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Abstract  9 

The light metal roof is one of the roof typologies most used in low latitude regions with warm and humid 10 

climates. The low installation cost is one of the benefits of this typology, however, they offer only low 11 

resistance to the heat flux. In order to analyse strategies to reduce the indoor overheating in this 12 

climates, this investigation addresses the impact of reflectivity and emissivity on the light metal roof 13 

thermal behaviour. The study was carried out with dynamic simulations, considering the climate of a 14 

city in the south coast of Ecuador (Santa Rosa, 3°27´S). This analysis has parameterized the interior 15 

surface temperature in function of the reflectivity and emissivity, which has been validated with the 16 

measurements of several samples with different radiative properties. The analysed samples show that 17 

the effect of the aging and the use of different paints have a higher impact on the increase in emissivity 18 

than on reflectivity. In conclusion, the results show that the radiative parameter with the highest 19 

influence on interior surface temperature reduction is emissivity. 20 

Keywords: metal roof, solar reflectivity, thermal emissivity, warm and humid climates. 21 

1. Introduction. 22 

The regions located near to the equator are characterized by high temperatures, humidity and especially 23 

high global solar radiation [1] [2]. Due to the angle of sun rays in this zone, the roof is the part of the 24 

envelope most exposed to solar flux throughout the year. Despite solar paths being nearly the same for 25 

different regions within these latitudes, cities that are located near the sea have a high relative humidity, 26 

while cities farther away from the sea have less cloudy conditions [3] [4].  27 

The importance of roofs on interior conditions depends on the urban context and the building 28 

morphology [5] [6].  The constant and hasty growth of the world urban population in the last decades 29 

has brought as a consequence a sharp increase of residential demand [7], and with it, the increase of 30 

energy consumption, especially in low latitudes countries [8] [9]. In the cities of these regions, which 31 

have adopted an urban sprawl model [10], the most extended building typology is the low rising building. 32 



Hence, the roof surface represents 32% of the whole building envelope. As a result, the roof, within this 33 

climatic and urban context, is the main source of heat gains (54%) in buildings of these regions, even 34 

higher than window solar gains [11].  35 

One of most the important parameters for the user interior thermal conditions is the mean radiant 36 

temperature (Tmrt) [12] [13]. This parameter has a similar importance as the indoor air temperature 37 

(Ta) on the user thermal perception [14]. Due to the high proportion of the roof with respect to the interior 38 

space, the interior surface temperature of this element can determine Tmrt [15] [16].  39 

Nomenclature 

Tmrt Mean radiant temperature 

Ta Outdoor air temperature 

Ts Exterior surface temperature 

Tsi Interior surface temperature 

MR Light metal roof 

MR_new Metal roof in new state 

MR_old1 Metal roof with 1 year installed 

MR_old2a 
Metal roof with more than 5 years 

installed (sample a) 

MR_old2b 
Metal roof with more than 5 years 

installed (sample b) 

MR_old2c 
Metal roof with more than 5 years 

installed (sample c) 

MR_cool Metal roof painted with cool roof paint 

MR_white Metal roof painted with white paint 

MR_green Metal roof painted with green paint 

 40 

In regions at these latitudes, the most commonly used roof is the light metal roof (MR), as in Malaysia 41 

[17], Indonesia [18], and especially in countries from Central and South America: Costa Rica [19], 42 

Dominican Republic [20], or Ecuador. In the warm humid Region of this last country, 65% of the entire 43 

residential buildings use this typology of roof [21]. A major benefit of this typology is the low installation 44 

cost. However, due to its low thickness and its thermal properties, this roof has a low resistance to the 45 

heat flux. 46 



In order to reduce the overheating conditions in buildings of these regions, an analysis of the strategies 47 

applied to the light metal roof (MR) is necessary. Among the parameters that modify the thermal 48 

behaviour of the roof are the solar reflectivity and thermal emissivity of the surface material, where 49 

especially the reflectivity factor has high repercussions on indoor overheating reduction [22] [23] [24] 50 

[25]. The solar reflectivity refers to shortwave reflected by the roof (wavelengths inferior to 4 µm, nearly 51 

50% of which in the visible spectrum and 50% in the near infrared), and, the thermal emissivity refers 52 

to the long wave radiation emitted by the roof (wavelengths superior to 4 µm or far infrared) [5]. So, the 53 

interior surface temperature (Tsi) largely depends on the balance of these two fluxes. Nevertheless, the 54 

aging and the exposition to the outdoor environment modify these a [26], which significantly influences 55 

the thermal performance of the roof. 56 

Therefore, this work deals with the thermal behaviour of the light metal roof (MR) in warm humid climate 57 

of low latitude regions. The specific objective of this research is to evaluate the repercussions of 58 

modifying solar reflectivity and thermal emissivity on this roof interior surface temperature (Tsi). 59 

2. Methodology 60 

The method of this investigation was carried out in a three-step process. The first part consists of in situ 61 

measurements of climatic factors and thermal parameters of a light metal roof (MR). The second part 62 

focuses on the simulation of the roof thermal behaviour, using as input data all the parameters 63 

measured before in the first part. In the last part, measurements of several samples of this roof typology 64 

have been used to validate the results obtained in the simulations. Once the simulations have been 65 

validated, conclusions can be drawn from these results.  66 

2.1 Measurements of Input Data  67 

The measurement campaign was conducted in Santa Rosa, a city in the south coast of Ecuador, at 68 

latitude 3°27´S and altitude 14masl. A total of 70% of residential buildings in this city are only one floor 69 

high [21], and the most used roof material is the metal sheet as shown in Fig. 1.  70 

 71 



Fig. 1 Aerial view (left) and street view (right) of Santa Rosa city in Ecuador. Images retrieved from 72 

google maps.   73 

This region is characterized by its warm-humid climate throughout the whole year. The mean 74 

temperature is 26°C, with a daily and annual oscillation of 6°C and 4°C respectively; and the mean 75 

relative humidity in the year is 85% as illustrated in Fig. 2.  76 

 77 

Fig. 2 Monthly average of: mean, maximum and minimum air temperature, and relative humidity of 78 

Santa Rosa city-Ecuador. Data collected from meteorological station [27].  79 

The climatic factors measured are: air temperature, humidity, air velocity, solar radiation, cloud cover 80 

and sky temperature. Data measurements for all these factors, except sky conditions, were gathered 81 

from a meteorological station (ID: IELOROEL2) located at 15 km from Santa Rosa (3°18´3´´S, 82 

79°53´53´´O, 20 masl) [30]. The technical specification of the meteorological station corresponds to a 83 

Davis Vantage Pro2 Plus (Wireless). These data were collected during the entire year 2016 in 15 min 84 

intervals. With respect to sky conditions, the cloud cover factor, which is defined as the fraction of the 85 

sky vault covered by clouds [28],  was measured with the method of observation [29] [30]. In addition, 86 

solar radiation with clear sky conditions has been simulated with the use of the software Heliodon [31].  87 

The sky temperature measurements were carried out using an infrared thermometer TESTO 830 T4 88 

with a range of -30°C to +400°C. Due to the fact that the sky is not uniform, the sky temperature was 89 

measured in different points of the sky vault, from the skyline to the zenith. These measurements were 90 

used to obtain an average of the sky temperature. The cloud cover and the sky temperature were 91 

captured at 2 hours intervals during 7 days in October and December of 2016.  92 

Based on statistical analysis of all the data collected in this year, climatic factors have been obtained of 93 

a day that represents the mean extreme heat conditions in this region. Nevertheless, the whole data 94 



obtained from these measurements are detailed in supplementary Table 1 and supplementary Table 2 95 

in Ref [52]. 96 

The measured MR belongs to a residential building located in Santa Rosa city. The specific 97 

characteristics of this roof correspond to a 0.3mm galvanized steel sheet and covered by an alloy of 98 

aluminium and zinc (55%-45%) [32] [33]. According to the manufacturer and bibliography, this material, 99 

in its original new state, has a solar reflectivity of around 0.75 and thermal emissivity of around 0.12 100 

[34] [35] [36]. However this roof had been installed more than 5 years before the measurements, thus, 101 

its current state is dusty and old but not rusted. Because of these circumstances, it is necessary to 102 

measure the reflectivity and the emissivity of this roof in the current conditions, Fig. 3.  103 

 104 

Fig. 3 Light metal roof constructive detail (a), floor plan with the thermocouple position (b), outside (c) 105 

and inside (d) surface temperature measurements.  106 

The measured roof parameters are the visible reflectivity, thermal infrared emissivity, as well as the 107 

exterior (Ts) and interior surface temperature (Tsi). The measurement methods of the reflectivity and 108 

emissivity of this roof are based on previous works from [37] [38] [39] [40] and [41]. Due to the high 109 

conductivity of the metal roof and its low thickness, the exterior and interior surface temperature are the 110 

same. The same results were obtained in other studies [42] [43] 111 

The process to measure the reflectivity consisted in comparing the MR surface with a reference surface 112 

by capturing photographic images, which were taken at angles of less than 45º from the normal to the 113 



surface to minimize the error of the measurements [38]. Each image was processed through a graphics 114 

software (Adobe-Photoshop) [44] to obtain the optical histogram of the sample and the reference 115 

surface. The reference surface used for this comparison was a sheet of 100% opaque white paper. 116 

Assuming that the surface has a fully Lambertian reflection, the reflectance factor of this surface was 117 

obtained through Eq. 1. 118 

                                                                                           𝑟 =
𝜋.𝐿

𝐸
                                                                    Eq.1                                    119 

Where 𝑟 is the reflection factor, 𝐿 is the luminance value (cd / m2) and 𝐸 the illuminance value (lux). 120 

The values of 𝐿 and 𝐸 were obtained through measurements. The instruments used to measure the 121 

parameters were a Light meter LX1010B lux meter, and a Konica Minolta LS 110 Luminance meter. 122 

The solar reflectance obtained from the reference surface (white paper) was 0.85. 123 

In order to measure emissivity, the process consisted of simultaneously measuring the exterior surface 124 

temperature and exterior radiant temperature of the roof, using a multi-logger thermometer Amprobe 125 

TMD 56 with a thermocouple type K, and an infrared camera (adjusted to an emissivity of 1.00), 126 

respectively. Two infrared cameras were used for this process: a FLIR I7 and an InfRec H2640. In one 127 

hand, the measurements were made in situ in Santa Rosa-Ecuador with the use of FLIR i7 infrared 128 

camera. In order to validate the field results, additional measurements were carried out in the laboratory, 129 

where the infRec H2640 has been used.  130 

The taking of measurements with both cameras were made with angles lower than 45° with respect to 131 

the normal to the surface. Then, using the software of these cameras (FLIR Tools, Infrarec Analyzer 132 

Lite), the radiant temperature (infrared camera) was equalized to the surface temperature 133 

(thermometer) according to the change in the emissivity value. By achieving the equality of their 134 

temperatures, the emissivity of this surface was obtained.  135 

The emissivity measurement procedure was based on the standard Test Methods for Measuring and 136 

Compensating for Emissivity Using Infrared Imaging Radiometers: contact thermometer method [41]. 137 

The apparent temperature was configured with an emissivity value of 1.00. The reflected temperature 138 

was assumed as the sky temperature for measurements made in situ, as well as the air temperature 139 

was set for laboratory measurements. Both measurements give quite similar emissivity values, with a 140 

variation between them of less than 3%. The values used for the analysis of each sample were the 141 

average of two measurements. 142 

The interior and exterior surface temperatures were measured with the same multi-logger used to 143 

measure the emissivity. The data was gathered in 10 min intervals during 10 days in October and 10 144 



days in December of 2016. The purpose of these field measurements was the validation of the 145 

simulated results. 146 

2.2 Simulations 147 

The second part of the methodology is based on dynamic simulations with the use of the Design Builder 148 

interface [45], which uses Energy Plus as a calculation engine [46]. The EPW file (Energy Plus Weather) 149 

used for these simulations were set by using the data collected in the measurements campaign carried 150 

out in October and December (see supplementary Table 3 in ref [52]. From these simulations, one day 151 

(October 10th)   with the characteristics coincident with the day with mean extreme heat conditions from 152 

the whole year was chosen to analyse. The purpose of choosing this day is to show the extreme effect 153 

of the radiative properties of the light metal roof. 154 

Furthermore, a simulation model has been established, where the roof thermal parameters were set 155 

according to the values obtained in the measurements. Additionally, the geometry, materials, orientation 156 

and urban typology of this model were configured based on the predominant characteristics in these 157 

regions, where the low height floor is the predominant building typology, the use of light block is the 158 

most used material for walls and the typical plot of land is 9m x 9m [47]. Following these characteristics, 159 

the model is a one-floor residence of 9m x 9m x 3.1m height, attached to equal buildings by its North 160 

and South sides. The model has been divided into 9 subzones (spaces), through a 3 x 3m grid. The 161 

subdivision of this model resembles the buildings structural characteristics in these regions, where the 162 

typical inter-columns distance is 3m. In order to avoid the influence of direct solar radiation, the model 163 

does not include glass surfaces and only the central space has been evaluated, see Fig. 4. In regards 164 

to the infiltrations and the occupation values were set according to the collected data in situ. Infiltrations 165 

were approached by measuring CO2 concentrations in a windowless room. The measurements were 166 

taken by several hours, following the Tracer Gas process specified in [48].  The values obtained from 167 

these measurements were confronted with the simulation software and were in agreement. All the 168 

simulation parameters are shown in Table 1.   169 

 170 



Fig. 4 Simulation Model 171 

Roof  

        Reflectivity 0.10 – 1.00 

        Emissivity 0.10 – 1.00 

        Thermal mass 0.65 kJ/m2.K 

        Thermal transmittance 7.40 W/m2.K 

Walls-thermal transmittance 3.20 W/m2.K 

Floor-thermal transmittance 1.96 W/m2.K 

Occupancy Constant 0.04 

people/m2 

Infiltrations Constant 0.7 ac/h 

Ground Temperature 25.80°C  

 172 

Table 1 Simulation parameters 173 

Finally, with the use of the simulation model, the interior surface temperature of this roof has been 174 

parameterized as a function of changes in the reflectivity and emissivity parameters. 175 

2.3 Validation 176 

The next part of this methodology is the validation of the simulation results. First of all, the radiative 177 

properties from several samples of the light metal roof (MR) have been measured. After this, the surface 178 

temperatures of these samples have been simulated. Finally, the surface temperatures of these 179 

samples have been measured and compared with the simulated results.   180 

The samples measured correspond, on the one hand, to roofs of this typology in their unpainted state 181 

with different weathering, and on the other hand, to roofs with different paints coatings.  182 

About the unpainted set, it has measured 3 different states of weathering: a sample in a new state 183 

(MR_new), a sample with 1 year installed (MR_old1), and 3 samples with more than 5 years installed 184 

(MR_old2a, MR_old2b and MR_old2c). Despite that the 3 oldest roofs have approximately the same 185 

age, they belong to three different houses which were exposed to three different conditions of 186 

weathering. These roofs were measured to have a larger number of samples to analyse the tendency 187 

of radiative parameters influenced by the aging. MR_olda corresponds to the metal roof of the measured 188 

residential building.  189 

While the painted set consists of: a sample with cool roof paint coating (MR_cool), a sample with white 190 

paint coating (MR_white) and a sample with green paint coating (MR_green). 191 



The reflectivity, the emissivity and the surface temperature of all these samples have been measured 192 

with the same methods and the same instrumentation as mentioned before. The specific characteristics 193 

of all measured samples are shown in Table 2. 194 

Roof 

sample 

Graphic 

code 

Specifications 
Real 

State 

MR_new  Unpainted state             

new  

Clean 

MR_old1  Unpainted state                 

1 year installed 

Dusty 

MR_old2a  Unpainted state                 

> 5 years 

installed 

Dusty 

MR_old2b  Unpainted state                 

> 5 years 

installed 

Dusty 

MR_old2c  Unpainted state                 

> 5 years 

installed 

Dusty 

MR_cool  Cool Roof paint 

coating 

Clean 

MR_white  White paint 

coating 

Clean 

MR_green  Green paint 

coating 

Clean 

 195 

Table 2 List of the all measured samples. 196 

The comparison between simulated data and the on-site measurements is shown in Fig. 5, which 197 

reveals that the maximum difference between them is 1.5ºC out to (Tmax – Tmin) = 36ºC. 198 

 199 

Fig. 5 Interior surface temperature of the residential building metal roof obtained by measurements and 200 

simulations, during a day with extreme heat conditions in these regions. 201 

Finally, once the simulated results have been validated, the computation can be used to draw 202 

conclusions for this climate.  203 
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3. Results and discussion 204 

3.1 Measurements 205 

From the measured data, the climatic factors for a day with extreme heat conditions are shown in Fig. 206 

6. According to all the data collected, this day represents 20% of the total number of days analysed in 207 

this year. In addition, this figure shows the simulated solar radiation with clear sky condition, with the 208 

purpose to evidence the high influence of the cloudiness on solar radiation. 209 

 210 

Fig. 6 Climatic factors of a day which describe extreme heat conditions in this region, a) measured cloud 211 

cover, measured global solar radiation and simulated solar radiation with clear sky conditions. b) 212 

Relative humidity, outdoor air temperature and sky temperature. 213 

The results show a very inconstant and irregular measured solar radiation (SR_meas), which reflects 214 

the cloudy sky conditions throughout the whole day. The peak solar radiation in this day is 1075 W/m2, 215 

when the cloud cover is 5/10. However, when this sky condition increases to 10/10, at 13h30, the solar 216 

radiation reduces to 230 W/m2. Furthermore, according to these results, most of these measured values 217 

are lower than simulated solar radiation values (SR_sim). This behaviour reveals the great influence of 218 

cloud cover on the amount of solar radiation received.  219 
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Moreover, high levels of cloud cover are also shown during night-time. In the first night period (00h00 – 220 

06h00), the sky is totally covered with 10/10. Although in the second night period (18h00 – 24h00) the 221 

levels of sky cover are lower than in the first period, the average is still very high with 8/10. This climatic 222 

condition directly affects the radiative cooling capacity of the sky, especially in this period. According to 223 

Fig. 6b, the sky temperature, in both night periods, is around 18°C, among 3°C and 6°C below air 224 

temperature. Meanwhile, in the day-time, the lowest sky temperature is 3°C, which coincides with the 225 

lowest cloud cover in this period (5/10). According to these data, the difference between air temperature 226 

and sky temperature is low, especially in the night period. Thus, the flux by long wave radiation emitted 227 

to the sky is limited in this region. 228 

Regarding the measurements of the roof parameters, the interior surface temperature of the residential 229 

building roof (MR_olda) is shown in Fig. 7. These results correspond to the chosen day with extreme 230 

heat conditions. In order to put some reference parameter for the behaviour of the roof temperature, 231 

this figure also shows the outdoor air temperature measured in this day (Ta). According to the radiative 232 

properties measurements of this roof, its reflectivity is 0.52 and its emissivity is 0.30.   233 

 234 

Fig. 7 Measured interior surface temperature of the residential building metal roof (Tsi_MR_olda) and 235 

measured outdoor air temperature (Ta) during a day with extreme heat conditions in these regions. 236 

The interior surface temperature of the MR_olda shows a behaviour very similar to the solar radiation 237 

Fig. 6a, which reflects the high influence of this flux on the roof temperature. In the solar radiation peak, 238 

MR_olda reaches an interior surface temperature of 66°C, and when solar flux reduces to 230 W/m2 (at 239 

13h30), this temperature straightaway reduces to 40°C. Moreover, when the solar radiation disappears, 240 

the temperature of MR_olda is immediately reduced to the same temperature of the air (Ta), around 241 

26°C. MR_olda maintains the same temperature as air throughout the whole night-time. Due to the low 242 

emissivity of this roof, in addition to the low cooling capacity of the sky, heat losses by long wave 243 

radiation are minimal, and consequently, the interior surface temperature of the MR_olda is not reduced 244 



below Ta almost at any time, as it happens in other climates and other roofs with higher emissivity [49] 245 

[50] [51]. 246 

Furthermore, the reflectivity and emissivity values of all measured samples are shown in Table 3, and 247 

Fig. 8. 248 

Roof 

sample 

Graphic 

code 

Reflectivity Emissivity 

MR_new  0.75 0.13 

MR_old1  0.63 0.26 

MR_old2a  0.52 0.30 

MR_old2b  0.52 0.50 

MR_old2c  0.57 0.65 

MR_cool  0.86 0.90 

MR_white  0.77 0.95 

MR_green  0.25 0.95 

 249 

Table 3 Reflectivity and emissivity measured values of all samples 250 

 251 

Fig. 8 Reflectivity and emissivity measured values of metal roof samples in its original state with different 252 

aging (circles), and metal roof samples with different paint coatings (squares).  253 

All the samples in their unpainted state with different weathering show a reduction in their reflectivity, 254 

with respect to the metal roof in its new state (MR_new). However, they also show an increase in their 255 

emissivity. The polished and smooth of the metal roof becomes a surface with higher roughness, due 256 

to the accumulation of dust and other chemical processes, thus, its emissivity is increased. 257 



Samples with more than 5 years of installation (MR_old2a, MR_old2b, MR_old2c) present a reflectivity 258 

reduction of 0.23, 0.23 and 0.18 respectively. However, the same samples show an emissivity increase 259 

of 0.17, 0.37 and 0.52 respectively. In the case of MR_old1, the sample with only 1 year of installation, 260 

have a similar behaviour: a reflectivity reduction of 0.12 and an increase in its thermal emissivity of 0.13. 261 

According to these results, the general effect of aging on the light metal roof has a higher impact on the 262 

increase of its emissivity than on the reduction of its reflectivity. The highest reflectivity reduction is 0.23, 263 

from 0.75 to 0.52, while, the highest emissivity increase is 0.52, from 0.13 to 0.65. Based on the data 264 

analysed, the average relation between the reflectivity decrement and the emissivity increment is 1:1.6. 265 

In regard to the samples with paint coating, the results show that painting the metal roof changes 266 

significantly its radiative properties with respect to all samples in their original state. In comparison to 267 

the metal roof in its new state (MR_new), the reflectivity can change in both ways, while the emissivity 268 

only increases.  269 

MR_cool and MR_white show an increase in both factors, in their reflectivity 0.11 and 0.03, and in their 270 

emissivity 0.77 and 0.82 respectively. MR_green shows a reflectivity reduction of 0.50, and an 271 

emissivity increase of 0.82. According to these results, the paint coating on the metal roof has a low 272 

impact on the increase of its reflectivity, however, it shows a high repercussion on the increase of its 273 

thermal emissivity.  274 

The thermal response of the radiative parameters of these two samples set is discussed in a later 275 

section. 276 

3.2 Simulations 277 

Once the EPW file was set according to climatic data of the chosen day, and the roof parameters were 278 

configured agreeing to the measurements, the interior surface temperature of the metal roof (Tsi_MR) 279 

has been parameterized in function of the reflectivity and the emissivity as presented in Fig. 9. This 280 

figure uses a colour scale to represent the behaviour of the Tsi_MR. Every colour band indicate a 281 

common area of temperature “isotherms”. Every isotherm represents an interval of 2°C. The Y-axis 282 

shows the values of the reflectivity, and the X-axis shows the values of the emissivity. The range of 283 

both parameters goes from 0.10 to 1.00. According to this representation, the lowest temperatures are 284 

represented with cyan colours in a range of 20-22°C, and the highest temperatures are represented by 285 

the purple colour in a range of 54-56°C. The results have been divided into two periods: day-time and 286 

night-time, thus, the Tsi_MR has been analysed with the average in every period. Due to the geographic 287 

location of this city (near latitude 0°) both periods have the same number of hours throughout the year, 288 



12h. Daytime lasts from 06h00 to 18h00 and night time comprises two semi-periods  from 00h00 to 289 

06h00 and 18h00 to 24h00.  The same colour scale is used for both periods.  290 

 291 

Fig. 9 Parameterization of Tsi_MR in function of the reflectivity and emissivity, in day and night-time 292 

period. 293 

During day-time, both radiative parameters show a large influence on Tsi_MR. The maximum variation 294 

is 36°C, between the lowest (r=0.10 e=0.10) and the highest (r=1.00 e=1.00) values of both parameters. 295 

Nevertheless, the reflectivity has a greater impact on this variation than emissivity. On the one hand, 296 

the increment of the reflectivity from 0.10 to 1.00, with the lowest emissivity 0.10, represents a 297 

temperature reduction of 32°C. The reflectivity impact on Tsi_MR is less important according to 298 

emissivity increase.  The increase of the reflectivity from 0.10 to 1.00, with the highest emissivity 1.00, 299 

shows a temperature reduction of 22°C. On the other hand, the increment of the emissivity from 0.10 300 

to 1.00 only represents a temperature reduction of 12°C  and 6°C, with the lowest and highest reflectivity 301 

value (0.10 and 1.00) respectively. 302 

On the contrary, in the night period, the influence of the reflectivity and emissivity on Tsi_MR is minimal. 303 

This time, the maximum variation is only 4°C, between the lowest (r=0.1 e=0.1) and the highest (r=1.00 304 

e=1.00) values of both parameters. In spite of the absence of solar flux in this period, the reflectivity 305 

factor shows some impact on Tsi_MR. This is because of the heat stored within the indoor space. 306 

Additionally, in this period, the emissivity is the only parameter that has a direct influence on the roof 307 

balance, however, due to the low cooling capacity of the sky, the impact of this factor on the reduction 308 

of Tsi_MR is minimal, even with high values. 309 



3.3 Measured thermal response of roof radiative parameters  310 

The thermal response (Tsi) of the radiative parameters of all the samples analysed before (see Fig. 8) 311 

has been visualized with the isotherms graph, as seen in Fig. 10. These results were validated with the 312 

temperature of every sample obtained by measurements. All samples are going to be analysed in 313 

comparison to the sample in its new state.  314 

 315 

Fig. 10 The thermal response (Tsi) of the radiative parameters of all analysed samples: metal roof 316 

samples in its original state with different weathering (circles), and metal roof samples with a coating of 317 

paint (squares). 318 

With respect to the samples in their unpainted state with different weathering, during day-time, the Tsi 319 

of the sample in its new state (MR_new) is 39°C, while for the sample with one year of installation 320 

(MR_old1) the Tsi is 40°C, and for the samples with more years of use (MR_old2a, MR_old2b, 321 

MR_old2c) the Tsi is 43°C, 39°C and 35°C respectively. While for night-time, all samples have a 322 

temperature slightly higher than 24°C, with the exception of MR_old2c which is below 24°C.   323 

According to these results, the metal roof with the lowest temperature in both periods is the sample with 324 

the highest value of emissivity, (MR_old2c), which is one the samples with more years of installation. 325 

The temperature of this sample is even lower than the metal roof sample in its new state (MR_new), 326 

which has a higher reflectivity but a lower emissivity. Even MR_old2b, one of the sample with the lowest 327 

reflectivity but with an emissivity of 0.52 has the same temperature as MR_new. In the case of MR_old1 328 

and MR_old2a, due to they have the lowest emissivity increase, their temperatures show an increase 329 

compared to MR_new. Nevertheless, these temperatures are only 1°C and 3°C higher than MR_new 330 

respectively.  331 

In consequence, since the effect of the aging has a greater impact on the emissivity increase than on 332 

the reflectivity reduction, the metal roofs with several years of use tend to have similar temperatures 333 



than these roofs in their new state, and eventually, in function on the increase of their emissivity, they 334 

show a lower temperature.  335 

Regarding the samples with different paint coatings, during day-time, the white painted sample 336 

(MR_white) has an interior surface temperature of 27°C, while the cool roof painted sample has a 337 

temperature of 26 °C, and the green painted sample of 36.5°C.  338 

According to these results, the roofs with the lowest temperatures of all the analysed samples in both 339 

periods are MR_cool and MR_white. Due to their increased of reflectivity and especially emissivity, in 340 

comparison to the metal roof in its new state, these samples have a temperature of 16°C and 14°C 341 

lower than MR_new respectively. Even, with a lower reflectivity, MR_green has the same temperature 342 

as MR_new during day-time and a lower temperature during night-time, due to the high increase of its 343 

emissivity. 344 

In consequence, since the use of paint coating on light metal roofs has a large impact on the emissivity 345 

increment, these samples tend to have a lower temperature in comparison to the roofs in their new 346 

state, even when using paints with lower values of reflectivity.   347 

Based on the analysed samples, the greatest impact on the reflectivity reduction due to the aging is by 348 

0.23, from 0.75 down to 0.52, which represents a temperature increment of 4°C, while, the greatest 349 

impact on the emissivity increasing is by 0.52, from 0.13 up to 0.65, which results in a temperature 350 

reduction of 12°C. Furthermore, the changes caused by the use of paint show a maximum reflectivity 351 

increase of 0.11, from 0.75 up to 0.86, which represents a temperature reduction of 8°C. While, the 352 

maximum emissivity increase is 0.82, from 0.13 up to 0.95, which results in a temperature reduction of 353 

14°C.  354 

Although the general parametric analysis shows that the reflectivity has greater repercussions on the 355 

roof thermal behaviour than emissivity, the results of both samples set show that the emissivity stands 356 

out as the radiative parameter with the highest impact on the Tsi reduction of the MR.  357 

4. Conclusions 358 

The central scope of this research has been the thermal behaviour of light metal roofs in latitudes near 359 

to Equator with warm and humid climates. This roof typology has been widely disseminated in these 360 

regions despite of the general opinion is that it provides a high indoor overheating. This investigation 361 

has been developed from the radiative perspective, considering both the short wave radiation and the 362 

long wave radiation.  In order to accomplish the aim of this investigation, a set of results have been 363 

obtained through simulations based on measurements carried out in a city on the coast of Ecuador. 364 



The simulations have been validated with further measurements of several samples of this roof 365 

typology. From these results some conclusions can be mentioned: 366 

The reflectivity and emissivity have large repercussions on the light metal roof interior surface 367 

temperature during day-time, while, during night-time, the influence of these radiative parameters is 368 

minimal. Due to the low cooling capacity of the sky in this region, even the maximum increase in 369 

emissivity has a minimal impact on the interior surface temperature reduction during the night period.  370 

Finally, contrary to what is generally believed, a light metal roof with low reflectivity and high emissivity 371 

tends to have a lower temperature than a roof in its new state. Even, an old roof with high emissivity 372 

may have a lower surface temperature than a new roof, apparently more reflective to sunlight. 373 

Therefore, since the capacity of the light metal roof to increase its emissivity with the use of simple 374 

methods such as common commercial paints or its own aging, make this type of roof a viable option in 375 

construction in climates similar to the studied in this research. 376 
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