
Self-Learning Approaches for Real Optical Networks

Marc Ruiz1*, Fabien Boitier2, Patricia Layec2, and Luis Velasco1
1 Optical Communications Group (GCO), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

2 Nokia Bell Labs, Nozay, France
e-mail: mruiz@ac.upc.edu

Abstract: Self-learning approaches to facilitate the deployment of ML algorithms in real

networks are analyzed and their performance evaluated through an illustrative use case.

Results show large benefits of collective self-learning with centralized retraining.
© 2019 Optical Society of America1
OCIS codes: (060.0060) Fiber optics and optical communications, (060.1155) All optical networks

1. Introduction

The revolution brought by 5G technology requires profound changes, not only in the way optical networks

are built but fundamentally, in the way they are managed. Specifically, agile control and management tools need

to replace typical slow operation procedures taking days to weeks to implement service deployment or network

reconfiguration. In this regard, the Software Defined Networking (SDN) paradigm bringing programmability

needs to be complemented with monitoring and data analytics (MDA) capabilities to enable autonomicity at

several levels, from network to transmission [1]. Behind the autonomic concept, machine learning (ML) plays

an essential role for a wide range of use cases, from self-configuration to predictive maintenance.

Contrarily to the centralized architecture of SDN, ML algorithms might be executed as close as possible to

the data sources for particular use cases, e.g., when distributed MDA architectures target at minimizing the

amount of data to be conveyed, as well as minimizing the response time [2] to allow control loop

implementation at any level, from subsystem to network. As an example, authors in [3] proposed an autonomic

transmission agent running inside transponder subsystems that enables local control loop implementation for

fast device reconfiguration according to metered and forecasted data.

Although examples of autonomic networking have been experimentally demonstrated, their application in real

networks entails some challenges that are not yet solved; particularly that of the availability of complete datasets

that can be used for ML training, as many datasets are collected from simulation and/or lab experiments and

might not cover real deployments.

In this paper, we explore self-learning procedures [4], where starting from an initial training dataset, ML

algorithms are retrained with augmented datasets that include not yet considered patterns added as soon as they

are detected. We discuss several strategies for its practical implementation in optical networks: from typical

individual learning, where each agent detects new patterns from their local sources and use such them for self-

learning to collaborative learning, where agents spread knowledge among them to speed-up the learning curve.

Because retraining usually requires high computation capabilities, analysis of distributed and centralized options

reveals their pros and cons. Self-learning alternatives are applied to an illustrative use case for autonomic

transmission, where Forward Error Correction (FEC) modules in optical transponders are configured as a

function of estimated pre-FEC Bit Error Rate (BER).

2. Reference architecture and key concepts

Fig. 1a presents a compact view of the distributed MDA architecture considered in this paper. Optical nodes

(e.g., transponder, ROADM in disaggregated scenarios) generate monitoring and/or telemetry data with

performance measurements. Controlling subsystems, device agents can be designed to collect metered data from

the device, analyze them by means of ML models, and send back specific device configurations to enhance

transmission thus, resulting into a closed device-wide control loop [3]. On top of that, node agents expose a

single interface to the SDN controller and enable local control loops affecting several subsystems. Finally, the

centralized MDA controller running besides the SDN controller enables network-wide autonomic operations.

Device agents should be able to compare predicted values from ML models against measured data to

promptly detect those patterns for which ML models are especially inaccurate, as they can be used to augment

training datasets and trigger retraining for models enhancement. Fig. 1b illustrates an example of model

inaccuracy; let us assume that a ML model in the device agent produces estimations with few hundreds of ms of

anticipation to be used for predictive performance analysis and proactive subsystem configuration. During

certain time interval, prediction largely underestimates real measurements. Note that such inaccuracy can only

be detected after real measurements, e.g. hundreds of ms later. When such model inaccuracy is detected, a self-

learning loop can be triggered (Fig. 1c). Training data chunks containing monitoring data, current model error,

and subsystem configuration, among others, are generated and used to feed retraining aiming at improving the

accuracy of the current model and update predictive capabilities of device agents.

1The research leading to these results has received funding from the EC through the METRO-HAUL project (G.A. nº 761727), from the Spanish MINECO TWINS

project (AEI/FEDER TEC2017-90097-R), and from the Catalan Institution for Research and Advanced Studies (ICREA).

Device
(TP, etc)Su

b
sy

st
em

Node Agent

Device Agent

Central Office (CO)

Training

Model
Inaccuracy
detection

time

M
a
g
n
it
u
d
e

Model

Measured

Model
inaccuracy

MDA
Controller

a) b) c)

Training
Data Model

update

Device

Monitoring/ Telemetry

Model

Device Agent

SDN
Controller

Fig. 1. Reference architecture (a), model accuracy evolution (b), and self-learning loop (c)

Individual Self-Learning

D
is

tr
ib

u
te

d
 T

ra
in

in
g

C
e

n
tr

al
iz

e
d

Tr
ai

n
in

g

Collective Self-Learning

Central Office

Device Agent

Node Agent

Training

Central Office

Device Agent

Node Agent

Central Office

Device Agent

Node Agent

MDA Controller

Central Office

Device Agent

Node Agent

Training

MDA Controller

Central Office

Device Agent

Node Agent

Training

Norm

Central Office

Device Agent

Node Agent

Training

1 2
1

3

Central Office

Device Agent

Node Agent

MDA Controller

Central Office

Device Agent

Node Agent

Norm Training

1 2

2
1

3

MDA Controller

2

3

2

Fig. 2. Individual vs collective self-learning under centralized and distributed training

SOP
Tracking

FEC

FEC
Tuning

Rx

ATA

Model Evaluation

ANN
BER
pred.

S1, S2, S3

iter

BER

Temp
Buffer

Fig. 3. Use case

3. Approaches for self-learning

As shown in Fig. 1c, self-learning can be triggered when model inaccuracies are locally detected by device

agents. In fact, depending on how the knowledge generated by inaccuracies is used to improve models and

where the training task is carried out, several approaches can be implemented. Attending to how knowledge is

used, we have: i) individual self-learning, where generated knowledge is used for training and updating just the

ML model of the detecting device; and ii) collective self-learning, where the generated knowledge is spread and

used for training and updating the ML models of every device. This approach will speed-up the learning curve,

especially for rare patterns, as ML models are updated in every device when just one of them detects an

unknown pattern. However, this approach entails much more complexity than individual self-learning as

training data may require previous normalization to fit models with different characteristics. As for where

training is performed, we have: i) distributed training, where training is executed locally, e.g., in the node agent;

and ii) centralized training, where training is implemented in a centralized element, e.g., the MDA controller.

Fig. 2 illustrates the four how-where combinations, where labels help to identify how data flow. Individual

self-learning is the most straightforward approach, where the distributed (local) training does not require any

data to be conveyed to the MDA controller at the expenses of requiring extra computational resources in the

node agents for ML training, whereas in the centralized training data needs to be sent to the MDA controller

where more computational resources are usually available. In the case of collective self-learning with distributed

training, even though training is performed locally, the MDA controller holds the role of distributing training

data after normalization to node agents, as such data normalization tasks require network-wide knowledge.

Finally, collective self-learning with centralized approach uses computational resources from the MDA

controller for training the ML models of every device using normalized training data.

4. Illustrative use case: Autonomic Transmission

The above-described approaches are evaluated through the autonomic transmission use case (Fig. 3), where

an optical receiver is dynamically configured in response to predicted short-term pre-FEC BER degradation [3];

the device agent using ML models is called autonomic transmission agent (ATA). These ML models use the

evolution within a time-window of measured Stokes parameters representing the state of polarization (SOP) as

input parameters to return the expected BER for a target short-term interval, e.g. 100 ms. As for the predictive

BER model, artificial neural networks (ANN) were selected due to their inherent capability to admit complex

correlation between input and output variables while adding negligible overhead to subsystem operation. The

ANN requires one input for each of the last Stokes parameters in the analyzed window and produces a single

output with the BER prediction for the target interval. Finally, BER prediction is used to increase or reduce the

number of FEC iterations.

For performance evaluation purposes, we configured a setup with 8 emulated optical nodes consisting of one

-1

0

1

Measured BER

SO
P

time

S1

S2

S3

Estimated BER

B
ER

8e-4

6e-4

4e-4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

individual

collective

Normalized Time

N
o

rm
al

iz
ed

P
re

d
ic

ti
o

n
Er

ro
r

ATAs

0
2
4
6
8

1 2 3 4 5 6 7 8

Sp
ee

d
-u

p
 (x

)

M
B

yt
es

0

5

10

15

20

Distributed Centralized Distributed Centralized

Individual Collective

Node Storage (MB)

Data Exchange (MB)

Fig. 4. Inaccuracy example Fig. 5. Individual vs Collective Fig. 6. Centralized vs Distributed

node agent and one ATA with a MDA controller in the control plane. Software modules were implemented as

independent Python 3.0 processes enabling multiple configurations to reproduce both individual and collective

self-learning approaches with centralized or distributed training.

An initial training dataset from lab experiments was used to train ANNs; specifically, ANNs were configured

with 90 inputs (i.e., 30 last values of each Stokes parameter) and 45 hidden neurons. Then, operation started and

continuously generated synthetic random samples at a rate of 278 µs (1/3600 sec) emulating real events

including some not observed during lab experiments, causing SOP and BER fluctuation according to [3]. Fig. 4

shows an example of SOP measurements and estimated and measured BER, where an example of the model

inaccuracy can be observed; such model inaccuracy detection triggers the self-learning loop.

The performance of individual and collective approaches was evaluated in terms of convergence time. As the

number of ATAs significantly impact on the convergence time, we started with a setup with just 4 of them. Fig.

5 plots the prediction error normalized to the error of the initial trained models vs time normalized to respect the

time when all events are observed (~500 in total) in the collective approach. When inaccuracies are detected,

models are improved and prediction error decreases. Such prediction error reduction is remarkable under the

collective approach, as ATA modules share knowledge among them as soon as it is discovered; in fact, ~x3.5

speed-up is observed compared to the individual self-learning approach. This result suggests that the speed-up

ratio and the number of ATAs are somehow related. To analyze such relation, we reproduced the previous

experiment and configure a number of ATAs from 1 to 8; the results are reported in the embedded chart inside

Fig. 5, where an almost linear relation between speed-up and number of device agents can be observed.

Let us now evaluate distributed and centralized retraining in terms of: i) the amount of data exchanged

between node agents and the MDA controller; and ii) the amount of data to be stored locally in node agents. Fig.

6 presents accumulated data volumes at the end of executions for every ATA in the network. Under the

individual self-learning approach, data for every detected model inaccuracy is either stored in the local node or

sent to the MDA controller to augment the training dataset; moreover, model updates after every retraining are

sent back to nodes in the centralized training. Slightly lower amount of data is exchanged in distributed training

under the collective self-learning approach, as model inaccuracies are detected among all ATAs. Finally,

regarding computational resources, retraining an ANN takes several minutes in a medium-size computer (i.e.,

Intel Core i7-4790 with 16GB RAM), which would convert into hours considering that computing resources in

nodes are much more limited; this fact, greatly limits the applicability of distributed retraining.

5. Conclusions

Table 1 summarizes the analysis of the proposed approaches and the results of the illustrative use case. The

characteristics of each approach, in terms of learning speed and complexity (elements involved, data exchange,

computing and storage needs, etc.) are reviewed. In addition, a brief analysis of which use cases and scenarios

are suitable for each approach is proposed. Specifically, collective self-learning is proposed for those cases

where significant correlation between observations from different agents exists. Regarding the need of

computational and storage resources at the nodes, centralized training uses already available resources in the

centralized MDA controller, while they are usually scarce in the node agents to support distributed training.

Table 1 Summary

 Features Suitable applicability scenarios

Self-learning Training
Learning

Speed
Complexity

Correlation of the

observed patterns

Availability of CPU and

Storage resources

Individual
Distributed

Slow
Low

Negligible / Low
Need extra resources at nodes

Centralized Medium Available

Collective
Distributed

Fastest
Highest

Medium / High
Need extra resources at nodes

Centralized High Available

References
[1] D. Rafique et al, “Machine Learning for Network Automation: Overview, Architecture, and Applications,” IEEE/OSA JOCN, 2018.
[2] Ll. Gifre et al., “Autonomic Disaggregated Multilayer Networking,” IEEE/OSA JOCN, 2018.

[3] B. Shariati et al., “Autonomic Transmission Through pre-FEC BER Degradation Prediction Based on SOP Monitoring,” ECOC, 2018.

[4] J.L. Perez et al., “A resilient and distributed near real-time traffic forecasting application for Fog computing environments,” Future
Generation Computer Systems, 2018.

