
POLYTECHNIC UNIVERSITY OF CATALONIA (UPC) -
BARCELONATECH

MASTER THESIS

Improving object management in HPC
workflows

Author:
Sergio RODRÍGUEZ GUASCH

Supervisor:
Dra. Rosa Maria BADIA SALA

A thesis submitted in fulfillment of the requirements
for the degree of Master in Innovation and Research in Informatics

in the

Barcelona School of Informatics (FIB)

June 23, 2019

https://www.upc.edu
https://www.upc.edu
https://www.fib.upc.edu/

iii

Declaration of Authorship
I, Sergio RODRÍGUEZ GUASCH, declare that this thesis titled, “Improving object man-
agement in HPC workflows” and the work presented in it are my own. I confirm
that:

• This work was done wholly or mainly while in candidature for a master degree
at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

v

“Love is better than hate, because it brings harmony instead of conflict into the desires of the
persons concerned. Two people between whom there is love succeed or fail together, but when
two people hate each other the success of either is the failure of the other.”

Bertrand Russell

vii

POLYTECHNIC UNIVERSITY OF CATALONIA (UPC) - BARCELONATECH

Barcelona School of Informatics (FIB)

MASTER IN INNOVATION AND RESEARCH IN INFORMATICS

Abstract
Improving object management in HPC workflows

by Sergio RODRÍGUEZ GUASCH

Object management represents a substantial fraction of the total computing time in
any distributed application, and it also adds complexity in terms of source code. This
project proposes and implements a set of features aimed to improve both the usabil-
ity and performance of distributed applications with heavy object management in
task-based parallel and distributed programming models.

HTTPS://WWW.UPC.EDU
https://www.fib.upc.edu/

ix

Acknowledgements
I would like to thank the whole Workflows and Distributed Systems team for

their patience and help, especially Francesc Lordan for guiding me through the com-
plex maze of the COMPSs Runtime. I am also very grateful to Pol Álvarez, Cristián
Ramón-Cortés and Ramón Amela for their help, kindness, knowledge and their al-
most inhuman ability for dealing with my rants, which were not uncommon.

Besides my research team, I would like to express my sincere gratitude and love
to Clara, my girlfriend. If it is hard to deal with me at work, just imagine what it is
like to live with me.

Finally, I also want to thank my family. Thanks for everything. Jero, we will never
forget you.

xi

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Document structure . 3

2 Tasks and time planning 5
2.1 Project Tasks . 6
2.2 Methodology . 7

3 Background 9
3.1 COMPSs . 9

3.1.1 A Full Example . 10
3.1.2 COMPSs Components . 13
3.1.3 Runtime Structure . 14
3.1.4 PyCOMPSs Structure . 15
3.1.5 Usability vs Performance . 16

3.2 GPFS . 18
3.3 Queue Systems - SLURM and LSF . 18
3.4 Extrae and Paraver . 19
3.5 Hecuba and DataClay . 19

4 Improving object identification in PyCOMPSs 21
4.1 Problem description . 21
4.2 Analysing and narrowing down the problem 21
4.3 Object identification and mapping in PyCOMPSs 23

5 Collections in COMPSs 27
5.1 Collections as Input Parameters . 28
5.2 Collections as INOUT Parameters . 31
5.3 Practical Applications . 31

5.3.1 Approximating cardinalities of huge sets 31
5.3.2 Usage of collections in other projects 32

6 Combining Storage Systems with COMPSs 35
6.1 Defining a Storage API . 35
6.2 A Practical Implementation: Redis . 36
6.3 Practical Applications . 37

6.3.1 K-Means . 37
6.3.2 Matrix Multiplication . 38

xii

7 Conclusions and Future Work 43
7.1 Conclusions . 43
7.2 Future Work . 43

A Collections as Input Parameters 45

B Collections as INOUT Parameters 47

C HyperLogLog 51

D Metadata generation comparison 55

E Redis Storage API implementation 57

F K-Means + Storage Implementation 79

G Matmul + Storage Implementation 83

Bibliography 85

xiii

List of Figures

2.1 A dependency graph representation of the different tasks and the de-
pendencies between them. The numbers between parentheses denote
the estimated number of needed weeks to do some task 5

2.2 A screenshot of the Trello board. Tasks are divided in Pending (tasks
we want to do but we are not currently doing), In Progress (tasks we
want to do and we are currently doing), and Done (tasks we already
did but we want to comment them with our supervisors or other
members of our team). We also have some fixed notes with links to
useful resources, rules of the project, the task graph, and so on 8

3.1 A dependency graph generated by a COMPSs application. Circular
nodes are tasks, octogonal edges are syncpoints, and edges are de-
pendencies between tasks and/or syncpoints caused by some data.
The labels of the edges are the identifiers of the data that causes these
dependencies. 10

3.2 A graphical representation of the random experiment. The square has
side length 2, so the circle has radius 1, and therefore area π. In ratio
terms, π

4 of the points belong to the circle 11
3.3 Overview of the main COMPSs components. 14
3.4 Overview of the main PyCOMPSs components. 15
3.5 Overview of the main Runtime components. 16
3.6 GPFS Shared disk environment. Figure 1 from [12] 18
3.7 An example of a trace. Each row represents a thread (or a process de-

pending on the case), colored segments are different tasks executed
by the thread, and yellow lines are network transfers between differ-
ent computing nodes. Time is represented as the horizontal axis, from
left to right. 19

3.8 Graphic description of a Hecuba cluster. Source: [1] 20

4.1 A trace showing the first tasks of an execution. Each row represents a
thread, blue represents a task being executed and black that either the
thread is waiting for the next task or it is doing something else 22

4.2 A trace showing the last tasks of an execution. The meaning of the
trace is the same as in figure 4.1, but now the spacing between tasks
has increased a lot . 22

4.3 Time required to complete a function call. Calls are arranged chrono-
logically. Although there is a lot of noise, a linear behavior can be
observed . 23

4.4 Time required to complete a function call after the fix. Call are ar-
ranged chronologically. 24

xiv

4.5 A trace showing the first tasks of an execution after the fix. Each row
represents a thread, blue represents a task being executed and black
that either the thread is waiting for the next task or it is doing some-
thing else . 24

4.6 A trace showing the last tasks of an execution after the fix. As we can
see, the gaps between tasks are quite similar to the ones from figure 4.5 25

5.1 The journey of a Python parameter, from the user’s function call until
the task is finished in the worker . 29

5.2 A dependency graph generated by a task with a COLLECTION_IN
parameter with 10 elements. Nodes are tasks, an edge from A to B
means that needs some data generated or modified by A. As we can
see, COMPSs will see 11 dependencies, making no difference between
collections and parameters. 30

5.3 The in-worker representation of a collection. If a collection contains
another collection, a reference to this file will appear, forming a DAG. . 31

5.4 Execution time of the reduce functions with and without collections.
Each point is the average of 5 executions. Although the samples are
noisy, as they are small, a consistent improvement by the collection
feature can be appreciated. The non-collections versions started to
crash and to show strange behaviours around the 60 parameters 33

6.1 A set of points grouped by the K-Means algorithm. Black points rep-
resent centroids, colours represent different groups 38

6.2 Dependency graph of a 6-iteration K-Means execution with 4 point
fragments. 39

6.3 Strong scaling graph of our various storage implementations 39
6.4 Strong scaling speedup graph of our various storage implementations 40
6.5 Weak scaling graph of our various storage implementations 40
6.6 Weak scaling speedup graph of our various storage implementations . 40
6.7 Dependency graph of a 2x2 matrix multiplication. 41
6.8 Strong scaling graph of our various storage implementations 42
6.9 Strong scaling speedup graph of our various storage implementations 42

xv

List of Tables

3.1 Some example configuration parameters of the queue system. These
parameters are usually passed as flags to the enqueue_compss script. . 14

6.1 Public methods of the storage API . 36

1

Chapter 1

Introduction

1.1 Motivation

Most modern research fields use computational resources in some way or another.
This trend started some decades ago, and it seems to be increasingly accepted and
adopted among all the scientific fields. While computer science contributed to solve
many research problems, it also created new challenges to researchers, as the in-
creasing difficulty on programming and software development due to the increasing
sizes of data sets, experiments, and number and complexity of the available compu-
tational resources. This problem becomes even more noticeable when a research
group has no computer scientists and all the programming tasks are done by non-
experts. This happens to be very common in fields like biology, chemistry or physics.

Non-expert programming has always been an issue, but it was far more manageable
when all the programs ran sequentially in a single core machine. Multi-core CPUs
allowed a program to run various fragments of its code at the same time and thus
increased the difficulty of programming both in a conceptual and in a technical way.
Parallel programming introduced concepts such as race condition, data dependency,
critical region, parallelism factor, granularity, overhead and many more, and the existing
frameworks (e.g: native threads) were too low level to be understood or used by non
computer scientists, and implied high development and maintainment costs.

This shift towards more complex computational models and programs due to the
presence of parallelism encouraged the industry to create easier frameworks and
programming models for parallel computing. One of the greatest examples of these
new frameworks is OpenMP[11]. OpenMP simplified the task of writing parallel
programs a lot, making it understandable to non computer scientists. As an exam-
ple, a working sequential matrix multiplication algorithm can be written as follows:

#pragma omp parallel for shared(a,b,c) private(i, j, k)
for (i = 0; i < size; ++i) {

for (j = 0; j < size; ++j) {
for (k = 0; k < size; ++k) {

c[i][j] += a[i][k] * b[k][j];
}

}
}

Note that all the forks, joins, private copies and similar are just specified, but not
done explicitly. This simplification allowed the general programming public to take
advantage of parallelism. There are many other concurrent and parallel frameworks
and models, such as MPI[5], and many programming languages, such as Java, have

2 Chapter 1. Introduction

a built-in threading library, which is usually simpler to use than native, low-level
threads. Even some languages, such as Erlang, are explicitly designed for concur-
rent and parallel programming.

For many years the computational growth model consisted of simply adding more
resources to increase the potential degree of parallelism, as the performance im-
provements of individual processors stagnated. In last years, the parallel growth
model also started to show signs of stagnation, but the demand of computational
resources and the size of the problems to solve are still increasing. In fact, the sizes
of the datasets experimented an exponential growth with the boom of paradigms
such as Big Data or Deep Learning, in which it is not strange to deal with datasets
that, simply put, do not fit in a single machine.

So, the next step was obvious: make a program run in different machines simultane-
ously. This implied many new challenges, such as having many different memories
and therefore many different versions of the same object allocated in machines with
possibly different architectures. Some other problems appeared, as the impossibility
to know the exact order in which events happened in a single program, as differ-
ent machines have different clocks [7], making the task of debugging this kind of
programs even harder. The previous problems from parallel programming were in-
herited or got even worse. Data dependencies, race conditions, and the importance
of granularity are still there. Some algorithms are much harder to implement in a
distributed fashion due to not having the whole input available at the same time,
but only pieces or chunks of it. Also, software developers are now forced to take
into account an extra level of parallelism when designing their applications if they
want to take advantage of all the available resources.

As happened with parallel programming, the demands of the industry encouraged
the development of frameworks, programming models and file systems aimed to
make the development of distributed applications easier. These frameworks and
programming models usually abstract the user from things such as explicit com-
putational resource management, synchronization between processes, logging, and
network and object handling.

One of the most used frameworks is Spark [16] alongside with HDF5 [13]. Usually,
a Spark application consists of the repeated application of a set of fixed patterns,
such as map-reduce, while making the hard steps transparent to the user. Although
this is a very powerful tool, it still requires a strong programming knowledge, as it
may not be trivial to translate any idea or an already existing application to this set
of patterns. It is for this reason that task-based programming models offer a good
alternative. A task-based programming model lets the user to select which parts of
the code will be tasks, allowing him to take already existing applications and make
them run in a distributed environment with minimal effort.

1.2 Objectives

This project focuses on improving the task-based programming model COMP Su-
perscalar (and, from now on, COMPSs) [2] by both adding features aimed to im-
prove usability and performance by focusing on the object management stage. Ob-
ject management implies a lot of different algorithms and computational problems.

1.3. Document structure 3

Some of them are:

• Have a quick way to uniquely identify user objects

• Translate user objects into something transferable between different machines
with, possibly, different architectures and/or versions of some of its software.
Try to cover as much objects as possible

• Maintain consistency between versions of the objects among all the computa-
tional resources, keep track of its locations, and use this information to exploit
data locality when scheduling tasks in task-based programming models

• Transfer objects between computational resources. Do it as smart as possible
to minimize redundant data transfers, bottlenecks, and so on

In this project we will explore some features and paradigms aimed to improve any
of these aspects. We will also implement applications and algorithms to test them.
Our specific objectives are:

• Fix PyCOMPSs task Overheads The current PyCOMPSs version (tagged as
2.4) seems to do some kind of O(n) computation before sending the nth emit-
ted task to the COMPSs Runtime. Our objective is to detect, analyze and fix
the source of this overhead.

• Collection Parameters Make COMPSs support arrays of parameters. Compute
dependencies between the elements of collections and collections themselves,
and exploit the fact that these parameters go together to reduce object manage-
ment overheads.

• Combine Storage with COMPSs Explore and provide alternatives to GPFS to
avoid COMPSs dealing with the file system.

• Add threading to PyCOMPSs IO operations Although Python has a Global
Interpreter Lock 1 (GIL) it can still benefit from rearranging non-blocking IO
operations. Our objective is to experiment with parallel object (de)serialization.

• Implement distributed applications as tests This step consists of implement-
ing applications with specific workflows aimed to test the new features or im-
provements to the COMPSs programming model. It also contributes to have a
bigger repository of use cases and applications.

1.3 Document structure

The rest of the document is organized as follows. Section 3 enumerates the current
technologies, frameworks and programming models related to this project and, in
general, with HPC and distributed systems. Section 2 enumerates and organizes the
tasks to do in this project and the employed methodology. The rest of the sections
are devoted to the development of the features, executions and experiments of the
project itself. Some source codes can be found as appendices, or as inline comments
if they are short enough, but other are too long to be attached in this document, as
the COMPSs code itself. In these cases, a link or a reference to a repository will be
provided when necessary.

1https://wiki.python.org/moin/GlobalInterpreterLock

5

Chapter 2

Tasks and time planning

This project intends to implement various features aimed to improve the object man-
agement stage of the COMPSs programming model. These features may depend
on some previous features or they may be totally independent. This project also
requires some additional tasks, as writing this document. This section intends to
organize the objectives mentioned in section 1.2. Some new objectives and tasks are
added, such as learning the COMPSs internals. All tasks, with their dependencies,
can be found in figure 2.1.

FIGURE 2.1: A dependency graph representation of the different tasks
and the dependencies between them. The numbers between paren-
theses denote the estimated number of needed weeks to do some task

6 Chapter 2. Tasks and time planning

2.1 Project Tasks

A more precise explanation of these tasks (and shortcuts to the corresponding sec-
tions) can be found below. It is recommended to read the following sections in order
to fully understand all the terms and explanations that will appear in this document.

• Runtime familiarization Some features require a deep knowledge of the COMPSs
Runtime. COMPSs is written in Java, so this task will mainly consist of learn-
ing the class hierarchy and modules of the Runtime, how to build and deploy
it, and how to fix and add features to it. This task is explained and developed
mainly in section 3.1.3.

• Bindings familiarization COMPSs has two bindings that allow the user to
write applications for both C/C++ and Python. We will mainly focus on the
Python (PyCOMPSs) part. This task will consist of learning the different Python
modules, how user code is decorated from there, and how this binding com-
municates with the COMPSs Runtime via C++ Python extensions 1 and the JNI
library 2. The development of this task can be found in section 3.1.4.

• Collection IN This feature will allow the user to deal with multiple COMPSs
input parameters at once if he puts them in some container. This task and all
the others that have something to do with it is developed and explained in
section 5.

• Merge Collection IN This task consists of integrating the changes made in
COMPSs to support collections into the main branch of the software while
guaranteeing that this integration does not affect the stability and performance
of the software. This section includes to implement some kind of unit test, and
to include it in a continuous integration environment. COMPSs has many con-
current developers attacking many sections of the software at the same time,
and the software has many lines of source code, so this task may no be as trivial
as it seems.

• Collection INOUT Same as collection IN, but allowing inout objects as the
content of a collection. The development of this feature can be found in section
5.2.

• Collection Examples Improve some existing applications with the COLLEC-
TION feature. These examples can be found in section 5.3.

• Collection TXN improvement The fact that two objects belong to the same
collection can be used to our advantage to implement some improvements in
how this data is transferred to the destination node. For example, they could
be transferred together and then split in the destination. This idea may result in
better performance (less simultaneous connections, less bandwith bottleneck)
or may make things worse (less parallelism when transferring data between
nodes). This last section must be considered as an extra, as the difficulty and
the required time to implement it is probably out of the scope and resources of
this project, and it is more than likely that it will remain as a possible future
work line.

1https://docs.python.org/3/extending/building.html
2https://es.wikipedia.org/wiki/Java_Native_Interface

2.2. Methodology 7

• Combine Storage with PyCOMPSs One of our approaches towards the im-
provement of object management is to partially delegate it to some dedicated
storage backend. This includes the development of some PyCOMPSs API that
allows the user to use this backend and to integrate it to the intelligence of the
COMPSs Runtime. All the work related with this task can be found in section
6.

• Threading IO in PyCOMPSs Most Python implementations have a Global In-
terpreter Lock (GIL) that prevent parallelism with Python threads. This does
not mean that some speedup can be obtained if IO operations are done with
Python threads, and that Python programs are necessary sequential or, at best,
concurrent (for example, the Numpy library has many linear algebra opera-
tions implemented with OpenMP). This task explores if it is worthy to paral-
lelize IO operations with Python threads.

• Find and fix task performance degradation This task will be useful to check
if we have actually achieved a good enough understanding of the COMPSs
programming model. It consists of dealing with a performance decay in a
user’s application. By dealing we mean to identify the problem, its sources,
think about a solution and implement it (if applies). This task is developed in
section 4. This task is intended to serve as an extension of the explanation on
how COMPSs works.

As a remark, we consider the development of applications or use cases to be
implicit in any task, so there is no "develop practical application" task in the graph.

2.2 Methodology

This project will be developed in a constant-feedback, results-driven model. That
is, the outcome of some implementation may make our initial planning change, as
these implementations may reveal more interesting lines, or heavy limitations to the
current ones.

One of the key aspects of this kind of work is to keep results reachable and easy
to reproduce. For this purpose all the contents regarding to this project can be found
in two git repositories:

• https://github.com/srgrr/TFM The repository with this document, and all
the applications, code snippets and figures contained in it

• https://github.com/bsc-wdc/compss The public mirror of the COMPSs pro-
gramming model. All executions and applications will contain a reference to
the exact commit or tag we used

This methodology allows our reviewers to easily reproduce all the experiments and
to refer to some pieces of source code mentioned here.

All tasks are tracked and annotated in a Trello board. Trello 3 is an online plat-
form that emulates the classical board with post-its on it. A screenshot depicting the
Trello board can be found in figure 2.2.

3https://trello.com/

8 Chapter 2. Tasks and time planning

FIGURE 2.2: A screenshot of the Trello board. Tasks are divided in
Pending (tasks we want to do but we are not currently doing), In
Progress (tasks we want to do and we are currently doing), and Done
(tasks we already did but we want to comment them with our super-
visors or other members of our team). We also have some fixed notes
with links to useful resources, rules of the project, the task graph, and

so on

9

Chapter 3

Background

3.1 COMPSs

COMPSs is a framework aimed to ease the development of applications for dis-
tributed infrastructures [2] [9]. A COMPSs application is typically a normal appli-
cation with some special annotations and a few extra function calls in its code that
transform a sequential code into a program that can run in a distributed environ-
ment.

COMPSs applications can be written in Java, C/C++, and in Python (both 2 and
3). The Python framework is called PyCOMPSs [14]. All the examples and real-
world usages in this project will be developed in the PyCOMPSs framework and in
the Python language. However, this does not mean that all the features discussed
and developed in this project are only available for PyCOMPSs. In fact, given how
COMPSs is designed, the implementation of a feature for PyCOMPSs usually im-
plies to implicitly implement it for any of the programming languages that are sup-
ported by COMPSs.

The COMPSs framework also provides users and developers with some tools and
data that helps to monitor and to debug the applications and COMPSs itself. From
a user point of view, a graph of the workflow and traces of the execution of appli-
cations can be generated (figures 3.1 and 3.7). Traces are generated with a combina-
tion of Extrae, Paraver, and a custom implementation inside COMPSs itself which
merges traces from different processes as a single one. From a developer point of
view, many debug information, as logging messages and stack traces, is available if
runnning COMPSs with debug flags or in case COMPSs crashes. We must mention
that these logs are not always the answer or the solution. For example, if both the
master and some worker complain in their respective logs about something some
questions should be answered. Some questions, as knowing if some error is the
cause or the consequence of some other error that happened elsewhere, are very
hard to find and they may take a lot of time to be fixed. Some of these questions,
as knowing which error happened first (assuming they are independent), are even
harder to answer [7].

10 Chapter 3. Background

FIGURE 3.1: A dependency graph generated by a COMPSs applica-
tion. Circular nodes are tasks, octogonal edges are syncpoints, and
edges are dependencies between tasks and/or syncpoints caused by
some data. The labels of the edges are the identifiers of the data that

causes these dependencies.

3.1.1 A Full Example

This section intends to give the reader a more or less extensive insight on what writ-
ing a COMPSs application is. We think that this section may help to materialize con-
cepts and will avoid to give this document an excessively abstract tone.

Lets suppose that we want to approximate the value of π. For this purpose we
have thought on a simple, randomized algorithm:

1. Generate N random 2D points with coordinates between −1 and 1

2. Consider the set of points S within distance 1 or less to the origin

3. Assume that |S|N = π
4

A more graphical explanation on why this works can be found in figure 3.2.

We know a little bit of Python, so we have decided to implement this program in
it. Basically, our small application will consist of a test_random_point function that
generates a random point and return 1 if this point lies inside our circle, and 0 other-
wise. We will call this function N times, and consider the proportion |S|N to be equal
to π

4 .

def test_random_point():
import numpy as np
p is a 1x2 vector with two numbers in [-1, 1]
p = 2.0 * np.random.rand(2) - 1.0
count this point iff it is within one unit or less
within the origin

3.1. COMPSs 11

FIGURE 3.2: A graphical representation of the random experiment.
The square has side length 2, so the circle has radius 1, and therefore

area π. In ratio terms, π
4 of the points belong to the circle

if np.linalg.norm(p) <= 1.0:
return 1.0

return 0.0

def main():
import sys
N = int(sys.argv[1])
proportion = sum([test_random_point() / float(N) for _ in range(N)])
Print our pi approximation with up to 16 decimal places
print("%.16f" % (4.0 * proportion))

if __name__ == "__main__":
main()

This code can be straightforward optimized by transforming the test_random_point
function into a COMPSs task and syncing the results in the main procedure.

from pycompss.api.task import task
from pycompss.api.parameter import *

@task(returns = 1)
def test_random_point():

import numpy as np

12 Chapter 3. Background

p is a 1x2 vector with two numbers in [-1, 1]
p = 2.0 * np.random.rand(2) - 1.0
count this point iff it is within one unit or less
within the origin
if np.linalg.norm(p) <= 1.0:

return 1.0
return 0.0

def main():
import sys
N = int(sys.argv[1])
Note that test_random_point is now a PyCOMPSs task
This means that calling this task does not imply immediate results
So, a future object will be returned instead
future_proportions = [test_random_point() for _ in range(N)]
from pycompss.api.api import compss_barrier, compss_wait_on
We will wait for all tasks to end before adding these values to our
final accumulator
compss_barrier()
proportion = sum([compss_wait_on(x) / float(N) for x in future_proportions])
Print our pi approximation with up to 16 decimal places
print("%.16f" % (4.0 * proportion))

if __name__ == "__main__":
main()

Although this may be a good approach to parallelize this application we must
note that we want to make it run in a distributed environment. The main difference
we can appreciate is that a COMPSs task may run in a different machine than the
master code, so some coordination between two processes in different machines and
the transfer of potentially big amounts of data are necessary. In other words, the
tradeoff between task granularity and performance is much more punishing in dis-
tributed computing than in single-machine parallel cases.

Another important thing to note is that a distributed application can still exploit
lower level parallelism in each of its tasks. In our case, we can transform our test_random_point
function into a test_random_points procedure that generates and tests various ran-
dom points at the same time.

from pycompss.api.task import task
from pycompss.api.parameter import *

@task(returns = 1)
def test_random_points(M):

import numpy as np
p is a Mx2 matrix with two numbers in [-1, 1]
p = 2.0 * np.random.rand(M, 2) - 1.0
count these points iff they are within one unit or less
within the origin
return np.sum(np.linalg.norm(p, axis = 1) <= 1.0) / float(M)

def main():

3.1. COMPSs 13

import sys
N = int(sys.argv[1])
M = int(sys.argv[2])
Note that test_random_point is now a PyCOMPSs task
This means that calling this task does not imply immediate results
So, a future object will be returned instead
future_proportions = [test_random_points(M) for _ in range(N)]
from pycompss.api.api import compss_barrier, compss_wait_on
We will wait for all tasks to end before adding these values to our
final accumulator
compss_barrier()
proportion = sum([compss_wait_on(x) / float(N) for x in future_proportions])
Print our pi approximation with up to 16 decimal places
print("%.16f" % (4.0 * proportion))

if __name__ == "__main__":
main()

This last approach is what we consider a well COMPSsfied application: it has a
reasonable task count and granularity, and it exploits various levels of parallelism
at the same time. This application also delegates most of the work to numpy proce-
dures, which are mainly written in C++ and OpenMP. This aspect is also important
in PyCOMPSs, as Python is, by nature, a very slow programming language and it
should be only used as an orchestrator.

COMPSs is mainly designed to run in HPC environments. Most HPC machines
integrate some sort of queue system to manage its resources among all the demand-
ing users. Our previous example can be run as a job in a queue system with the
following command:

#!/bin/bash

num_nodes=$1
num_experiments=$2
points_per_experiments=$3

enqueue_compss \
--qos=debug \
--num_nodes=$1 \
--worker_working_dir=scratch \
pycompss_vectorized.py $2 $3

The enqueue_compss command refers to a generic queueing script (see section
3.3) which translates our request to enqueue this COMPSs job to a specific queue
system. Some of the most common parameters of a COMPSs job can be found in
table 3.1.

3.1.2 COMPSs Components

COMPSs is designed, developed, and deployed in a modular way. This has some
advantages:

14 Chapter 3. Background

Argument name Description
exec_time Job time limit

num_nodes
Number of computing
nodes

cpus_per_node
Number of cores per
computing node

constraints
Additional constraints
(e.g: highmem nodes)

TABLE 3.1: Some example configuration parameters of the queue
system. These parameters are usually passed as flags to the en-

queue_compss script.

FIGURE 3.3: Overview of the main COMPSs components.

• Easier isolation of features

• Partial COMPSs installations are possible (e.g: install COMPSs without Py-
COMPSs)

• Components can be individually replaced, leading to faster deployments

An overview of the main COMPSs components can be found in figure 3.3. These
components are also modularized, as seen in figures 3.5 and 3.4.

This design choice also brings some unwanted problems. The main issue is isola-
tion and concentration of knowledge of some parts in some developers, which leads
to unnecessary code replication, lack of coherence of design and implementation
choices between different modules, partial feature implementations (e.g: a feature
that is only available in PyCOMPSs because it was developed by someone who did
not know how to implement it in the Java runtime), and many other things. All these
issues will be adressed and referred to in this document, as they appear and play an
important role in our own design choices and implementations.

3.1.3 Runtime Structure

The COMPSs Runtime is the brain of the programming model. It receives the gen-
erated task parameters, computes dependencies between them, decides how to dis-
tribute the workload of the tasks among the available resources, and so on. As we

3.1. COMPSs 15

FIGURE 3.4: Overview of the main PyCOMPSs components.

can see in figure 3.5, the COMPSs Runtime is divided in five layers. The roles of
these layers are:

• Engine Receive a task from the bindings/loader, process its parameters, regis-
ter them if necessary, compute dependencies between tasks. Keep track of this
task graph, and of tasks with in-degree zero in this graph. Send executable
tasks to the scheduler.

• Scheduler Receive a executable task from the COMPSs Engine. Keep track
of the available resources, the locations of all data units, the current load of
these resources, and decide a location to execute this task according to these
parameters

• Adaptors Provide an intermediate layer between the communications library
and other layers. Responsible of sending and receiving requests between the
computing nodes. A request can be about some data unit or about executing a
task in some resource.

We have omitted the Resources and Communication Library because they are
out of the scope of this project. The Resources layer will not affect any of our work,
and the Communication Library needs no modifications, as it is a very low level
library, and we can construct any of the new communication features we need by
combining the already existing primitives offered by it.

3.1.4 PyCOMPSs Structure

PyCOMPSs can be summarized as a Python Binding for COMPSs. It gives the user
a way to annotate his Python code, and it internally transforms and forwards all
the derived task creation requests and data to the COMPSs Runtime. Its role can be
summarized as follows:

1. Execute the user code, both the master and the worker part

2. Implement code annotations, such as @task, @binary, etc

3. Implement wrappers to flow control mechanisms, such as compss_wait_on,
compss_barrier, etc

16 Chapter 3. Background

FIGURE 3.5: Overview of the main Runtime components.

4. Transform the user data into something easy to transport between different
machines

The binding implementation can be divided into two big parts: master and
worker. The master executes the user’s code, captures tasks calls, forwards the data
to the COMPSs Runtime, offers future objects to the user and the possibility to wait
for some object to be available (synchronization points). The worker is just a Python
process constantly listening to a pipe and obeying the orders it receives from this
pipe. These orders can consist of executing a task or to end the process. When exe-
cuting a task, the worker must deserialize the parameters, which are usually stored
as files in the filesystem, fetch the function, reconstruct its signature, rearrange the
parameters according to it, execute the user’s function, capture the results (or the
modification of the parameters if they were INOUTs), serialize and store them in the
filesystem, and communicate success or failure to the COMPSs Runtime.

PyCOMPSs makes a strong emphasis on usability. This means that a lot of effort
is put on minimizing the necessary changes to make a sequential program run in
PyCOMPSs. We also try to take advantage of any new usability feature to try to in-
troduce improvements in the programming model performance. This is not always
possible and, in fact, usability implies a tradeoff with performance.

3.1.5 Usability vs Performance

COMPSs has two goals: to give the not-so-expert user an easy way to make their
sequential applications run in distributed environments, and to do it as efficiently
as possible. Many improvements in the COMPSs framework are aimed to improve
only one of these two aspects. For example, any improvement in the communica-
tion library may improve the performance of the user application, but the user will
still face the same usability limitations when using COMPSs. Adding an automatic
return completion, to handle the case when the user forgot to annotate the return
value of some task, may save the user a lot of debugging time, but it will have no

3.1. COMPSs 17

impact in the performance of the user application.

The COMPSs software is developed and mantained by a research team in a research
center, so it may be natural to think that most of the efforts and improvements are
aimed to test and develop methods, models, and algorithms that improve perfor-
mance, memory usage, minimize network transfers and so on. However, COMPSs
is also used by other research teams as a tool for their own purposes. Some of these
teams intend to run exotic, old, complicated applications in distributed environ-
ments. Also, these teams are usually composed of researchers from different fields
than computer science, so a lack of knowledge in parallel and distributed applica-
tions should be expected. The user-oriented features intend to help these research
teams, and to make their life easier in the very complicated world of distributed
computing. These two big forces (being a research team and having clients) act as
the main source of ideas and features in the COMPSs environments, and they are
not always acting towards the same direction.

This project tries to bring something that improves COMPSs in these two directions:
give something to the user that makes his life easier while making COMPSs more
efficient. For example, we do not intend to limit ourselves to give the user a way
to pack some parameters in a collection. We see this feature as an opportunity to
give COMPSs additional intelligence that may help to improve the performance of
the framework. The same applies with the storage interface. Our goal is twofold: to
give the user a way to make his or her COMPSs application run with other storage
systems and to take advantage of these systems in terms of performance.

18 Chapter 3. Background

3.2 GPFS

GPFS [12] is a distributed file system developed by IBM. It gives a perceived be-
haviour of a regular POSIX file system, while guaranteeing consistency between dif-
ferent computational resources, and a correct parallel access to its files. Under this
model, any node has access any file at any location. As we can see in figure 3.6 a
node accesses data through a switching fabric. A switching fabric is a kind network
topology in which any two nodes connect between each other through a series of
switches. This topology allows a more efficient communication between nodes than
other topologies such as broadcast networks. GPFS is available at the Mare Nostrum

FIGURE 3.6: GPFS Shared disk environment. Figure 1 from [12]

IV supercomputer, and COMPSs takes advantage of it by delegating the file system
many tasks such as file transfers, consistency across computational resources, and
so on. It also makes task scheduling easier, as the data locality factor can be ignored
by the COMPSs scheduler, focusing only on load balancing. Being more specific,
if COMPSs runs under a GPFS file system it will consider that any piece of data is
available anywhere, instead of explicitly keeping track of its locations.

3.3 Queue Systems - SLURM and LSF

Most supercomputers have many concurrent users. All of these users want to use
some of the resources of the supercomputer, and usually in a selfish manner. This
situation creates a lot of conflicts between users, and even some unethical behaviors
such as some user killing the processes of other users. Also, many benchmarks and
experiments require no noise introduced by concurrent, unrelated processes running
in the same machine, so resource exclusivity must be guaranteed in these cases.

The most common solution to the two aforementioned problems is to divide the
different nodes of a supercomputer into login nodes and computing nodes. When
a user opens a session in some supercomputer he will land into some login node.
Computing nodes are unreachable or even not visible by regular users, and the only
way to have access to them is to ask the system for resources and wait until the
system lends them to the user. The most common implementation of this resource
assignment mechanism is a queue system. A queue system processes all the requests
from the users, gives them a priority as a function of various parameters and lends
them the requested resources according to these priorities, as a process scheduler
does with processes in an operative system.

3.4. Extrae and Paraver 19

Two of the most common queue systems are LSF [17] and SLURM [15]. All the ex-
periments of this project will be done in the Mare Nostrum 4 supercomputer, which
uses SLURM.

Although SLURM has its own micro-language and instructions, such as srun, and
submissions scripts, most of the experiments done in this project will not need them,
as we will have generic queueing scripts available to us. A generic queueing script
is a script capable to work with various queue systems to generate the correspond-
ing specific queueing scripts. In our case, our script will translate our orders into a
bunch of srun commands and similar.

3.4 Extrae and Paraver

Extrae 1 and Paraver [6] are two profiling tools developed at the BSC. Extrae is an
instrumentation software to trace programs. A program instrumented with Extrae
usually emits events. An event usually consists of an identifier or label, and a times-
tamp indicating the exact moment of its emission (according to the clock of the ma-
chine that executed the program). These events can be later visualized with Paraver
as what is known as a trace. An example of a trace can be found in figure 3.7.

FIGURE 3.7: An example of a trace. Each row represents a thread
(or a process depending on the case), colored segments are different
tasks executed by the thread, and yellow lines are network transfers
between different computing nodes. Time is represented as the hori-

zontal axis, from left to right.

Traces can be visualized in many different ways, depending on the needs of the
user. This project will only use traces like the one from figure 3.7, and any relevant
information about traces will be mentioned in the caption of the corresponding fig-
ure.

In this project no explicit use of Extrae will appear, as we will work with a frame-
work which already has Extrae instrumentation.

3.5 Hecuba and DataClay

Hecuba [1] is a distributed non-relational database. It implements a runtime which
coordinates various independent databases to make them work as a cluster, and pro-
vides a set of functions to allow the user make queries to this cluster.

1https://tools.bsc.es/doc/pdf/extrae.pdf

20 Chapter 3. Background

FIGURE 3.8: Graphic description of a Hecuba cluster. Source: [1]

In a Hecuba cluster each instance is able to accept and to compute queries, allowing
the user to make all his queries to the nearest node without needing to worry about
the underlying topology of the cluster.

DataClay [10] is another distributed database implementation. In a DataClay cluster,
each individual instance is a Postgres SQL database to which the user has no direct
access. Instead, DataClay implements a series of methods and functions to interact
with the whole cluster.

Both storage implementations follow the Storage Object model. A Storage Object
is an instance of an OOP language class which has some of its attributes marked as
class fields. A class field is automatically accessed and synchronized with the stor-
age backend. This paradigm allows the user to avoid any kind of direct query and
to have any explicit database knowledge to interact with the storage backend.

Hecuba supports data partitioning via the special split method. If a piece of data
with key k is split and queried then an iterator is returned instead. An iterator is just
a key and a reference to another iterator, like a linked list. As we can see in figure
3.8, this means that a piece of data can be split among all the nodes of a cluster, and
thus improving the balancing.

21

Chapter 4

Improving object identification in
PyCOMPSs

This section describes a performance improvement in the COMPSs programming
model. It also gives a practical example of how important is to properly manage
objects in distributed programming models and to show how complex finding a
bug in this kind of software can be.

4.1 Problem description

A COMPSs user reported via mailing list that his application showed a gradual per-
formance degradation over time. A source code that reproduces the guilty workflow
is the following:

from pycompss.api.task import task
from pycompss.api.api import compss_barrier

NUM_ITERATIONS = 10
NUM_OBJECTS = 1000

@task(returns = 1)
def f(x):

return x

def main():
for i in range(NUM_ITERATIONS):

l = []
for j in range(NUM_OBJECTS):

l.append(f(object()))
compss_barrier()

if __name__ == "__main__":
main()

The user was able to detect this performance degradation thanks to the tracing
tools. Two traces showing this issue can be found in figures 4.1 and 4.2.

4.2 Analysing and narrowing down the problem

The trace from figure 4.2 shows us that there is something wrong about how COMPSs
manages tasks. Note that this fact only gives us a very rough hint on where to start

22 Chapter 4. Improving object identification in PyCOMPSs

FIGURE 4.1: A trace showing the first tasks of an execution. Each
row represents a thread, blue represents a task being executed and
black that either the thread is waiting for the next task or it is doing

something else

FIGURE 4.2: A trace showing the last tasks of an execution. The mean-
ing of the trace is the same as in figure 4.1, but now the spacing be-

tween tasks has increased a lot

looking for, but there are still many possible candidates and places to look at. Some
of these places are:

• PyCOMPSs @task decorator

• PyCOMPSs object serialization

• PyCOMPSs-to-COMPSs parameter forwarding

• COMPSs Runtime task registering

• COMPSs Runtime dependency computation

• COMPSs Runtime data transfer

• COMPSs Worker task reception

• ...

The list may contain 30 additional items before the last step(s) user’s task is executed,
results are serialized and the master gets a notification about it. Some sections are arguably
skippable, as our knowledge and experience tells us they cannot have anything to
do with our issue, but many others must be reviewed. The natural way to proceed is
to simply follow the PyCOMPSs and COMPSs source code in the natural order. That
is, start from the user’s source code, detect a task, go to the @task decorator, and so
on.

Fortunately for us, the problem was on a quite early stage: the handling of the object
identifiers in the Python binding.

4.3. Object identification and mapping in PyCOMPSs 23

FIGURE 4.3: Time required to complete a function call. Calls are ar-
ranged chronologically. Although there is a lot of noise, a linear be-

havior can be observed

4.3 Object identification and mapping in PyCOMPSs

Our first (and last) bet was on the get_object_id function from the PyCOMPSs
source code. Let’s take a look at this function:

def get_object_id(obj, assign_new_key = False, force_insertion = False):
global _runtime_id
Force_insertion implies assign_new_key
assert not force_insertion or assign_new_key
for identifier in _id2obj:

if _id2obj[identifier] is obj:
if force_insertion:

return new_id
return None

This function iterates over potentially all of the tracked objects just to get the
identifier of some object (or to assign it one). This is done this way because an object
needs to be hashable for being used as a key in a dictionary. Hashable usually means
immutable, and no user can guarantee us that his objects will fulfill these properties.
In fact, the programming model supports INOUT objects, which are, by nature, mu-
table objects. Some examples of mutable Python objects are [1, 2, 3, "hello"],
object() and numpy.random.rand(5).

If the Python binding is tracking n objects then this function may iterate O(n) times
just to retrieve (or to give) a single identifier. It is not hard to see that an application
with n simultaneous PyCOMPSs objects will have to do O(n2) iterations, which is
consistent with what we observed at the traces.
Even if the previous analysis tells us that there is something very wrong with this
function, we still need to make sure that this is the main source of our current prob-
lem. For that purpose, we have decided to time all the calls to this function. As we
can see in figure 4.3, this function scales pretty poorly with the number of tracked
object. All this evidence can be considered more than enough to start thinking about
possible fixes and improvements. Our idea A possible fix may consist of using the
id function. This function accepts an object as its unique argument and returns its

24 Chapter 4. Improving object identification in PyCOMPSs

FIGURE 4.4: Time required to complete a function call after the fix.
Call are arranged chronologically.

FIGURE 4.5: A trace showing the first tasks of an execution after the
fix. Each row represents a thread, blue represents a task being exe-
cuted and black that either the thread is waiting for the next task or it

is doing something else

memory address. Note that this identifier is not entirely unique for a single object,
as two objects that do not coexist may have the same memory address. However,
this way to identify objects is enough for our use case. After applying this fix the
get_object_id function behaves as seen in figure 4.4, which is the normal and ex-
pected behavior when accessing to a hashmap.

Additionally, figures 4.5 and 4.6 show us that the time between tasks is now
constant.

The overall performance gain was enourmous. Although the final implementa-
tion consisted of a few lines of source code, it was arguably hard to find where this
improvement should be made. We must note that COMPSs has, according to the
cloc tool, around 300000 source lines of code (sloc).

4.3. Object identification and mapping in PyCOMPSs 25

FIGURE 4.6: A trace showing the last tasks of an execution after the
fix. As we can see, the gaps between tasks are quite similar to the

ones from figure 4.5

27

Chapter 5

Collections in COMPSs

As we have seen in previous sections and examples, a COMPSs parameter is basi-
cally a regular user-code object, as a numpy.ndarray, with additional metadata to
help the COMPSs Runtime to compute any dependency between tasks induced by
this particular object, keep track of its locations, and so on.

A very common issue reported by COMPSs users is that the programming model
is not able to detect dependencies induced by attributes or contents. Many exam-
ples are valid: an array [object(), some_future_object], an instance of a class
with some attribute that is a future object... or some object that has been used in
a super-object. If the container is used as a COMPSs parameter, no process of the
sub-object will ever happen, as the programming model won’t know about it, so the
user should expect tasks to receive outdated or future objects.

The ideal solution, a generic introspection algorithm, is very hard, if not impossi-
ble, to implement. Python is a dynamically typed language, some objects can be
modified if iterated, many others have no easy way to list its internal attributes, cir-
cular references can happen... the list is almost endless. Another obstacle is object
reconstruction. Let’s consider the following code:

A = MyClass()
A.attribute = some_pycompss_task()
another_pycompss_task(A)

Ideally, we would like to detect the dependency induced by A.attribute with no
synchronizations in the master, and then get the full object in the worker. This means
that the programming should:

1. Detect the data dependency (introspection)

2. Ask for A, and A.attribute

3. Deserialize A and A.attribute, realize that one object is an attribute of the
other, and add it

These steps require a heavy implementation with a noticeable performance impact.
For example, a 2000× 2000 numpy.matrix can make the programming model iterate
through 4000000 elements unnecessarily.

It was decided that support for arrays should be implemented in the COMPSs Pro-
gramming Model. Given that many COMPSs users find words like array, hash map,
reflection, inheritance complicated and misleading it was decided to call this feature
as support for collections, as collection is a word that seemed more understandable by
non computer science researchers. This name also gives the opportunity to extend

28 Chapter 5. Collections in COMPSs

this implementation to other iterable data structures such as sets, hash maps and so
on.

This feature should cover these two cases:

L = [future_object_1, future_object_2, ...]
y = f(L) # Future objects should be synced and available

L = [object_1]
modify_object_1()
f(L) # object_1 should be updated and synced properly

In other words, collections should support both IN and INOUT objects.

This feature is especially interesting because its implementation serves two pur-
poses: usability and performance. With no collections users are forced to use some
alternative tricks such as functions with the signature f(*args) to deceive the pro-
gramming model into believing that it is receiving multiple, distinct arguments in-
stead of an array of them. As we will see later, this particular trick has its own
problems and issues.

5.1 Collections as Input Parameters

The first step consists of enabling the COMPSs Programming Model to accept col-
lections composed of input parameters. This step will also help us to identify all the
COMPSs components that require some implementation and/or modification when
dealing with this feature.

The easiest way to implement this feature is with recursion. Note that, in terms
of dependencies, if some object x is contained in some collection C then any depen-
dency that affects C must also affect x, and vice versa. Let’s consider the following
pseudo-code:

c1 = f() # c1 is a future object
C = [c1, ...] # C contains a future object and possibly more things
g(C)

There is a clear dependency between the tasks g(C) and f (). The easiest way to im-
plement this is to recursively iterate collection objects and to process each object as
a single parameter. This approach offers some room to improve performance. For
example, it is not necessary to transfer certain metadata of each single element of a
collection, as it can be deduced or inherited from the global collection object. In this
first case, it is not necessary to specify that the direction of all the elements c1, ..., cn
of some input collection C is IN, as it can be deduced from the fact that C is an input
collection. The same applies with some other information such as locations, and so
on.

Our chosen approach is something similar to what is called TDD (Test Driven De-
velopment) 1: we wrote a PyCOMPSs app that uses collections as input parameters
and now we want to make it work. The source code can be found in appendix A.

1https://en.wikipedia.org/wiki/Test-driven_development

5.1. Collections as Input Parameters 29

As we mentioned in section 3.1.2, the design of the programming model forces
the developer to go through many layers of the software just to implement a single
feature. Any PyCOMPSs parameter will go through the pipeline shown in figure
5.1.

FIGURE 5.1: The journey of a Python parameter, from the user’s func-
tion call until the task is finished in the worker

Our implementation can be generalized with this pattern:

def some_parameter_processing_function(p):
if p.type == COLLECTION:

for elem in p.content:
some_parameter_processing_function(elem)

process_parameter(p)

This pattern allows us to implicitly define collections of collections. In fact, a
Depth field can be defined when decorating a task. This field has a default value
of 1, and it determines the allowed levels of recursion before considering any object
a regular COMPSs parameter. For example, if Depth = 2 and a 2× 2× 2 matrix is
passed as a parameter, COMPSs will interpret it as 2× 2 collection.

Following the schema from figure 5.1, a collection parameter will be processed as
follows:

• Python When a collection is detected it is recursively processed. This means
that all of its objects are individually identified and serialized. However, we
will only forward the collection parameter to the COMPSs Runtime. This pa-
rameter will contain an array of identifiers of its contents. This saves us some
memory and computing time, as the contents of a collection will inherit many
attributes from the collection parameter itself, such as direction, name and so
on.

• C/C++ This step is very straightforward as our only concern is to convert the
Python String which contains all the identifiers of the contents to a Java Array.

30 Chapter 5. Collections in COMPSs

• Runtime/Master (Java) Parameter registration and dependency calculation are
done by recursively calling already existing code (see figure 5.2). However,
data transfers are optimized. More specifically, only the collection parameter
with the list of its content is marked as a transferrable unit here. This saves us
many unnecessary connections between nodes.

• Runtime/Worker (Java) It receives a collection parameter and is responsible of
asking the master for the corresponding resources. This approach allows us
to ask for collection parameters lazily, as an eager approach may cause a huge
bottleneck if many tasks are simultaneously launched. It also constructs the
collection file structure from figure 5.3, which will be used later by the Python
Worker.

• Python Worker When a collection parameter is received it will simply traverse
the file hierarchy from figure 5.3 and reconstruct the collection, while checking
that no file is desearialized twice by using the resource memoizer we have
mentioned before.

FIGURE 5.2: A dependency graph generated by a task with a COL-
LECTION_IN parameter with 10 elements. Nodes are tasks, an edge
from A to B means that needs some data generated or modified by A.
As we can see, COMPSs will see 11 dependencies, making no differ-

ence between collections and parameters.

We have also implemented a serialization memoizer to avoid serializing and dese-
rializing parameters more than once. Let’s consider the following code:

obj1, obj2 = object(), object()
A = [obj1, obj2]
f(obj1, A)

After the improvement from section 4 all COMPSs objects are identified by their
memory address, so we are able to realize that obj1 and A[0] are the same object.
We have taken advantage of this knowledge to avoid doing extra serializations and
deserializations by keeping track of the objects that are already processed. Some
stranger cases such as f([obj1, [obj1]]) also benefit from it.

5.2. Collections as INOUT Parameters 31

FIGURE 5.3: The in-worker representation of a collection. If a collec-
tion contains another collection, a reference to this file will appear,

forming a DAG.

5.2 Collections as INOUT Parameters

Once we have collections of input parameters the next logical step consists of allow-
ing COMPSs have collections of parameters that can be updated inside some task.
Apart from adding some usable notation we needed to implement some extra steps
such as notifying the runtime that the versions of the contents have been updated.
The same optimization tricks apply here, as many metadata can be deduced from
the parent data structure. Two example applications can be found in appendix B.

5.3 Practical Applications

5.3.1 Approximating cardinalities of huge sets

The Count-Distinct or Word Count Problem can be formulated as follows: given a
sequence of elements s1, ..., sn compute the amount of distinct elements in it. For ex-
ample, for the sequence dog, cat, dog, bird, bird the answer is 3 (the distinct elements
are bird, cat, and dog).

If the sequence is not too large this problem can be easily solved in expected lin-
ear time and space using hash tables, or O(nlogn) time and linear space using some
data structures as Red-Black trees. However, this bound on space starts to become
unacceptable when datasets are too large. In this section we will describe a proba-
bilistic algorithm named as HyperLogLog [4].

This algorithm is very simple and yet very powerful. The core idea is the follow-
ing: for each element si of our sequence, use a hash function h : {0, 1}∗ 7→ {0, 1}b

to compute a value h(si) and estimate the cardinality as 2m, where m is the maxi-
mum number of leading zeros among all h(si). We must note that if all h(x) have
the same probability 1

2b then the probability for some value to have k leading zeros is
2−k. This means that the expected number of observations that are needed to find a
number with k leading zeros is 2k. Given that having a single hash value is not pre-
cise enough but computing multiple hash functions is too expensive, what is done
is the following:

32 Chapter 5. Collections in COMPSs

1. Given a token t, compute h(t)

2. Take the first p bits and use them to refer to a position in an array consisting of
2p elements a0, ..., a2p−1

3. Update this position according to the other b− p bits so it keeps the maximum
amount of leading zeros seen so far

4. Once all tokens are processed output the harmonic mean of 2a0 , ..., 2a2p−1 as the
answer.

An interesting trivia fact is that if we need O(log n) bits for our hash function to be
able to count until n then we only need O(log log n) to store the number of leading
zeros of some hash value. This is why HyperLogLog is called that way.

A very nice property of HyperLogLog is that two distinct runs on two different
datasets can be merged if they have used the same parameters (hash function, b, and
p) in such a way that it approximates the cardinality of the union of the two datasets.
Given two arrays a and b, each corresponding to a run of HyperLogLog we can get
a fictional run of HyperLogLog c that represents the union of both datasets by com-
puting ci = max(ai, bi) for all of the 2p positions. This makes sense, as it produces
the same result as running a single HyperLogLog on the concatenation of the two
datasets. This property allows us to parallelize or to distribute this algorithm, giving
us a potential performance boost. The source code we will use for our experiments
can be found in appendix C.

Note that this application is a classical map-reduce workflow. Without collections
we are forced to implement any reduce function as reduce(f, *args). Each extra
argument is passed as an input parameter via socket and pipe, implying a huge
overhead. With collections only the collection object, and the list of identifiers, are
transferred. The other properties of the contents, such as direction, locations and so
on, are deduced or requested in the destination node.

The elimination of this overhead is noticeable even with a very small number of
parameters. As we can see in figure 5.4, the collection feature reduces the over-
head drastically. An important observation is that a PyCOMPSs task of the form
f(*args) usually starts to show problems and crashes when more than 60 argu-
ments are passed, as each argument represents a lot of metadata to be transferred
via socket and pipe.

A comparison between the amount of meta-data generated and sent by the classical
reduce implementation and by the collections version can be found in appendix D.

This improvement benefits many applications, as the map-reduce scheme is very
common.

5.3.2 Usage of collections in other projects

The collection feature was very welcome by some other research groups and projects.
Some of these research groups are:

5.3. Practical Applications 33

FIGURE 5.4: Execution time of the reduce functions with and with-
out collections. Each point is the average of 5 executions. Although
the samples are noisy, as they are small, a consistent improvement
by the collection feature can be appreciated. The non-collections ver-
sions started to crash and to show strange behaviours around the 60

parameters

1. Dislib, a distributed computing library highly focused on machine learning on
top of PyCOMPSs 2

2. DDS (Distributed Data Set) 3, a PyCOMPSs implementation of Google Spark’s
RDDs. It also allows the user to write Spark-like codes for PyCOMPSs .

3. exaQute (Exascale Quantification of Uncertainties for Technology and Science
Simulation)4.

2https://www.bsc.es/research-and-development/software-and-apps/software-
list/dislib/related-software

3https://github.com/bsc-wdc/compss/tree/stable/compss/programming_model/bindings/python/src/pycompss/dds
4http://exaqute.eu/

35

Chapter 6

Combining Storage Systems with
COMPSs

All COMPSs objects are created by the user and managed by the Runtime. The
data transferring software is a home-made library based on NIO 1. Although this is
usually a good enough solution for most use cases, there are three scenarios in which
it may be a disadvantage to use this library:

1. The objects are the output of some previous application

2. The outputs of the COMPSs application are the input of some other application

3. The filesystem and/or the network presents huge bandwidth limitations

The idea of replacing files with databases or other alternative storage systems
such as NVRAM helps with these three items when the available file system is not
distributed like GPFS. Custom storage systems can help the user to avoid dealing
with the file system and execute complex, distributed workflows using only the
RAM of all the machines (and some additional swap space if necessary). Another
advantage is that these storage systems are specialized, and therefore have better
implementations than us on transferring objects between nodes, so delegating object
management to these systems may give us a little performance boost. In this chap-
ter we explore the possibility of relegating COMPSs as a simple task orchestrator by
replacing the object management stage by specialized storage systems. As usually
happens, the implementation of this feature can give some usability problems. We
will also deal with this aspect of the implementation.

6.1 Defining a Storage API

The need of defining a storage API comes from the fact that some research groups
are interested in mixing some of their tools with the COMPSs Programming Model.
The two main tools or products from these research groups are DataClay [10] and
Hecuba [1].

We decided that storage systems should implement all the same API. This would
make implementations simpler and would allow the users to run the same appli-
cation with different storage implementations by just changing the chosen API im-
plementation in their configuration. The existence of an API should also make the
user’s life easier, so it must be developed taking into account the needs of the re-
search groups and the usability of the final product. All API implementations must
define a StorageObject class from which any object that interacts with the database
must inherit. A list of these methods can be found in table 6.1.

1https://docs.oracle.com/javase/7/docs/api/java/nio/package-summary.html

36 Chapter 6. Combining Storage Systems with COMPSs

Method name Description
make_persistent(id = None) Make the Storage Object persistent
delete_persistent() Delete the Storage Object from the Storage System
getID() Get the identifier of the Storage Object
getByID(*objects) (static) Retrieve the objects with the given identifiers

TABLE 6.1: Public methods of the storage API

The makePersistent method is called by the user and stores the in-memory ob-
ject in the database. This method is entirely dependent of the storage implementa-
tion. Some implementations just serialize the whole in-memory object and store the
byte array in the database, while other implementations store classfields separately.
The only constraint about this method is that it must guarantee that the object will
be fully stored in the storage system before allowing the user code to continue, and
that the in-memory version must be exactly equal to the storage version of the object.

There are also some additional internal methods that are optional to implement,
as getLocations, which allows the COMPSs Runtime to know the locations of some
piece of data. This getLocations is implicit when using the default file system of
COMPSs, but needs to be defined when using a storage system in which COMPSs
has little to no control on where the objects are stored.

COMPSs can be configured to let it know that the user is using some storage sys-
tem. In that case, a path with a implementation bundle should be provided. COMPSs
will add to the CLASSPATH and PYTHONPATH variables the necessary paths.

The target storage system can be an already running database, or can be created by
COMPSs if a script to do that is specified. In the first case, a list with the addresses
of the storage node(s) should be provided. Note that this list can refer to nodes that
have no COMPSs worker instances running on it. This is ideal for COMPSs applica-
tions which take the outputs of some other applications as their inputs. In the second
case a storage_init.sh script should be provided. This script receives the list of the
COMPSs nodes as command line arguments and it is responsible to create the cor-
responding storage backend. It is also advisable to implement a storage_stop.sh
script if the created storage system by COMPSs is not necessary after the COMPSs
execution.

It must be noted that COMPSs is still responsible of dependency calculation and
transferring metadata between nodes (e.g: the parameters of a task). This means
that our collections feature still offers some of the advantages introduced by it, such
as a metadata transfer optimizations.

6.2 A Practical Implementation: Redis

The first step towards validating this storage API consisted of providing a valid,
functional implementation of it. For this purpose Redis was chosen.

Redis 2 is a simple Key-Value distributed storage database. Redis can be seen as
a distributed hash map with 214 = 16384 slots. Each key is either chosen by the

2https://redis.io/

6.3. Practical Applications 37

user or randomly assigned, and it determines the position of this object in the hash
table. More precisely, given a key k, and a value v, v will be stored in the position
CRC16(k) mod 16384. CRC163 is a known checksum-like method used by many
devices and network protocols to check that a message has been received with no
errors, and it can also be used as a quick hash function.

Our implementation serializes in-memory objects and stores them as byte arrays in
the database. Although this does not save us from serializing objects it is enough to
avoid us to deal with the filesystem, allowing us to do all the operations in-memory.
Huge byte arrays are split in distributed blocks to avoid long-term load imbalances
and to increase long-term data locality, in a similar fashion to Hecuba. Another im-
portant detail is that Redis offers the possibility to have replicas. A replica is a Redis
instance that mirrors the behavior of some other Redis instance and is usually lo-
cated in a different node/machine than the original one. This reduces even more
the expected transfer time, but it introduces a dangerous tradeoff between time and
space.

Another detail about our Redis implementation is that Redis offers no direct way to
make some piece of data be stored in some node. However, the Storage API defines
a method which allows the user to do that. Our solution to this problem consisted
of simply generating random keys until one of them mapped to a valid slot. This
adds almost no overhead, as the number of nodes tends to be a very manageable
number such as 16, 32, 64, or at most 128 in most practical cases. We also introduced
an optimization for static cluster topologies which consist of precomputing all the
possible locations for all the 16384 slots. This way, getLocations can be computed
in constant time with no online queries to the storage backend. This gives us a small
edge with respect to other storage implementations (or COMPSs itself when han-
dling files), which do an explicit computation each time they call getLocations.

Redis also supports pipelining. Pipelining consists of joining various different queries
into a single macro-query, allowing the storage backend optimize the order and in-
ternal commands. This pipelining feature also represents a small edge with respect
to classical files, which are handled separately.
Our Redis implementation can be used with an already existing storage backend by
just specifying the list of storage nodes and it is also capable to create a Redis Cluster
with the specified COMPSs Nodes. A Redis cluster is created by launching three or
more Redis instances and then joining them into a cluster with a Redis command.
This storage implementation, and its user’s manual, can be found in the project’s
repository 4. The two most importants pieces of it, the Java and Python core API
implementations, can be found in appendix E.

6.3 Practical Applications

6.3.1 K-Means

K-Means [8] is a clustering algorithm which, given N k-dimensional points and an
integer c, assigns each point a label between 1 and c. The idea is that these labels

3https://en.wikipedia.org/wiki/Cyclic_redundancy_check
4https://github.com/srgrr/TFM/tree/master/applications/STORAGE

38 Chapter 6. Combining Storage Systems with COMPSs

FIGURE 6.1: A set of points grouped by the K-Means algorithm. Black
points represent centroids, colours represent different groups

represent groups of similar points. An example of what this algorithm computes can
be found in figure 6.1.

The algorithm can be sumarized as follows:

1. Generate c random d dimensional points, call them centroids

2. For each point of the input data, compute the nearest centroid, assign them
labels according to which centroid is the closest

3. For each group, compute the mean of its members. Use this mean point as the
new centroid

4. Repeat step 2 until the new centroids are equal enough to the old ones

This algorithm can be easily run in a distributed environment by dividing the
input points into chunks and replicating the centroids in each computing node. Note
that the input points will not vary during all the execution, and that the centroids
usually represent a very small amount of data, so no big network transfers should
be expected here, and therefore no huge improvements should be observed with the
storage implementation. Our PyCOMPSs implementation is the following can be
found in appendix F.

Some results of how this application scales and behaves with various, different
storage implementations and with files can be found in figures 6.2 6.3 6.4, 6.5, and
6.6.

As we can see, our storage implementation does not improve the overall perfor-
mance of this application. This applications has little to no heavy transfers, only at
the beggining, so these results are more or less expected.

6.3.2 Matrix Multiplication

The matrix multiplication is a very common algorithm and it is usually the preferred
example of what an embarrassingly parallel application is (i.e: a parallel application
with no dependencies). Its distributed version is also interesting but due to other
property: the enormous amount of required data transfers. Let’s take a look to the
following code:

6.3. Practical Applications 39

FIGURE 6.2: Dependency graph of a 6-iteration K-Means execution
with 4 point fragments.

FIGURE 6.3: Strong scaling graph of our various storage implemen-
tations

40 Chapter 6. Combining Storage Systems with COMPSs

FIGURE 6.4: Strong scaling speedup graph of our various storage im-
plementations

FIGURE 6.5: Weak scaling graph of our various storage implementa-
tions

FIGURE 6.6: Weak scaling speedup graph of our various storage im-
plementations

for i in range(N):
for j in range(N):

6.3. Practical Applications 41

FIGURE 6.7: Dependency graph of a 2x2 matrix multiplication.

for k in range(N):
C[i, j] += A[i, k] * B[k, j]

This code can be parallelized in any of the three loops. The only special require-
ment is to make sure that no pair of additions over the same Ci,j are done concur-
rently. Our COMPSs implementation can be found in appendix G. As we can see, we
solve the problem by arranging all the tasks that involve some Ci,j in a dependency
chain. We also consider the members of the matrices to be sub-matrices instead of
single numbers in order to keep some balance between task count and task granu-
larity. These dependencies can be observed in figure 6.7. As we can observe in the
labels of edges, this application has far less tasks than pieces of data, and tasks have
a huge data variety. This means that most tasks will require to transfer at least one of
its parameters.

As we can see in figures 6.8 and 6.9 the Matrix Multiplication algorithm gets a huge
benefit from our storage systems. This is expected, as this application is a great ex-
ample of a very transfer-intensive workflow. Although this application is syntethic
and has little to no usage in real scenarios, it still represents and reproduces many
realistic workflows. Usually, an improvement on this application implies improve-
ments on many real life applications, as they tend to be very transfer intensive.

42 Chapter 6. Combining Storage Systems with COMPSs

FIGURE 6.8: Strong scaling graph of our various storage implemen-
tations

FIGURE 6.9: Strong scaling speedup graph of our various storage im-
plementations

43

Chapter 7

Conclusions and Future Work

7.1 Conclusions

Our contributions have improved both the usability and the performance of the
COMPSs programming model. Our features have been succesfully tested and used
with real use-cases written by real users, not only with our own test, synthetic pro-
grams.

We have removed two big flaws in the COMPSs programming model: the impossi-
bility to run tasks with many parameters due to the huge overhead from the meta-
data of parameters (and thus affecting map-reduce workflows, which happen to be
very common) and the performance issues when running COMPSs applications in
non-shared filesystems such as GPFS by offering the user an alternative based on
storage implementations.

7.2 Future Work

Let’s consider the application from section 6.3.2. In the product of two 2× 2 matri-
ces the dependency mul(A1,1, B1,1, C1,1) =⇒ mul(A1,2, B2,1, C1,1) appears, when it is
actually enough to ensure that no two tasks involving the same Ci,j are executed con-
currently. An open research line consists of developing a distributed mechanism to
allow task commutativity. It was discussed to implement the option to assign each
task a commutativity group, meaning that two tasks that belong to this group are
mutually commutative. Task commutativity is already implemented in the OMPSs
programming model (a COMPSs-like software but optimized for making applica-
tions run in a single node) [3], but it still remains as a challenge to implement an
equivalent feature for a distributed programming model.

As we mentioned in section 6, Redis allows to have replicas of some instances. Repli-
cas introduce a dangerous tradeoff between time and space. A naive usage of repli-
cas quickly leads to program crashes derived from not having enough RAM, or even
disk space. However, this does not mean that it is entirely useless. During the de-
velopment of this project this line was quickly discarded, as it was considered to be
too challenging and time-consuming. This idea cannot be properly tested locally,
so a lot of time should be devoted to development and debugging, and even more
supercomputer time should be requested. The replica feature was left unexplored
and marked as a possible future work line.

Among all the proposed implementations regarding to collections (see section 2),

44 Chapter 7. Conclusions and Future Work

the most important one that was left undone is the collection transfer optimization.
This was left as future work for two reasons: it seems hard and it is a vague idea.
The general notion is that the COMPSs Runtime can exploit the fact that a group of
parameters go together in a collection to optimize transfers. For example, they could
be packed, sent in a single connection and unpacked in their destination. However,
it was not possible to reach a concrete idea or implementation, leaving this as a pos-
sible future work line. Another possible work line regarding collections is dynamic
size. Dynamic, and possibly unknown, sizings bring many new challenges. For ex-
ample, the future or promise representation of the contents of a dynamically sized
collection is not as trivial as fixed size arrays, as we cannot know in advance how
many future objects we must generate.

Finally, the last future work line to mention is I/O and Threading. The main idea
was to parallelize I/O operations when serializing and deserializing objects. The
main problem with this idea is that I/O parallelization created a serious problem
with memory usage. Serializing and deserializing an object can take twice the size
of the object of memory. This issue does not affect most regular COMPSs applica-
tions if done sequentally, but causes a lot of crashes when done in parallel, as twice
the size of all objects is significantly more than twice the size of some object. How-
ever, this does not mean that this idea should be totally discarded. Some kind of
smart system that parallelizes I/O while avoiding these issues with memory can be
designed, and we leave this as a another possible future work line.

45

Appendix A

Collections as Input Parameters

from pycompss.api.task import task
from pycompss.api.parameter import *

A small, simple program to show the COLLECTION_IN feature
Its workflow can be summarized as follows:
1) Ten random vectors with 5 elements are created in Python functions
2) A task receives these ten random vectors packed in a COLLECTION_IN
parameter
3) The fifth of these vectors is chosen
4) This same vector is created in the master program, and a check is

performed↪→

This program should be enough to test that this feature
works, as the main aspects are tested with it.

def generate_object(seed):
"""Given an integer, create a random numpy vector of 5 elements
using this integer as the random seed.
"""
import numpy as np
np.random.seed(seed)
return np.random.rand(5)

@task(c = COLLECTION_IN, returns = 1)
def select_element(c, i):

"""Given a collection and an integer "i", return the ith element
of this collection
"""
return c[i]

def main():
from pycompss.api.api import compss_wait_on
Generate ten random vectors with pre-determined seed
ten_random_vectors = [generate_object(i) for i in range(10)]
Pick the fifth vector from a COLLECTION_IN parameter
fifth_vector = compss_wait_on(select_element(ten_random_vectors, 4))
print("My chosen vector is \t %s" % str(fifth_vector))

Recreate this vector locally

46 Appendix A. Collections as Input Parameters

import numpy as np
np.random.seed(4)
master_vector = np.random.rand(5)

print("The correct vector is \t %s" % str(master_vector))

Check that they match
assert np.allclose(fifth_vector, master_vector), "Vectors do not

match"↪→

They did match, we can now end the program
print("Congratulations! Both vectors match!")

if __name__ == "__main__":
main()

47

Appendix B

Collections as INOUT Parameters

from pycompss.api.task import task
from pycompss.api.parameter import *

A small, simple program to show the COLLECTION_INOUT feature
Its workflow can be summarized as follows:
1) Ten random vectors with 5 elements are created in COMPSs tasks
2) A task receives these ten random vectors packed in a COLLECTION_IN
parameter
3) A task receives this collection as a COLLECTION_INOUT, and

increases all entries↪→

of all vectors by exactly one
4) The fifth of these vectors is chosen
5) This same vector is created in the master program, and a check is

performed↪→

This program should be enough to test that this feature
works, as the main aspects are tested with it.

@task(returns = 1)
def generate_object(seed):

"""Given an integer, create a random numpy vector of 5 elements
using this integer as the random seed.
"""
import numpy as np
np.random.seed(seed)
return np.random.rand(5)

@task(c = COLLECTION_INOUT)
def increase_elements(c):

for elem in c:
elem += 1.0

@task(c = COLLECTION_IN, returns = 1)
def select_element(c, i):

"""Given a collection and an integer "i", return the ith element
of this collection
"""
return c[i]

48 Appendix B. Collections as INOUT Parameters

def main():
from pycompss.api.api import compss_wait_on
Generate ten random vectors with pre-determined seed
ten_random_vectors = [generate_object(i) for i in range(10)]
increase_elements(ten_random_vectors)
Pick the fifth vector from a COLLECTION_IN parameter
fifth_vector = compss_wait_on(select_element(ten_random_vectors, 4))
print("My chosen vector is \t %s" % str(fifth_vector))

Recreate this vector locally
import numpy as np
np.random.seed(4)
master_vector = np.random.rand(5) + 1.0

print("The correct vector is \t %s" % str(master_vector))

Check that they match
assert np.allclose(fifth_vector, master_vector), "Vectors do not

match"↪→

They did match, we can now end the program
print("Congratulations! Both vectors match!")

if __name__ == "__main__":
main()

The same application but adding a task which changes a single element of a
collection, proving that our recursion pattern is enough to catch the two possible
ways in which dependencies are generated (from collection to content, and from
content to collection).

from pycompss.api.task import task
from pycompss.api.parameter import *

A small, simple program to show the COLLECTION_INOUT feature
Its workflow can be summarized as follows:
1) Ten random vectors with 5 elements are created in COMPSs tasks
2) A task receives these ten random vectors packed in a

COLLECTION_INOUT↪→

parameter
3) A task receives the fifht element of this collection as an INOUT

and increases all↪→

its entries by one
4) A task receives this collection as a COLLECTION_INOUT, and

increases all entries↪→

of all vectors by exactly one
5) The fifth of these vectors is chosen
6) This same vector is created in the master program, and a check is

performed↪→

Appendix B. Collections as INOUT Parameters 49

This program should be enough to test that this feature
works, as the main aspects are tested with it.

@task(returns = 1)
def generate_object(seed):

"""Given an integer, create a random numpy vector of 5 elements
using this integer as the random seed.
"""
import numpy as np
np.random.seed(seed)
return np.random.rand(5)

@task(c = COLLECTION_INOUT)
def increase_elements(c):

for elem in c:
elem += 1.0

@task(e = INOUT)
def increase_element(e):

e += 1.0

@task(c = COLLECTION_IN, returns = 1)
def select_element(c, i):

"""Given a collection and an integer "i", return the ith element
of this collection
"""
print("Received collection value is %s" % str(c))
return c[i]

def main():
from pycompss.api.api import compss_wait_on
Generate ten random vectors with pre-determined seed
ten_random_vectors = [generate_object(i) for i in range(10)]
increase_elements(ten_random_vectors)
increase_element(ten_random_vectors[4])
Pick the fifth vector from a COLLECTION_IN parameter
fifth_vector = compss_wait_on(select_element(ten_random_vectors, 4))
print("My chosen vector is \t %s" % str(fifth_vector))

Recreate this vector locally
import numpy as np
np.random.seed(4)
master_vector = np.random.rand(5) + 2.0

print("The correct vector is \t %s" % str(master_vector))

Check that they match
assert np.allclose(fifth_vector, master_vector), "Vectors do not

match"↪→

They did match, we can now end the program

50 Appendix B. Collections as INOUT Parameters

print("Congratulations! Both vectors match!")

if __name__ == "__main__":
main()

51

Appendix C

HyperLogLog

Main application:

from pycompss.api.task import task
from pycompss.api.parameter import *
from HyperLogLog import HyperLogLog

def parse_arguments():
import argparse
parser = \

argparse.ArgumentParser(
description = "Count the number of distinct

words of a set of text files"↪→

)
parser.add_argument("files", metavar="N", type = str, nargs =

"+",↪→

help="(Absolute or relative) paths to files")
parser.add_argument("--bits", default = 64, type = int, help =

"Bits per hash")↪→

parser.add_argument("--buckets", default = 11, type = int, help
= "Bits for bucket indexing")↪→

parser.add_argument("--collections", action = "store_true")
return parser.parse_args()

@task(filename = FILE_IN, returns = 1)
def count_distinct(filename, bits, buckets):

h = HyperLogLog(b = bits, p = buckets)
with open(filename, "r") as f:

for line in f:
for w in line.strip().split():

h.add_word(w)
return h

@task(hloglogs = COLLECTION_IN, returns = 1)
def reduce_hloglog_collections(hloglogs, bits, buckets):

h = HyperLogLog(b = bits, p = buckets)
for hloglog in hloglogs:

h.add_hyperloglog(hloglog)
return h.get_estimation()

@task(returns = 1)
def reduce_hloglog(bits, buckets, *args):

52 Appendix C. HyperLogLog

h = HyperLogLog(b = bits, p = buckets)
for hloglog in args:

h.add_hyperloglog(hloglog)
return h.get_estimation()

def elapsed_time(name, start, end):
print("%s=%.08f" % (name, end - start))

def main(files, bits, buckets, collections):
import time
N = len(files)
hloglogs =\

list(map(count_distinct, files, [bits] * N, [buckets] *
N))↪→

from pycompss.api.api import compss_barrier, compss_wait_on
Easier isolation of reduce time
compss_barrier()
start_t = time.time()
if collections:

estimation = reduce_hloglog_collections(hloglogs, bits,
buckets)↪→

else:
estimation = reduce_hloglog(bits, buckets, *hloglogs)

end_t = time.time()

print("Estimated cardinality: %d" % compss_wait_on(estimation))

elapsed_time("reduce", start_t, end_t)

if __name__ == '__main__':
opts = parse_arguments()
main(**vars(opts))

HyperLogLog class

import numpy as np

class HyperLogLog(object):
"""An implementation of an HyperLogLog memory object, part of

the↪→

wordcount-collections example source code
"""
def __init__(self, b, p, plot = False):

"""Constructor method.
Parameters:
b, integer: total number of bits (b - p bits per

bucket)↪→

p, integer: exponent of the number of buckets (2^p)
"""
self.b = b
self.p = p

Appendix C. HyperLogLog 53

self.buckets = np.zeros(2 ** p, dtype = np.uint8)
self.plot = plot

if self.plot:
self.histogram = []

def hash(self, w):
"""Get the hash of a token.
Maybe sha256 is an overkill for this situation, but we

prefer to err↪→

in the cautious side
"""
import hashlib
return

int(hashlib.sha256(w.encode("utf-8")).hexdigest(),
16)

↪→

↪→

def leading_zeroes(self, n, num_bits):
"""Get the number of leading zeroes in binary

representation↪→

"""
for i in range(num_bits - 1, -1, -1):

if n & (1 << i):
return num_bits - i - 1

return num_bits

def add_word(self, w):
"""Process a token, update the corresponding register

(if necessary)↪→

"""
bpp = self.b - self.p
w_hash = self.hash(w) & ((1 << self.b) - 1)
bucket_index = w_hash >> bpp
hash_value = w_hash & ((1 << bpp) - 1)
self.buckets[bucket_index] = \

max(self.buckets[bucket_index],
self.leading_zeroes(hash_value, bpp))↪→

if self.plot:
self.histogram.append(bucket_index)

def add_hyperloglog(self, h):
assert self.b == h.b, "Cannot merge HLogLogs with

different number of bits"↪→

assert self.p == h.p, "Cannot merge HLogLogs with
different number of buckets"↪→

The maximum can be expressed as the componentwise
self.buckets = np.maximum(self.buckets, h.buckets)

def get_estimation(self):
"""Return the estimation of the cardinality as the

harmonic mean↪→

54 Appendix C. HyperLogLog

of the registers
"""
return float(self.buckets.shape[0]) / np.mean(1.0 /

(2.0 ** self.buckets))↪→

def plot_result(self):
if self.plot:

import pylab as plt
plt.figure()
plt.plot(self.histogram)
plt.savefig("hloglog.png")

55

Appendix D

Metadata generation comparison

A task f(a, b, c, d, e) sends this information through a socket:

[BINDING-COMMONS] - @GS_RegisterCE - Task registered: metadata.f
[BINDING-COMMONS] - @GS_ExecuteTaskNew - Processing task execution in bindings-common.
[BINDING-COMMONS] - @GS_ExecuteTaskNew - Processing parameter 0
[BINDING_COMMONS] - @process_param
[BINDING-COMMONS] - @process_param - ENUM DATA_TYPE: 9
[BINDING-COMMONS] - @process_param - File: ...
[BINDING-COMMONS] - @process_param - ENUM DIRECTION: 0
[BINDING-COMMONS] - @process_param - ENUM STREAM: 3
[BINDING-COMMONS] - @process_param - PREFIX: null
[BINDING-COMMONS] - @process_param - NAME: *args*_0
[BINDING-COMMONS] - @GS_ExecuteTaskNew - Processing parameter 1
[BINDING_COMMONS] - @process_param
[BINDING-COMMONS] - @process_param - ENUM DATA_TYPE: 9
[BINDING-COMMONS] - @process_param - File: ...
[BINDING-COMMONS] - @process_param - ENUM DIRECTION: 0
[BINDING-COMMONS] - @process_param - ENUM STREAM: 3
[BINDING-COMMONS] - @process_param - PREFIX: null
[BINDING-COMMONS] - @process_param - NAME: *args*_1
[BINDING-COMMONS] - @GS_ExecuteTaskNew - Processing parameter 2
[BINDING_COMMONS] - @process_param
[BINDING-COMMONS] - @process_param - ENUM DATA_TYPE: 9
[BINDING-COMMONS] - @process_param - File: ...
[BINDING-COMMONS] - @process_param - ENUM DIRECTION: 0
[BINDING-COMMONS] - @process_param - ENUM STREAM: 3
[BINDING-COMMONS] - @process_param - PREFIX: null
[BINDING-COMMONS] - @process_param - NAME: *args*_2
[BINDING-COMMONS] - @GS_ExecuteTaskNew - Processing parameter 3
[BINDING_COMMONS] - @process_param
[BINDING-COMMONS] - @process_param - ENUM DATA_TYPE: 9
[BINDING-COMMONS] - @process_param - File: ...
[BINDING-COMMONS] - @process_param - ENUM DIRECTION: 0
[BINDING-COMMONS] - @process_param - ENUM STREAM: 3
[BINDING-COMMONS] - @process_param - PREFIX: null
[BINDING-COMMONS] - @process_param - NAME: *args*_3
[BINDING-COMMONS] - @GS_ExecuteTaskNew - Processing parameter 4
[BINDING_COMMONS] - @process_param
[BINDING-COMMONS] - @process_param - ENUM DATA_TYPE: 9
[BINDING-COMMONS] - @process_param - File: ...
[BINDING-COMMONS] - @process_param - ENUM DIRECTION: 0

56 Appendix D. Metadata generation comparison

[BINDING-COMMONS] - @process_param - ENUM STREAM: 3
[BINDING-COMMONS] - @process_param - PREFIX: null
[BINDING-COMMONS] - @process_param - NAME: *args*_4
[BINDING-COMMONS] - @GS_ExecuteTaskNew - Processing parameter 5
[BINDING_COMMONS] - @process_param
[BINDING-COMMONS] - @process_param - ENUM DATA_TYPE: 9
[BINDING-COMMONS] - @process_param - File: ...
[BINDING-COMMONS] - @process_param - ENUM DIRECTION: 1
[BINDING-COMMONS] - @process_param - ENUM STREAM: 3
[BINDING-COMMONS] - @process_param - PREFIX: #
[BINDING-COMMONS] - @process_param - NAME: $return_0

While the collection equivalent generates this data:

[BINDING-COMMONS] - @GS_RegisterCE - Task registered: metadata.g
[BINDING-COMMONS] - @GS_ExecuteTaskNew - Processing task execution in bindings-common.
[BINDING-COMMONS] - @GS_ExecuteTaskNew - Processing parameter 0
[BINDING_COMMONS] - @process_param
[BINDING-COMMONS] - @process_param - ENUM DATA_TYPE: 26
[BINDING-COMMONS] - @process_param - Collection: ...
[BINDING-COMMONS] - @process_param - ENUM DIRECTION: 0
[BINDING-COMMONS] - @process_param - ENUM STREAM: 3
[BINDING-COMMONS] - @process_param - PREFIX: null
[BINDING-COMMONS] - @process_param - NAME: c
[BINDING-COMMONS] - @GS_ExecuteTaskNew - Processing parameter 1
[BINDING_COMMONS] - @process_param
[BINDING-COMMONS] - @process_param - ENUM DATA_TYPE: 9
[BINDING-COMMONS] - @process_param - File: ...
[BINDING-COMMONS] - @process_param - ENUM DIRECTION: 1
[BINDING-COMMONS] - @process_param - ENUM STREAM: 3
[BINDING-COMMONS] - @process_param - PREFIX: #
[BINDING-COMMONS] - @process_param - NAME: $return_0

57

Appendix E

Redis Storage API implementation

Python:

#
Copyright 2017 Barcelona Supercomputing Center (www.bsc.es)
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

implied.↪→

See the License for the specific language governing permissions and
limitations under the License.
#
'''API for Redis PSCO handling
This class is responsible to establish and to mantain a Redis

connection to↪→

the backend, also it is responible of retrieving objects from it.
As a reminder, objects are stored as a serialized byte array.
@author: srodrig1 < sergio dot rodriguez at bsc dot es >
'''
import uuid
import redis
import rediscluster
from pycompss.util.serializer import serialize_to_string,

deserialize_from_string, deserialize_from_handler↪→

__name__ = "redispycompss"

'''Constants
'''
REDIS_PORT = 6379
MAX_BLOCK_SIZE = 510 * 1024 * 1024
#MAX_BLOCK_SIZE = 16

'''Global variables
They are declared only for visibility purposes
'''

58 Appendix E. Redis Storage API implementation

redis_connection = None
hosts = None

class StorageException(Exception):
'''StorageException class
'''
pass

def init(config_file_path=None, **kwargs):
'''Init the storage client. Basically, we set the Redis client and

connects it↪→

to the instance/cluster
'''
global redis_connection
global hosts
If config_file_path is None we will assume that we only have

localhost↪→

as storage node
if config_file_path is None:

try:
import StringIO as sio

except ImportError:
from io import StringIO as sio

config_file_handler = sio.StringIO('localhost\n')
else:

config_file_handler = open(config_file_path)
As accorded in the API standar, this file must contain all the

hosts names↪→

with no port, one per line
hosts = [x.strip() for x in config_file_handler.readlines()]
config_file_handler.close()
If we have more than one host then we will assume that our

backend is a Redis↪→

cluster. If not, we will assume that we are dealing with a Redis
standalone↪→

instance
if len(hosts) > 1:

Given that cluster clients are capable to perform master
slave hierarchy discovery, we will simply connect to the

first↪→

node we got
redis_connection = \

rediscluster.StrictRedisCluster(host=hosts[0],
port=REDIS_PORT)↪→

else:
We are in standalone mode
redis_connection = \

redis.StrictRedis(host=hosts[0], port=REDIS_PORT)

Appendix E. Redis Storage API implementation 59

StrictRedis is not capable to know if we had success when
connecting by↪→

simply calling the constructor. We need to perform an actual
query to↪→

the backend
If we had no success this first line should crash
redis_connection.set('PYCOMPSS_TEST', 'OK')
Beware py2 vs py3 - b'string' works for both.
assert redis_connection.get('PYCOMPSS_TEST') == b'OK'
redis_connection.delete('PYCOMPSS_TEST')

def initWorker(config_file_path=None):
'''Per-worker init function
'''
init(config_file_path)

init_worker = initWorker

def finishWorker(*args, **kwargs):
'''Same as finish. No additional actions are needed
'''
pass

finish_worker = finishWorker

def finish(**kwargs):
'''Finish the storage: Nothing to do, as Python redis clients have

no↪→

close method.
'''
pass

def getByIDOld(identifier):
'''Retrieves the object that has the given identifier from the

Redis database.↪→

That is, given an identifier, retrieves the contents from the
backend↪→

that correspond to this key, deserializes it and returns the
reconstructed↪→

object.
'''
global redis_connection
import io
with io.BytesIO() as bio:

num_blocks = int(redis_connection.llen(identifier))
for l in redis_connection.lrange(identifier, 0, num_blocks):

bio.write(l)
In case that we have read a None then it means that the

requested object↪→

was not present in the Redis backend
bio.seek(0)

60 Appendix E. Redis Storage API implementation

ret = deserialize_from_handler(bio)
return ret

def getByID(*identifiers):
'''Retrieves a set of objects from their identifiers by pipelining

the get commands↪→

'''
global redis_connection
p = redis_connection.pipeline()
Stack the pipe calls
for identifier in identifiers:

num_blocks = int(redis_connection.llen(identifier))
p.lrange(identifier, 0, num_blocks)

Get all the objects
ret = p.execute()
Deserialize and delete the serialized contents for each object
for i in range(len(identifiers)):

ret[i] = deserialize_from_string(
b''.join(

ret[i]
)

)
ret[i].pycompss_mark_as_unmodified()

return ret[0] if len(ret) == 1 else ret

get_by_ID = getByID

def makePersistent(obj, identifier = None):
'''Persists an object to the Redis backend. Does nothing if the

object↪→

is already persisted.
'''
if obj.pycompss_psco_identifier is not None:

Non null identifier -> object is already persisted
return

The object has no identifier, we need to assign it one
obj.pycompss_psco_identifier = str(uuid.uuid4()) if identifier is

None \↪→

else identifier
Serialize the object and store the pair (id, serialized_object)
serialized_object = serialize_to_string(obj)
bytes_size = len(serialized_object)
num_blocks = (bytes_size + MAX_BLOCK_SIZE - 1) // MAX_BLOCK_SIZE
for block in range(num_blocks):

l = block * MAX_BLOCK_SIZE
r = (block + 1) * MAX_BLOCK_SIZE
redis_connection.rpush(

obj.pycompss_psco_identifier, serialized_object[l : r]
)

Object is now synced with backend
obj.pycompss_mark_as_unmodified()

Appendix E. Redis Storage API implementation 61

make_persistent = makePersistent

def deletePersistent(obj):
'''Deletes a persisted object. If the object was not persisted,

then↪→

nothing will be done.
'''
if obj.pycompss_psco_identifier is None:

The object was not persisted, there is nothing to do
return

Delete the object from the backend
redis_connection.delete(obj.pycompss_psco_identifier)
Set key to None
obj.pycompss_psco_identifier = None
Mark as unmodified
obj.pycompss_mark_as_unmodified()

delete_persistent = deletePersistent

class TaskContext(object):
'''Here for compatibility purposes
'''
def __init__(self, logger, values, config_file_path=None):

self.logger = logger
self.values = values
self.config_file_path = config_file_path

def __enter__(self):
Do something prolog

Ready to start the task
self.logger.info("Prolog finished")
pass

def __exit__(self, type, value, traceback):
Update all modified objects
for obj in self.values:

try:
if obj.pycompss_is_modified():

print('Repersisting object %s' % obj)
old_id = obj.getID()
obj.delete_persistent()
obj.make_persistent(old_id)

except:
pass

Finished
self.logger.info("Epilog finished")
pass

task_context = TaskContext

62 Appendix E. Redis Storage API implementation

Java:

package storage;

import java.io.*;
import java.net.InetAddress;
import java.net.UnknownHostException;
import java.util.*;

import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;
import redis.clients.jedis.*;
import redis.clients.jedis.exceptions.JedisDataException;
import redis.clients.util.JedisClusterCRC16;
import storage.utils.Serializer;

public final class StorageItf {

// Logger According to Loggers.STORAGE
private static final Logger LOGGER =

LogManager.getLogger("es.bsc.compss.Storage");↪→

// Error Messages
private static final String ERROR_HOSTNAME = "ERROR_HOSTNAME";

private static final String MASTER_HOSTNAME;

// Redis variables

// This port is the official Redis Port
// See

https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers↪→

// The storage API will assume that, given a hostname, there is a
Redis Server listening there↪→

private static final int REDIS_PORT = 6379;
private static final int REDIS_MAX_CLIENTS = 1<<19;
// Number of Redis hash slots. This is fixed, and official. See

redis.io tutorials↪→

private static final int REDIS_MAX_HASH_SLOTS = 16384;
// Client connections
// Given that the client classes that are needed to establish a

connection with a Redis backend are↪→

// different for standalone and cluster cases, we are going to
first try to establish a connection with↪→

// the cluster client, and, if it fails, with the standalone client
// Given that JedisCluster and Jedis are classes that share no

common ancestor, this is the cleanest way I can↪→

// come up with.
private static JedisCluster redisClusterConnection;
private static JedisPool redisConnection;
private static boolean clusterMode = true;

Appendix E. Redis Storage API implementation 63

private static List<String> hosts = new ArrayList<>();

private static HashMap<String, String> previousVersion = new
HashMap<>();↪→

// Given a hash slot, return a list with the hosts that contain at
least one instance that includes↪→

// this slot in its slot interval
private static ArrayList< String >[] hostsBySlot = new

ArrayList[REDIS_MAX_HASH_SLOTS];↪→

static {
String hostname = null;
try {

InetAddress localHost = InetAddress.getLocalHost();
hostname = localHost.getCanonicalHostName();

} catch (UnknownHostException e) {
System.err.println(ERROR_HOSTNAME);
e.printStackTrace();
System.exit(1);

}
MASTER_HOSTNAME = hostname;

}

/**
* Constructor
*/

public StorageItf() {
// Nothing to do since everything is static

}

/**
* Initializes the persistent storage
* Configuration file must contain all the worker hostnames, one by
line↪→

* @param storageConf Path to the storage configuration File
* @throws StorageException
*/

public static void init(String storageConf) throws
StorageException, IOException {↪→

LOGGER.info("[LOG] Configuration received: " + storageConf);
try (BufferedReader br = new BufferedReader(new

FileReader(storageConf))) {↪→

String line;
while ((line = br.readLine()) != null) {

hosts.add(line.trim());
LOGGER.info("Adding " + line.trim() + " to list of

known hosts...");↪→

}
} catch (FileNotFoundException e) {

64 Appendix E. Redis Storage API implementation

throw new StorageException("Could not find configuration
file", e);↪→

} catch (IOException e) {
throw new StorageException("Could not open configuration

file", e);↪→

}
assert(!hosts.isEmpty());
clusterMode = hosts.size() > 1;
if(clusterMode) {

LOGGER.info("More than one host detected, enabling Client
Cluster Mode");↪→

// TODO: Ask Jedis guys why JedisCluster needs a
HostAndPort and why Jedis needs a String and an Integer↪→

redisClusterConnection = new JedisCluster(new
HostAndPort(hosts.get(0), REDIS_PORT));↪→

// Precompute host hashmap
preComputeHostHashMap();

}
else {

LOGGER.info("Only one host detect, using standalone
client...");↪→

JedisPoolConfig poolConfig = new JedisPoolConfig();
poolConfig.setMaxTotal(REDIS_MAX_CLIENTS);
redisConnection = new JedisPool(poolConfig, hosts.get(0),

REDIS_PORT);↪→

}
}

// Temporary representation of a host
static private class Host {

// Host (name)
String host;
// Hash slot endpoints
int l, r;

Host(String clusterInfoLine) {
String[] tokens = clusterInfoLine.split(" ");
this.host = tokens[1].split("@")[0].split(":")[0];
InetAddress addr = null;
try {

addr = InetAddress.getByName(this.host);
} catch (UnknownHostException e) {

e.printStackTrace();
}
this.host = addr.getHostName();
String[] interval = tokens[tokens.length - 1].split("-");
this.l = Integer.parseInt(interval[0]);
this.r = Integer.parseInt(interval[1]);

}

void printHostInfo() {

Appendix E. Redis Storage API implementation 65

System.out.printf("Host %s covers slots [%d, %d]\n", host,
l, r);↪→

}

}

private static void preComputeHostHashMap() {
String someHost =

(String)redisClusterConnection.getClusterNodes().keySet().toArray()[0];↪→

String clusterInfo =
redisClusterConnection.getClusterNodes().get(someHost).getResource().clusterNodes();↪→

String[] clusterLines = clusterInfo.split("\n");
ArrayList< Host > clusterHosts = new ArrayList<>();
for(String line : clusterLines) {

Host h = new Host(line);
clusterHosts.add(h);

}
for(int i = 0; i < REDIS_MAX_HASH_SLOTS; ++i) {

ArrayList< String > validHosts = new ArrayList<>();
for(Host h : clusterHosts) {

if(h.l <= i && i <= h.r) {
validHosts.add(h.host);

}
}
hostsBySlot[i] = new ArrayList<>(new

TreeSet<>(validHosts));↪→

}
}

/**
* Stops the persistent storage
* StorageItf
* @throws StorageException
*/

public static void finish() throws StorageException {
if(clusterMode) {

try {
redisClusterConnection.close();

} catch (IOException e) {
e.printStackTrace();

}
}
else {

redisConnection.close();
}

}

/**
* Returns all the valid locations of a given id
* @param id Object identifier
* @return List of valid locations for given resource

66 Appendix E. Redis Storage API implementation

* @throws StorageException
*/

public static List<String> getLocations(String id) throws
StorageException {↪→

if(id != null && clusterMode) {
int slot = JedisClusterCRC16.getSlot(id);
return hostsBySlot[slot];

}
else {

return hosts;
}

}

/**
* Creates a new replica of PSCO id @id in host @hostname
*
* @param id
* @param hostName
* @throws StorageException
*/

public static void newReplica(String id, String hostName) throws
StorageException {↪→

throw new StorageException("Redis does not support this
feature.");↪→

}

private static void putInRedis(byte[] serializedObject, String id)
throws StorageException {↪→

String result = clusterMode ?
redisClusterConnection.set(id.getBytes(),

serializedObject) :↪→

redisConnection.getResource().set(id.getBytes(),
serializedObject);↪→

if(!result.equals("OK")) {
throw new StorageException("Redis returned an error while

trying to store object with id " + id);↪→

}
}

/**
* Create a new version of the PSCO id @id in the host @hostname
Returns the id of the new version↪→

*
* @param id
* @param hostName
* @return
* @throws StorageException
*/

public static String newVersion(String id, boolean preserveSource,
String hostName) throws StorageException, IOException,
ClassNotFoundException {

↪→

↪→

Appendix E. Redis Storage API implementation 67

byte[] obj = getBytesByID(id);
String newId = UUID.randomUUID().toString();
previousVersion.put(newId, id);
putInRedis(obj, newId);
if(!preserveSource) {

consolidateVersion(newId);
}
return newId;

}

/**
* Returns the object with id @id This function retrieves the
object from any location↪→

*
* @param id
* @return
* @throws StorageException
*/

public static Object getByID(String id) throws StorageException,
IOException, ClassNotFoundException {↪→

byte[] serializedObject = clusterMode ?
redisClusterConnection.get(id.getBytes()) :
redisConnection.getResource().get(id.getBytes());

if(serializedObject == null) {
throw new StorageException("Object with id " + id + " is

not in Redis!");↪→

}
Object ret = Serializer.deserialize(serializedObject);
((StorageObject)ret).setID(id);
return ret;

}

private static byte[] getBytesByID(String id) throws
StorageException {↪→

byte[] ret = clusterMode ?
redisClusterConnection.get(id.getBytes()) :
redisConnection.getResource().get(id.getBytes());

if(ret == null) {
throw new StorageException("Object with id " + id + " is

not in Redis!");↪→

}
return ret;

}

/**
* Executes the task into persistent storage
*
* @param id
* @param descriptor
* @param values
* @param hostName

68 Appendix E. Redis Storage API implementation

* @param callback
* @return
* @throws StorageException
*/

public static String executeTask(String id, String descriptor,
Object[] values, String hostName, CallbackHandler callback)↪→

throws StorageException {
throw new StorageException("Redis does not support this

feature.");↪→

}

/**
* Retrieves the result of persistent storage execution
*
* @param event
* @return
*/

public static Object getResult(CallbackEvent event) throws
StorageException {↪→

throw new StorageException("Redis does not support this
feature.");↪→

}

/**
* Consolidates all intermediate versions to the final id
*
* @param idFinal
* @throws StorageException
*/

public static void consolidateVersion(String idFinal) throws
StorageException {↪→

LOGGER.info("Consolidating version for " + idFinal);
// Skip final version
idFinal = previousVersion.get(idFinal);
while(idFinal != null) {

LOGGER.info("Removing version " + idFinal);
removeById(idFinal);
String oldId = idFinal;
idFinal = previousVersion.get(idFinal);
previousVersion.remove(oldId);

}
}

/*
*
**↪→

* SPECIFIC IMPLEMENTATION METHODS

***/↪→

/**
* Stores the object @o in the persistent storage with id @id

Appendix E. Redis Storage API implementation 69

*
* @param o
* @param id
* @throws StorageException
*/

public static void makePersistent(Object o, String id) throws
StorageException, IOException {↪→

byte[] serializedObject = Serializer.serialize(o);
String result = clusterMode ?

redisClusterConnection.set(id.getBytes(),
serializedObject) :↪→

redisConnection.getResource().set(id.getBytes(),
serializedObject);↪→

if(!result.equals("OK")) {
throw new StorageException("Redis returned an error while

trying to store object with id " + id);↪→

}
}

/**
* Removes all the occurrences of a given @id
*
* @param id
*/

public static void removeById(String id) {
if(clusterMode) {

redisClusterConnection.del(id.getBytes());
}
else {

redisConnection.getResource().del(id.getBytes());
}

}

// ONLY FOR TESTING PURPOSES
static class MyStorageObject extends StorageObject implements

Serializable {↪→

private String innerString;

public MyStorageObject(String myString) {
innerString = myString;

}

public String getInnerString() {
return innerString;

}

public void setInnerString(String innerString) {
this.innerString = innerString;

}
}

70 Appendix E. Redis Storage API implementation

/**
* ONLY FOR TESTING PURPOSES
* @param args
*/

public static void main(String[] args) throws
ClassNotFoundException {↪→

try {

init("/home/sergiorg/git/framework/utils/storage/redisPSCO/scripts/sample_hosts");↪→

if(clusterMode) {
// let's do getByID stuff
MyStorageObject myObject = new MyStorageObject("This is

an object");↪→

myObject.makePersistent();
Map< String, JedisPool > m =

redisClusterConnection.getClusterNodes();↪→

for(String s : m.keySet()) {
JedisPool jp = m.get(s);
Jedis j = jp.getResource();
//System.out.println(j.info());
//System.out.println(j.clusterInfo());
//System.out.println(j.clusterNodes());
break;

}
}
else {

// let's do standalone stuff
MyStorageObject myObject = new MyStorageObject("This is

an object");↪→

StorageItf.makePersistent(myObject, "prueba");
Object retrieved = StorageItf.getByID("prueba");

System.out.println(((MyStorageObject)retrieved).getInnerString());↪→

myObject.updatePersistent();
StorageItf.removeById("prueba");

}
} catch(StorageException | IOException e) {

e.printStackTrace();
}

}

}

The storage_init.sh script, used to build Redis clusters on demand:

#!/bin/bash

###
Name: storage_init.sh
Description: Storage API script for COMPSs
Parameters: <jobId> Queue Job Id

Appendix E. Redis Storage API implementation 71

<masterNode> COMPSs Master Node
<storageMasterNode> Node reserved for Storage Master

Node (if needed)↪→

"<workerNodes>" Nodes set as COMPSs workers
<network> Network type
<storageProps> Properties file for storage

specific variables↪→

###

#---
ERROR CONSTANTS
#---
ERROR_PROPS_FILE="Cannot find storage properties file"
ERROR_GENERATE_CONF="Cannot generate conf file"

#---
HELPER FUNCTIONS
#---

####################
Function to display usage
####################
usage() {

local exitValue=$1

echo " Usage: $0 <jobId> <masterNode> <storageMasterNode>
\"<workerNodes>\" <network> <storageProps>"↪→

echo " "

exit $exitValue
}

####################
Function to display error
####################
display_error() {

local errorMsg=$1

echo "ERROR: $errorMsg"
exit 1

}

#---
MAIN FUNCTIONS
#---

####################
Function to get args

72 Appendix E. Redis Storage API implementation

####################
get_args() {

NUM_PARAMS=6

Check parameters
if [$# -eq 1]; then

if ["$1" == "usage"]; then
usage 0

fi
fi
if [$# -ne ${NUM_PARAMS}]; then

echo "Incorrect number of parameters"
usage 1

fi

Get parameters
jobId=$1
master_node=$2
storage_master_node=$master_node
worker_nodes=$4
network=$5
storageProps=$6

}

####################
Function to check and arrange args
####################
check_args() {

Check storage Props file exists
if [! -f ${storageProps}]; then

PropsFile doesn't exist
display_error "${ERROR_PROPS_FILE}"

fi
source ${storageProps}

Convert network to suffix
if ["${network}" == "ethernet"]; then

network=""
elif ["${network}" == "infiniband"]; then

network="-ib0"
elif ["${network}" == "data"]; then

network=""
fi

}

####################
Function to log received arguments
####################
log_args() {

echo "--- STORAGE_INIT.SH ---"
echo "Job ID: $jobId"

Appendix E. Redis Storage API implementation 73

echo "Master Node: $master_node"
echo "Storage Master Node: $storage_master_node"
echo "Worker Nodes: $worker_nodes"
echo "Network: $network"
echo "Storage Props: $storageProps"
echo "-----------------------"

}
####################
Function to resolve a hostname to an IP
####################
resolve_host_name() {

echo `getent hosts $1 | awk '{ print $1 }'`
}

####################
Function to check if an argument is an IP
####################
function valid_ip() {

local ip=$1
local stat=1
if [[$ip =~ ^[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}$]];

then↪→

OIFS=$IFS
IFS='.'
ip=($ip)
IFS=$OIFS
[[${ip[0]} -le 255 && ${ip[1]} -le 255 \
&& ${ip[2]} -le 255 && ${ip[3]} -le 255]]
stat=$?

fi
return $stat

}

####################
Given a node identifier, resolves it to an IP if it not already an

IP↪→

####################
get_ip_address() {

local output=$1;
if ! valid_ip $1;
then

output=$(resolve_host_name $1);
fi
echo $output

}

####################
Returns the command that must be executed in order to create a

redis instance on a given location, on a given port↪→

####################
get_redis_instantiation_command() {

74 Appendix E. Redis Storage API implementation

$1 = host
$2 = path

SSH: This command simply opens an SSH connection to the target
node and executes the command↪→

SSH assumes the following:
1) There is passwordless access to the destination
2) The target machine has no zombie-killer mechanism
if ["$REDIS_REMOTE_COMMAND" == "ssh"];
then

echo "ssh $1 \"cd $2; redis-server redis.conf\""
elif ["$REDIS_REMOTE_COMMAND" == "blaunch"];
then

echo "BLAUNCH Pending to implement!"
elif ["$REDIS_REMOTE_COMMAND" == "srun"];
then

echo "SRUN Pending to implement!"
else

echo "ERROR: \"$REDIS_REMOTE_COMMAND\" is not a valid
instantiation command or it is not supported"↪→

echo "Supported commands are: ssh, blaunch, and srun"
exit 1

fi
}

Default values
The idea is to replace these values by the desired ones in the

--storage_conf file↪→

The values below form a valid sample configuration anyway
REDIS_PORT=6379
REDIS_NODE_TIMEOUT=5000
REDIS_REPLICAS=0
REDIS_REMOTE_COMMAND=ssh
REDIS_HOME=/tmp/redis_cluster

get_args "$@"
check_args
log_args

#---
MAIN FUNCTIONS
#---
REDIS_TEMPLATE="bind 0.0.0.0\ndaemonize yes\nprotected-mode no\nport

REDIS_PORT\ncluster-enabled yes\ncluster-config-file
nodes.conf\ncluster-node-timeout REDIS_NODE_TIMEOUT\nappendonly
no"

↪→

↪→

↪→

REDIS_SANDBOX=$REDIS_HOME/${jobId}

STORAGE_HOME=$(dirname $0)/../

echo "REDIS CONFIGURATION PARAMETERS"

Appendix E. Redis Storage API implementation 75

echo "REDIS_HOME: $REDIS_HOME"
echo "REDIS_SANDBOX: $REDIS_SANDBOX"
echo "REDIS_PORT: $REDIS_PORT"
echo "REDIS_NODE_TIMEOUT: $REDIS_NODE_TIMEOUT"
echo "REDIS_REPLICAS: $REDIS_REPLICAS"
echo "REDIS_REMOTE_COMMAND: $REDIS_REMOTE_COMMAND"
echo "-----------------------"

These paths are needed for COMPSs because the runtime
will systematically look for a storage.cfg file here
if storage_home has been defined
COMPSS_STORAGE_DIR=$HOME/.COMPSs/${jobId}/storage
COMPSS_STORAGE_CFG_DIR=$COMPSS_STORAGE_DIR/cfgfiles
COMPSS_STORAGE_CFG_FILE=$COMPSS_STORAGE_CFG_DIR/storage.properties

echo "COMPSS PATH PARAMETERS"
echo "COMPSS_STORAGE_DIR: $COMPSS_STORAGE_DIR"
echo "COMPSS_STORAGE_CFG_DIR: $COMPSS_STORAGE_CFG_DIR"
echo "COMPSS_STORAGE_CFG_FILE: $COMPSS_STORAGE_CFG_FILE"
echo "-----------------------"
############################
STORAGE DEPENDENT CODE
############################

These paths are needed to be available because COMPSs will look
for storage stuff there, and there is no way to change it
Note that REDIS_HOME is a different variable
This is intentional because the $HOME directory may be shared, so
we may end up creating Redis instances sandboxes for two different

instances↪→

in a same location if they have the same port
mkdir -p $COMPSS_STORAGE_DIR
mkdir -p $COMPSS_STORAGE_CFG_DIR

Write the nodes to the storage config that is needed for COMPSs
echo ${storage_master_node}${network} >> $COMPSS_STORAGE_CFG_FILE
for worker_node in $worker_nodes
do

echo ${worker_node}${network} >> $COMPSS_STORAGE_CFG_FILE
done

Pre-step: Resolve the nodes names to IPs (if needed)
This is due to the Redis backend limitation that imposes that it

only works well when IPs are↪→

passed. Given that we have no guarantee about the locations format
(i.e: we do not know if they are↪→

going to be hostnames of IPs) then we must check if we got an IP
and, if not, resolve it↪→

see get_ip_address, valid_ip, and resolve_host_name to see what is
being done here↪→

76 Appendix E. Redis Storage API implementation

storage_master_node=$(get_ip_address
${storage_master_node}${network});↪→

worker_nodes=$(
for worker_node in $worker_nodes

do
echo $(get_ip_address ${worker_node}${network})

done
);

echo "RESOLVED REDIS NODES"
echo "MASTER NODE: $storage_master_node"
for worker_node in $worker_nodes
do

echo "WORKER NODE: $worker_node"
done

echo "WORKING DIRECTORY: $(pwd)"

echo "-----------------------"

Compute the amount of needed redis instances
The amount of needed instances can be computed as follows:
max(3, (replicas + 1)*num_locations))
Redis needs at least three instances to work well as a cluster

(otherwise they suggest you to switch to↪→

standalone mode). Also, we need to have a Redis master in all of
our nodes and we need their replicas too↪→

all_instances_locations=("${storage_master_node}
${worker_nodes[@]}");↪→

num_locations=$(wc -w <<< "${all_instances_locations}");
eff_locations=$num_locations
if (($eff_locations < 3));
then

eff_locations=3;
fi
needed_instances=$(($((REDIS_REPLICAS + 1))*eff_locations));

Create the Redis sandboxes for our instances
A Redis instance is located at a given host and listens to a given

port↪→

If we are forced to launch more than one instance then we are going
to need more↪→

ports than the given one to listen. Our choice is simple, if our
original port is 6379 and it is not↪→

available, then we will assign the port 6380, 6381... and so on.
This idea is taken from the redis cluster↪→

tutorial. We assume that these ports (alongside with these ports +
10000) are free. The default and official↪→

port for Redis 6379, and the next official port is 6389 by some
strange software, so it is generally safe↪→

Appendix E. Redis Storage API implementation 77

to establish ports this way
See https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
A redis sandbox consists of a folder named after the port we are

going to use that contains a redis.conf file↪→

See REDIS_TEMPLATE and the line that seds it to redis_conf below to
see what it is being done here↪→

current_instances=0;
node_ids="";
while (($current_instances < $needed_instances))
do

for instance_location in ${all_instances_locations}
do

if (($current_instances == $needed_instances))
then

break
fi
Compute the port
redis_port=$((REDIS_PORT + $((current_instances/num_locations))))
Replace the configuration template parameters with their values
redis_conf=$(echo $REDIS_TEMPLATE | sed -s

s/REDIS_PORT/$redis_port/ | sed -s
s/REDIS_NODE_TIMEOUT/$REDIS_NODE_TIMEOUT/)

↪→

↪→

Compute the path of the sandbox for this instance
redis_path=${REDIS_SANDBOX}/${redis_port};
Create the folder structure (and remove the previous one if

needed). This part can be done with ssh↪→

It is needed to remove the old storage version because they may
contain nodes.conf files of old clusters↪→

that may not coincide with the configuration we want in this
execution↪→

ssh $instance_location "rm -rf ${redis_path}; mkdir -p
${redis_path}; echo -e \"${redis_conf}\" >
${redis_path}/redis.conf;";

↪→

↪→

Launch the redis instance
This part is on an specific function because the needed command

may vary from one queue system to another↪→

eval $(get_redis_instantiation_command $instance_location
${redis_path})↪→

current_instances=$((current_instances+1));
node_name=${instance_location}:${redis_port}
node_ids="${node_ids} $node_name"
echo "CREATED REDIS INSTANCE IN $node_name"

done
done
Create a cluster with the instances
We should detect failures when trying to create the cluster
echo "yes" | redis-trib.rb create --replicas $REDIS_REPLICAS

$node_ids↪→

############################
END

78 Appendix E. Redis Storage API implementation

############################
exit

79

Appendix F

K-Means + Storage
Implementation

@task(returns = 1, labels = INOUT)
def cluster_and_partial_sums(fragment, labels, centres, norm):

'''Given a fragment of points, declare a CxD matrix A and, for each
point p:↪→

1) Compute the nearest centre c of p
2) Add p / num_points_in_fragment to A[index(c)]
3) Set label[index(p)] = c
'''
ret = np.matrix(np.zeros(centres.shape))
n = fragment.mat.shape[0]
c = centres.shape[0]
Check if labels is an empty list
if not labels:

If it is, fill it with n zeros.
for _ in range(n):

Done this way to not lose the reference
labels.append(0)

Compute the big stuff
associates = np.zeros(c)
Get the labels for each point
for (i, point) in enumerate(fragment.mat):

distances = np.zeros(c)
for (j, centre) in enumerate(centres):

distances[j] = np.linalg.norm(point - centre, norm)
labels[i] = np.argmin(distances)
associates[labels[i]] += 1

Add each point to its associate centre
for (i, point) in enumerate(fragment.mat):

ret[labels[i]] += point / associates[labels[i]]
return ret

def kmeans_frag(fragments, dimensions, num_centres = ...):
'''A fragment-based K-Means algorithm.
Given a set of fragments (which can be either PSCOs or future objects

that↪→

point to PSCOs), the desired number of clusters and the maximum
number of↪→

80 Appendix F. K-Means + Storage Implementation

iterations, compute the optimal centres and the index of the centre
for each point.
PSCO.mat must be a NxD float np.matrix, where D = dimensions
'''
import numpy as np
Choose the norm among the available ones
norms = {

'l1': 1,
'l2': 'fro'

}
Set the random seed
np.random.seed(seed)
Centres is usually a very small matrix, so it is affordable to have

it in↪→

the master.
centres = np.matrix(

[np.random.random(dimensions) for _ in range(num_centres)]
)
Make a list of labels, treat it as INOUT
Leave it empty at the beggining, update it inside the task. Avoid
having a linear amount of stuff in master's memory unnecessarily
labels = [[] for _ in range(len(fragments))]
Note: this implementation treats the centres as files, never as

PSCOs.↪→

for it in range(iterations):
partial_results = []
for (i, frag) in enumerate(fragments):

For each fragment compute, for each point, the nearest centre.
Return the mean sum of the coordinates assigned to each centre.
Note that mean = mean (sum of sub-means)
partial_result = cluster_and_partial_sums(frag, labels[i],

centres, norms[norm])↪→

partial_results.append(partial_result)
Bring the partial sums to the master, compute new centres when

syncing↪→

new_centres = np.matrix(np.zeros(centres.shape))
from pycompss.api.api import compss_wait_on
for partial in partial_results:

partial = compss_wait_on(partial)
Mean of means, single step
new_centres += partial / float(len(fragments))

if np.linalg.norm(centres - new_centres, norms[norm]) < epsilon:
Convergence criterion is met
break

Convergence criterion is not met, update centres
centres = new_centres

If we are here either we have converged or we have run out of
iterations↪→

In any case, now it is time to update the labels in the master
ret_labels = []
for label_list in labels:

Appendix F. K-Means + Storage Implementation 81

from pycompss.api.api import compss_wait_on
to_add = compss_wait_on(label_list)
ret_labels += to_add

return centres, ret_labels

83

Appendix G

Matmul + Storage Implementation

@task(C = INOUT)
def multiply(A, B, C):

'''Multiplies two blocks and acumulates the result in an INOUT
matrix
'''
C += A.block * B.block

def dot(A, B, C, set_barrier = False):
'''A COMPSs-PSCO blocked matmul algorithm
A and B (blocks) are PSCOs, while C (blocks) are objects
'''
n, m = len(A), len(B[0])
as many rows as A, as many columns as B
for i in range(n):

for j in range(m):
for k in range(n):

multiply(A[i][j], B[i][j], C[i][j])
if set_barrier:

from pycompss.api.api import compss_barrier
compss_barrier()

85

Bibliography

[1] Guillem Alomar, Yolanda Becerra Fontal, and Jordi Torres Viñals. “Hecuba:
Nosql made easy”. In: BSC Doctoral Symposium (2nd: 2015: Barcelona). Barcelona
Supercomputing Center. 2015, pp. 136–137.

[2] Rosa M. Badia et al. “COMP Superscalar, an interoperable programming frame-
work”. In: SoftwareX 3 (Nov. 2015). DOI: 10.1016/j.softx.2015.10.004.

[3] Alejandro Duran et al. “Ompss: a proposal for programming heterogeneous
multi-core architectures”. In: Parallel processing letters 21.02 (2011), pp. 173–193.

[4] Philippe Flajolet et al. “Hyperloglog: The analysis of a near-optimal cardinality
estimation algorithm”. In: IN AOFA ’07: PROCEEDINGS OF THE 2007 INTER-
NATIONAL CONFERENCE ON ANALYSIS OF ALGORITHMS. 2007.

[5] Message P Forum. MPI: A Message-Passing Interface Standard. Tech. rep. Knoxville,
TN, USA, 1994.

[6] Jesús Labarta et al. “Scalability of Tracing and Visualization Tools”. In: Sept.
2005, pp. 869–876.

[7] Leslie Lamport. “Time, Clocks, and the Ordering of Events in a Distributed
System”. In: Commun. ACM 21.7 (July 1978), pp. 558–565. ISSN: 0001-0782. DOI:
10.1145/359545.359563. URL: http://doi.acm.org/10.1145/359545.
359563.

[8] Stuart P. Lloyd. “Least squares quantization in pcm”. In: IEEE Transactions on
Information Theory 28 (1982), pp. 129–137.

[9] Francesc Lordan et al. “ServiceSs: An Interoperable Programming Framework
for the Cloud”. In: Journal of Grid Computing 12.1 (2014), pp. 67–91. ISSN: 1572-
9184. DOI: 10.1007/s10723-013-9272-5. URL: https://doi.org/10.1007/
s10723-013-9272-5.

[10] Jonathan Martí et al. “Dataclay: A distributed data store for effective inter-
player data sharing”. In: Journal of Systems and Software 131 (May 2017). DOI:
10.1016/j.jss.2017.05.080.

[11] OpenMP Architecture Review Board. OpenMP Application Program Interface
Version 3.0. May 2008. URL: http://www.openmp.org/mp-documents/spec30.
pdf.

[12] Frank B Schmuck and Roger L Haskin. “GPFS: A Shared-Disk File System for
Large Computing Clusters.” In: FAST. Vol. 2. 19. 2002.

[13] Konstantin Shvachko et al. “The hadoop distributed file system.” In: MSST.
Vol. 10. 2010, pp. 1–10.

[14] Enric Tejedor et al. “PyCOMPSs: Parallel computational workflows in Python”.
In: The International Journal of High Performance Computing Applications 31.1
(2017), pp. 66–82. DOI: 10.1177/1094342015594678. eprint: https://doi.org/
10.1177/1094342015594678. URL: https://doi.org/10.1177/1094342015594678.

https://doi.org/10.1016/j.softx.2015.10.004
https://doi.org/10.1145/359545.359563
http://doi.acm.org/10.1145/359545.359563
http://doi.acm.org/10.1145/359545.359563
https://doi.org/10.1007/s10723-013-9272-5
https://doi.org/10.1007/s10723-013-9272-5
https://doi.org/10.1007/s10723-013-9272-5
https://doi.org/10.1016/j.jss.2017.05.080
http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf
https://doi.org/10.1177/1094342015594678
https://doi.org/10.1177/1094342015594678
https://doi.org/10.1177/1094342015594678
https://doi.org/10.1177/1094342015594678

86 BIBLIOGRAPHY

[15] Andy B Yoo, Morris A Jette, and Mark Grondona. “Slurm: Simple linux utility
for resource management”. In: Workshop on Job Scheduling Strategies for Parallel
Processing. Springer. 2003, pp. 44–60.

[16] Matei Zaharia et al. “Spark: Cluster Computing with Working Sets”. In: Pro-
ceedings of the 2Nd USENIX Conference on Hot Topics in Cloud Computing. Hot-
Cloud’10. Boston, MA: USENIX Association, 2010, pp. 10–10. URL: http://
dl.acm.org/citation.cfm?id=1863103.1863113.

[17] Songnian Zhou. “Lsf: Load sharing in large heterogeneous distributed sys-
tems”. In: I Workshop on cluster computing. Vol. 136. 1992.

http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1863103.1863113

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Objectives
	Document structure

	Tasks and time planning
	Project Tasks
	Methodology

	Background
	COMPSs
	A Full Example
	COMPSs Components
	Runtime Structure
	PyCOMPSs Structure
	Usability vs Performance

	GPFS
	Queue Systems - SLURM and LSF
	Extrae and Paraver
	Hecuba and DataClay

	Improving object identification in PyCOMPSs
	Problem description
	Analysing and narrowing down the problem
	Object identification and mapping in PyCOMPSs

	Collections in COMPSs
	Collections as Input Parameters
	Collections as INOUT Parameters
	Practical Applications
	Approximating cardinalities of huge sets
	Usage of collections in other projects

	Combining Storage Systems with COMPSs
	Defining a Storage API
	A Practical Implementation: Redis
	Practical Applications
	K-Means
	Matrix Multiplication

	Conclusions and Future Work
	Conclusions
	Future Work

	Collections as Input Parameters
	Collections as INOUT Parameters
	HyperLogLog
	Metadata generation comparison
	Redis Storage API implementation
	K-Means + Storage Implementation
	Matmul + Storage Implementation
	Bibliography

