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1. Summary	
	

The	following	thesis	develops	a	scientific	experiment	in	the	field	of	neuroscience,	applicable	
to	the	innovative	world	of	neuromarketing	and	even	also	applicable	in	the	clinical	psychological	
field.	

The	 aim	 of	 the	 research	 is	 to	 determine	 if	 the	 music	 preferred	 by	 a	 subject	 generates	
different	brain	activity	in	the	prefrontal	cortex	of	the	brain	compared	to	classical	music	or	white	
noise.	To	do	this,	an	experiment	has	been	done	with	11	subjects,	who	have	listened	to	different	
audio	tracks	without	any	distraction.	

The	 methods	 used	 in	 this	 study	 have	 been,	 on	 the	 one	 hand,	 functional	 near-infrared	
spectroscopy	to	obtain	the	data	of	the	subjects	and,	on	the	other	hand,	a	statistical	analysis	of	
variances	in	the	means.	Previously,	the	data	has	been	preprocessed	using	lowpass	and	highpass	
filters	and	moving	averages.	Both	the	preprocessing	and	the	analysis	have	been	carried	out	using	
the	statistical	software	R.	

The	statistical	results	of	the	study	show	different	activity	generated	in	the	prefrontal	cortex	
by	the	preferred	music	to	classical	music	or	to	the	resting	status.	However,	at	a	qualitative	level,	
a	similar	behaviour	has	been	observed	in	subjects	under	the	stimulus	of	preferred	music	or	white	
noise.	The	most	 important	 conclusion	 that	has	been	obtained	 is	 the	clear	 reduction	of	brain	
activity	when	subjects	have	been	under	classical	music	stimulus.	

Future	studies	should	be	conducted	in	order	to	determine	the	effect	of	white	noise	on	the	
brain,	as	well	as	that	of	an	unpleasant	sound	compared	to	a	pleasant	one.	
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2. Introduction	
	

2.1. Goals	and	Hypothesis	
	

The	following	research’s	principal	purpose	of	study	is	understanding	the	effect	of	music	in	
the	human	brain.	Specifically,	the	presented	research	is	elaborated	aiming	to	analyze	weather	
the	music	preferred	by	a	subject	evokes	a	greater	activation	in	the	human’s	brain	in	comparison	
of	other	music	or	even	noise	samples.		

Thereby,	 all	 the	 approach	 and	 development	 of	 this	 research	 thesis	 is	 grounded	 in	 a	
fundamental	question	that	gives	meaning	and	form	to	all	the	approaches.	The	question	is	the	
following:	Does	the	music	that	we	like	activate	our	brain	more	than	other	audio	stimulus?	

The	human	beings	coexist	with	music	at	all	times.	It	is	an	art	that	makes	us	enjoy	of	pleasant	
times,	stimulates	us	to	remember	past	facts	or	even	makes	us	share	emotions	in	group	songs	or	
live	concerts.	However,	even	that	 it	seems	quite	natural,	 it	 is	produced	through	complex	and	
surprising	 neuronal	 mechanism.	 Because	 of	 that,	 science	 world	 always	 comes	 up	 with	 that	
question.	

We	listen	to	music	already	from	the	crib	or	even	in	the	gestation	process.	Babies,	in	the	first	
months	 of	 life,	 have	 the	 capacity	 to	 respond	 to	 melodies	 even	 before	 than	 to	 a	 verbal	
communication	from	their	parents	(Judy	Plantinga,	Laurel	J.	Trainor,	2009).	Soft	music	sounds	
relax	them.	It	is	known,	for	example,	that	premature	kids	that	can’t	sleep	are	benefited	by	their	
mother’s	heartbeat	or	imitating	sounds	(Katherine	Rand,	Amir	Lahav,	2014).		

Music	 is	 considered	 among	 the	 elements	 that	 cause	 more	 pleasure	 in	 life.	 It	 releases	
dopamine	 in	 the	 brain	 as	 food,	 sex	 or	 drugs	 do.	 All	 of	 them	 are	 stimulus	 that	 depend	 of	 a	
subcortical	 brain	 circuit	 in	 the	 limbic	 system,	 that	 is	 to	 say,	 that	 system	 formed	 by	 brain	
structures	 that	manage	physiological	 responses	 to	emotional	 stimulus;	 in	particular,	 caudate	
and	accumbens	nucleus	and	their	connection	with	 the	pre-frontal	area	 (Del	Arco	A,	Mora	F.,	
2008).	 The	 studies	 that	 show	 activation	 to	 those	 mentioned	 stimulus	 reveal	 an	 important	
overlap	within	the	areas,	suggesting	that	all	of	them	activate	a	common	system.		

As	mentioned	above,	pre-frontal	cortex	(PFC)	of	the	brain	is	one	of	the	brain	areas	affected	
by	music	stimulus.	By	the	use	of	functional	near-infrared	spectroscopy	(fNIRS),	changes	in	the	
blood	flow	of	the	PFC	can	be	measured.		

Later,	in	section	4,	the	relation	of	fNIRS	imaging	and	brain	activation	is	extensively	explained,	
however,	this	brief	explanation	is	needed	to	understand	in	this	introduction	the	hypothesis	that	
will	be	studied.	Using	an	fNIRS	device	owned	by	Takahashi’s	Lab	among	several	subjects,	this	
research	aims	to	detect	significant	difference	in	the	PFC	blood	flow	to	preferred	music	stimulus,	
testing	the	following	hypothesis.	
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2.1.1. Hypothesis		
Preferred	music	has	a	different	effect	on	PFC	blood	flow	than	classical	music	or	resting	status	
within	subjects.	

It	is	important	to	remark	the	time	limitation	of	the	study.	When	working	with	human	beings,	
one	of	the	most	difficult	phase	in	the	research	is	to	define	properly	how	the	experiment	will	be	
performed,	 and	 sometimes,	 this	 phase	 requires	 some	 iterations	 until	 finally	 it	 fulfills	 the	
requirements	expected.	This	research	has	been	developed	in	a	time	frame	of	6	months,	which	
has	been	enough	as	a	first	approach	to	the	case,	but	could	perfectly	be	continued	in	order	to	get	
more	accurate	data.		

	

2.2. Motivation	
	

Neuroscience	has	traditionally	had	the	goal	of	understanding	how	the	nervous	system	work.	
Both	 at	 functional	 and	 structural	 level,	 this	 discipline	 tries	 to	 understand	 how	 the	 brain	 is	
organized.	During	the	last	years,	studies	have	gone	beyond,	not	only	trying	to	understand	how	
brain	works,	but	also	the	repercussion	that	it	has	on	our	conducts,	thoughts	and	emotions.	

The	development	of	new	techniques	has	been	of	great	help	inside	this	field	in	order	to	be	
able	to	carry	out	experimental	studies.	Neuroimaging	studies	have	facilitated	the	task	of	relating	
concrete	structures	with	different	functions,	using	a	very	useful	tool	for	this	purpose:	infrared-
ray	 spectroscopy.	 As	 an	 engineer,	 it	 is	 always	 interesting	 to	 understand	 and	make	 profit	 of	
technological	tool,	and	even	more	if	its	outputs	can	directly	be	measured	and	analyzed.		

However,	all	the	technologies	learned	during	my	different	academic	career	projects,	have	
been	normally	applied	through	software	programs	to	system	simulations	or	in	prototypes.	The	
fact	of	performing	a	research	with	human	beings	gives	a	realistic	context	to	it,	which,	in	a	certain	
way,	position	this	thesis	nearer	to	a	practical	field	but	also	challenges	the	study	since	human	
behavior	is	less	predictive	than	any	machine.	

On	the	other	hand,	any	scientific	research	involves	an	extensive	statistical	analysis	since,	as	
mentioned	before,	human	behavior	is	complex	and	it	is	not	trivial	to	find	the	best	way	to	treat	
the	data	gathered	in	the	experiment.	As	an	engineer	of	this	new	era	in	which	companies	tend	to	
emphasize	 the	 use	 of	 all	 the	 data	 they	 can	 collect	 around	 their	 environment,	 it	 is	 crucial	 to	
improve	my	analytical	skills,	and	this	thesis	is	a	great	opportunity	for	doing	it.		

In	addition,	throughout	my	academic	years,	 I	have	studied	subjects	related	to	 innovation	
and	business	management.	This	study	consists	of	an	experiment	that	can	be	perfectly	placed	in	
the	 recent	 field	of	neuromarketing,	because	 this	 study	or	 similar	 can	help	define	advertising	
campaigns	or	the	atmosphere	of	a	local,	choosing	a	certain	type	of	music	in	order	to	capture	the	
attention	of	consumers.	
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Finally,	being	a	musician	gives	this	research	a	special	interest,	since	it	helps	me	understand	
why	people	can	change	his	emotions	by	the	simple	fact	of	listening	to	music	they	like.	Emotion,	
expression,	social	skills,	mind	theory,	linguistic	and	mathematics	abilities,	motor	and	visuospatial	
abilities,	 decision	 taking,	 autonomy,	 creativity,	 emotional	 and	 cognitive	 flexibility,	 everything	
converges	simultaneously	in	the	shared	musical	experience.	People	sing	and	dance	together	in	
all	cultures.	We	know	we	do	it	today	and	we	will	continue	doing	it	in	the	future.	We	can	imagine	
that	our	ancestors	did	it,	around	the	fire,	thousands	of	years	ago.	We	are	what	we	are	with	music	
and	because	of	music,	neither	more	nor	less.		
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3. Theoretical	Framework	
	

As	mentioned	 in	 the	 introduction,	 this	 project	 is	 based	on	 a	 study	 about	human	beings.	
During	 the	 realization	 of	 this	 research,	 a	 great	 part	 of	 the	 time	 has	 been	 invested	 in	
understanding	why	is	PFC	the	area	of	the	brain	studied	and	on	what	fundamentals	the	use	of	
fNIRS	 technology	 is	 based.	 The	 main	 objective	 of	 this	 section	 is	 then	 to	 summarize	 the	
information	processed	in	order	to	give	a	theoretical	framework	to	the	readers.	

	

3.1. Brain	cortex	structure	and	its	functions	
	

The	 cerebral	 cortex	 is	 divided	 into	 four	 areas	 or	 lobes:	 frontal,	 temporal,	 parietal	 and	
occipital,	each	of	which	is	responsible	for	different	functions.	At	the	same	time,	the	brain	is	also	
divided	 into	 two	 hemispheres:	 the	 right,	which	 helps	 us	 think	 creatively	 and	 the	 left,	which	
encourages	us	to	think	in	a	much	more	logical	way.	Therefore,	it	has	a	frontal	lobe	on	the	right	
side	and	a	frontal	lobe	on	the	left	side.	In	this	study	we	will	focus	attention	on	one	of	them:	the	
frontal	lobe.	The	frontal	lobe	is	the	largest	area	of	the	brain.	

	

	

	

	

	

	

	

	

	

	

The	frontal	lobe	is	located	in	the	most	anterior	part	of	the	cerebral	cortex,	and	in	front	of	
the	parietal	lobe.	This	lobe	is	comprehended	as	the	most	prominent	lobe	in	humans,	due	to	its	
specific	functions	and	because	it	occupies	a	third	of	our	total	brain.	In	other	species,	its	volume	
is	much	lower.	

It	 is	 considered	 that	 our	 personality	 resides	 in	 the	 frontal	 lobes,	 which	 is	 also	 where	
emotions	are	handled,	problem	solving,	 reasoning,	planning	and	other	 functions.	The	 frontal	
lobes	are	 linked	to	the	sensory	and	memory	centers	throughout	the	brain.	His	main	 job	 is	to	
allow	us	thinking	about	things	and	determine	how	to	use	the	information	found	in	another	part	
of	the	brain.	

Figure	3.1.1.	Lobe	structure	of	the	brain	
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Without	going	into	detail,	the	different	areas	of	the	frontal	lobe	and	their	functions	are	listed	
below	 (Sanides,	 1964).	 Later,	 the	 PFC	 will	 be	 detailed,	 since	 it	 is	 the	 area	 studied	 in	 this	
investigation:	

- Primary	motor	cortex:	motor	control.	
- Premotor	cortex:	motor	planning,	speech	motor	planning	(Broca’s	area).	
- Frontal	eye	field:	as	its	proper	name	says,	eye	controlling.	
- Prefrontal	Cortex:	

o Dorsolateral	prefrontal	region:	planning,	judgment,	temporal	organization,	
self-care,	motor	programming.	

o Orbitofrontal	 region:	 social	 perception,	 attention,	 control	 of	 emotion,	
behavior	guided	by	reward	/	punishment.	

o Mediofrontal	 region:	 decrease	 in	 motor	 activity,	 spontaneity,	 speech,	
prosody,	increase	in	response	latitude,	perseverance.	

	

	

	

	

	

	

	

	

	

	

	

The	PFC	 is	 the	most	 frontal	 portion	of	 the	 frontal	 lobes	 and	manages	 complex	 cognitive	
processes	such	as	memory,	planning,	reasoning	and	problem	solving	(Roberts,	1998)	.	This	area	
helps	us	establish	and	maintain	objectives,	stop	negative	impulses,	organize	events	in	the	order	
of	time	and	form	our	personality.		

It	is	especially	developed	in	hominids	and	is	related	to	the	development	of	complex	cognitive	
processes	 involved	 in	 decision-making,	which	 has	 led	 to	 its	 association	with	 personality	 and	
social	behavior.	

Numerous	clinical	and	experimental	studies	(see	Section	4.2.)	have	shown	the	involvement	
of	the	frontal	lobes	in	emotions,	especially	in	a	specific	area:	the	orbitofrontal	cortex	(OFC).	The	
OFC	is	an	area	located	in	the	ventral	medial	region	of	the	PFC.	

	

	

Figure	4.1.2.	Frontal	lobe	structure	
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Because	of	its	connections	with	regions	of	the	frontal	cortex	and	other	cerebral	structures,	
the	OFC	(or	ventromedial	part	of	the	PFC)	contains	information	on	frontal	behavioral	planning	
and	sensory	processing	of	the	environment,	which	allows	it	to	act	on	the	development	of	certain	
behaviors	and	physiological	responses.	

The	objective	then	of	this	section	has	been	to	break	down	the	parts	of	the	human	brain	until	
arriving	 at	 the	 region	 studied	 in	 this	 investigation,	 since	 it	 is	 in	 charge	 of	 the	 processing	 of	
emotions:	the	OFC.		

	

3.2. Music	effect	on	the	brain		
	

Music	is	originated	through	vibrations	produced	by	an	instrument,	by	the	voice	or	another	
source.	These	waves	are	transported	through	the	air	and	enter	the	ear.	Where	three	small	bones	
located	in	the	middle	amplify	the	sound	waves	and	then	are	converted	into	electrical	impulses	
that	are	transmitted	to	the	brain	by	means	of	the	auditory	nerves.	

It	is	at	that	moment	when	the	brain	comes	to	interpret	these	electrical	impulses	as	"sound".	
Where	tonality,	rhythm	and	lyrics	are	interpreted	in	different	areas	of	the	brain.	

With	the	passage	of	time,	music	can	improve	linguistic	skills,	creativity	and	happiness.	It	also	
helps	reduce	anxiety	and	pain,	causes	rapid	healing	and	increases	optimism	(Conrad,	2010).	And	
it	also	helps	to	heal	some	neurological	diseases	such	as	Alzheimer's	(Camilla	N.	Clark,	Jason	D.	
Warren,	 2015),	 Parkinson's	 (Raglio,	 2015)	 and	Autism	 (Ruth	 James,	 Jeff	 Sigafoos,	 Vanessa	A.	
Green,	Peter	B.	Marschick,	2014).		

Music	can	affect	your	mood	anywhere,	as	in	your	car,	your	office	or	your	home.	It	can	even	
contribute	to	how	you	feel	inside	a	mall	store	and	influence	your	decision	to	buy.	The	large	retail	
chains	have	long	opted	to	control	every	aspect	of	the	environment	to	impact	the	experience	of	
the	buyer.	This	often	results	in	an	increase	in	sales.	

In	a	study	conducted	in	2014	(Kielstra,	2016)	at	a	Dutch	restaurant,	the	lighting	and	music	
of	 the	 place	was	 deliberately	manipulated	while	monitoring	 the	 behaviour	 of	 the	 diners.	 Its	
authors	demonstrated	that	music	can	affect	the	perception,	feelings	and	the	buying	pattern	of	
clients,	influencing	their	mood.	In	total,	the	expense	was	increased	by	20%	when	the	place	was	

Orbitofrontal	
cortex	

Figure	3.1.3.	Location	of	OFC	
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set	with	classical	music,	as	opposed	to	Pop	or	Jazz	music.	People	felt	more	comfortable,	happy	
and	calm.	Even,	the	evaluation	of	place	and	service	increased	in	these	circumstances,	because	
the	mood	of	the	diners	was	more	positive.	

It	 is	 also	 demonstrated	 that	music	 affects	 the	 brain	 in	 terms	 of	memory	 (Jäncke,	 2008),	
learning,	 attention	 (Fuyima	 Mori,	 Fatemeh	 Azadi	 Naghsh,	 Taro	 Tezuka,	 2014)	 and	 emotion	
(Jäncke,	2008).	In	this	work	we	focus	on	emotion,	since	we	are	studying	the	OFC	(Soria-Urios	G,	
Duque	P,	García	Moreno	JM,	2011).		

Listening	 to	music	 creates	 peaks	 of	 emotions	 that	 increase	 the	 amount	 of	 dopamine,	 a	
neurotransmitter	that	helps	control	the	reward	and	pleasure	centers	of	the	brain.	They	also	help	
to	 process	 other	 emotions	 such	 as	 fear,	 sadness,	 resentment	 and	pain,	 even	when	 they	 are	
present	at	the	subconscious	level.	

Many	are	 the	 studies	 that	have	already	been	made	using	music	 stimulus	 in	 the	PFC.	For	
example,	 the	effect	of	different	music	 genre’s	 samples	was	demonstrated	 to	 cause	different	
concentrations	in	blood	flow	variation	(Marcelo	Bigliassi,	Vinicius	Barreto-Silva,	Thiago	Ferreira	
Dias	Kanthack,	 Leandro	Ricardo	Altimari,	2014).	More	 in	detail,	 significant	differences	 in	PFC	
activation	 were	 studied	 with	 classical	 and	 techno	 music	 audio	 stimuli	 (Marcelo	 Bigliassi,	
Umberto	 Leon-Dominguez,	 Leandro	 Altimari,	 2015).	Music	 preferences	 in	 young	 and	 elderly	
individuals	were	also	detected	through	PFC	hemodynamics	 (Ono,	2017).	Also,	an	experiment	
using	film	clips	as	visual	and	audio	stimuli	was	conducted,	also	proving	its	effect	on	PFC	(Jose	
Leon-Carrion,	 Jesus	 Damas,	 Kurtulus	 Izzetoglu,	 Kambiz	 Pourrezai,	 Juan	 Francisco	 Martín-
Rodríguez,	Juan	Manuel	Barroso	y	Martin,	Maria	Rosario	Dominguez-Morales,	2006).	

Finally,	 it	 is	 important	 to	 state	 that	 this	 research	 has	 only	 been	 conducted	within	male	
subjects,	in	order	to	prevent	the	possible	effect	of	gender	difference	when	stimulating	the	PFC,	
already	 shown	 in	 previous	 researches	 (Bigliassi,	 Barreto-Silva,	 Altimari,	 Vandoni,	 Codrons,	
Buzzachera,	2015;	Yang	H,	Zhou	Z,	Liu	Y,	Ruan	Z,	Gong	H,	Luo	Q,	Lu	Z,	2007).	

	

3.3. Functional	near-infrared	spectroscopy	fundamentals	
	

Understanding	how	the	brain	works	is	one	of	the	great	unknowns	of	nature.	This	study	has	
become	one	of	 the	great	challenges	at	 the	beginning	of	 the	21st	century	as	 reflected	by	 the	
BRAIN	 initiatives	 in	 the	 United	 States	 or	 the	 HUMAN	 BRAIN	 PROJECT	 of	 the	 European	
Commission	through	large-scale	projects	such	as	the	Human	Connectome	Project.	

The	observation	of	brain	activity	is	carried	out	by	means	of	neuroimaging	whose	history	goes	
back	to	1924	when	Hans	Berger	obtained	the	first	encephalographic	signal	(EEG).	Since	then,	
other	ways	of	making	neuroimaging	have	emerged,	such	as	functional	magnetic	resonance	(MRI-
BOLD)	 or	 positron	 emission	 tomography	 (PET),	 among	 others,	 with	 different	 strengths	 and	
weaknesses.	 In	1977,	 Jobsis	 laid	 the	 first	 stone	 for	another	neuroimaging	modality	based	on	
irradiation	 and	 sensing	 of	 infrared	 light:	 neuroimaging	 by	 functional	 infrared	 spectroscopy	
(fNIRS).	
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The	word	"spectroscopy"	derives	from	the	Latin	root	spectrum	(appearance,	image)	and	the	
Greek	word	skopia	(see).	This	definition	is	rather	descriptive	of	the	spectroscopic	measurement	
itself;	for	example:	see	a	slight	image	from	a	sample.	

Since	its	origins	in	the	70s	to	the	present,	NIRS	technology	has	evolved	enormously,	being	
considered	 today	a	powerful	 sensor	 for	 the	qualitative	and	quantitative	analysis	 in	 the	agro-
alimentary,	 pharmaceutical,	 chemical	 industry,	 and	 in	 certain	 applications	 in	 medicine,	
environment,	etc.	

Near-infrared	spectroscopy	or	NIRS	(near-infrared	spectroscopy)	is	an	optical	non-invasive	
diagnostic	method	that	uses	the	absorption	or	reflection	of	a	certain	wavelength	produced	by	
the	different	functional	groups	found	in	the	tissues.	

In	order	to	understand	the	principles	of	fNIRS,	it	is	mandatory	to	review	NIRS.	Technically	
speaking,	 the	 NIRS	 involves	 a	 beam	 of	 light	 that	 when	 interacting	 with	 biological	 material	
produces	 electromagnetic	 radiation	 in	 the	 form	 of	 waves	 in	 the	 range	 of	 600	 to	 1000	 nm	
(Alessandro	 Torricelli,	 Davide	 Contini,	 Antonio	 Pifferi,	 Mattero	 Caffini,	 Rebecca	 Re,	 Lucia	
Zucchelli,	Lorenzo	Spinelli,	2014)	within	the	near-infrared	spectrum,	allowing	it	to	penetrate	into	
a	 sample	 and	 be	 absorbed	 or	 reflected.	 This	 reflected	 wave	 is	 analysed	 and	 can	 provide	
information	about	the	sample	as	geometry	of	the	object,	size,	distribution	and	composition.	This	
allows	us	 to	know	various	physiological	variables	 in	 real	 time	such	as	Oxygen	saturation	and	
oxygenation	 index	 in	 any	 tissue.	 In	 this	 study,	 the	 information	 obtained	 are	 the	 changes	 in	
oxyhemoglobin	(HbO2)	and	deoxyhemoglobin	(Hb)	summed,	using	a	wavelength	of	800	nm.	

	

	

	

	

	

	

	

	

	

Figure	3.3.1.	Absorption	spectra	for	Hb	and	HbO2	
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In	 the	 neuroimaging	 field	 fNIRS	 uses	 light	 to	 monitor	
noninvasively	tissue	hemodynamic	and	oxidative	metabolism.	
The	two	most	common	brain	areas	where	light	is	emitted	are	
the	 primary	 motor	 cortex	 and	 the	 prefrontal	 cortex.	
Considering	 the	 different	 functions	 of	 the	 frontal	 lobe	
mentioned	 in	 section	 4.2.,	 signals	 corresponding	 to	 motor	
execution	 and	 motor	 imagery	 tasks	 are	 acquired	 from	 the	
motor	 cortex;	 whereas	 those	 corresponding	 to	 mental	
arithmetic,	mental	counting,	emotions,	etc.	are	acquired	from	
the	 prefrontal	 cortex.	 Different	 emitter-detector	
configurations	have	been	used	in	these	two	areas,	however,	
the	emitter-detector	distance	is	usually	kept	within	a	specific	
range,	as	it	plays	an	important	role	in	fNIRS	measurement.	For	
instance,	 if	 emitter-detector	 distance	 is	 increased,	 then	
imaging	 depth	 is	 also	 increased.	 To	measure	 hemodynamic	
response	 signals	 from	 the	 cortical	 areas,	 an	 emitter-detector	 separation	 of	 around	 3	 cm	 is	
suggested.	A	separation	of	less	than	1	cm	might	contain	only	skin-layer	contribution,	whereas	
that	of	more	than	5	cm	might	result	 in	weak	and	therefore	unusable	signals	 (Noman	Naseer,	
Keum-Shik	Hong,	2015).	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	3.3.2.	Example	of	emitter-detector	pairs	
showing	the	paths	of	light	
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4. Methods	
	

4.1. Subjects	
	

For	this	study,	11	healthy	volunteers	(all	males),	aged	19-26	years,	participated	in	the	study.	
Before	the	tests,	all	of	the	procedures	were	explained.	As	mentioned	in	the	previous	section,	
female	subjects	were	avoided	in	order	to	prevent	the	possible	effect	of	gender	difference	when	
stimulating	 the	PFC,	already	shown	 in	previous	 researches	 (Marcelo	Bigliassi,	Umberto	Leon-
Dominguez,	Leandro	Altimari,	2015;	Yang	H,	Zhou	Z,	Liu	Y,	Ruan	Z,	Gong	H,	Luo	Q,	Lu	Z,	2007).	

	It	 is	 important	 to	mention	 that,	 due	 to	 lack	of	 time,	 all	 the	 adults	were	 recruited	 from,	
Takahashi’s	Lab	the	laboratory	I	have	been	working	with.	However,	none	of	them	were	involved	
in	the	research	so	the	subjects	were	neutral.	Also,	they	were	offered	an	economic	compensation	
in	exchange	for	their	efforts.	

	

4.2. Experimental	design	
	

In	order	to	better	understand	the	following	section,	the	hypothesis	to	be	studied	already	
mentioned	in	the	Introduction	is	recalled	below.	

Hypothesis		
Preferred	music	has	a	different	effect	on	PFC	blood	flow	than	classical	music	or	resting	status	
within	subjects.	

As	we	can	see,	in	this	study	an	intra-subject	(within	subjects)	test	has	been	conducted.		The	
fundamental	 characteristic	 of	 this	 design	 is	 that	 the	 same	 subjects	 go	 through	 all	 the	
experimental	 conditions.	 Comparisons	 are	 made	 between	 conditions	 and	 for	 them	 the	
measurements	of	each	subject	in	each	condition	are	used.	We	define	an	intra-subject	design	as	
a	way	to	study	the	behavior	of	the	same	group	of	people	under	different	conditions.	

On	the	other	hand,	a	between-subjects	design	could	have	been	developed.	In	a	between-
subjects	design,	the	various	experimental	treatments	are	given	to	different	groups	of	subjects.	
The	main	 advantage	 of	 intra-subject	 design	 over	 between-subjects	 design	 is	 that	 it	 requires	
fewer	 participants,	 making	 the	 process	 much	 more	 agile	 and	 less	 complicated	 in	 terms	 of	
resources.	Due	to	the	lack	of	time	already	mentioned,	this	advantage	is	very	valuable.	

For	 example,	 if	 you	 want	 to	 test	 four	 conditions	 with	 four	 groups	 of	 30	 participants	 it	
becomes	 difficult	 to	 manage	 and	 expensive.	 Using	 a	 group,	 which	 is	 tested	 with	 all	 four	
conditions,	is	much	easier.	Facility	is	not	the	only	advantage,	since	a	well-planned	intra-subject	
design	allows	researchers	to	control	the	effect	on	individuals	much	more	easily	and	reduce	the	
possibility	that	individual	differences	distort	results.	

A	disadvantage	of	 this	 research	design	 is	 the	problem	of	drag	effects,	 since	 the	 first	 test	
negatively	influences	the	following	ones.	Two	examples	of	this,	with	opposite	effects,	are	fatigue	
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and	practice.	 In	a	 long	experiment,	with	many	conditions,	 the	participants	may	be	 tired	and	
completely	fed	up	with	the	fact	that	the	researchers	are	intrusive,	ask	them	questions	and	press	
them	to	take	the	tests.	This	may	decrease	your	performance	in	the	last	study.	

On	the	other	hand,	the	effect	of	the	practice	could	mean	that	they	feel	more	confident	and	
successful	after	 the	 first	condition,	simply	because	the	experience	has	made	them	feel	more	
confident	 to	 do	 the	 tests.	 As	 a	 result,	 in	 many	 experiments	 a	 counterweight	 design	 is	
recommended,	where	the	order	of	treatments	varies,	although	this	is	not	always	possible.	

However,	none	of	the	examples	described	are	applicable	to	our	experiment,	because	in	our	
case,	the	subject	must	only	evaluate	each	audio,	which	is	a	non-exhaustive	task	and	its	practice	
does	not	influence.	

All	of	the	subjects	were	asked	two	days	before	the	experiment	to	think	about	3	songs	that	
they	really	liked.	Songs	could	be	in	any	language	and	any	music	genre.	The	only	requirement	was	
that	the	music	piece	had	to	generate	in	them	a	very	pleasant	or	motivational	status.	Once	the	
subjects	selected	their	preferred	songs,	they	would	forward	a	paper	with	those	detailed.	

On	the	other	hand,	two	classical	songs	were	selected	in	order	to	induce	a	calm	stimulus	in	
the	subjects	(Marcelo	Bigliassi,	Umberto	Leon-Dominguez,	Leandro	Altimari,	2015).	The	songs	
used	were	‘Air	on	G	String’	from	Johann	Sebastian	Bach	and	‘Nocturne	op.2	No.2’	from	Frédéric	
Chopin,	both	of	them	played	at	50	beats	per	minute	approximately.		

Finally,	 white	 noise	 was	 generated	 through	 Audacity	 software.	 In	technical	 terms	white	
noise	can	be	described	as	noise	whose	amplitude	is	constant	throughout	the	audible	frequency	
range.	A	useful	analogy	is	that	of	white	light,	which	as	we	all	know	from	school,	contains	all	the	
colors(frequencies)	combined	together.	White	noise	 is	used	in	the	experiment	since	it	blends	
the	external	sounds	(lab	members	chattering,	doors,	etc.)	into	the	overall	background	noise,	so	
your	brain	pays	less	attention	to	those	sounds.	Therefore,	white	noise	it	is	reproduced	in	order	
to	obtain	baseline	values	and	evaluate	resting	status.	

After	 collecting	 all	 the	 different	 audio	 pieces,	 an	 audio	 sample	 was	 recorded	 for	 every	
different	subject	using	Audacity	(Audacity	Team,	Pittsburgh,	PA,	USA).	Each	audio	sample	was	
composed	with	90	seconds	of	each	of	the	songs	detailed	by	the	subjects,	as	well	as	from	the	
classical	songs	and	also	from	the	generated	white	noise	audio.	Before	each	of	the	90	seconds	
tracks,	10	seconds	of	white	noise	was	placed	in	order	to	later	obtain	the	baseline	values.	Also,	
20	 silent	 seconds	were	placed	after	each	 track	 in	order	 to	allow	 the	 subject	evaluate	 it.	The	
pattern	of	the	audio	samples	is	shown	in	Figure	5.2.1.	Volume	level	of	each	track	was	normalized	
and	maximum	peaks	allowed	were	of	12	dB.	
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The	subjects	were	seated	in	a	comfortable	reclining	chair	and	the	experiment	was	explained	
to	them.	Then,	a	two	channel	fNIRS	device	(HOT-1000,	NeU	Corporation,	Japan)	was	placed	on	
their	foreheads	with	the	 light	emitter	situated	approximately	at	1cm	over	the	eyebrows.	The	
device	contains	one	light	emitter	for	each	hemisphere	of	the	brain	and	two	detectors	for	each	
light	emitter.	Based	on	the	principles	explained	in	section	4.3.,	the	cortical	oxygenation	in	both	
hemispheres	of	the	PFC	was	quantified.		An	image	of	the	device	and	more	specifications	can	be	
found	on	annex	9.4.		

On	the	other	hand,	noise-cancellation	Hi-Fi	headphones	(HD	25-C	II,	Sennheiser,	Germany)	
were	also	placed	on	the	subjects.	The	840s	audio	sample	was	reproduced	through	an	iPhone,	
always	at	the	same	volume	level,	ensuring	that	all	subjects	were	under	the	same	circumstances.	

Participants	were	asked	to	stay	still	with	their	eyes	focused	on	a	fixation	cross	while	listening	
to	the	audio	sample	in	order	to	prevent	motion	effect	in	the	brain	blood	flow,	except	after	each	
90s	track,	since	they	needed	to	evaluate	each	track.			

	

	

	

	

	

	

	

	

	

	

	

Figure	4.2.1.	Audio	sample	pattern.	White	noise(WN),	Classical	(C),	Evaluation(E),	Preferred(P)	

Figure	4.2.2.	Subject	prepared	for	doing	experiment	
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The	evaluation	was	performed	using	Visual	Analog	Scale	(VAS),	a	tool	used	to	help	a	person	
evaluate	the	intensity	of	certain	sensations	and	feelings,	normally	used	for	clinical	purpose	to	
measure	pain.	The	visual	analog	scale	for	pain	is	a	straight	line	in	which	one	end	means	absence	
of	pain	and	the	other	end	means	the	worst	pain	imaginable.	The	patient	marks	a	point	on	the	
line	that	matches	the	amount	of	pain	he	feels	(Valerie	SL	Williams,	Robert	J	Morlock,	Douglas	
Feltner,	2010).	 It	can	be	used	to	choose	the	correct	dose	of	an	analgesic.	An	example	of	VAS	
scale	for	pain	is	shown	in	figure	5.2.2.	

	

	

	

	

	

VAS	was	chosen	for	this	experiment	as	evaluation	method	since	it	allows	the	participant	to	
express	their	feelings	without	being	rational	and	therefore,	the	time	required	for	the	evaluation	
is	short.	An	example	of	VAS	evaluation	from	one	of	the	subjects	is	provided	in	the	annex	9.3.	

	

4.3. Pre-processing	
	

For	the	pre-processing	as	well	as	for	the	data	analysis,	open-source	integrated	development	
environment	RStudio	 (Boston,	MA,	USA)	has	been	used,	based	on	R	programming	 language.	
Many	 other	 software	 packages	 as	 SPSS	 or	 Matlab	 could	 have	 been	 used,	 however,	 due	 to	
personal	interest	and	future	expectations	RStudio	was	the	one	selected.	All	the	code	related	to	
the	 pre-processing	 and	 the	 analytical	 steps	 detailed	 in	 the	 following	 sections	 has	 been	 self-
developed	and	can	be	found	in	annex	9.1,	with	a	brief	explanation	of	each	of	the	different	blocks.	

The	 fNIRS	 device	 was	 connected	 through	 Bluetooth®	 to	 an	 iOS	 application	 called	 HOT-
Measurement,	 also	 developed	 by	 NeU	 Corporation	 (various	 screenshots	 from	 HOT-
Measurement	app	are	presented	in	the	Annexes).	Once	each	subject	was	evaluated,	a	CSV	was	
generated	with	specific	relevant	data	at	10	Hz	and	also	non-relevant	data	that	was	not	used.	

From	each	CSV,	only	the	left	and	right	channels	with	a	3cm	distance	from	the	light	emitter	
raw	data	and	the	left	and	right	channels	with	raw	data	already	processed	by	HOT-Measurement	
were	 loaded	 in	 the	 workspace.	 Also,	 from	 the	 11	 subjects	 that	 volunteered,	 3	 had	 to	 be	
discarded	 since	 the	 data	 collected	 had	 interspersed	 empty	 gaps	 due	 to	 a	 failure	 in	 the	
application.		

	

	

	

Figure	4.2.3.	Example	of	VAS	scale	for	anxiety	evaluation	
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In	 order	 to	 simplify	 and	 express	 as	 clear	 as	 possible	 the	 pre-processing	 developed,	 an	
example	with	one	of	the	subject’s	data	will	be	used	as	support.	

Raw	data	
First	of	all,	it	is	convenient	to	show	the	starting	point	of	the	data	with	which	the	research	

has	worked.	Since	it	is	the	first	plot,	it	is	important	to	clarify	that	the	X	axis	corresponds	to	the	
number	of	measures,	and	since	we	are	working	with	a	10Hz	sampling	frequency	and	the	test	has	
a	duration	of	840	seconds,	we	can	see	the	limit	at	8400	measures.	Also,	vertical	dotted	lines	are	
added	to	the	graph	in	order	to	represent	the	audio	pattern.	

	

	

	

	

	

	

	

	

	

	

	

	

As	we	can	see	in	Figure	5.3.1.,	there	is	too	much	noise	and	a	possible	trend	that	must	be	
removed	for	the	further	analysis.	Also,	we	can	see	a	significant	increase	of	oxygenation	in	the	
intervals	where	the	subject	evaluated	the	track	(20	seconds	windows).	This	is	mainly	caused	by	
the	motion	effect	of	the	participant’s	head.	The	3rd	and	5th	evaluation	windows	don’t	show	this	
peak,	since	the	track	to	be	evaluated	was	white	noise	and	the	subject	considered	that	it	was	not	
necessary.			

Filtered	data	
In	order	to	remove	instrument	noises,	motion	artifacts	and	other	interferences,	a	filter	in	

order	to	remove	high	frequencies	must	be	designed	and	applied	(Santosa	H,	Hong	MJ,	Kim	SP,	
Hong	KS,	2013).	For	that,	a	20th-order	low-pass	filter	with	a	normalized	cut-off	frequency	of	0.1Hz	
using	 Hamming	 window	 was	 applied.	 The	 filter	 design	 was	 mainly	 obtained	 from	 previous	
researches	already	made	mentioned	in	section	4.2.	

On	the	other	hand,	since	the	further	statistical	analysis	would	be	based	on	the	difference	
respect	the	baseline	values,	it	was	necessary	to	remove	the	trend	by	removing	the	components	
of	 the	 lowest	 frequencies.	 Therefore,	 a	 5th	 order	 Butterworth	 high-pass	 filter	 with	 cut-off	

Figure	4.3.1.	Left	and	right	channels	of	subject	4	raw	data	of	3cm	detector			
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frequency	of	2.5/60	Hz	was	designed	and	applied.	In	this	case,	the	filter	design	was	facilitated	
by	a	Mr.	Kojima,	a	lab	colleague	who	had	been	working	with	the	same	fNIRS	device.	

	

	

	
	
	

	
	

	

	
	

	

	

	
	

	

	
Scaled	and	smoothed	data	
In	order	to	smooth	the	data	removing	volatility,	5th	order	moving-average	windows	have	

been	applied.	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	4.3.2.	Left	and	right	channels	of	subject	4	filtered	data	of	3cm	detector	

Figure	4.3.3.	Left	and	right	channels	of	subject	4	filtered,	smoothed	and	
scaled	data	of	3cm	detector	
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As	 it	has	been	mentioned	 in	 the	 introduction,	 the	hypothesis	 to	be	studied	 is	performed	
within	 subjects.	 Therefore,	 a	Z-score	normalization	has	been	applied	 in	order	 to	 remove	 the	
mean	and	the	standard	deviation	for	each	data	set.	

In	 the	 following	 graph,	 a	 comparison	 between	 the	 raw	 data	 pre-processed	 by	 the	 steps	
described	and	by	HOT-Measurement	App	for	the	left	channel	can	be	seen.	Differences	can	be	
seen,	especially	in	the	trend.	In	the	further	sections,	the	reasons	for	having	used	the	detailed	
self-processing	method	will	be	detailed,	but	mainly	is	because	of	normality	of	data.	

	
	

	

	
	

	

	

	
	

	

	
	

	

	
	

	

	

	
Data	sampling		
Finally,	 the	 last	 part	 of	 the	 pre-processing	 involved	 breaking	 the	 data	 into	 the	 different	

tracks	that	composed	each	audio	sample	and	group	them	by	channel	and	subject.	Since	all	the	
audio	 samples	 followed	 the	 same	pattern,	 this	 step	 consisted	on	 simply	 subsetting	 the	data	
taking	into	account	the	time	pattern	shown	in	Figure	5.2.1.	and	grouping	them	in	a	data	frame.		

	

4.4. Data	analysis	
	

When	 performing	 a	 statistical	 analysis,	 it	 is	 highly	 important	 to	 choose	 correctly	 an	
appropriate	statistical	test	according	to	your	question	and	the	data	you	have.	In	our	case,	the	
two	 first	 characteristics	 we	 can	 state	 of	 our	 data	 are	 that	 its	 nature	 is	 numerical	 and	 the	
existence	of	more	than	two	groups	in	each	data	set	(Barun	K	Nayak,	2011).	

	

Figure	4.3.4.	Left	channel	of	subject	4	comparison,	between	self-processed	data	and	HOT-
Measurement	App	processed	data	
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One-Way	ANOVA	
With	 this	 two	 characteristics,	 the	 first	 statistical	 test	 that	 comes	 into	 our	 minds	 is	 the	

analysis	of	variance	(ANOVA).	One-way	ANOVA	is	a	statistical	technique	that	indicates	whether	
two	variables,	one	independent	and	one	dependent,	are	related	based	on	whether	the	means	
of	the	dependent	variable	are	different	in	the	categories	or	groups	of	the	independent	variable.	
That	is,	it	indicates	if	the	means	between	two	or	more	groups	are	similar	or	different.		

For	example,	if	we	compare	the	number	of	children	between	the	groups	or	levels	of	social	
class:	those	that	are	lower	class,	working	class,	middle-low	class,	upper-middle	class	and	upper	
class.	That	is,	we	will	check	through	ANOVA	if	the	variable	"number	of	children"	is	related	to	the	
variable	"social	class".	Specifically,	it	will	be	analyzed	if	the	average	number	of	children	varies	
according	to	the	level	of	social	class	to	which	the	person	belongs.	If	the	means	of	the	dependent	
variable	are	equal	 in	each	group	or	category	of	 the	 independent	variable,	 the	groups	do	not	
differ	in	the	dependent	variable,	and	therefore	there	is	no	relationship	between	the	variables.	
In	contrast,	and	 following	 the	example,	 if	 the	means	of	 the	number	of	children	are	different	
between	the	levels	of	social	class	is	that	the	variables	are	related.	

When	applying	one-way	ANOVA,	a	test	called	F	and	its	significance	are	calculated.	The	F	or	
F-test	statistic	(called	F	in	honour	of	the	Ronald	Fisher	statistic)	 is	obtained	by	estimating	the	
variation	of	the	means	between	the	groups	of	the	independent	variable	and	dividing	it	by	the	
estimation	of	the	variation	of	the	means	within	the	groups.		

	

	

	

The	calculation	of	the	F	statistic	is	somewhat	complex	to	understand,	but	basically	what	it	
does	 is	 to	divide	 the	variation	between	 the	groups	by	 the	variation	within	 the	groups.	 If	 the	
means	between	the	groups	vary	a	lot	and	the	average	within	a	group	varies	little,	that	is	to	say,	
the	groups	are	heterogeneous	among	them	and	similar	internally,	the	value	of	F	will	be	higher,	
and	therefore,	the	variables	will	be	related.		

In	conclusion,	the	more	the	means	of	the	dependent	variable	differ	between	the	groups	of	
the	 independent	variable,	the	higher	the	value	of	F.	 If	we	do	several	ANOVA	analyses	of	one	
factor,	the	one	with	F	higher	will	indicate	that	there	are	more	differences	and	for	both	a	stronger	
relationship	between	the	variables.	

The	significance	of	F	will	be	interpreted	as	the	probability	that	this	value	of	F	is	due	to	chance.	
Following	a	confidence	level	of	95%,	the	most	used	in	social	sciences,	when	the	significance	of	F	
is	less	than	0.05,	the	two	variables	are	related.	
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Factor	design	
In	 this	study,	 the	goal	 is	 to	 identify	changes	 in	 the	brain	activity	depending	on	the	audio	

stimulus	and	its	evaluation.	With	that	purpose,	various	factors	have	been	designed,	all	of	them	
related	to	the	characteristics	of	the	audio	track:	

• Audio	track:	defines	which	is	the	audio	track	played	for	that	data.	The	levels	for	that	
factor	are:	C1,	P1,	W1,	P2,	W2,	C2,	P3.	

• Subject:	defines	the	participant	to	whom	data	belongs	to.	
• VAS:	defines	the	numerical	evaluation	given	by	the	subject	to	that	audio	track.	
• VAS	factorized:	defines	the	numerical	evaluation	given	by	the	subject	converted	to	a	

categorical	scale.	The	conversion	used	was	the	following:	

	

	

	

	
	

	

	

• Audio	type:	defines	what	type	of	audio	is	the	audio	track	played.	The	different	levels	
are:	C	(classical),	P	(preferred),	W	(white	noise).	

As	mentioned	 in	 section	 5.3,	 the	 data	was	 subsetted	 into	 samples	 corresponding	 to	 the	
audio	pattern.	For	this	analysis,	only	the	data	corresponded	to	a	90s	audio	track	was	stored	in	
the	matrix.	Therefore,	only	7	levels	of	audio	track	are	needed.	The	structure	of	the	data	matrix	
would	be	the	one	described	in	Table	5.4.1:	

Brain	activity	 Audio	track	 Subject	 VAS	 VAS	
factorized	

Audio	Type	

Numerical	 Categorical	 Categorical	 Numerical	 Categorical	 Categorical	
	 7	levels	 8	levels	 	 7	levels	 3	levels	

Table	4.4.1.	Structure	of	data	matrix	for	each	channel	

Once	the	ANOVA	matrix	is	built,	the	next	step	is	to	check	if	the	data	fulfills	the	requirements	
needed	 in	 order	 to	 perform	 ANOVA	 analysis.	 This	 statistical	 test	 belongs	 to	 the	 group	 of	
parametric	tests.		

Parametric	vs	non-parametric	tests	
Parametric	 tests	 assume	 statistical	 distributions	 underlying	 the	 data.	 Therefore,	 some	

validity	conditions	must	be	met,	so	that	the	result	of	the	parametric	test	is	reliable.	In	our	case,	
ANOVA	test	will	be	reliable	only	if	each	data	sample	fits	a	normal	distribution	and	if	the	variances	
are	homogeneous.	

Non-parametric	tests	should	not	conform	to	any	distribution.	They	can	therefore	be	applied	
even	if	parametric	validity	conditions	are	not	met.		

VAS	 VAS	Factorized	
14-12	 A	
12-10	 B	
10-8	 C	
8-6	 D	
6-4	 E	
4-2	 F	
2-0	 G	

Table	4.4.4.1.	Factorization	of	VAS	numerical	evaluation	
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The	advantage	of	using	a	parametric	test	instead	of	a	non-parametric	test	is	that	the	former	
has	more	 statistical	 power	 than	 the	 latter.	 In	 other	 words,	 a	 parametric	 test	 has	 a	 greater	
capacity	to	lead	to	a	rejection	of	the	null	hypothesis.	Most	of	the	time,	the	p	value	associated	
with	a	parametric	 test	 is	 less	 than	 the	p-value	associated	with	 its	non-parametric	equivalent	
executed	on	 the	 same	data.	On	 the	other	 hand,	 non-parametric	 tests	 are	more	 robust	 than	
parametric	tests,	that	is	to	say,	they	are	valid	in	a	wider	range	of	situations.	

Parametric	tests	often	have	their	non-parametric	equivalents.	Therefore,	the	next	step	is	to	
check	 if	 our	 data	 meets	 normality	 and	 homoscedasticity	 (variances	 are	 homogeneous)	
conditions	required	for	ANOVA.	

Normality		
The	 normality	 tests,	 also	 called	 normality	 contrasts,	 aim	 to	 analyze	 how	 much	 the	

distribution	of	the	observed	data	differs	from	what	was	expected	if	they	came	from	a	normal	
distribution	with	the	same	mean	and	standard	deviation.	Two	strategies	can	be	differentiated:	
those	based	on	graphic	representations	and	hypothesis	testing.	

In	this	research,	both	strategies	have	been	followed.	However,	due	to	the	data	sample	size,	
hypothesis	testing	is	very	likely	to	reject	normality	of	the	data.	Since	the	sample	size	is	 large,	
statistical	hypotheses	tests	have	a	 large	power,	and	hence	any	small	difference	between	our	
distribution	 and	 the	 null	 distribution	 (normal	 distribution)	 is	 meaningful	 and	 leads	 to	 the	
rejection	of	the	null	hypothesis.	

The	test	used	has	been	Kolmogorov-Smirnov.	It	is	considered	as	a	null	hypothesis	that	the	
data	do	come	from	a	certain	distribution	and	as	an	alternative	hypothesis	that	they	do	not.	The	
p-value	of	these	tests	indicates	the	probability	of	obtaining	a	distribution	like	the	one	observed	
if	the	data	really	come	from	a	population	with	a	certain	distribution.	The	distribution	tested	in	
this	case,	is	obviously	a	normal	distribution.	In	table	5.4.3,	we	can	see	the	p-values	obtained	for	
this	test.	

 Sub1	 Sub2	 Sub3	 Sub4	 Sub5	 Sub6	 Sub7	 Sub8	
Left	Channel	 4.41E-05	 4.10E-07	 1.61E-06	 0	 0	 8.04E-11	 3.28E-09	 0	
Right	Channel	 0	 1.05E-11	 2.46E-12	 0	 0	 0	 1.55E-11	 0	

Left	Channel	HOT-
Measurement	App	

processed	
0	 1.76E-11	 0	 0	 0	 0	 0	 0	

Right	Channel	HOT-	
Measurement	App	

processed	
0	 1.42E-08	 0	 0	 0	 0	 2.75E-10	 0.000774	

Table	4.4.3.	P-values	for	Kolmogorov-Smirnov	test	for	each	subject	data	and	each	channel	

As	already	foreseen,	the	normality	assumption	has	been	rejected	through	hypothesis	testing.	
The	 second	phase	 in	 this	 step	 is	 to	 analyse	graphically	our	data.	 For	 that,	histograms	with	a	
normal	distribution	curve	superimposed	on	the	graph	are	used.		
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On	one	hand,	 figures	5.4.1	and	5.4.2	shows	us	that	data	processed	by	ourselves	follow	a	
likely	normal	distribution:	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	4.4.1.	Histogram	of	subject	1	left	channel	processed	data	

Figure	4.4.2.	Histogram	of	subject	8	right	channel	processed	data	
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On	 the	 other	 hand,	 figures	 5.4.3	 and	 5.4.4	 show	 that	 data	 already	 processed	 by	 HOT-
Measurement	App	does	not	follow	a	normal	distribution.	Therefore,	from	now	on,	we	will	only	
focus	on	data	treated	with	pre-processing	strategy	mentioned	in	section	5.3.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

The	conclusion	is	that,	for	self-processed	data,	we	could	use	parametric	tests	since	the	data	
sample	size	is	very	large.	However,	as	it	can	be	seen	below,	homoscedasticity	condition	is	not	
met	and	non-parametric	tests	shall	be	used	even	the	data	distribution.	That	is	why,	from	now	
on,	only	self-processed	data	will	be	used	and	each	of	both	channels	will	be	named	as	left	and	
right	hemispheres.	

Figure	4.4.3.	Histogram	of	subject	1	left	channel	HOT-Measurement	App	
processed	data	

		

Figure	4.4.4.	Histogram	of	subject	6	right	channel	HOT-Measurement	App	
processed	data	
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Homoscedasticity	
Homocedasticity	 is	 a	 characteristic	 of	 a	 linear	 regression	 model	 that	 implies	 that	 the	

variance	of	errors	 is	constant	over	time.	The	word	homocedasticity	can	be	broken	down	into	
two	parts,	homo	(equal)	and	cedasticity	(dispersion).	In	such	a	way	that,	if	we	unite	these	two	
words	adapted	from	the	Greek,	we	would	obtain	something	like	the	same	dispersion	or	the	same	
dispersion.	In	a	simple	view,	figure	5.4.5	represents	the	difference	between	both	characteristics:	

	

	

In	this	case,	homoscedasticity	was	tested	through	Breusch-Pagan	test.	The	idea	of	this	test	
is	to	check	if	you	can	find	a	set	of	Z	variables	that	serve	to	explain	the	evolution	of	the	variance	
of	the	random	perturbations,	estimated	this	from	the	square	of	the	errors	of	the	initial	model	
on	which	 it	 is	 tried	 to	verify	 if	 it	exists	or	not	heteroscedasticity.	 In	 this	 case,	with	a	p-value	
smaller	 than	our	 cutoff	 for	 significance	0.05,	 the	null	 hypothesis	of	homoscedasticity	will	 be	
rejected.	The	following	table	shows	the	results	for	the	test	of	the	linear	model	Brain	value	~	VAS	
factorized:	

 Sub1	 Sub2	 Sub3	 Sub4	 Sub5	 Sub6	 Sub7	 Sub8	
Left	

Hemisphere	 5.52E-154	 1.14E-176	 1.29E-71	 2.77E-104	 2.32E-150	 5.95E-66	 1.11E-119	 3.40E-197	

Right	
Hemisphere	 1.32E-303	 2.16E-206	 1.19E-72	 1.64E-30	 5.76E-249	 1.21E-26	 0	 3.90E-170	

Table	4.4.4.	P-values	for	Breusch-Pagan	test	for	each	subject	data	and	left	and	right	channels	

The	 conclusion	 obtained	 then	 through	 this	 test	 was	 the	 restriction	 of	 using	 only	 non-
parametric	models.	As	mentioned	above,	almost	every	parametric	test	has	its	non-parametric	
equivalent.	ANOVA’s	non-parametric	most	famous	tests	are	Welch’s	ANOVA	and	Kruskal-Wallis	
test.	 In	our	case,	 the	test	used	will	be	Welch’s	ANOVA,	since	 it	allows	heteroscedasticity	but	
assumes	normality.	Kruskal-Wallis,	on	the	contrary,	assumes	homoscedasticity	but	allows	non-
normality.		

Welch’s	ANOVA	
Welch’s	ANOVA	compares	 two	means	 to	 see	 if	 they	are	equal.	 It	 is	an	alternative	 to	 the	

Classic	ANOVA	and	can	be	used	even	if	your	data	violates	the	assumption	of	homogeneity	of	
variances.	

Figure	4.4.5.	Difference	between	homoscedastic	and	heteroscedastic	data	
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Welch’s	test	should	be	run	in	all	cases	where	data	is	normally	distributed	but	violates	the	
assumption	of	homogeneity	of	variance.	ANOVA	(and	the	non-parametric	alternative	Kruskal-
Wallis)	are	very	unstable	for	these	situations,	producing	Type	I	error	rates	that	are:	

• Conservative	for	large	sample	sizes	and	
• Inflated	for	small	sample	size.	

Welch’s	ANOVA	is	fast	becoming	the	go-to	method	out	of	the	three.	For	normal,	different-
variance,	 and	 balanced	 data	 (i.e.	 same-size	 samples),	Welch’s	 has	 the	most	 power	 and	 the	
lowest	type	I	error	rate.	However,	classic	ANOVA	still	performs	the	best	when	data	is	normal,	
equal-variance,	and	is	either	balanced	or	unbalanced.	

The	 main	 idea	 of	Welch’s	 F-test	 is	 to	 use	 a	 weight	𝑤𝑖	 in	 order	 to	 reduce	 the	 effect	 of	
heterogeneity.	This	weight	is	based	on	the	sample	size	(ni)	and	the	observed	variance	(𝑠i2	)	for	
the	group	in	question	(in	our	case,	it	would	be	VAS	factor	if	we	want	to	correct	the	results	seen	
in	Kolmogorov-Smirnov	test):		

	

	

Then	the	adjusted	grand	mean	(𝑌𝑤𝑒𝑙𝑐ℎ)	can	be	calculated	based	on	a	weighted	mean	for	each	
group:		

	

	

Treatment	sum	of	squares	(𝑆𝑆𝑇𝑅𝑤𝑒𝑙𝑐ℎ)	and	treatment	mean	squares	(𝑀𝑆𝑇𝑅𝑤𝑒𝑙𝑐ℎ)	are:		

	

	

	

	

The	next	step	is	to	calculate	a	term	called	lambda	(Λ),	based	again	on	weights:	

	

	

	

The	test	statistic	to	be	used	between	the	alternatives	is:		
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The	alternatives	conclusions	considered	in	Welch’s	F-test	are	same	as	the	traditional	F-test:		

	

	

Finally,	the	decision	rule	to	control	the	level	of	significance	at	α	is:	

	

	

	

Although	Welch’s	F-test	 is	an	adaptation	of	 the	F-test	and	 supposed	 to	be	more	 reliable	
when	the	assumption	of	homogeneity	of	variance	was	not	met,	the	disadvantage	is	it	has	fewer	
degrees	of	freedom	than	the	F-test	(1⁄Λ	≤	𝑛𝑡	−	𝑟).	Thus	Welch’s	F-test	is	less	powerful	than	the	
F-test.	 And	 since	 the	 weight	 factor	 is	 highly	 related	 to	 the	 sample	 sizes	 and	 the	 observed	
variances	(𝑤𝑖	=	

45
65
7),	when	the	number	of	observations	is	small,	the	results	of	the	Welch’s	F-test	

may	be	quite	unstable.	

Games-Howell	post	hoc	test	
A	very	common	analysis	to	do	after	an	analysis	of	variances	is	to	determine	which	are	the	

groups	that	are	most	differenced.	The	most	famous	test	for	this	phase	is	Tukey’s	test,	however,	
it	is	a	parametric	test	that	assumes	both	normality	and	homoscedasticity.	Hence,	in	this	research	
a	non-parametric	equivalent	test	was	performed:	Games-Howell	post	hoc	test.		

The	test	was	designed	based	on	Welch’s	degrees	of	freedom	correction	and	uses	Tukey’s	
studentized	range	distribution,	denoted	q.	The	Games-Howell	test	is	performed	on	the	ranked	
variables	similar	to	other	nonparametric	tests.	

In	the	next	section,	the	results	obtained	from	Welch’s	ANOVA	and	Games-Howell	post	hoc	
test	are	presented	and	discussed.	
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5. Results	
	

5.1. Boxplot	analysis	and	outliers	treatment	
	

As	 a	 first	 step,	 in	 order	 to	 interpret	 the	 results,	 it	 is	 convenient	 to	 perform	 a	 graphical	
analysis.	For	 that,	box	and	whisker	plots	will	be	used.	Normally	used	 in	descriptive	statistics,	
boxplots	are	an	excellent	way	to	quickly	examine	one	or	more	sets	of	data	graphically.	Although	
they	appear	primitive	compared	to	a	Histogram	or	a	Density	Plot,	they	have	the	advantage	of	
occupying	less	space,	which	is	useful	when	comparing	distributions	among	many	groups	or	data	
sets.	

Here	are	the	types	of	observations	one	can	make	when	viewing	a	box	and	whisker	diagram:	

• What	are	the	key	values,	such	as:	the	average,	the	25th	percentile,	etc.	
• If	there	are	outliers	and	what	are	their	values.	
• If	the	data	is	symmetric.	
• How	closely	the	data	is	grouped.	
• If	the	data	is	skewed	and	if	so,	in	what	direction.	

	

The	first	pair	of	boxplots	shown	in	figure	6.1.1	represent	the	brain	activity	of	each	subject	
for	both	hemispheres	of	the	brain.		

	

As	 it	 can	 be	 seen,	 there	 is	 a	 significant	 difference	 in	 the	 brain	 activity	 for	 each	 subject.	
However,	this	difference	is	not	a	concern	to	the	study,	since	the	interested	analysis	relies	on	the	
effect	caused	by	the	VAS	evaluation	factor	and	the	baseline	of	each	subject	is	the	same	for	every	
factor.	

	

Left	hemisphere	 Right	hemisphere	

Figure	5.1.1.	Boxplot	of	brain	activity	for	left	and	right	hemispheres	categorized	by	subject	
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The	second	pair	of	boxplots	shown	in	figure	6.1.2	represent	the	brain	activity	of	all	subjects	
together	for	both	hemispheres	of	the	brain.	The	data	is	categorized	by	the	factorized	evaluation	
given	by	the	subjects.	

	

	

	

	

	

	

	

	

	

	

	

The	interpretation	of	these	boxplots	is	very	interesting,	since	a	clear	trend	can	be	identified.	
As	it	can	be	seen,	both	sides	of	the	brain	show	a	reduction	of	brain	activity	for	the	intermediate	
evaluations.	That	is	to	say,	the	brain	seems	to	present	a	higher	activity	for	preferred	music	or	
white	noise.		

Also,	boxplots	for	individual	subjects	data	sets	are	shown	below.	These	are	also	categorized	
by	the	VAS	evaluation	factorized.		

	

Figure	5.1.2.	Boxplot	of	brain	activity	for	left	and	right	hemispheres	categorized	by	VAS	evaluation	factorized	

Left	hemisphere	 Right	hemisphere	

Figure	5.1.3.	Boxplot	of	brain	activity	for	left	and	right	hemispheres	from	Subject	4	categorized	by	VAS	evaluation	
factorized	

Subject	4	
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Outliers	
	
	
	
	

	

Both	in	figures	6.1.3	and	6.1.4,	it	can	clearly	be	seen	a	similar	pattern	to	the	one	shown	in	
figure	 6.1.1.	 As	 mentioned	 above,	 subjects	 tend	 to	 show	 a	 lower	 brain	 activity	 only	 of	
intermediate	evaluations.	

Finally,	boxplots	with	data	categorized	by	the	audio	type	are	shown.	Figure	6.1.5	represent	
the	data	for	all	the	subjects	together.	

It	 can	be	observed	a	 smoother	 variance	among	 the	different	audio	 types.	 This	 change	 is	
caused	due	to	a	reduced	number	of	factors	and	hence,	data	is	more	compressed.	Nevertheless,	
the	pattern	shows	also	the	lower	brain	activity	for	the	calm	music,	which	normally	will	be	related	
to	intermediate	VAS	score.	

	
	

Subject	8	

Figure	5.1.4.	Boxplot	of	brain	activity	for	left	and	right	hemispheres	from	Subject	8	categorized	by	VAS	evaluation	
factorized	

Left	hemisphere	 Right	hemisphere	

Figure	5.1.5.	Figure	5.1.2.	Boxplot	of	brain	activity	for	left	and	right	hemispheres	from	all	the	subjects	
categorized	by	audio	type		

	



	

31	
	

	

Finally,	individual	boxplot	pairs	for	separate	subjects	datasets	are	shown	in	figures	6.1.6	and	
6.1.7.	

	

	

In	this	case,	the	variance	is	not	so	reduced	since	the	number	of	factors	is	quite	similar.	For	
subject	4	 it	varies	only	 for	1	 less	 factor	and	 for	subject	8	 the	number	of	 factors	 is	 the	same.	
Another	time	it	can	be	seen	the	same	pattern,	where	calm	music	stimulates	the	lowest	brain	
activity.	In	the	annex	9.2,	individual	boxplots	for	all	the	subjects	can	be	found.	

	
	
	

	

Figure	5.1.6.	Boxplot	of	brain	activity	for	left	and	right	hemispheres	from	Subject	4	categorized	by	audio	type	

	

Figure	5.1.7.	Boxplot	of	brain	activity	for	left	and	right	hemispheres	from	Subject	8	categorized	by	audio	type	

	

Subject	4	

Subject	8	
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If	we	take	a	look	at	the	previous	boxplots,	we	can	see	that	most	of	them	present	outliers.	
Atypical	or	outlier	cases	are	called	 those	observations	with	characteristics	different	 from	the	
others.	These	type	of	cases	can’t	be	characterized	categorically	as	beneficial	or	problematic	but	
they	must	be	considered	 in	 the	context	of	 the	analysis	and	 the	 type	of	 information	 that	can	
provide	should	be	evaluated.	

Their	 main	 problem	 is	 that	 they	 are	 elements	 that	 may	 not	 be	 representative	 of	 the	
population	being	able	 to	seriously	distort	 the	behaviour	of	statistical	contrasts.	On	the	other	
hand,	although	being	different	from	most	of	the	sample,	may	be	indicative	of	the	characteristics	
of	a	valid	segment	of	the	population	and,	consequently,	a	signal	of	the	lack	of	representativeness	
of	the	sample.	

Outliers	may	appear	for	different	causes.	It	could	be	due	to	an	error	in	the	measurement	
process,	an	extraordinary	event	or	sometimes	there	is	just	no	specific	reason.	In	this	study,	the	
outliers	do	not	appear	to	have	any	specific	reason.	In	this	cases,	the	best	to	do	is	to	perform	the	
analysis	with	and	without	those	observations	aiming	to	analyse	its	influence	over	the	results.		

In	this	study,	the	same	analysis	steps	have	been	conducted	with	and	without	outliers.	The	
observations	considered	have	been	considered	as	outliers	if	they	are	1.5	times	bigger	from	the	
first	 quartile	 or	 1.5	 time	 smaller	 than	 the	 third	 quartile.	 The	 results	 for	 both	 cases	 show	an	
almost	exact	pattern,	so,	in	order	to	not	miss	any	data,	outliers	will	be	considered	in	the	study.	

In	the	following	sections,	statistical	tests	will	be	conducted	in	order	to	analyse	deeper	the	
conclusions	obtained	graphically	via	the	boxplots.	

	

5.2. Welch’s	ANOVA	
	

As	 mentioned	 above,	 this	 section	 and	 the	 following	 one	 will	 show	 the	 results	 on	 the	
statistical	tests	already	described	in	section	5.4.		

In	order	 to	 test	whether	 there	 is	 significant	difference	between	 the	means	of	 each	data	
group,	Welch’s	ANOVA	has	been	conducted.	As	a	first	step,	the	data	from	all	the	subjects	has	
been	treated	together,	categorized	by	the	VAS	evaluation	factorized	and	the	nature	of	the	audio	
(classical,	preferred	or	white	noise).	

	 VAS	factorized	 Audio	Type	
Left	hemisphere	 0	 3.45515E-289	
Right	hemisphere	 0	 0	

Table	5.2.1.	P-values	for	Welch’s	ANOVA	test	categorized	by	VAS	evaluation	factorized	and	Audio	Type	

Clearly	we	can	reject	the	null	hypothesis	of	no	difference	between	means.	That	 is	to	say,	
there	is	a	significant	difference	between	means	for	data	categorized	by	each	subject	evaluation	
and	the	audio	nature.	
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A	second	analysis	has	been	conducted	within	each	subject.	As	has	been	done	with	the	whole	
data	of	the	subjects	previously,	the	analysis	has	been	done	by	categorizing	the	data	according	
to	the	evaluation	and	the	nature	of	the	audio.	

 Sub1	 Sub2	 Sub3	 Sub4	 Sub5	 Sub6	 Sub7	 Sub8	
Left	

Hemisphere	
6.70E-210	 6.21E-225	 2.27E-44	 0	 2.21E-250	 1.75E-166	 4.10E-187	 6.42E-319	

Right	
Hemisphere	

1.62E-286	 2.00E-224	 7.74E-27	 0	 1.51E-190	 2.41E-283	 1.06E-59	 0	

Table	5.2.2.	P-values	for	Welch’s	ANOVA	test	categorized	by	VAS	evaluation	factorized	for	each	subject	

	

	 Sub1	 Sub2	 				Sub3	 Sub4	 				Sub5	 					Sub6	 				Sub7	 		Sub8	
Left	

Hemisphere	
1.97E-323	 1.13E-286	 0	 0	 3.80E-246	 1.39E-252	 2.03E-228	 0	

Right	
Hemisphere	

0	 2.44E-319	 0	 0	 1.15E-191	 4.56E-231	 8.20E-164	 0	

Table	5.2.3.	P-values	for	Welch’s	ANOVA	test	categorized	by	audio	type	for	each	subject	

	

Again,	the	null	hypothesis	can	be	rejected	so	we	can	ensure	a	difference	of	brain	activity	in	
each	subject	depending	on	the	evaluation	or	the	audio	type.		

	

5.3. Games-Howell	Post	Hoc	Test	
	

As	mentioned	in	section	5.4,	after	identifying	difference	amongst	means	for	each	group	of	
data,	a	post	hoc	test	in	order	to	determine	which	are	the	groups	with	a	bigger	difference	should	
be	performed.	Hence,	the	last	piece	of	this	section	is	destined	to	Games-Howell	Post	Hoc	Test.	

In	the	following	table,	the	results	of	a	first	Games-Howell	test	are	shown.	The	groups	to	be	
compared	are	categorized	by	VAS	evaluation	 factorized,	and	we	can	see	 the	 results	 for	both	
hemispheres.	

	

VAS	
evaluation	
factorized	

Mean	
difference	 P-Value	 Mean	

difference	 P-Value	

C-A	 -0,783545665	 1,01E-08	 -0,771675636	 3,36E-08	
E-A	 -1,121815179	 0	 -1,928624182	 3,75E-11	
G-A	 -0,022866429	 0,893460784	 0,10426062	 0,000149497	
B-A	 -0,249308155	 3,40E-08	 -0,022624055	 0,943685598	
D-A	 -1,387564371	 0	 -1,01941117	 0	
F-A	 0,012790752	 0,991834374	 0,186797508	 4,72E-09	

Left	Hemisphere	 	 	 Right	Hemisphere	
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P-values	highlighted	on	the	table	identify	the	pair	of	groups	which	don´t	present	a	significate	
mean	difference.	It	is	important	to	mention	that	for	the	left	hemisphere,	there	is	no	significant	
difference	for	brain	activity	related	to	audio	samples	evaluated	either	with	the	highest	score	(A)	
or	 the	 lowest	 ones	 (F-G).	 Also,	 note	 that	 in	 the	 right	 hemisphere,	 there	 is	 no	 significant	
difference	for	the	highest	scores	(A-B).	

In	 order	 to	 perform	a	 simple	 graphical	 analysis	 of	 the	 test	 results,	 a	 bar	 chart	 has	 been	
created	for	both	hemispheres,	representing	the	absolute	mean	difference	between	each	pair	of	
VAS	evaluation	groups.		

	

	

	

	

	

	

	

	
	

	

E-C	 -0,338269514	 0	 -1,156948546	 0	
G-C	 0,760679236	 3,39E-08	 0,875936256	 3,39E-08	
B-C	 0,53423751	 3,39E-08	 0,749051581	 3,29E-08	
D-C	 -0,604018706	 0	 -0,247735535	 2,77E-07	
F-C	 0,796336417	 1,97E-08	 0,958473144	 1,93E-08	
G-E	 1,09894875	 0	 2,032884802	 0	
B-E	 0,872507024	 5,89E-13	 1,906000127	 1,51E-13	
D-E	 -0,265749192	 5,43E-08	 0,909213011	 0	
F-E	 1,134605931	 2,18E-13	 2,11542169	 3,27E-13	
B-G	 -0,226441726	 2,24E-08	 -0,126884675	 2,19E-08	
D-G	 -1,364697942	 0	 -1,123671791	 3,65E-13	
F-G	 0,035657181	 0,347536352	 0,082536888	 7,84E-06	
D-B	 -1,138256216	 1,44E-13	 -0,996787115	 3,72E-13	
F-B	 0,262098907	 8,93E-09	 0,209421563	 1,00E-08	
F-D	 1,400355123	 7,52E-13	 1,206208679	 0	

Table	6.3.1.	Games-Howell	post	hoc	test	results	categorized	by	VAS	evaluation	for	both	hemispheres	

Figure	6.3.1.	Bar	chart	representing	absolute	mean	differences	for	left	hemisphere	
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As	already	observed	in	section	6.1,	the	biggest	differences	remain	lowest	evaluations	(F-G)	
and	medium	evaluations	(D-E)	and	highest	evaluations	(A-B)	with	also	medium	evaluations	(D-
E).		

	

	

	

In	Figure	6.3.2,	again	the	same	pattern	can	be	observed,	with	medium	evaluation	pairs	with	
highest	and	lowest	showing	the	biggest	differences.	

Finally,	 the	same	post	hoc	analysis	has	been	performed	using	 the	audio	 type	 in	order	 to	
categorize	the	data	collected	from	all	the	subjects.	In	Table	6.3.3,	the	results	of	the	test	can	be	
observed.	

		

	

	

	

	

	

In	this	case,	all	the	groups	show	significant	mean	difference,	so	statistically	it	is	not	possible	
to	make	any	assumptions	regarding	the	experiment.	That	is	to	say,	there	is	proven	difference	of	
brain	 activity	 between	 each	 audio	 type	 stimulus,	 however,	 since	 every	 pair	 show	 significant	
mean	difference,	there	are	no	clear	assumptions	as	previously	seen	in	Table	6.3.1.		

	

	

	

Audio	type	 Mean	
difference	 P-Value	 Mean	

difference	 P-Value	

M-C	 0,225887705	 0	 0,59396885	 0	
W-C	 0,506199019	 0	 0,791713124	 0	
W-M	 0,280311315	 0	 0,197744274	 0	

Table	6.3.2.	Games-Howell	post	hoc	test	results	categorized	by	audio	type	for	both	hemispheres	

	

Left	Hemisphere	 									Right	Hemisphere	

Figure	6.3.2.	Bar	chart	representing	absolute	mean	differences	for	right	hemisphere	
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As	previously	done,	in	order	to	analyze	the	test	graphically,	bar	charts	have	been	elaborated	
for	both	hemispheres.	

Both	hemispheres	show	a	biggest	difference	in	brain	activity	for	white	noise	and	calm	music	
audio	stimulus.	However,	right	hemisphere	differs	from	the	left	one,	since	it	presents	a	more	
notable	difference	between	calm	and	motivational	music.		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	6.3.3.	Bar	chart	representing	absolute	mean	differences	for	left	and	right	hemisphere,	categorized	by	audio	type	
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6. Conclusions	
	

During	 the	 past	months	 in	 the	 elaboration	 of	 this	 research,	 several	 concepts	 have	 been	
assimilated,	analysed	and	finally	put	into	practice.	

The	 goal	 of	 this	 study	 was	 none	 other	 than	 to	 conduct	 an	 experiment	 in	 order	 to	
demonstrate	the	effect	of	music	on	the	brain,	specifically	in	the	PFC,	because	as	shown	in	section	
4,	music	is	capable	to	stimulate	the	brain	through	its	three	basic	components	(rhythm,	melody	
and	lyrics).	

The	 demonstration	 has	 been	 based	 around	 the	 formulation	 of	 one	 only	 hypothesis:	
Preferred	music	has	a	different	effect	on	PFC	blood	flow	than	classical	music	or	resting	status	
within	subjects.	From	this,	the	experiment	explained	in	section	5	has	been	designed.	

Thus,	throughout	the	section	6,	significant	differences	in	brain	activity	have	been	observed	
by	 categorizing	 the	 data	 according	 to	 the	 VAS	 evaluation	 and	 the	 type	 of	 audio	 sample	
reproduced.	As	shown	in	Figure	6.3.3,	white	noise	and	preferred	music	have	caused	a	similar	
effect	 on	 PFC	 activity,	 unlike	 calm	music.	 Hence,	 a	 clear	 and	 interesting	 conclusion	 can	 be	
obtained:	classical	music	stimulates	a	lower	brain	activity	on	the	PFC	than	preferred	music	or	
white	noise.	

However,	the	results	of	the	statistical	tests	show	significant	differences	between	the	three	
types	of	audio.	Therefore,	accepting	or	rejecting	the	hypothesis	in	this	study	is	complicated.	On	
the	one	hand,	it	is	true	that	preferred	music	causes	a	different	effect	on	the	PFC,	but,	on	the	
other	hand,	white	noise	has	stimulated	a	similar	level	of	brain	activity	to	the	preferred	music,	
and	that	was	not	the	expected	behaviour.	Thus,	the	hypothesis	is	considered	valid,	but	questions	
that	should	be	investigated	later	are	opened.	

The	first	issue	is	the	fact	that	the	audios	evaluated	with	the	lowest	score	have	generated	
levels	of	activity	in	the	PFC	similar	to	the	preferred	music.	A	possible	future	experiment	would	
be	to	evaluate	subjects	with	unpleasant	sounds	and	compare	them	with	pleasant	sounds.	

On	the	other	hand,	it	is	worth	questioning	whether	white	noise	really	calms	the	human	being,	
as	had	been	clarified	in	section	5	and	demonstrated	in	previous	investigations.	

Finally,	mention	that,	even	if	the	project's	time	limit	has	been	satisfactorily	met	through	the	
design	of	the	intra-subject	experiment,	a	larger	sample	size	would	have	strongly	supported	the	
formulated	and	validated	hypothesis.	
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8. Annexes	
	

8.1. R	Code		
raw_csvs <- 
list(fuga,hamataki,kojima,kon_3,ryota,ibata,nonoyama,ohara) # list of 
raw data csvs	
subjects_names <- 
c('sub1','sub2','sub3','sub4','sub5','sub6','sub7','sub8') 	
	
	
# Visual analogue scale data	
	
CH16_vas <- c(6.1,11.1,0,10.3,0,5.6,12)*10/14	
sub1_vas <- c(8.3,13.5,1,13.7,1,4.9,12.7)*10/14	
sub2_vas <- c(8.7,11.4,1,6.8,1,12.1,11.4)*10/14	
sub3_vas <- c(9.2,13,3,13.6,2.4,10.5,13.8)*10/14	
sub4_vas <- c(8.3,10.8,1,11.2,1,9.3,12.4)*10/14	
sub5_vas <- c(12.1,12.9,1,13,0.8,9.3,13.1)*10/14	
sub6_vas <- c(10.8,11.2,3.4,9.8,3,12.4,11.3)*10/14	
sub7_vas <- c(9,10.9,2.5,11.3,1.5,9.2,10.8)*10/14	
sub8_vas <- c(9.2,10.7,2.2,10.6,2.3,9.8,11.5)*10/14	
vas_list <- 
list(sub1_vas,sub2_vas,sub3_vas,sub4_vas,sub5_vas,sub6_vas,sub7_vas,su
b8_vas)	
	
# Visual analogue scale factorized	
# 14-12 : A	
# 12-10 : B	
# 10-8  : C	
# 8-6   : D	
# 6-4   : E	
# 4-2   : F	
# 2-0   : G	
	
	
CH16_vas_f <- c('E','B','G','B','G','E','A')	
sub1_vas_f <- c('C','A','G','A','G','E','A')	
sub2_vas_f <- c('C','B','G','D','G','B','B')	
sub3_vas_f <- c('C','A','F','A','F','B','A')	
sub4_vas_f <- c('C','B','G','B','G','B','A')	
sub5_vas_f <- c('B','A','G','A','G','C','A')	
sub6_vas_f <- c('B','B','F','C','F','A','B')	
sub7_vas_f <- c('C','B','F','B','G','C','B')	
sub8_vas_f <- c('C','B','F','C','F','C','B')	
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vas_list_f <- 
list(sub1_vas_f,sub2_vas_f,sub3_vas_f,sub4_vas_f,sub5_vas_f,sub6_vas_f
,sub7_vas_f,sub8_vas_f)	
	
	
# Time frame	
CH16_limits <- 
c(1,102,1005,1194,1286,2187,2390,2490,3379,3578,3663,4566,4759,4859,57
53,5951,6060,6955,7152,7253,8155)	
limits <- 
c(1,100,1000,1200,1300,2200,2400,2500,3400,3580,3680,4580,4770,4870,57
70,5970,6070,6950,7150,7250,8150)	
	
# Create matrix with audio sample lenghts 	
samples_CH16 <- matrix(nrow=20, ncol=2)	
for (i in 1:length(CH16_limits)-1) {samples_CH16[i,1] = limits[i]; 
samples_CH16[i,2] = CH16_limits[i+1]}	
	
samples <- matrix(nrow=20, ncol=2)	
for (i in 1:length(limits)-1) {samples[i,1] = limits[i]; samples[i,2] 
= limits[i+1]}	
	
# filter subjects data and z-scale data from each csv for each channel 	
	
l3_bw <- list()	
r3_bw <- list()	
l_processed <- list()	
r_processed <- list()	
library(seewave) #for butterworth filter	
library(signal) #for fir_filter	
library(forecast) #for moving average	
	
lowpass <- fir1(n=20,w=0.1,type='low',window = hamming(21))	
highpass <- fir1(n=20,w=1/815,type='high',window = hamming(21))	
	
	
for (i in c(1:length(raw_csvs))) {	
  l3_bw[[i]] <- 
scale(ma(bwfilter(filter(lowpass,raw_csvs[[i]]$density_l3_raw),n=5,fro
m=1/60/2.5,f=10),order=5))	
  l3_bw[[i]] <- l3_bw[[i]][complete.cases(l3_bw[[i]]),]	
  r3_bw[[i]] <- 
scale(ma(bwfilter(filter(lowpass,raw_csvs[[i]]$density_r3_raw),n=5,fro
m=1/60/2.5,f=10),order=5))	
  r3_bw[[i]] <- r3_bw[[i]][complete.cases(r3_bw[[i]]),]	
  l_processed[[i]] <- scale(raw_csvs[[i]]$leftBrain_value)	
  r_processed[[i]] <- scale(raw_csvs[[i]]$rightBrain_value)	
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}	
	
data <- list(l3_bw,r3_bw,l_processed,r_processed)	
	
#break data into samples	
data_sampled <- rep(list(rep(list(list()),length(raw_csvs))),4)	
	
for(t in c(1:length(data))){	
  for(s in c(1:length(raw_csvs))){	
    for (i in 1:nrow(samples)) {	
      data_sampled[[t]][[s]][[i]] <- 
data[[t]][[s]][samples[i,1]:samples [i,2]]	
      	
    }	
  }	
}	
	

library(stats)	
library(onewaytests) #welch's test	
library(lmtest) #bptest	
	
	
	
#create columns with VAS scores for ANOVA analysis	
vas_list_columns <- list()	
for (i in c(1:length(vas_list))){	
    vas_list_columns[[i]] <- rep(vas_list[[i]][1],880)	
  for (t in c(2:length(vas_list[[i]]))){	
    vas_list_columns[[i]] <- 
append(vas_list_columns[[i]],rep(vas_list[[i]][t],880))	
  }	
}	
	
#create columns with VAS scores factorized for ANOVA analysis	
vas_list_columns_f <- list()	
for (i in c(1:length(vas_list_f))){	
  vas_list_columns_f[[i]] <- rep(vas_list_f[[i]][1],880)	
  for (t in c(2:length(vas_list_f[[i]]))){	
    vas_list_columns_f[[i]] <- 
append(vas_list_columns_f[[i]],rep(vas_list_f[[i]][t],880))	
  }	
}	
	
#create column with Motivational vs Classical vs White	
audio_type <- c('C','M','W','M','W','C','M')	
audio_type_vector <- c()	
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for(i in c(1:length(audio_type))){	
  audio_type_vector <- 
append(audio_type_vector,rep(audio_type[i],880))	
}	
audio_type_column <- rep(audio_type_vector,8)	
	
	
anova_list_split <- rep(list(list()),4)	
anova_matrix <- matrix(ncol=6)	
colnames(anova_matrix) <- 
c('values','ind','subject','vas','vas_f','audio_type')	
anova_list <- rep(list(anova_matrix),4)	
	
	
	
#create anova matrixes for between and within subject analysis	
for (i in c(1:length(data_sampled))){	
  for (t in c(1:length(data_sampled[[1]]))){	
      C1 <- data_sampled[[i]][[t]][[2]][1:880] - 
mean(data_sampled[[i]][[t]][[1]][3:length(data_sampled[[i]][[t]][[1]])
])	
      P1 <- data_sampled[[i]][[t]][[5]][1:880]- 
mean(data_sampled[[i]][[t]][[4]])	
      W1 <- data_sampled[[i]][[t]][[8]][1:880]- 
mean(data_sampled[[i]][[t]][[7]])	
      P2 <- data_sampled[[i]][[t]][[11]][1:880]- 
mean(data_sampled[[i]][[t]][[10]])	
      W2 <- data_sampled[[i]][[t]][[14]][1:880]- 
mean(data_sampled[[i]][[t]][[13]])	
      C2 <- data_sampled[[i]][[t]][[17]][1:880]- 
mean(data_sampled[[i]][[t]][[16]])	
      P3 <- data_sampled[[i]][[t]][[20]][1:880]- 
mean(data_sampled[[i]][[t]][[19]])	
      subject_1 <- cbind.data.frame(C1,P1,W1,P2,W2,C2,P3)	
      stacked_subject <- cbind.data.frame(stack(subject_1),subject = 
as.vector(rep(subjects_names[t],6160))) #add subject name	
      stacked_vas <- cbind.data.frame(stacked_subject,vas = 
as.vector(vas_list_columns[[t]])) #add vas score	
      stacked_vas_f <- cbind.data.frame(stacked_vas,vas_f = 
as.vector(vas_list_columns_f[[t]])) #add vas score factorized	
      stacked_type <- cbind.data.frame(stacked_vas_f, audio_type = 
as.vector(audio_type_vector))	
      anova_list_split[[i]][[t]] <- stacked_type	
      anova_list[[i]] <- 
rbind.data.frame(anova_list[[i]],stacked_type)	
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      anova_list[[i]]$ind <- factor(anova_list[[i]]$ind)	
      anova_list[[i]]$subject <- factor(anova_list[[i]]$subject)	
      anova_list[[i]]$vas_f <- factor(anova_list[[i]]$vas_f)	
      anova_list[[i]]$audio_type <- factor(anova_list[[i]]$audio_type)	
      anova_list[[i]] <- 
anova_list[[i]][complete.cases(anova_list[[i]]),]	
    }	
}	
	
# Between subjects: obtain pv matrix and csv's for anova and welch's 
anova, kolmogorov and breusch pagan tests	
anova_pv_matrix_between <- matrix(nrow =4,ncol=2)	
colnames(anova_pv_matrix_between) <- c('ind','subject')	
ks_pv_matrix_between <- matrix(nrow =4)	
bp_pv_matrix_between <- matrix(nrow=4)	
welch_pv_matrix_between <- matrix(nrow=4,ncol=2)	
colnames(welch_pv_matrix_between) <- c('vas_f','audio_type')	
for (i in c(1:length(anova_list))){	
    anova_pv_matrix_between[i,1] <- 
summary(aov(anova_list[[i]]$values~anova_list[[i]]$ind))[[1]][["Pr(>F)
"]][1]	
    anova_pv_matrix_between[i,2] <- 
summary(aov(anova_list[[i]]$values~anova_list[[i]]$subject))[[1]][["Pr
(>F)"]][1]	
    welch_pv_matrix_between[i,1] <- 
welch.test(values~vas_f,anova_list[[i]])$p.value	
    welch_pv_matrix_between[i,2] <- 
welch.test(values~audio_type,anova_list[[i]])$p.value	
    ks_pv_matrix_between[i] <- 
ks.test(anova_list[[i]]$values,rnorm(length(anova_list[[i]]$values),me
an(anova_list[[i]][complete.cases(anova_list[[i]]),]$values)))$p.value  	
    bp_pv_matrix_between[i] <- 
bptest(anova_list[[i]]$values~anova_list[[i]]$subject)$p.value	
  }	
write.csv(anova_pv_matrix_between, file = 
'anova_between_subjects.csv')	
write.csv(welch_pv_matrix_between, file = 
'welch_between_subjects.csv')	
write.csv(ks_pv_matrix_between, file = 'ks_between_subjects.csv')	
write.csv(bp_pv_matrix_between, file = 'bp_between_subjects.csv')	
#anova & bp between subjects for subject and genre with vas score	
vas_pv_matrix_between <- matrix(nrow=2,ncol=2)	
colnames(vas_pv_matrix_between) <- c('ind','subject')	
rownames(vas_pv_matrix_between) <- c('anova','bptest')	
vas_pv_matrix_between[1,1] <- 
summary(aov(anova_list[[1]]$vas~anova_list[[1]]$ind))[[1]][["Pr(>F)"]]
[1]	
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vas_pv_matrix_between[1,2] <- 
summary(aov(anova_list[[1]]$vas~anova_list[[1]]$subject))[[1]][["Pr(>F
)"]][1]	
vas_pv_matrix_between[2,1] <- 
bptest(anova_list[[1]]$vas~anova_list[[1]]$ind)$p.value	
vas_pv_matrix_between[2,2] <- 
bptest(anova_list[[1]]$vas~anova_list[[1]]$subject)$p.value	
write.csv(vas_pv_matrix_between, file = 
'anova&bp_vas_between_subjects.csv')	
	
#Within subjects: obtain pv matrix and csv's for anova and welch's 
anova, kolmogorov and breusch pagan tests	
anova_pv_matrix_within <- matrix(ncol = length(data_sampled[[1]]),nrow 
=4)	
ks_pv_matrix_within <- matrix(ncol = length(data_sampled[[1]]),nrow=4)	
bp_pv_matrix_within <- matrix(ncol=length(data_sampled[[1]]),nrow=4)	
welch_pv_matrix_within <- 
matrix(ncol=length(data_sampled[[1]]),nrow=4)	
for (i in c(1:length(anova_list_split))){	
  for (t in c(1:length(anova_list_split[[1]]))){	
    anova_pv_matrix_within[i,t] <- 
summary(aov(anova_list_split[[i]][[t]]$values~anova_list_split[[i]][[t
]]$ind))[[1]][["Pr(>F)"]][1]	
    welch_pv_matrix_within[i,t] <- 
welch.test(values~vas_f,anova_list_split[[i]][[t]])$p.value	
    ks_pv_matrix_within[i,t] <- 
ks.test(anova_list_split[[i]][[t]]$values,rnorm(length(anova_list_spli
t[[i]][[t]]$values),mean(anova_list_split[[i]][[t]]$values)))$p.value	
    bp_pv_matrix_within[i,t] <- 
bptest(anova_list_split[[i]][[t]]$values~anova_list_split[[i]][[t]]$in
d)$p.value	
    }	
  	
}	
write.csv(anova_pv_matrix_within, file = 'anova_within_subjects.csv')	
write.csv(welch_pv_matrix_within, file = 
'welch_within_subjects_vas_f.csv')	
write.csv(ks_pv_matrix_within, file = 'ks_within_subjects.csv')	
write.csv(bp_pv_matrix_within, file = 'bp_within_subjects.csv')	
	

remove_outliers <- function(x, na.rm = TRUE, ...) { #function for remo
ve outliers  
  qnt <- quantile(x, probs=c(.25, .75), na.rm = na.rm, ...) 
  H <- 1.5 * IQR(x, na.rm = na.rm) 
  y <- x 
  y[x < (qnt[1] - H)] <- mean(x) 
  y[x > (qnt[2] + H)] <- mean(x) 
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  y 
} 
 
anova_list_split_outliers <- rep(list(list()),4) 
anova_matrix_outliers <- matrix(ncol=6) 
colnames(anova_matrix_outliers) <- c('values','ind','subject','vas','v
as_f','audio_type') 
anova_list_outliers <- rep(list(anova_matrix_outliers),4) 
 
 
 
#create anova matrixes for between and within subject analysis removin
g outliers 
for (i in c(1:length(data_sampled))){ 
  for (t in c(1:length(data_sampled[[1]]))){ 
    C1 <- remove_outliers(data_sampled[[i]][[t]][[2]][1:880] - mean(da
ta_sampled[[i]][[t]][[1]][3:length(data_sampled[[i]][[t]][[1]])])) 
    P1 <- remove_outliers(data_sampled[[i]][[t]][[5]][1:880]- mean(dat
a_sampled[[i]][[t]][[4]])) 
    W1 <- remove_outliers(data_sampled[[i]][[t]][[8]][1:880]- mean(dat
a_sampled[[i]][[t]][[7]])) 
    P2 <- remove_outliers(data_sampled[[i]][[t]][[11]][1:880]- mean(da
ta_sampled[[i]][[t]][[10]])) 
    W2 <- remove_outliers(data_sampled[[i]][[t]][[14]][1:880]- mean(da
ta_sampled[[i]][[t]][[13]])) 
    C2 <- remove_outliers(data_sampled[[i]][[t]][[17]][1:880]- mean(da
ta_sampled[[i]][[t]][[16]])) 
    P3 <- remove_outliers(data_sampled[[i]][[t]][[20]][1:880]- mean(da
ta_sampled[[i]][[t]][[19]])) 
    subject_1 <- cbind.data.frame(C1,P1,W1,P2,W2,C2,P3) 
    stacked_subject <- cbind.data.frame(stack(subject_1),subject = as.
vector(rep(subjects_names[t],6160))) #add subject name 
    stacked_vas <- cbind.data.frame(stacked_subject,vas = as.vector(va
s_list_columns[[t]])) #add vas score 
    stacked_vas_f <- cbind.data.frame(stacked_vas,vas_f = as.vector(va
s_list_columns_f[[t]])) #add vas score factorized 
    stacked_type <- cbind.data.frame(stacked_vas_f, audio_type = as.ve
ctor(audio_type_vector)) 
    anova_list_split_outliers[[i]][[t]] <- stacked_type 
    anova_list_outliers[[i]] <- rbind.data.frame(anova_list_outliers
[[i]],stacked_type) 
     
     
    anova_list_outliers[[i]]$ind <- factor(anova_list_outliers[[i]]$in
d) 
    anova_list_outliers[[i]]$subject <- factor(anova_list_outliers
[[i]]$subject) 
    anova_list_outliers[[i]]$vas_f <- factor(anova_list_outliers[[i]]
$vas_f) 
    anova_list_outliers[[i]]$audio_type <- factor(anova_list_outliers
[[i]]$audio_type) 
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    anova_list_outliers[[i]] <- anova_list_outliers[[i]][complete.case
s(anova_list_outliers[[i]]),] 
  } 
} 
 
#NO OUTLIERS: Between subjects: obtain pv matrix and csv's for anova a
nd welch's anova, kolmogorov and breusch pagan tests 
anova_pv_matrix_between_outliers <- matrix(nrow =4,ncol=2) 
colnames(anova_pv_matrix_between_outliers) <- c('ind','subject') 
ks_pv_matrix_between_outliers <- matrix(nrow =4) 
bp_pv_matrix_between_outliers <- matrix(nrow=4,ncol=2) 
colnames(bp_pv_matrix_between_outliers) <- c('ind','subject') 
welch_pv_matrix_between_outliers <- matrix(nrow=4,ncol=2) 
colnames(welch_pv_matrix_between_outliers) <- c('ind','subject') 
for (i in c(1:length(anova_list_outliers))){ 
  anova_pv_matrix_between_outliers[i,1] <- summary(aov(anova_list_outl
iers[[i]]$values~anova_list_outliers[[i]]$vas_f))[[1]][["Pr(>F)"]][1] 
  anova_pv_matrix_between_outliers[i,2] <- summary(aov(anova_list_outl
iers[[i]]$values~anova_list_outliers[[i]]$subject))[[1]][["Pr(>F)"]]
[1] 
  welch_pv_matrix_between_outliers[i,1] <- welch.test(values~vas_f,ano
va_list_outliers[[i]])$p.value 
  welch_pv_matrix_between_outliers[i,2] <- welch.test(values~subject,a
nova_list_outliers[[i]])$p.value 
  ks_pv_matrix_between_outliers[i,1] <- ks.test(anova_list_outliers
[[i]]$values,rnorm(length(anova_list_outliers[[i]]$values),mean(anova_
list_outliers[[i]][complete.cases(anova_list_outliers[[i]]),]$value
s)))$p.value   
  bp_pv_matrix_between_outliers[i,2] <- bptest(anova_list_outliers
[[i]]$values~anova_list_outliers[[i]]$subject)$p.value 
} 
write.csv(anova_pv_matrix_between_outliers, file = 'anova_between_subj
ects_outliers.csv') 
write.csv(welch_pv_matrix_between_outliers, file = 'welch_between_subj
ects_outliers.csv') 
write.csv(ks_pv_matrix_between_outliers, file = 'ks_between_subjects_o
utliers.csv') 
write.csv(bp_pv_matrix_between_outliers, file = 'bp_between_subjects_o
utliers.csv') 
 
#NO OUTLIERS: anova & bp between subjects for subject and genre with v
as score 
vas_pv_matrix_between_outliers <- matrix(nrow=2,ncol=2) 
colnames(vas_pv_matrix_between_outliers) <- c('vas_f','subject') 
rownames(vas_pv_matrix_between_outliers) <- c('anova','bptest') 
vas_pv_matrix_between_outliers[1,1] <- summary(aov(anova_list_outliers
[[1]]$values~anova_list_outliers[[1]]$vas_f))[[1]][["Pr(>F)"]][1] 
vas_pv_matrix_between_outliers[1,2] <- summary(aov(anova_list_outliers
[[1]]$values~anova_list_outliers[[1]]$subject))[[1]][["Pr(>F)"]][1] 
vas_pv_matrix_between_outliers[2,1] <- bptest(anova_list_outliers[[1]]
$values~anova_list_outliers[[1]]$vas vas_f)$p.value 
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vas_pv_matrix_between_outliers[2,2] <- bptest(anova_list_outliers[[1]]
$values~anova_list_outliers[[1]]$vas_f)$p.value 
write.csv(vas_pv_matrix_between_outliers, file = 'anova&bp_vas_f_betwe
en_subjects_outliers.csv') 
 
#NO OUTLIERS: Within subjects: obtain pv matrix and csv's for anova an
d welch's anova, kolmogorov and breusch pagan tests 
anova_pv_matrix_within_outliers <- matrix(ncol = length(data_sampled
[[1]]),nrow =4) 
ks_pv_matrix_within_outliers <- matrix(ncol = length(data_sampled
[[1]]),nrow=4) 
bp_pv_matrix_within_outliers <- matrix(ncol=length(data_sampled[[1]]),
nrow=4) 
welch_pv_matrix_within_outliers <- matrix(ncol=length(data_sampled
[[1]]),nrow=4) 
for (i in c(1:length(anova_list_split_outliers))){ 
  for (t in c(1:length(anova_list_split_outliers[[1]]))){ 
    anova_pv_matrix_within_outliers[i,t] <- summary(aov(anova_list_spl
it_outliers[[i]][[t]]$values~anova_list_split_outliers[[i]][[t]]$vas_
f))[[1]][["Pr(>F)"]][1] 
    welch_pv_matrix_within_outliers[i,t] <- welch.test(values~vas_f,an
ova_list_split_outliers[[i]][[t]])$p.value 
    ks_pv_matrix_within_outliers[i,t] <- ks.test(anova_list_split_outl
iers[[i]][[t]]$values,rnorm(length(anova_list_split_outliers[[i]][[t]]
$values),mean(anova_list_split_outliers[[i]][[t]]$values)))$p.value 
    bp_pv_matrix_within_outliers[i,t] <- bptest(anova_list_split_outli
ers[[i]][[t]]$values~anova_list_split_outliers[[i]][[t]]$vas_f)$p.valu
e 
  } 
   
} 
write.csv(anova_pv_matrix_within_outliers, file = 'anova_within_subjec
ts_outliers.csv') 
write.csv(welch_pv_matrix_within_outliers, file = 'welch_within_subjec
ts_outliers.csv') 
write.csv(ks_pv_matrix_within_outliers, file = 'ks_within_subjects_out
liers.csv') 
write.csv(bp_pv_matrix_within_outliers, file = 'bp_within_subjects_out
liers.csv') 

library(userfriendlyscience) #games-howell 
for (i in c(1:2)){ #between subjects for VAS factorized 
  table <- posthocTGH(anova_list[[i]]$values,anova_list[[i]]$vas_f, me
thod="games-howell",conf.level = 0.95, digits=9) 
  write.csv(table$output$games.howell,file = paste(toString(i),sep = '
_','games-howell.csv')) 
} 
 
for (i in c(1:2)){ #between subjects for VAS factorized 
  table <- posthocTGH(anova_list[[i]]$values,anova_list[[i]]$audio_typ
e, method="games-howell",conf.level = 0.95, digits=9) 
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  write.csv(table$output$games.howell,file = paste(toString(i),sep = '
_','games-howell_audio_type.csv')) 
} 
 
for (i in c(1:length(anova_list_split[[1]]))){#within subjects for VAS
 factorized left channel 
  table <- posthocTGH(anova_list_split[[1]][[i]]$values,anova_list_spl
it[[1]][[i]]$vas_f, method="games-howell",conf.level = 0.95, digits=9) 
  write.csv(table$output$games.howell,file = paste(toString(i),sep = '
_','games-howell_left.csv')) 
} 
   
for (i in c(1:length(anova_list_split[[2]]))){#within subjects for VAS
 factorized right channel 
  table <- posthocTGH(anova_list_split[[2]][[i]]$values,anova_list_spl
it[[2]][[i]]$vas_f, method="games-howell",conf.level = 0.95, digits=9) 
  write.csv(table$output$games.howell,file = paste(toString(i),sep = '
_','games-howell_right.csv')) 
} 
 
for (i in c(1:length(anova_list_split[[1]]))){#within subjects for aud
io type left channel 
  table <- posthocTGH(anova_list_split[[1]][[i]]$values,anova_list_spl
it[[1]][[i]]$audio_type, method="games-howell",conf.level = 0.95, digi
ts=9) 
  write.csv(table$output$games.howell,file = paste(toString(i),sep = '
_','games-howell_left_audio_type.csv')) 
} 
 
for (i in c(1:length(anova_list_split[[2]]))){#within subjects for aud
io type right channel 
  table <- posthocTGH(anova_list_split[[2]][[i]]$values,anova_list_spl
it[[2]][[i]]$audio_type, method="games-howell",conf.level = 0.95, digi
ts=9) 
  write.csv(table$output$games.howell,file = paste(toString(i),sep = '
_','games-howell_right_audio_type.csv')) 
} 
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8.2. Boxplots	from	all	the	subjects	categorized	by	VAS	evaluation	
factorized	
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8.3. Example	of	VAS	evaluation	
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8.4. HOT-1000	device	info		
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