, we would still have the problem of a centralized CA server being a 
bottleneck, and the key distribution to the Fog devices in order to trust those CAs won’t be as easy as 
done in the cloud. The same strategy can’t be followed in the Fog since the keys are embedded in the 
browsers and verified by the browser providers. In resumes PKI is too static to fit into the Fog 
environment. 

 

2.4.3 Kerberos [16] 
Kerberos is a centralized server used to secure untrusted open networks with unsecured machines, 
where servers cannot authenticate its clients, thus a third party is needed in order to secure the 
network. Kerberos acts as a ticket issuer, each machine has to identify to the Kerberos server, and 
then it gets a ticket. That ticket could be used in order to establish secure connections to other 
machines. 

Although this technology is able to secure unsecured networks providing identities to machines, it’s 
not usable on a Fog environment, as it’s totally centralized and relies on a ticket database, implying 
that this system could never scale to a Fog scale. 
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2.4.4 BCTrust: A decentralized authentication blockchain-based mechanism [17]: 
BCTrust proposes a new blockchain model, based on a customized Etherum[4], that will store each 
device request in order to perform an exchange of data with another client. 

The blockchain will store which devices are trusted by a super node, and then when the device moves 
to another super node, the supernode checks the blockchain for the newly joined device. If that device 
was indeed authorized from another super node, then it’s valid for him, and requests to the other 
super node the device symmetric keys to perform a secure data exchange. 

In our opinion, the blockchain scalability is the major flaw of this proposal. If we have to store all this 
information in Etherum, a blockchain that can store almost anything, the constrained Fog devices will 
run out of memory, and we won’t be able to do nothing to prevent this. In the other hand, this project 
does not use the whole potential of the blockchain for a totally decentralized authentication, since 
devices are still forced to perform transactions in order to exchange data securely. An enhancement 
could be actually use the local blockchain to perform this authentication action without the need of 
further transactions. This could save a countless and precious amount of memory to Fog devices, 
memory that is finite on them, as the Fog is not the cloud and its device resources are limited. Apart 
from this, we have to take into account that symmetric keys are being stored and shared trough the 
blockchain, and this is a bad practice. The blockchain should never be used to share not static data, 
as this will make the blockchain grow in data size uncontrollably and will bring scalability issues. 
There are other technologies already for this purpose. 

Another issue is that this proposal does not mention any consensus algorithm at all, and the one used 
in Etherum (PoW) is not suitable for this kind of permissioned network. They mention a modification 
of Etherum with smart contracts but fails to mention how the consensus validators will be 
authenticated to other devices. To conclude, in our opinion, if Etherum got to be modified so much, 
perhaps Etherum is not the right base to start with. 
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2.5 Blockchain Frameworks 
In this section, we will overview some of the existing frameworks or projects that could be related or 
used for our work. 

There is one major project that at this moment has 6 sub projects under development and around 6 
tools called the Hyperledger project[18]  under the Linux foundation. The project goal is to provide 
the tools needed in order to build blockchains out of the box, abstracting the network low level 
complexity.  The two most relevant Hyperledger projects for our project are Hyperledger Indy or 
Sovrin[1] (they are not the same project but are highly related as they share the same code base), 
and Hyperledger Fabric. 

 

Hyperledger Indy[8] 

The main goal of Hyperledger Indy is to establish a base for decentralized online identity. The project 
objective is to provide digital identity to users that could be used in order to use online services. 

This is the closest project to our proposal, but it’s aimed towards users for the whole net. In the other 
hand, our proposal is aimed more for Machine-to-Machine (M2M) communications and it’s centered 
on the Fog network architecture. 

Hyperledger Fabric[19] 

The main goal of this project is to provide a framework where to develop modular business 
blockchains. It was firstly contributed by IBM and it allows components such as consensus algorithms 
to be plug-able, or in other words, that they can be changed depending on the environment. 

 

The conclusion after reviewing these frameworks is that they are too much specialized in order to be 
used in this project. Each framework aims to solve a specific problem. The most related one, Indy, 
diverges too much from our objective, as it’s focused on a distributed digital identity for online 
services. For this reason, we won’t use any major blockchain framework. We prefer to build a 
prototype of our own in order to test our proposed architecture, but we will closely follow Indy 
project as it could be, in a future a usable code base for our project. 
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3 SECURITY CHALLENGES ON THE FOG 
In this section we will overview some of the main challenges when applying security to a Fog scenario. 
First we will start with the mobility issues, later on we will present the centralized security issues, 
and finally the centralization of data problem. 

3.1 Mobility issues 
Most security models are static, and are made for static domains or IPs (i.e. Certificates tied to IPs or 
domains), thus fail to deploy correctly into the Fog. Fog by default is on the IoT devices, and IoT 
devices are meant to be highly volatile as they can move. Therefore, having a static security model 
designed for cloud and web applications is not feasible or scalable when applied to Fog. 

There are other centralized servers that do not rely on domain names in order to apply security to 
its clients, since those models are highly centralized. An example would be the reviewed Kerberos, is 
invalid to apply security to the Fog, as it will create a bottleneck on the Kerberos server. 

In conclusion, we require new models that are scalable and at the same time are flexible enough to 
allow the device mobility without compromising the security, moreover we require new security 
models that do not rely on a device IP or DNS domain to establish trusted connections with a device. 

3.2 Centralized security models 
As we have seen there is no distributed security model that can fit in the Fog environment. All major 
systems are centralized, at some point, and even if we partially decentralize them, for example a 
distributed CA architecture, they are not flexible enough to fit into the Fog and manage IoT devices 
security. 

In the Fog, devices should be able to move and connect everywhere, we cannot use a security model 
that does not provide this flexibility, we require a highly distributed model capable of tolerating 
highly mobile IoT devices but at the same time the model must be scalable, as the amount of 
connected devices may grow exponentially fast. 

3.3 Centralized data 
Usually user data is highly centralized, a scattered across various providers, this forces the users to 
keep track of multitude of accounts and different passwords that usually end in data breaches. This 
model is not valid for Fog; we can’t expect to have tons of accounts for each device as it fails to scale 
with the billions of devices. Fog requires a unified and distributed architecture to keep all the devices 
profiles while at the same time being secure, scalable and fault tolerant. 
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4 APPLYING BLOCKCHAIN TO SECURE A DISTRIBUTED SET OF CLUSTERS 

4.1 Objective 
The main objective of this project is to provide a distributed Fog session shared among all Fog devices. 
This session will be used in order to provide security between devices in a Fog scenario, it will enable 
devices to search and authenticate other devices in the session, establish secure connections between 
devices or sign data in order to broadcast it to other Fog devices.  

To do so, in a high abstraction level, the session will store the devices public keys and it will associate 
a rule-set with those keys. The rule-set will be a set of actions that are performed on the session for 
the given keys. For example, a register in the session will be one rule-set, where a device will register 
into the session, providing its keys and a Fog specific profile. In order to distribute and synchronize 
this session among all devices we will use blockchain technologies, since blockchain is the right tool 
to keep an immutable and distributed set of data in form of transactions, where each pair of public 
keys and rule-set will be a new transaction. The usage of blockchain allows us to have the session 
distributed across all devices, thus enables a completely distributed and immutable system. The 
session will contain as many transactions as necessary, and there can be more than one transaction 
with the same pair of public keys (see illustration 6). 

To perform the consensus securely, as already stated on the consensus point 2.2.3, we will require a 

special set of devices composed by the validators of the consensus protocol, which will be the ones 
performing the consensus operations over the blockchain. 
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In illustration 6, we have the whole abstract picture of the projects objective, with the session in form 
of blockchain transactions, distributed across all devices and validators with a consensus protocol. 

In the following points, we will introduce the keys, rule-set and consensus used in this project. 

Keys 

The public keys will be the ECC (Elliptic Curve) type for establishing a secure TLS connection between 
devices and ED25519 (Elliptic Curve) for signing messages and later on sending them to one or 
multiple devices. We decided to have two pairs of keys because in the Fog anything can be a device. 
For example, perhaps there can be a sensor that just wants to broadcast or multi cast data across the 
network and will never do anything else, then assuming we don’t want to keep the data private, just 
secure, by verifying the data send by the sensor. We can just set a pair of public ED25519 keys for 
that sensor and use them to sign the data. Then when a device receives the data it can use its local 
copy of the session to verify that the data is from the expected sensor. In addition most consensus 
algorithms use ED25519 keys for signing votes, so this key can be used for various purposes 
depending if the owner is a device or a validator. 

In extend, we have chosen Elliptic Curve keys as this type of keys are the ones with the better 
performance per key size, thus we can use smaller keys with good cryptographical strengths (see 
illustration 7)[20]. 

 

llustration 6: Abstract objective session 
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For example, a temperature sensor in a smart city doesn't require data privacy, as anyone can read the 

temperature, but we require to know that the data is indeed from the expected sensor and not from an 

attacker’s sensor. 

 

Rule-set 

The rule-set will be an extensible field that will tell other session members what a device is, and what 
it is allowed to do inside the session. Thus the rule-set is a set of rules applied over a public key in 
form of a transaction. There can be infinite rule-sets applied over the same keys. Since we are going 
to use a blockchain, we cannot erase or update any rule-set that has been committed, we can only 
commit a new rule-set, and the devices should trust the most recent transaction. 

The rule-set should at least contain the Fog profile of the devices (rule-set device) or validators (rule-
set validator) in the session, with that information being provided at registration time. If there was a 
specification standard for Fog devices, then the rule-set device or the rule-set validator should at 
least contain that standard. But since there is no standard at all, we propose an example of what those 
profiles could be. We propose to add the devices capabilities inside the Fog area, this means to specify 
what a device is and what it can do, for example for a device e.g.(RaspberryPy) with a temperature 
sensor, we will specify that we have one device with its computation capabilities, such as CPU,RAM,OS 
and that this device has a temperature sensor. For the sensor we can specify the type of sensor and 
sensor attributes that could be customizable. We can also specify the expected data range of the 
sensor data, in order to help the network in identifying wrong sensor data. The computation 
capabilities and sensors could be used later on when executing a service over the Fog infrastructure, 
while the sensor description and data range would be used to verify the data received from the sensor. 
The rule-set device or rule-set validator will only be committed once on the session at registration 
time, and the devices or validators will not be able to further modify it. This is done to guarantee the 
profile security on the session, as no attacker will be able to alter a device or validator profile even 
obtaining the device or validator private keys (see illustration 8).  

Since Fog is a M2M environment, we understand that profiles should be static, and for this project 
they will stay static. But if the corresponding environment requires the profile to be updated, it could 
be accepted assuming the security risk of doing so (i.e. Attackers could update profiles if gaining 
access to a device private keys). In other more complex Fog scenarios, the rule-set could be used to 
add extra attributes to a device. For example, we could add rules of how our device can interact with 
our system and what it’s allowed to do. But the rule-set should only be used to add “static” 
information about a device, and it should never be used to add dynamic information that changes 
frequently. Doing so will overload the session and the devices, any dynamic data should be shared on 
secure channels using the public keys provided by the session. 

Illustration 7: Public keys in the transaction 
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Since we can register different type of profiles, the rule-set will be different depending on the type of 
device registered, thus when registering a device, the rule-set will be the rule-set device, and when 
registering a validator, it will be the rule-set validator and so on. Both are a rule-sets representing a 
profile, but the profile will have a different structure as we will represent different kinds of devices. 
As stated, we will have a rule-set validator that can be used to add new validators into the session. 
Moreover, it will be the first transaction of the whole session, informing of the first validator of the 
blockchain consensus algorithm. To add new devices/validators, a device with a validator profile will 
have to issue a new transaction informing of the newly added devices/validators, and sign that 
transaction with its private keys. 

Other rule-set use cases would be the blacklist, since we can’t remove any data of the session, we 
need a mechanism to inform the session devices of a malicious device or validator. This mechanism 
is the rule-set (blacklist). This rule-set will automatically tell other devices that a set of keys is no 
longer trusted. In the case of blacklisting a validator, or a device, a timestamp may be specified when 
issuing the blacklist, providing a point from where any action wouldn’t be trusted. This is an extra 
information to help the network in identifying malicious activity from compromised devices or 
validators. 

And finally, the last use case for the rule-set, the gateway, that is intended to represent a gateway 
device, a special case of device, common in Fog and IoT environments and that we will explain in 
detail in the following components pint 4.2. The concept is to have a device, with registered sub 
devices. Therefore, the sub devices security is outside the session control, the gateway will have to 
be trusted by the Fog devices.  

It’s important to point out that the rule-set can be totally customized, and new rule-sets can be added 
as extensions in order to modify the purpose of the session and adapt it to the required environment. 

  

Illustration 8: Rule-set examples 
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Consensus 

Consensus algorithms are already a well explored field, we do not pretend to create a new consensus 
algorithm, but to use the various available consensus algorithms that are already out there and that 
we have reviewed on the state of the art. The only thing we require is a permissioned consensus 
algorithm that allows the use of validator devices. 

That said, most suitable consensus algorithm would be RBFT, Zyzzyva or the RBFT modification of 
the project Indy, being RBFT the best one. The consensus algorithm must be permissioned, so we can 
use a set of consortium owned validators to control the Fog session and should offer the best possible 
performance. We propose that the project implements more than one consensus algorithm and then, 
when doing the set-up of the session, we could choose witch algorithm will fit better into our 
environment. 

On the prototype code implementation, it is infeasible to implement or reuse one of this consensus 
algorithms as it would take too much time due to the integration complexity. For this reason, and 
since the consensus algorithm just proves the efficiency when committing and distributing blocks, 
we have chosen to use a much more basic consensus algorithm based on rounds and votes. On each 
round, a validator proposes a block and is submitted for voting. If all the validators approve it, then 
is committed. The devices do not take part into this process and are updated when a new block is 
committed. 

This basic algorithm approach is not Byzantine fault tolerant and can easily deadlock, but since it’s 
just intended to be there for a prototype version where device additions and in extend all actions 
performed over the session will be controlled by us, this should not be an issue. 

Standardization 

We do not pretend to create a Fog device profile standard, as this should be discussed with major 
vendors thus it’s out of scope of this project. First of all, we want to prove that the concept works, for 
this we have created our own fictional standard, but in a commercial version, this should change to a 
unified profile. 
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4.2 Components 
In this section, first we will define what each session conceptual component is in our architecture, 
and later we will do an overview of each component characteristics in form of table and graphic. 

4.2.1 Secure Edge Node (SEN) 
SENs, refereed as validators on the blockchain consensus algorithms, are the controllers of the 
consensus and are responsible of keeping the security and integrity of the session. SENs can be added 
into the session at any moment, and the first rule-set performed over the session, must be the one 
adding the first SEN, we refer to as SEN zero (SEN0). 

When a SEN is added, a rule-set specifying the new SEN allowed actions is added with the SEN keys. 
This rule-set tells others what the SEN is allowed to do. For instance, if it’s allowed to add new SENs 
or new devices to the session, and to blacklist SENs or devices from the session. 

Apart from that, SENs can better perform the bootstrap of network peers, as their locations should 
be more static than the ones from devices, and should keep a Distributed Hash Table (DHT) of 
network devices last known IP (i.e. network state and peer discovery). 

4.2.2 Device 
A device can be anything that meets the requirements in order to run the framework and keep the 
local copy of the session’s blockchain. 

By default, a device is registered in the session with its capabilities such as CPU, RAM, GPU, OS, and if 
it’s under power or battery. Devices can add up to n sensors in their profile, specifying trough an 
extension each sensor type and characteristics and since devices are part from the session and hold 
a copy of it, they can use to session to broadcast signed sensor data, or establish TLS connections to 
other devices/SENs in the session, along with authenticating the data received. 

4.2.3 Gateway 
A gateway represents a set of devices that do not have direct connection to the session, but want to 
share its data with the session devices trough the gateway. It can register a set of devices, each one 
with its pair of keys. The devices behind the gateway will be able to establish secure connections and 
broadcast data to the whole session, but the session won’t be able to reach them directly. Devices will 
refer to the gateway in order to reach those devices if necessary. In addition, security outside the 
gateway can’t be guaranteed, so the session devices will have to trust the gateway provided data. 

4.2.4 Simple Device 
A simple device is a special case of a device that it’s part of the session but does not keep a local copy 
of the blockchain thus it can send data securely but cannot validate any incoming connection or data 
against the session. The objective of this component is to represent devices more focused on 
broadcasting sensor data than on receiving connections, thus they would be part of the session, but 
they won’t hold a copy of it. 

  



27 
 

4.2.5 Anonymous device 
An anonymous device can be anything that meets the requirements to run the project session 
application but doesn’t want to be registered in the session. 

The anonymous device it’s able to validate the data provided by other devices and authenticate them 
but no one can validate it through the session since it’s not registered. This can be useful when 
performing the authentication steps on an external service to the session, then the session can be 
used in order to identify the service providers to the anonymous clients for the session. 

4.2.6 Resume of component characteristics 
In the following table, table 2, there is a comparison between the architectural components and their 
characteristics inside the Fog session. Later on there is an illustration with the same comparison 
between devices characteristics. 

Characteristics SEN Device Gateway Simple device Anonymous 

device 

Has a copy of the 

blockchain 

Yes Yes Yes No Yes 

Can add new 

devices or SENs 

Yes No No No No 

Can validate TLS 

connections 

Yes Yes Yes No Yes 

Can validate data 

signatures 

Yes Yes Yes No Yes 

Can be validated 

on TLS 

connections 

Yes Yes Yes Yes No 

Can be validated 

when signing 

data 

Yes Yes Yes Yes No 

Table2: comparasion of each component characteristics 
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Illustration 9: Graphical comparison of each component characteristics 
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4.3 Proposed architecture 

4.3.1 Network 
The proposed network for this project, since it’s Fog related, it’s a fully peer to peer network (see 
illustration 10), where all the nodes must be reachable. If any node cannot be reached, it will fail to 
receive consensus votes from SENs or connections and data from other nodes. SENs can be used as 
tracker devices as done in torrent networks[21], with the addition of a new rule-set in the session. 

Then SENs would be used to keep a DHT of the network peers as done in torrent[21], in order to 
allow other devices to discover all the peers. A DHT is a distributed map of the network that stores 
devices IPs and performs peer discovery, one example would be[19]. 

This will solve the problem of device lookup, since we can search the session for devices. However, 
since the session doesn’t (and should not) store any device IP, devices can’t find other devices in the 
network. Therefore, we propose to use DHT for device discovery. In resume, devices could search for 
other devices in the session and then query SENs or trackers with the desired device public key, in 
order to obtain the last known target device location from the DHT network. The best solution for 
this would be the Kademlia DHT[22], as torrent has already shown its good performance when 
performing network discovery on a peer to peer network (see illustration 10). 

 

  

 

Illustration 10: P2P network example 
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4.3.2 Blockchain: Blocks 
In this chapter we will define the block, the transaction and the various session component rule-sets 
inside the transactions. 

Blockchain: Block structure diagram 

In the following figure (illustration 11), we can observe the main hierarchy of the data structures. 
First we have the block that holds the transaction, containing a set of public keys and the rule-set. 

This rule-set can take various forms, seen on the first row {Device, Sen, Blacklist, Gateway} and those 
data objects can be extended further more with the second and last row of structures {Data, 
SensorExt, SenExt, Complex,Device}. Some of the data fields are marked as optional, meaning that are 
not required to be filled when used in a rule-set (see illustration 11). 

 

 

Illustration 11: Hierarchical representation of the blockchain, blocks, transactions and possible rule-sets. 
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The rule-set will be encoded with Protobuf or Protocol Buffers[23]. Protobuf is a serialization tool 
that is platform and language neutral and helps encode and decode data structures in a highly 
efficient form. Although it’s usually used for network communications as its name suggests, it can 
also be used to encapsulate data and store it, so when the data is distributed to multiple users it can 
be easily revered. This is important as it effects the structure of the block, which must be designed in 
order to accommodate the serialized rule-set data. 

Block (Blockchain) 

The block is the highest component in the hierarchy, is the object that holds all the other objects, and 
is the one that forms the ‘block chain’. 

 Index: The order of the block in the blockchain. 

 Timestamp: The time when the block was created. 

 Transactions: The payload of the block, contains the transaction with the keys and rule-set, 
that represents the session operations. 

 Nonce: A random array of bytes to strength the cryptographycal hash of the block by adding 
entropy. 

 PrevHash: The hash of the previous block in the blockchain. 

 Hash: The hash of the block, this is here for testing purposes on the prototype. 

 Signature: The signature or signatures of the block issuer, added by the consensus algorithm. 

Transaction (Block) 

Represents an action trough the rule-set over the given public keys on the session. The transaction is 
part of the block. 

 PublicECCKey: The publicECC key of the device/SEN associated with the rule-set. 

 PublicEDKey: The public ED25519 key of the device/SEN associated with the rule-set. 

 Rule-set: Represents all the possible models of a rule-set. 

 Signature: The signature or signatures of the transaction creator. This should be signed by 
SENs and it’s done in the case of adding multiple transactions on the same block in the 
consensus phase in order to authenticate the transaction proposer.  

Rule-set (Transaction) 

The rule-set has all the possible forms of a rule-set, it’s a Protobuf implementation requirement, in order 

to later on codify and decodify the rule-set data. The rule-set is part of the transaction. 

 Device: The device representation of the Protobuf device object. 

 Sen: The SEN representation of the Protobuf device object. 

 Gateway: The gateway representation of the Protobuf device object. 

 Blacklist: The blacklist representation of the Protobuf device object. 
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Device (Rule-set) 

 Data: A data object representing all the device characteristics. 

 SensorExt: An array of objects representing the sensors attached to a device. 

SEN (Rule-set) 

 AllowNewSen: Represents either if the SEN is allowed to add new SENs or not. 

 AllowNewDevice: Represents either if the SEN is allowed to add new devices or not. 

 AllowBlacklistSen: Represents either if the SEN is allowed to blacklist SENs or not. 

 AllowBlacklistDevice: Represents either if the SEN is allowed to blacklist devices or not. 

 SenExt: A SEN extension object representing the SEN0. 

Blacklist (Rule-set) 

 FromTimestamp: The timestamp from where the blacklist is effective. 

Gateway (Rule-set) 

 Data: A data object representing all the device characteristics. 

 ComplexDevice: An array of objects representing a device with the addition of its public keys. 

Data (Rule-set) 

 Vendor: The vendor of the device 

 CPU: The CPU of the device 

 GPU: The GPU of the device 

 RAM: The ram of the device 

 OS: The operating system of the device 

 ACPower: If the device is on Ac power this will be set to true, else way will be set to false. 

SensorExt (Rule-set) 

 Type: The type of the sensor, since there is no standardization done here, the type will be an 

approximation of what the real type under a standard would be. 

 Scope: The scope represents extra attributes to the sensor. 

 MaxRange: The maximum expected range of the sensor data. 

 MinRange: The minimum expected range of the sensor data. 

 Geolocation: The GPS location of the sensor, but only in case of static sensors in buildings, etc. 

SenExt (Rule-set) 

 Sen0: Set to true to represent the SEN0. 

 ConsensusAlgorithm: The consensus algorithm chosen by the SEN0 for the session. 

ComplexDevice (Rule-set) 

 PublicECCKey: The publicECC key of the device/SEN associated with the rule-set. 

 PublicEDKey: The public ED25519 key of the device/SEN associated with the rule-set. 

 Data: A data object representing all the device characteristics. 

 SensorExt: An array of objects representing the sensors attached to a device. 
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4.3.3 Blockchain: Consensus 
As we have already covered in the objectives section, the consensus that will be applied on the 
prototype will be significantly simpler that the designated consensus algorithm (RBFT). It’s not 
needed to implement such a complex algorithm when in fact consensus is a tool needed for the 
prototype and the testing and validation of the use cases, but it’s not needed for the architecture, as 
the consensus is already proven to be effective eon the RBFT paper[6]. 

SEN Consensus Protocol 

Our consensus algorithm will be more than enough for all the desired testing scenarios of the 
prototype. Although it won’t be fault tolerant and won’t have a good scalability. 

The algorithm won’t include any device in the consensus process, and devices will be updated with 
new blocks periodically by SENs or by forcing an update sending a query to any SEN, with their last 
known block index. Finally, we won’t allow more than one transaction per block. 

Following this, only the SENs will be participating in the process of consensus, and all the votes will 
be sent between SENs. In the first step, at any time, a SEN may propose a new block for voting in a 
voting round. If the SEN is already in a voting round, the proposal will be queued until the actual 
round finishes. When a SEN receives a proposal, if it’s not engaged on any other voting round, it will 
lock into the round. Then, it will validate the block and broadcast a vote to all the other SENs, 
accepting or denying the block. When a SEN receives a vote it’s stored, the round finishes when a SEN 
has received enough votes to validate the proposed block. For us, this number will be equivalent to 
the number of validators present on the session at the start of the round (thus if a validator fails mid 
round the voting will block until a timeout is reached and it starts again). When a SEN receives all the 
votes, then the block is said to be committed (All the SENs participating in the consensus must have 
the same copy of the blockchain at this point) and the round is finished freeing the SENs for a new 
round. 

Basic Test 

We have performed a test of this protocol to validate if the protocol is valid to run on virtual scenarios 
with a considerable amount of devices. In the following graphic (graphic 1) we can observe the 
results of the test that would launch a new device every five seconds, the new device will try to 
perform a login in order to test the consensus phase. The tests where done on the same environment 
as the final testing scenario, and all the logins where performed on a 4 SEN network. 



34 
 

 

Graphic 1: results of SEN consensus protocol testing number of devices vs registration failures. 

In the results, we can observe that the amount of registration failures due to consensus locks are 
really small, as we have 0 locks for 20 devices, 1 lock for 50 devices and 3 locks for 100. The locks 
come from the inconsistency between ended rounds and open rounds that can momentarily happen 
between SENs. this would be a huge issue on a large scale with billions of devices but not on our 
testing environment or prototype scenario. 

In conclusion we can tolerate this amount of registration failures in the final testing of the prototype. 
For instance, the failures are on the voting rounds, and all the devices and SENs keep a consistent 
copy of the blockchain, thus the failures are only from devices failing to register. However, this never 
creates any inconsistency in the resulting session blockchain, it simply forces devices to retry the 
process.  
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Consensus Flowchart 

Following we illustrate the flowchart of the SEN consensus protocol. 

 

In the SEN consensus protocol flowchart (see illustration 12) we have the following steps: (1) on the 
proposer SEN a new round starts. (2) A block is proposed by the proposer SEN and broadcasted to 
all the other SENs. (3) Other SENs start a new voting round. (4) SENs broadcast their votes for the 
given block in the actual round. (5) Once a SEN receives as many votes as other SENs present in the 
round the block is considered committed and the voting round ends. 

 

 

 

 

Illustration 12: SEN consensus protocol flowchart 
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4.3.4 Webinterface 
In order to make any demo more visual, we will implement a web interface for the devices and SENs. 
the web interface will have three main tabs, the dashboard, the device or self-information, and the 
blockchain. 

In illustration 13, the dashboard will present an overview of the status of the session, displaying the 
number of SENs and devices, the total number of committed blocks in the blockchain session and the 
bytes used by those blocks. 

 

  

Illustration 13: Web interface dashboard 
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In illustration 14, the second tab in the menu will be the device info and it will contain the rule-set 
(profile) of the device that we have registered into the session. 

 

  

Illustration 14: Web interface device info 
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Finally, in illustration 15, the third tab will display the whole session blockchain into the browser, we 
will be able to see the devices and SENs, and its associated rule-sets. 

This web interface will be available at each device and SEN, since it’s just for visualization purposes 
and no action can be taken on the session, it just provides a feedback, it will be open to anyone capable 
of reaching the URL. 

 

 

 

 

 

 

 

 

 

 

 

Illustration 15: Web interface blockchain 
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4.3.5 Architecture integration 
In illustration 16, we can see the resulting picture representing the whole session, in a high level. We 
have SENs, Devices and a Gateway. All of them have sensors and the Gateway has a subset of 
registered devices. All of these network devices are part of our Fog session, and can securely 
communicate and exchange data. Thus the Fog network has been successfully. 

 

  

 

Illustration 16: Complete diagram of the whole architecture 
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Then if we go back to the first objective diagram (illustration 6), we could slightly modify it in order 
to better represent what the session actually is in terms of our internal architecture. Our session can 
contain SENs and various forms of devices such as normal devices or gateways, all of them are 
registered in the Fog session trough the rule-set, and each device is able to verify all the other Fog 
session participants locally (see illustration 17). 

 

  

Illustration 17: Update of the objective diagram 
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4.4 Functionality 
The project main component is a session stored in a blockchain and composed by blocks. The blocks 
in the session contain transactions that link the devices public keys with a rule-set. This rule-set is 
the one storing all the session actions performed over the public keys that identify a device. This 
architecture allows to have all the devices registered in the rule-set with a special rule-set of 
registration. However, the rule-set could contain much more information than that, for the devices 
it’s simply the registration of that device, but the registration of a SEN contains completely different 
information. An important key aspect to remark is that the session it’s distributed across all peers, 
everyone can validate the session and the other IoT devices against its own session copy without the 
need of a third party. 

The data stored in the session can be customized, thus this architecture can fit in almost any Fog 
deployment and adapt to its network needs, or could be even used to apply distributed security to 
other areas that require this kind of distributed model. 

 

4.4.1 First key distribution. 
When creating the session for the first time, the first thing to do is the registration of a SEN. This will 
be the first SEN on the session and it’s called SEN0. The creation of the SEN0 contain a set of keys, 
from these we will create the first transaction, the first block, and the blockchain. The first transaction 
will have a rule-set telling the others that the transaction is a SEN0, making the session identifiable 
by any device that wants to join. 

The SEN0 public keys are the ones used to identify the session when joining, since those are the ones 
used to create and sign the first block of the session’s blockchain. Thus these are the most critical 
keys of the infrastructure, we recommend to add other SENs after the SEN0 and then keep the SEN0 
offline to harden its keys security. 

When a device wants to join the session for the first time, it must know an IP where to bootstrap and 
get the session blockchain. Later, on this session blockchain, it can be verified with the SEN0 public 
key, that provides the whole chain of trust in the session. Once the session blockchain has been 
verified, the device will be able to know all the validators and perform a registration. 

In conclusion, devices libraries had to come preinstalled with the SEN0 public key in order to verify 
the session for the first time. 

4.4.2 SEN0 

Overview 

The SEN0 is the first SEN in the session, and has all the session privileges, it can add any device or 
any SEN and it can also blacklist them if necessary, and since it’s the first one it cannot be removed 
or blacklisted. 



42 
 

SEN0 Rule-set example 

 

In illustration 18 we have the transaction belonging to a SEN0. First we have the two public keys of 
the SEN0, the ECC key and the ED25519 key. After that, we have the rule-set representing the SEN 
registration, which contains the rules about what the new SEN can do. These rules are: Allow New 
Devices, Allow New SENs, Allow Blacklist Devices, Allow Blacklist SENs, the SEN extension field that 
contains the consensus algorithm to be used in the session, and finally a flag that represents the status 
of SEN0. 

4.4.3 Sens 

Overview 

The SEN can be customized when being registered in the session in order to perform differently 
according to the desired requirements. This customization is done through the rule-set and is 
explained forward in this chapter on the Rule-set example. 

The customization allows the SEN to perform actions over the session. We can choose if we want to 
allow the SEN to add new devices or blacklist them, and we can choose if we want to add new devices 
or blacklist them. 

Illustration 18: SEN0 Rule-set 
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SEN Rule-set example 

 

In illustration 19, we have the transaction belonging to a SEN, first we have the two public keys of the 
SEN, the ECC key and the ED25519 key. After that, we have the rule-set representing the SEN 
registration, which contains the rules about what the new SEN can do. These rules are: Allow New 
Devices, Allow New SENs, Allow Blacklist Devices, Allow Blacklist SENs. In fact, this rule-set is similar 
to the SEN0 rule-set, and its only differentiated by the fact that is misses the SEN extensions with the 
consensus algorithm and the sen0 flag. 

Registration and consensus flowcharts for SEN devices 

Here we will explain the two approaches for consensus and its flowcharts. 

Simple join request: 

In the join request of a SEN, the devices will not participate in the consensus, they will be passive and 
they will receive updates from SENs in order to keep the session updated, in any case they will be 
still capable of verifying the session blockchain (see illustration 20). 

Illustration 19: SEN Rule-set 
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In illustration 20, we have the flowchart of this request. The flowchart goes as following: (1) A new 
set of keys is generated in the SEN. (2) The candidate SEN sends a SEN registration message to the 
target SEN with its public keys and desired rule-set. (3) The candidate SEN public keys and rule-set 
are verified against the authorized public keys and allowed rule-set for the candidate SEN. If valid, a 
new block is generated with the candidate SEN transaction, containing the public keys and rule-set 
for the SEN registration. (4) The Newly created block is proposed to other SENs in order to start the 
consensus phase distributing it among all SENs. (Consensus) we won’t cover the consensus flow in 
this diagram, as we will assume that it has gone correctly and we have consensus for the proposed 
block. (5) The block is committed, from this point the candidate SEN is a SEN and valid in the session. 
(6) The session is updated on the devices, as they are out of the consensus phase and do not know 
the newly added block. (7) An OK message is returned to the candidate SEN informing that the 
registration has been performed correctly. 

  

Illustration 20: Simple join request of a SEN using the SEN consensus protocol 
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Complex join request 

In this join request of a SEN, the devices will participate in the consensus, they will be active and they 
will receive consensus messages from SENs periodically (see illustration 21). 

 

In illustration 21, we have the flowchart of this request. The flowchart goes as following: (1) A new 
set of keys is generated in the SEN. (2) The candidate SEN sends a SEN registration message to the 
target SEN with its public keys and desired rule-set. (3) The candidate SEN public keys and rule-set 
are verified against the authorized public keys and allowed rule-set for the candidate SEN. If valid, a 
new block is generated with the candidate SEN transaction, containing the public keys and rule-set 
for the SEN registration. (4) The Newly created block is proposed to other SENs in order to start the 
consensus phase distributing it among all SENs and devices. (Consensus) We won’t cover the 
consensus flow in this diagram, as we will assume that it has gone correctly and we have consensus 
for the proposed block. (5) The block is committed, from this point the candidate SEN is a SEN and 
valid in the session. (6) An OK message is returned to the candidate SEN informing that the 
registration has been performed correctly. 

  

Illustration 
21: Complex join request of a SEN using an advanced consensus algorithm 
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4.4.4 Devices 

Overview 

As the Fog paradigm states, devices can be almost anything. Thus the registration process of a device 
is highly extensible, as we will see in the demo rule-set, we can register the device capabilities, and 
the sensors that is has. These sensors are customizable too. All this information is also registered 
through the rule-set that specifies a device. 

Device Rule-set example 

 

 

 

 

 

 

 

 

 

 

 

 

 

Illustration 22: Device Data Rule-set 
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Here we have the rule-set that represents the sensors in the devices 

 

In illustration 22 and 23, we have the transaction belonging to a device. First we have the two public 
keys of the device, the ECC key and the ED25519 key, after that we have the rule-set representing the 
device registration, which contains the rules representing the new device profile. This profile 
contains the main data, representing the device capabilities: Vendor, CPU, GPU, RAM, and OS and if 
it’s on acpower (Connected to the current). The profile is also composed by a list of sensors that we 
will see next. 

 

 

Illustration 23: Device SensorExt Rule-set Illustration 24: Device SensorExt Rule-set 



48 
 

Registration and consensus flowcharts for devices 

Here we will explain the two approaches for consensus and its flowcharts. 

Simple join request: 

In this join request of a device, the devices will not participate in the consensus, they will be passive 
and they will receive updates from SENs in order to keep the session updated, in any case they will 
be still capable of verifying the session blockchain (see illustration 25). 

 

In illustration 25, we have the flowchart of this request, the flowchart goes as following: (1) a new 
set of keys is generated in the device. (2) The candidate device sends a device registration message 
to the target SEN with its public keys and the desired rule-set with its profile. (3) A new block is 
generated with the device transaction, containing the public keys and rule-set for the device 
registration. (4) The newly created block is proposed to other SENs in order to start the consensus 
phase distributing it among all SENs. (Consensus) we won’t cover the consensus flow in this diagram, 
as we will assume that it has gone correctly and we have consensus for the proposed block. (5) The 
block is committed; from this point the device is valid in the session. (6) The session is updated on 
the devices, as they are out of the consensus phase and do not know the newly added block. (7) An 
OK message is returned to the device informing that the registration has been performed correctly. 

Complex join request: 

In this join request of a device, the devices will participate in the consensus, they will be active and 
they will receive consensus messages from SENs periodically (see illustration 26). 

Illustration 25: Simple join request of a device using the SEN consensus protocol 
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In illustration 26, we have the flowchart of this request, the flowchart goes as following: (1) a new 
set of keys is generated in the device. (2) The device sends a device registration message to the target 
SEN with its public keys and desired rule-set. (3) A new block is generated with the device transaction, 
containing the public keys and rule-set for the device registration. (4) The Newly created block is 
proposed to other SENs in order to start the consensus phase distributing it among all SENs and 
devices. (Consensus) We won’t cover the consensus flow in this diagram, as we will assume that it 
has gone correctly and we have consensus for the proposed block. (5) The block is committed; from 
this point the device is valid in the session. (6) An OK message is returned to the device informing 
that the registration has been performed correctly. 

  

Illustration 26: Complex join request of a device using an advanced consensus algorithm 
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4.4.5 Authentication 
In order to authenticate to other devices belonging to the session a TLS connection it’s used, we can 
simply use the public ECC key stored in the session, this connection will always be private and secure.  

Establishing a TLS connection: 

To illustrate the explanation, let’s suppose a scenario with a device (device0) that wants to establish 
a secure connection to another device (device1). First of all, device0 needs to know the device1 public 
key. The public key is the identifier of the device1 in the session. Then the session can be used to 
search for a device with the desired capabilities (e.g. sensors, CPU, RAM…), or the desired public key. 
Once the device0 knows the device1 public key, if it doesn't know the device IP, it can query a SEN 
with the public key of the device1, and it will answer with the last known IP of the provided public 
key. Once the IP is known and reachable by the device0, it can try to establish a TLS connection with 
the device1. Since the device0 already knows the device1 public key, it can verify the identity trough 
the TLS connection of such device (see illustration 27). 

 

 

  

Illustration 27: Establishing a TLS connection 
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Receiving a TLS connection: 

Another scenario could be that a device (device0) receives a TLS connection from another device 
(device1). The receiver can query the session (blockchain) with the device1 public key in order to 
check if the device1 is registered into the system. If it’s registered into the system, device0 can obtain 
the device1 profile that is stored into the session (see illustration 28). 

Then with that data it can decide what to do with the incoming connection. 

 

4.4.6 Validation 
We can use the public ED25519 key in order to sign data, send it or broadcast it through the network 
and later on verify it in order to assure that the data is send by the expected device and it hasn’t been 
modified. 

Sending signed data: 

In this case, a device (device0) wants to send signed data to any device in the session. First, it must 
use its private ED25519 key in order to sign the data. Then once signed, the data can be send through 
the network to other devices (see illustration 29). 

 

Illustration 28: Receiving a TLS connection 

Illustration 29: Device sending signed data over insecure channel 
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Receiving signed data: 

Continuing from the previous case, now the data sent by the device (device0) went to another device 
(device1), from a direct connection or a broadcast. First, it must know from witch device is expecting 
the data to come. Second, it extracts the public ED25519 key of the expected device from the session 
and then finally it verifies the data using the public ED25519 key (see illustration 30). 

 

4.4.7 Extensions 
The presented rule-set is completely extensible, and a new type of rule could be created in order to 
customize and fit the session into more specialized project architectures and needs. 

For example, project explained in [24] could use this technology in order to secure its own custom 
session data distribution. However, it requires a slightly customized session. Since our session can 
be customized, this can be easily accomplished with our project. 

  

Illustration 30: Device receiving and verifying signed data over insecure channel 
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4.6 Programming language used 
The chosen programming language for this project was GO[ref] (Golang) because it provides one of 
the best repositories of security libraries out there. Go is a highly concurrent language, instead of 
threads it uses its go specific implementation called go routines, which save space and time over 
threads. Thus, it is a powerful language for web services and network related applications. 

There are other more popular languages such as python, java or even C, but those are harder to work 
with when we have to apply security libraries, while Go keeps an active community that is developing 
new security libraries that can be used directly from Github and can be adapted perfectly to our needs. 

In conclusion, Go was the best option for this project. 

4.7 Prototype code structure 
The prototype code is highly modular. All the code is structured in libraries and divided into 4 main 
routines. 

 The routine that handles the requests from SENs. 

 The routine that handles the requests from devices. 

 The routine that handles the blockchain. 

 The routine that manages the web interface.  

All those routines communicate among them with shared channels, one per routine, when a routine 
wants to request an operation from another routine it sends a message to the routine channel queue 
and awaits for a response. Using this architecture allows the routines to be highly independent 
between them while avoiding any deadlock risk. 

We decided to use this approach because it enables hot changes by disabling any routine and thus 
allowing a better debug and easier configuration on the testing and validation scenarios. All the 
configuration of the code parameters is written on a. env file, as environment variables. Then we can 
simply change the environment of the code in order to execute it with completely different 
configurations to perform the various tests and validations. 
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5 VALIDATION OF THE USE CASES 
In this section we will perform a series of validations to validate the proposed architecture. First in 
point 5.1 the methodology used for those validations will be presented. Then on point 5.2 the main 
validations and its results will be shown. Finally on 5.3 the main steps to replicate the scenario will 
be explained. 

5.1 Methodology 
The methodology followed in order to tests the prototype in the following point use cases is a series 
of simple tests performed on a docker environment. Each test aims to validate one specific 
functionality of the architecture prototype. Docker allows us to deploy as many SENs and devices as 
required, so we can perform controlled scalability tests in a virtual network. It also allows us to check 
the status of the whole test from the docker run time interface, and gather the test results. 

The use of docker allows us to launch almost 500 instances in our server infrastructure, thus is one 
of the best options to run scalability tests and one of the best options in order to build a huge testing 
network. While, at the same time, it allows the tests to be replicated on any docker capable machine, 
so the tests could be run at any environment as long as it has a correctly setup docker server and the 
required specs. 
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5.2 Validation 
On this section, we will explain each use case theoretically, what we do and what we expect to will 
obtain. To start, we will create a SEN0 in order to initialize a new session(1). Then the use cases of 
adding a new SEN(2) and a new device(3) into the already existing session. Later on, we will validate 
the device connections by performing TLS connections between devices(5-7) and validating signed 
data(4-6-8). After that, we will test the search for devices and sensors in the session(9), then we will 
add a gateway(10) and blacklist a compromised device(11).  

1. Adding SEN0 (Session set up demo) 

Description In this use case we will add the sen0 or first SEN into to the session, in order to 

initialize a new session. The first SEN will have a specific rule-set informing that 

indeed it’s a sen0 and with a custom extension field that will customize the whole 

session behavior. For the prototype this customization is limited to the consensus 

algorithm used, and there is only one option for the moment. 

The first SEN pair of keys are from extreme relevance in the session, the public keys 

will be used in order to identify the whole session to other users. 

Methodology The testing methodology will be the launch of a single SEN instance in an empty 

network, thus the SEN will become the sen0 of a new session. 

Expected result The expected result is a new session blockchain with a single block containing the 

SEN0 for the new session. 

Result Passed 

The used rule-set was the following: 

ruleset := &Ruleset{ 

 Ruleset: &Ruleset_Sen_Scope{ 

  Sen_Scope: &Sen{ 

   AllowBlacklistDevices: true, 

   AllowBlacklistSens:    true, 

   AllowNewDevices:       true, 

   AllowNewSens:          true, 

   Extensions: &SenExtensions{ 

    Sen0:               true, 

    ConsensusAlgorithm: "debug", 

   }, 

  }, 

 }, 

}, 
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2. Adding a new SEN (Rule-set demo) 

Description In this use case we will add a new SEN into the previously created session. 

Methodology We will launch a new SEN instance in the already created SEN session, the new 
SEN will bootstrap into the SEN0 and perform a registration request to become a 
new SEN, providing its public keys and its rule-set. 

Expected result We expect the SEN0 to verify and approve the new SEN request, then we expect 
the session to contain the newly added SEN. 

Result Passed 

 

The used rule-set was the following: 

ruleset := &blockchainBtree.Ruleset{ 

 Ruleset: &blockchainBtree.Ruleset_Sen_Scope{ 

  Sen_Scope: &blockchainBtree.Sen{ 

   AllowNewDevices:       true, 

   AllowBlacklistDevices: true, 

   AllowBlacklistSens:    true, 

   AllowNewSens:          true, 

  }, 

 }, 

} 
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3. Adding a new Device (Rule-set demo) 

Description In this use case we will add a new device into the previously created session. 

Methodology We will launch a new device instance in the already created session, the new 
device will bootstrap into the SEN0 and perform a registration request to become 
a new registered device in the session, providing its public keys and its rule-set. 

Expected result We expect the SEN0 to verify and approve the new device request, then we 
expect the session to contain the newly added device. 

Result Passed 

 

The used rule-set was the following: 

var sensors []*blockchainBtree.SensorExt 

 sensor0 := &blockchainBtree.SensorExt{ 

  Type:     "humidity", 

  Scope:    "Front,Top,Left", 

  MaxRange: "100", 

  MinRange: "0", 

 } 

 sensor1 := &blockchainBtree.SensorExt{ 

  Type:     "Proximity", 

  Scope:    "Front,Top,Right", 

  MaxRange: "100", 

  MinRange: "0", 

 } 

 sensor2 := &blockchainBtree.SensorExt{ 

  Type:     "Temperature", 

  Scope:    "Side", 

  MaxRange: "500", 

  MinRange: "-500", 

 } 

 sensor3 := &blockchainBtree.SensorExt{ 

  Type:     "Proximity", 

  Scope:    "Back", 

  MaxRange: "100", 

  MinRange: "0", 

 } 

 sensors = append(sensors, sensor0) 

 sensors = append(sensors, sensor1) 

 sensors = append(sensors, sensor2) 

 sensors = append(sensors, sensor3) 
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ruleset := &blockchainBtree.Ruleset{ 

  Ruleset: &blockchainBtree.Ruleset_DeviceScope{ 

   DeviceScope: &blockchainBtree.Device{ 

    Data: &blockchainBtree.Data{ 

     Vendor:  "MSI", 

     CPU:     "Intel", 

     GPU:     "NVIDIA", 

     RAM:     "16GB", 

     OS:      "Linux", 

     ACpower: false, 

    }, 

    SensorExt: sensors, 

   }, 

  }, 

 } 

 

4. Device using the session blockchain to validate data 

Description We want to use the session in order to validate data send by a testing device from 
another device, we will call the sender device deviceS and the receiver device 
deviceR. 

Methodology We will set up the deviceS in order to send signed data, that data will be signed 
by its ED private key. The data will be send to the deviceR, the deviceR will then 
use the session in order to know the deviceS public key and verify the data. 

Expected result The expected result is the sending of the signed data by the deviceS and then the 
validation of the data by the receiver deviceR. 

Result Passed 

5. Device using the session blockchain to establish TLS 

Description We want to use the session in order to establish a secure and authenticated TLS 
connection between two devices. We will call the starter device deviceS and the 
receiver device deviceR. 

Methodology We will set up the deviceS in order to start a secure TLS connection with deviceR. 
To do so, we will search the session for the deviceR in order to get its ECC keys, 
then we will be able to establish a secure TLS connection with the deviceR. 

Expected result The expected result is the establishment of a TLS connection from deviceS to 
deviceR, using the keys obtained from the session. 

Result Passed 
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6. Anonymous device using blockchain to validate data 

Description We want to use the session in order to validate data send by a testing device from 
another unregistered device, we will call the sender device deviceS and the 
receiver device deviceR. 

Methodology We will set up the deviceS in order to send signed data, that data will be signed 
by its ED private key. The data will be send to the deviceR, the deviceR will then 
use the session in order to know the deviceS public key and verify the data. 

Expected result The expected result is the sending of the signed data by the deviceS and then the 
validation of the data by the receiver deviceR. But deviceR will never be 
registered in the session, it will just have a copy of it in order to know its 
participants. 

Result Passed 

8. Simple device broadcasting data 

Description We want to broadcast sensor data from a device, the data will be signed by its ED 
key 

Methodology We will fake a sensor inside a device in order to broadcast some data to the 
network, the data will be signed by its private ED key. 

Expected result We expect the data to be correctly signed and broadcasted. 

Result Passed 
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9. Searching the session for a specific sensor 

Description We want to be able to find specific sensors in the session, for example a device 
will need to search for specific sensors in order to execute services of the Fog. 

Methodology We will do a query internally on the device, we don’t expect to open any API in 
order to get the information from the outside, but we expect to be able to query 
the session for specific sensors. 

Expected result We expect to obtain a sensor and the device that owns the sensors, matching our 
query if it exists in the session. 

Result Passed 

10. Gateway (Rule-set demo) 

Description We want to register a gateway, the gateway will have two devices with its 
pertinent sensors, and the keys for the gateway devices will be emulated, as we 
don’t have such physical or emulated structure for the test. 

Methodology We will set up a gateway, register it with tree devices and its sensors. 

Expected result We expect the gateway to be added into the session correctly. 

Result Passed 
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The used rule-set was the following: 

var sensors []*blockchainBtree.SensorExt 

 sensor0 := &blockchainBtree.SensorExt{ 

  Type:     "humidity", 

  Scope:    "Front,Top,Left", 

  MaxRange: "100", 

  MinRange: "0", 

 } 

 sensor1 := &blockchainBtree.SensorExt{ 

  Type:     "Proximity", 

  Scope:    "Front,Top,Right", 

  MaxRange: "100", 

  MinRange: "0", 

 } 

 sensor2 := &blockchainBtree.SensorExt{ 

  Type:     "Temperature", 

  Scope:    "Side", 

  MaxRange: "500", 

  MinRange: "-500", 

 } 

 sensor3 := &blockchainBtree.SensorExt{ 

  Type:     "Proximity", 

  Scope:    "Back", 

  MaxRange: "100", 

  MinRange: "0", 

 } 

 sensors = append(sensors, sensor0) 

 sensors = append(sensors, sensor1) 

 sensors = append(sensors, sensor2) 

 sensors = append(sensors, sensor3) 

 // define rule-set for devices 

 complexDev1 := &blockchainBtree.ComplexDevice{ 

  Keys: nil, 

  Data: &blockchainBtree.Data{ 

   Vendor:  "Raspberry", 

   CPU:     "ARM", 

   GPU:     "ARM", 

   RAM:     "2GB", 

   OS:      "Linux", 

   ACpower: false, 

  }, 

  SensorExt: sensors, 

 } 

 complexDev2 := &blockchainBtree.ComplexDevice{ 

  Keys: nil, 

  Data: &blockchainBtree.Data{ 

   Vendor:  "Raspberry1", 

   CPU:     "ARM", 

   GPU:     "ARM", 

   RAM:     "2GB", 

   OS:      "Linux", 

   ACpower: false, 

  }, 

  SensorExt: sensors, 

 } 

 var complexDevices []*blockchainBtree.ComplexDevice 
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 complexDevices = append(complexDevices, complexDev1) 

 complexDevices = append(complexDevices, complexDev2) 

 // Define rule-set for gateway 

 policies := &blockchainBtree.Policies{ 

  Scope: &blockchainBtree.Policies_GatewayDeviceScope{ 

   GatewayDeviceScope: &blockchainBtree.GatewayDevice{ 

    Data: &blockchainBtree.Data{ 

     Vendor:  "Raspberry", 

     CPU:     "ARM", 

     GPU:     "ARM", 

     RAM:     "2GB", 

     OS:      "Linux", 

     ACpower: false, 

    }, 

    Devices: complexDevices, 

   }, 

  }, 

 } 

 

11. Blacklist (Rule-set demo) 

Description We want to blacklist a device, by providing the device public key. 

Methodology We will issue a device blacklist from a SEN. 

Expected result We expect the device to become blacklisted in the session. 

Result Passed 

 

The used rule-set was the following: 

ruleset := &blockchainBtree.Ruleset{ 

 Ruleset: &blockchainBtree.Policies_Blacklist{ 

  Blacklist: &blockchainBtree.Blacklist{ 

   FromTimestamp: "Blacklist testing", 

  }, 

 }, 

} 

node := networkMap.GetNode([]byte("45 45 45 45 45 66 69 71 73 78 32 80 85 66 

76 73 67 32 75 69 89 45 45 45 45 45 10 77 70 107 119 69 119 89 72 75 111 90 

73 122 106 48 67 65 81 89 73 75 111 90 73 122 106 48 68 65 81 99 68 81 103 65 

69 82 65 43 87 81 97 111 87 107 65 108 48 77 105 75 85 118 72 78 52 103 49 

107 122 65 89 97 105 10 90 99 103 90 55 109 90 89 53 81 55 97 75 109 88 81 89 

87 80 75 85 115 114 102 104 105 115 49 82 78 89 65 65 53 77 79 66 120 75 48 

85 79 101 77 73 70 122 49 48 74 100 82 68 111 121 107 55 81 61 61 10 45 45 45 

45 45 69 78 68 32 80 85 66 76 73 67 32 75 69 89 45 45 45 45 45 10")) 
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5.3 Testing scenario replication 
In this chapter, we will explain the set of tools and scripts in order to replicate the prototype testing 
scenario in any capable environment, step by step: 

1. The first requirement would be docker, docker is required in order to run the containers of 
the SENs and the devices. 

2. The second requirement would be an internal docker network, in order to connect the 
containers. 

3. The third requirement would be the build of the provided docker files, in order to build the 
base images for the SENs and the devices, each SEN must be built in a separate image, as we 
require to previously know its keys, devices can all be built from the same images as the keys 
are auto generated. 

4. Once this steps are met, and we have a functional docker machine with a configured docker 
virtual network and the build images, we are ready to launch the prototype. 

5. First of all we must launch the sen0 image with a provided IP, once the sen0 is up and running 
we can add more SENs providing its IPs and using a prebuild SEN image, (we could use one 
SEN image to launch them automatically as we do with the devices, but then we will have less 
control). 

6. Once we have a minimum of one SEN we can start adding devices, a script is provided to 
control this phase, to add devices, stop, and remove them. The script launches n new devices 
and provides them with a new IP in a selected range. 

We recommend the use of Portainer or another docker management web interface in order to have 
a better view and control of the whole prototype testing scenario. 

6 FUTURE WORK 
In this chapter we will present the points that are related to this project but are still open. 

 Perform a real testing in a pilot, in order to test the real network applications during a period 
of time, and monitor the session behavior. 

 The consensus algorithm should be swapped by RBFT or Indy RBFT, in order to be tested on 
huge environments. 

 In order to save space and tolerate failures we would require to perform the whole peer 
lookup with a DHT, Kademlia will be the best choice here. 

 In order to allow third parties to use this technology it will be a plus to have an API, then this 
project could be a black box that would be used to secure a node, the node will interact with 
this black box but it will never know what happens inside, it will just be provided with 
security out of the box. 
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7 CONCLUSIONS 
In this project we have proposed and developed a new secure architecture for the Fog using 
blockchain technologies.  

The main idea here is a distributed security architecture, where the fog session is stored in the 
blockchain, and it is shared among all the fog devices. Then, it is used to authenticate and verify the 
devices. Nevertheless, this architecture requires the involvement of all the Fog devices. At the end, 
the devices are the ones accountable for the security and this project provides them with the tools to 
be secure (the session). 

The main advantage of this architecture compared with other security centralized approaches is the 
scalability and immutability of this model. This model has all the blockchain characteristics. First it’s 
completely distributed. Second thanks to the immutability property, while at least one device and 
one validator are up, the session will be preserved. 

In this proposal, the network is formed by Fog devices, and the idea is to have proposed different 
type of devices depending on its role: devices (normal, simple, anonymous), SENs (validators) and 
Gateways. While the devices and gateways are mere actuators and members of the session, the SENs 
have the role of validating and providing security to the whole session blockchain. 

Apart of defining the role of the different devices, the main structure of the blockchain, the block, has 
been defined, including all the needed fields. The novelty of this block compared with other 
blockchains is the link between the transaction keys and the rule-set. This relation defines the session, 
and the actions that happen on it. 

Accomplished objectives from the objectives overview: 

 Proposed new blockchain model to secure a Fog area. 
 Delivered the architecture plus the prototype code for the proposed model. 
 Used the prototype to test the model validity with a series of testing and validation 

scenarios. 
 The model successfully secures a Fog area, and provides Fog profiles to the Fog 

devices. 
 The blockchain is used as the Fog session holder. 
 All the devices are able to register into the session. 
 All the devices are able to use the session to establish secure connections. 

The blockchain technology is a good tool for this objective, but it has to be used carefully as it can 
drawback and overload the Fog with useless and irrelevant residual data for the devices. The Fog has 
a constrained amount of memory on its devices, as it can’t scale as the cloud does, and the blockchain 
for definition will always grow. 

In order to publish this prototype and made it usable for others on production Fog environments, at 
minimum the consensus algorithm and DHT stated in the future work point 6 must be added. 
Although the prototype can be used as it is, on other prototype projects or projects where the testing 
scenarios are relatively small, as the performance won’t be affected by the lack the future work points. 
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10 ANNEX 
Codebase for the prototype can be found in the following Gitlab URL. The cosebase is private and any 

access must be requested to this thesis tutor or supervisor. 

https://gitlab.com/PauMarcerA/secureedgenodearchitecture 
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https://www.hyperledger.org/projects/fabric
https://developers.google.com/protocol-buffers/
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