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aUniversitat Politècnica de Catalunya (UPC), Departament d’Enginyeria Civil i Ambiental
bInternational Center for Numerical Methods in Engineering (CIMNE)
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Abstract

This work describes a novel formulation for the simulation of Navier-Stokes

problems including embedded objects. The new proposal is based on the use

of a modified finite element space, which replaces the standard one within the

elements intersected by the immersed geometry. The modified space is able

to exactly reproduce the jumps happening at the embedded boundary while

preserving the conformity across the faces intersected by the embedded object.

The paper focuses particularly on the imposition of a slip boundary condition

on the surface of the embedded geometry, proposing a new technique for the

application of such constraint. The new proposal is carefully benchmarked using

the results of a body fitted technique and of an alternative embedded approach.

Potential applications of interest are also presented.
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1. Introduction

The Computational Fluid Dynamics (CFD) simulation of the fluid flow

around objects is typically achieved by the construction of a volume discretiza-

tion that matches the geometry of the body of interest as closely as possible.

This gives rise to the so called body-fitted discretization. While seeming ap-5

pealing, such approaches have obvious limitations, that become apparent for the

simulation of moving bodies. The need of overcoming such limitations has lead

to the development of a variety of alternative methods, such as the Immersed

Boundary Method (IBM) [1][2] or the Embedded Boundary Method (EBM).

Such techniques make it possible to automatically include arbitrary, possibly10

moving, bodies into the fluid domain, and to account for their interaction with

the fluid flow. The crucial difference with respect to the body-fitted alterna-

tives is that the analysed body and the fluid are discretized separately. While

performing the simulation, the body is overlapped onto the fluid domain at the

position of interest. An automatic intersection is performed, typically by em-15

ploying a level set technique [3], to implicitly represent the object of interest in

the fluid domain.

While the use of an unfitted approach inevitably introduces complexities

into the formulation, the resulting methods can overcome some of the diffi-

culties associated with the conforming counterparts. For example, while it is20

possible to employ Arbitrary Lagrangian-Eulerian (ALE) techniques [4][5], large

displacements and rotations of the body typically yield to extremely distorted

(or even inverted) elements, practically limiting the use of ALE solutions to

relatively small boundary movements. Such limitation does not exist for fixed

mesh methods, which can handle arbitrarily large displacements and rotations,25

or even changes in the topology (simply impossible for ALE techniques), by up-

dating the level set representation in accordance to the movement of the body.

Furthermore, since the geometric distance computation is a robust operation,

the level set based approaches open new possibilities to directly include the exact

CAD geometry (involving trimmed NURBS) into the simulation pipeline or to30
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simulate “dirty” geometries. This is because the distance computation from a

NURBS surface is an operation as robust as computing the distance from a lower

order discretization. Furthermore, the use of a level set approach intrinsically

filters out the geometric details that cannot be represented by the volume mesh,

improving the robustness and speed of the model preparation phase. Taking into35

account that the model preparation of realistic engineering problems is known

to amount to more than the 50% of the total analysis time [6], this is clearly

an important advantage, particularly considering that the details can always

be recovered upon refinement. Moreover, the mesh generation step is typically

more robust since the mesh is not required to comply with the details of the40

body geometry. Lastly, the model preparation can also benefit from the use

of fast octree mesh generators [7] to provide initial meshes which can be then

improved by the use of mesh adaptation techniques [8][9].

A rather large literature study the use of fixed mesh approaches to solve

complex incompressible Navier-Stokes (N-S) problems. For instance, the IBM45

is successfully applied to model a helicon ribbon mixer problem in [10]. This

method is also employed in [11] for solving complex real engineering geometries

without need to modify the input files before the mesh generation.

In the literature, the distinction between “Immersed” and “Embedded” tech-

niques tends to be blurry and different authors may provide a different definition.50

For the sake of clarity, we will use the term “Immersed” when the Solid-Fluid

coupling is performed by imposing a constraint over the entire overlapping zone

between the domains and the term “Embedded” when the coupling is enforced

at the frontier between solid and fluid.

According to such definition, even though the IBM out stands for its robust-55

ness and implementation simplicity, it may lack precision in some applications,

since the boundary condition is not directly enforced over the interface cut. In-

stead of that, the immersed object velocity is directly imposed on those fluid

nodes lying on the interior of the object, making it impossible to recover the

original interface.60

On the contrary, EBM relies on applying the boundary conditions over the
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interface cut. This is commonly done in a weak sense by using techniques such

as the penalty method or the Nitsche method [12]. In [13], the authors apply a

modified Nitsche method to impose the no-slip boundary condition to the N-S

equations. In [14], a stabilized Nitsche method is used for the imposition of65

the no-slip boundary condition to the Stokes equations. A similar technique is

applied in [15] for the Oseen equations. Regarding the slip boundary condition,

Lagrange multipliers technique as well as the Nitsche method are used to apply

the slip boundary condition to the Stokes equations in [16]. This is extended to

apply a general Navier-slip boundary condition to the N-S equations in [17]. In70

[18], the authors present an innovative approach where a spline-based surface

is directly immersed in the fluid domain to impose a Nitsche no-slip boundary

condition.

A common feature of the above highlighted formulations is the need for a

well-defined internal volume. This turns into a limitation when shell or mem-75

brane bodies, such as lightweight structures, biological tissues or boat sails,

need to be analysed. Multiple works address this limitation by adding a volume

force that modifies the flow pattern in accordance to the embedded volumeless

geometry [1][19][20]. Even though this is probably the most straightforward ap-

proach, it is difficult to represent the flow discontinuities as well as to precisely80

compute the required volume force value. An alternative based on adding the

immersed bodies dynamics to the flow dynamics to model embedded moving

fibres is presented in [21]. More complex approaches also exist, as the one pre-

sented in [22], which uses a fractional step ghost cell method for representing

complex moving geometries. While the method presented in [22] works for any85

type of geometry (with/without internal volume), it requires the neighbour el-

ements for the imposition of the boundary conditions. As it is widely known,

the implementation of this kind of operations becomes even more cumbersome

in a distributed memory environment (MPI).

The aim of the current work is to present a generalized unfitted technique90

which is able to overcome all the previously commented limitations. The pro-

posal takes the idea from the use of the discontinuous space investigated in [23].
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Our proposal makes possible to represent discontinuities in the fluid flow, so

it is suitable not only for the simulation of bodies with a well defined volume

but also for volumeless ones. Besides, the formulation is purely elemental and95

therefore easily extensible to the use of a distributed memory environment.

A classical difficulty of embedded approaches is the lack of resolution in the

vicinity of the body, which impedes the correct simulation of viscous effects close

to the body surface. Current work proposes a technique for the imposition of

the slip boundary condition on embedded boundaries. While, from a theoretical100

point of view the use of a slip BC is only well defined for inviscid fluids, the

slip approximation is good for high Reynolds (Re) flows [24]. In that work,

the results of the viscous-slip approach are compared with experimental data,

confirming that this combination is a valid alternative when a high boundary

layer resolution is not required. Apart from the high-Re scenarios, the slip105

approximation is also relevant for some highly viscous flows applications. For

example it could be an alternative to consider the effect of lubrication on the

domain boundaries (lubrication is indeed applied with the exact purpose of

avoiding a stick condition between the viscous fluid and the walls).

All the formulations discussed in this work have been implemented within110

the Kratos Multiphysics open source framework [25] [26].

2. Methodology

Firstly, the governing equations are presented and the finite element formu-

lation is derived using an automatic differentiation technique. After that, the

approaches to impose the slip boundary condition are described. Special em-115

phasis is put on the one proposed by the authors, which uses an alternative set

of shape functions (henceforth named “Ausas” shape functions after the name

of the original author).

2.1. The Navier-Stokes equations

In this work we focus on the incompressible Navier-Stokes equations for

Newtonian fluids. The Cauchy stress tensor σσσ is defined as σσσ = −pI +C :∇∇∇su,

5
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where u is the velocity, p the pressure, ∇∇∇s the symmetric gradient operator and

C the the constitutive tensor describing the viscous behaviour. By substituting

σσσ into the balance of linear momentum and mass conservation equations yields

the well-known viscous incompressible Navier-Stokes equations

ρ
∂u

∂t
+ ρu · ∇∇∇u−∇∇∇ · (C :∇∇∇su) +∇∇∇p = ρb (1a)

Dρ

Dt
+ ρ∇∇∇ · u = 0 (1b)

where ρ the density and b the body force. The operator ∂(•)/∂t is the partial120

time derivative and ∇∇∇ is the gradient operator.

For purely incompressible fluids, it is customary to assume Dρ
Dt = 0. This

implies that the pressure is defined up to a constant, which is typically fixed

once a Neumann boundary condition is imposed. Unfortunately, this feature be-

comes problematic when dealing with poorly defined input geometries or moving125

boundaries since isolated closed domains of fluid (with no Neumann Boundary)

may appear.

This issue is readily fixed if a slight compressibility is included in the formu-

lation. In particular if we assume the simplified equation of state p = ρc2 =⇒

c2 = ∂p/∂ρ, which is valid for almost incompressible fluids, we can rewrite the

density time derivative in terms of the pressure as

Dρ

Dt
+ ρ∇∇∇ · u = 0 −→ ∂ρ

∂p

Dp

Dt
+ ρ∇∇∇ · u = 0 −→ 1

c2
Dp

Dt
+ ρ∇∇∇ · u = 0 (2)

If we further assume that ∇∇∇ρ ≈ 0, physically expressing that density fluctu-

ations are negligible, the term u · ∇∇∇ρ can be neglected to give

1

ρc2
∂p

∂t
+∇∇∇ · u = 0 (3)

The final form of the governing equations is thus

ρ
∂u

∂t
+ ρu · ∇∇∇u−∇∇∇ · (C :∇∇∇su) +∇∇∇p = ρb (4a)

1

ρc2
∂p

∂t
+∇∇∇ · u = 0 (4b)

Note that the single-fluid fully-incompressible form ∇ · u = 0 is recovered if

the sound speed c → ∞. Specifically, the compressibility is not needed for the
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examples presented in the current work. Hence through the paper the speed of130

sound is taken as 1012m/s, so that the compressibility is effectively negligible in

all of the discussed cases. However, the option to employ a higher value is left

to the user.

2.2. Discrete form and stabilization

In the current work, only simplicial elements are considered. It is widely

known that these elements do not satisfy the inf-sup condition and the use

of a stabilization method is therefore required. There exist several alterna-

tives that are proved to be effective for similar problems. Among those tech-

niques, we can mention the Finite Increment Calculus (FIC) [27], the Streamline

upwind/Petrov-Galerkin (SUPG) [28] and the Variational Multiscales Method

(VMS) [29] [30]. We adopt the VMS method, which relies on the separation of

the solution fields (u, p) in two scales as

u = uh + us (5a)

p = ph + ps (5b)

The first (Eq. 5) is the FE resolvable scale (uh, ph). The second one, referred

to as the subscale (us, ps), represents the fluctuations that cannot be captured

by the FE solution. After inserting Eq. 5 into the N-S equations (Eq. 4), the

governing equations of the problem read

ρ
∂ (uh + us)

∂t
+ ρ (uh + us) · ∇∇∇ (us + us)

−∇∇∇ · (C :∇∇∇s (uh + us)) +∇∇∇ (ph + ps) = ρb
(6a)

1

ρc2
∂ (ph + ps)

∂t
+∇∇∇ · (uh + us) = 0 (6b)

Different models for the subscale are presented in the literature. In general

terms, we can say that the subscales are normally expressed as a projection of

the FE residuals onto the space of the small scales. Depending on the nature

of this projection, the Algebraic Sub-Grid Scales (ASGS)[31] or the Orthogonal

Sub-Grid Scales (OSS)[32] are obtained. In this work, the ASGS technique is
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selected. This method recovers the velocity (us) and pressure (ps) subscales by

using an algebraic approach based on the FE velocity (uh) and pressure (ph)

solutions as

us = τ1R
M(uh, ph) (7a)

ps = τ2R
C(uh, ph) (7b)

where RM and RC are the residuals of the momentum and mass conservation

equations. Note that the subscale dependency on the FE solution is introduced

by such residuals of the governing equations, which are defined as

RM(uh, ph) = ρb− ρ∂uh

∂t
− ρuh · ∇∇∇uh +∇∇∇ · (C :∇∇∇suh)−∇∇∇ph (8a)

RC(uh, ph) = − 1

ρc2
∂ph
∂t
−∇∇∇ · uh (8b)

Eq. 6 shows that the subscales are time dependent, leading to a so called135

dynamic subscales formulation. If this time dependency is neglected by assum-

ing that ∂us/∂t ≈ 0 and ∂ps/∂t ≈ 0, a quasi-static subscales formulation is

obtained. Even though the dynamic approach has somewhat superior charac-

teristics [33], these come at the cost of additional complexity in the formulation

as well as of increased memory consumption and computational effort, which140

lead us to prefer the use of the quasi-static approach.

Both us and ps are assumed to be such that their boundary integrals are 0.

The stabilization constants τ1 (Eq. 9a) and τ2 (Eq. 9b) are taken from [31].

These are defined as

τ1 =

(
ρτdyn

∆t
+
c2ρ‖uh‖

h
+
c1µ

h2

)−1

(9a)

τ2 =
h2

c1τ1
(9b)

where τdyn is a parameter bounded between 0 and 1. c1 = 4.0 and c2 = 2.0

are the stabilization constants, ‖u‖ is the convective velocity norm, µ is the

dynamic viscosity and h is the element size. In this work h is always computed

as the average of the heights associated to each node of the element.145
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2.3. Automatic differentiation

Once the governing Partial Differential Equations (PDE) are defined, we

proceed to discretize the problem, which we cast in residual form.

By using the standard notation (•, •)Ω to denote the inner product volume

integral, the discrete FE functional can be defined as

Ψ (w, q,u, p) :=
(
w,RM(u, p)

)
Ω

+
(
q,RC(u, p)

)
Ω

(10)

where w and q are the velocity and pressure test functions.

Substituting the momentum and mass conservation residuals, together with

the solution decomposition in Eq. 5, into the Galerkin functional (Eq. 10) yields

the Navier-Stokes functional to be solved

(w, ρb)Ω−
(

w, ρ
∂uh

∂t

)
Ω

− (w, ρuh · ∇∇∇(uh + us))Ω

+ (w,∇∇∇ · (C :∇∇∇s(uh + us)))Ω − (w,∇∇∇(ph + ps))Ω

−
(
q,

1

ρc2
∂ph
∂t

)
Ω

− (q,∇∇∇ · (uh + us))Ω = 0

(11)

where the quasi-static subscales model is already taken into consideration. After

integrating by parts, the previous Navier-Stokes functional reads

(w, ρb)Ω −
(

w, ρ
∂uh

∂t

)
Ω

− (w, ρuh · ∇∇∇uh)Ω − (∇∇∇sw,C :∇∇∇suh)Ω

+ (∇∇∇ ·w, ph)Ω −
(
q,

1

ρc2
∂ph
∂t

)
Ω

− (q,∇∇∇ · uh)Ω + 〈w, t〉Γ

+ (ρuh∇∇∇w,us)Ω + (ρ(∇∇∇ · uh)w,us)Ω + (∇∇∇ ·w, ps)Ω + (∇∇∇q,us)Ω = 0

(12)

where the dot product boundary integral is denoted as 〈•, •〉Γ, with t being the150

Cauchy traction vector, computed as t = (C :∇∇∇suh − phI)·n, and n the bound-

ary outwards unit vector. Note that the null boundary value of the subscales

assumption is considered here.

The discrete functional (Eq. 12) is then symbolically implemented in Python

using the Computer Algebra System (CAS) library Sympy [34]. To automati-

cally obtain the elemental Left Hand Side (LHS) and Right Hand Side (RHS),

the symbolic functional needs to be expressed in terms of the nodal test func-

tions (wI and qI) and of the nodal unknowns (uI and pI). Then, by assuming
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a symbolic description of the shape functions and of their derivatives, the ele-

mental RHS is obtained by symbolic differentiation as

RHSI =
∂Ψ (w, q,u, p)

∂ (wI , qI)
(13)

while the elemental LHS is similarly obtained as

LHSIJ = − ∂RHSI

∂
(
uh,J , ph,J

) (14)

2.4. Embedded formulations and immersed bodies representation

The main distinguishing feature of embedded (or immersed) approaches with155

respect to body fitted alternatives is that the domain is meshed without taking

into account the geometry of the analysed bodies. Instead, the object repre-

sentation is achieved by the use of a level set function [3] defined as the signed

distance to the object skin, which guarantees that the body shape can be re-

covered as the zero iso-surface of the level set field.160

Considering the nature of the analysed bodies, the distance functions can be

roughly divided in two types. The first type is used to describe those objects

that have a well-defined internal volume (e.g. aerofoils). These bodies can be

represented using a continuous signed distance function. As depicted in Fig. 1,

such function takes a positive value in the fluid domain nodes (light green) or a165

negative one in the structure domain nodes (red). The zero isosurface (dashed

line) is therefore the immersed object skin representation.

Figure 1: Continuous distance function. Body with a well-defined internal volume (left) and

continuous distance representation (right).
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The second type is used for representing bodies without internal volume

(e.g. boat sails). This kind of geometries cannot be represented by a continuous

distance function since no intersections could be found. This limitation can be170

overcome using a discontinuous distance field, which is computed (and stored)

element by element, meaning that the same node can have different distance

values depending on the element considered. Such feature is what makes the

distance function discontinuous and allows tracking such volume-less geometries.

Figure 2 shows a qualitative example of this elemental distance function. Uncut175

elements, which have a positive constant distance value, are colored in light

green. On the other hand, green and red are used to color the positive and

negative distance regions of cut elements.

Moreover, it is worth mentioning the treatment of complex intersection pat-

terns and their implications in the calculation of such discontinuous distance180

function. Fig. 2 qualitatively describes an example of these cases. By in-

specting one of the elements intersected by two bodies at the same time, it is

observable that the multiple intersection pattern is approximated as plane which

is not coincident with the neighbours’ intersections, generating a discontinuity

in the distance field. This kind of complexities together with the discussion and185

implementation of the techniques to deal with them are extensively described

in [35].

Figure 2: Discontinuous distance function. Body without internal volume (left) and discontin-

uous distance representation (right). Red and green portions of the cut elements indicate the

positive and negative discontinuous distance regions. Light green denotes the non-intersected

elements.
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Finally, it is interesting to comment that all the geometries that could be

represented by a continuous distance field could also be represented by a dis-

continuous one as well. From a mathematical point of view, this is explained190

by the fact that the space of continuous distance functions is contained in the

discontinuous one. Indeed, any continuous distance algorithm firstly computes

the elemental body-skin intersections, which altogether conform the discontinu-

ous distance field, for then obtaining the continuous one by avoiding the jumps

between neighbour elements.195

2.5. Body fitted slip boundary condition

Even though this work mainly focuses on embedded fluid formulations, body

fitted discretizations are used as reference solution during the implementation

and validation of the presented formulation. This subsection describes the tech-

nique used for the imposition of the slip boundary condition when dealing with200

body fitted discretizations.

In this case, the body fitted slip condition is imposed in a “MultiFreedom

Constraint” (MFC) fashion [36]. This approach is based on the rotation of the

assembled stiffness matrix of the problem. This means that for each slip node,

a local coordinate system is defined such that one component (two in 3D) is205

tangent to the slip boundary while the other one is orthogonal to it. Thus,

the Cartesian velocity components ux and uy (as well as uz in 3D) turn into

a normal velocity component un together with a tangential one ut,1 (besides

another one ut,2 in 3D).

In what follows, the methodology is described for a sample problem of the210

form Ku = f . Note that the same procedure holds for the N-S assembled

system of equations if the rotation operations are applied to the velocity DOFs

disregarding the pressure ones, which is to apply the rotation to the velocity

DOFs submatrices.

Therefore, starting from the assembled system of equations Ku = f , the

unknowns vector u can be split into two sets. As shown below, one set contains

the slip boundary nodes DOFs uΓ, while the other contains the rest of the nodal
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unknowns uint Kint,int Kint,Γ

KΓ,int KΓ,Γ

uint

uΓ

 =

fint

fΓ

 (15)

Then, the rotation operator P is defined. Such operator keeps the orientation

of the interior set of nodes uint but reorients the slip boundary boundary ones

uΓ. Thus, by defining the nodal rotation operation u = Pû the rotated slip

DOFs set û can be obtained. The rotation operator P as well as the rotation

operation can be expressed asuint

uΓ

 =

I 0

0 R

ûint

ûΓ

 (16)

being R the nodal rotation matrix and I the identity tensor.215

The nodal rotation matrix R in the rotation operator P is computed node-

by-node as

Rn =


v1,x v2,x nx

v1,y v2,y ny

v1,z v2,z nz

 (17)

where n is the outwards unit normal vector and v1 and v2 are a pair of in-plane

vectors orthogonal to n. Note that this requires the computation of the unit

normal vector not in the faces conforming to the slip boundary but on its nodes.

Then, the previous rotation operation is applied to the original system of

equations as

PTKPû = PT f (18)

to solve for the rotated set of DOFs û.

Once the global system of equations has been rotated, the slip boundary220

condition is nothing but a strong imposition of a stick condition in the orthog-

onal direction to the slip boundary. In other words, the slip boundary normal

velocity un is set to 0 (or to the mesh velocity if an ALE framework is used) by

a direct substitution of the DOFs value in the rotated unknowns vector. In the

same way, the rotated global stiffness matrix PTKP rows corresponding to un225
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DOFs are all set to zero but the main diagonal component, which is set to 1 in

order to enforce the imposed un value. The last step is the post-processing of

the obtained solution û to express it in terms of the original coordinate system.

This is a node-by-node operation that can be easily done by computing the

matrix vector product u = Pû.230

Finally, it is important to point out that it is not explicitly required, nor ad-

visable for the sake of computational efficiency, to assemble the entire rotation

operator. Hence, the proper implementation consists in looping the slip bound-

ary nodes to locally perform the rotation operations by taking the assembled

global system submatrices instead.235

2.6. Embedded Nitsche slip boundary condition

The first formulation to impose the slip boundary condition in an embedded

framework discussed in this work has been recently published by Winter et.

al. in [17]. This technique has been selected to serve as reference embedded

slip solution because of its accuracy and stability properties. It consists in a

stabilized Nitsche imposition of the general Navier condition described as

(u− g) Pn = 0 (19a)

(ε ([C : (∇∇∇su)] · n− h) + µ (u− g)) Pt = 0 (19b)

where g and h are the velocity and the tangential traction to be imposed over

the boundary. As it is clearly seen, the general Navier condition is composed by

a normal contribution (Eq. 19a) together with a tangential one (Eq. 19b). The

normal and tangential projection matrices are denoted as Pn and Pt and can240

be computed as Pn = n⊗ n and Pt = I− n⊗ n, being I the identity tensor.

Note that this boundary condition behaves as a wall-law in accordance to

the slip length parameter ε. Therefore, it becomes a no-slip boundary condition

when ε = 0 and a full-slip boundary condition when ε→∞ and h = 0.

As it is mentioned above, the imposition of the boundary condition in Eq. 19

is done by using a stabilized Nitsche method in both the normal and tangential
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directions. The Nitsche imposition normal component reads as

〈 µ
γh

(uh − g) Pn,w〉Γ−〈(uh − g) Pn, (qI + ζC :∇∇∇sw) n〉Γ+

〈φu
γh

(uh − g) Pn,w〉Γ
(20)

while the tangential one is

〈 1

ε+ γh
(ε (C :∇∇∇suhn− h) + µ (uh − g)) Pt,w〉Γ−

ζ〈 γh

ε+ γh
(ε ([C : (∇∇∇suh)] · n− h) + µ (uh − g)) Pt, (∇∇∇sw) · n〉Γ

(21)

being γ a penalty constant and ζ ∈ {−1, 1}. If ζ = −1 the Nitsche formu-

lation is adjoint inconsistent. According to the original authors, the adjoint

inconsistent formulation enjoys improved inf-sup stability for any value of the

penalty constant γ [17]. Even though optimal convergence is not guaranteed for

the velocity L2-error in this case, the adjoint inconsistent formulation has been

used in this work owing to its better stability properties. φu is a stabilization

constant defined as

φu = µ+ ρ‖u‖h+
ρ

∆t
h2 (22)

More information regarding the implementation, stability analysis and vali-245

dation can be found in [17].

2.7. Embedded discontinuous slip boundary condition

This subsection proposes an alternative approach to impose the slip bound-

ary condition on embedded boundaries. The new technique is based on the use

of the discontinuous Ausas FE space [37] in the intersected elements. The impo-250

sition of the slip BC is achieved by integrating the mass conservation equation

by parts so that the condition is weakly applied on the embedded boundary.

This is completed with the use of a penalty approach for the imposition of the

same constraint in the momentum equation.

The Ausas FE space has been successfully used for representing the discon-255

tinuities arising from the resolution of two-phase flow problems in [37] and [38].

A similar idea is used in the present case, but aiming to capture the jump in
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both velocity and pressure fields coming from the immersion of an object in the

fluid domain.

Furthermore, it is important to remark that the capability of representing260

discontinuities makes it possible to consider those cases in which the embedded

body has no internal volume (e.g. boat sails). This ability overcomes the limi-

tation of the slip formulation presented in the previous subsection [17] or other

no-slip formulations in the literature [13], which require at least one internal

node to perform the imposition.265

On the other hand, it is also worth mentioning that the Ausas shape func-

tions are conforming with the standard FE space ones used in the neighbouring

elements. This property is extremely advantageous from the implementation

point of view, since no modification is required in the blending elements (the

ones that are attached to any split element), allowing them to use the standard270

FE space with no modification.

To describe the main geometrical features of the Ausas FE space, the same

sample splitting pattern used by the original authors in [37] is taken and pre-

sented again in Fig. 3. By inspecting the shape functions representation derived

from the previous splitting pattern (Fig. 4) the next two main attributes can275

be noted:

• The shape function values along an intersected edge are constant. For

instance, in the example depicted in Fig. 3, the shape function at the

intersection points Q and P takes the same value than in A on the green

side. On the other hand, on the red side the value at the intersection point280

Q takes the same value than in C. The same can be said for P and B.

• The shape function gradients are approximatively null in the intersection

normal direction. This property makes them suitable for the application

of the slip BC, since the absence of tangential stresses corresponds to a

zero gradient in the normal direction.285

Concerning the null tangential stress requirement, it is approximatively sat-

isfied inside the elements because of the inability of the Ausas FE space to
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Figure 3: Partition of a triangular finite element ABC into subelements following the interface

PQ (source [37]).

(a) NA (b) NB (c) NC

Figure 4: Triangle shape functions for the Ausas finite element space and the splitting pattern

in 3 (source [37]).

capture the gradient in the intersection normal direction. Moreover, the zero

shear stress Neumann boundary condition is imposed over the interface cuts as

〈w, phn− th〉Γ = 〈w, 2phn− (C :∇∇∇suh) · n〉Γ = 0 (23)

If the Neumann boundary condition in Eq. 23 is added to the original

boundary term coming from the integration by parts of the momentum equation,

both contributions can be condensed in a unique boundary term

〈w, 2phn− C :∇∇∇suh · n〉Γ + 〈(C :∇∇∇suh) · n− phn〉Γ = 〈w, phn〉Γ (24)

which substitutes the boundary term in the functional depicted in Eq. 12.

Two additional strategies are adopted for the imposition of the non-penetrability

constraint. The first one is to integrate by parts one of the mass conservation

equation terms as

− (q,∇∇∇ · uh)Ω = (∇∇∇q,uh)Ω − 〈q,uh · n〉Γ (25)
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As a consequence, a boundary term which includes the normal projection of the

velocity appears. Hence, a weak imposition of the non-penetrability condition

can be done by dropping this term only in the embedded interface boundary

integrals. It is important to recall that this new boundary term must be con-290

sidered in all the other domain boundaries.

The second strategy to impose the non-penetrability requirement is to add

a penalty constraint to the normal projection of the velocity in the momentum

conservation equation. This new term reads as

〈κw,uhn⊗ n〉Γ = 0 (26)

where κ stands for the consistent penalty coefficient computed as

κ =
CPen

(
ρhd

∆t + µhd−2 + ρ‖u‖hd−1
)

Aint
(27)

where CPen is a constant, which is set to 10.0 in all the cases discussed in

this work, d is the working dimension (2 in 2D and 3 in 3D) and Aint is the

intersection area.

To sum up, the proposed formulation implements the two requirements of a295

slip boundary condition, which are null normal projection of the velocity and

null tangential stress, in a weak sense by:

• integrating the mass conservation equation by parts and dropping the

boundary term on the elemental cuts.

• using a penalty constraint to the normal component of the velocity.300

• using the discontinuous FE space presented in [37] in the intersected ele-

ments together with a null tangential stress Neumann boundary condition

imposition in the elemental cuts.

3. Validation examples

This section is intended to describe the benchmarking task, which has been305

conducted to test and compare all the implemented functionalities with low and
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high Re in both 2D and 3D. Hence, the geometry, boundary conditions and

simulation settings that are required to reproduce the presented experimental

cases are detailed together with the discussion of the obtained results. A relation

of the presented benchmark cases and a brief motivation is listed below310

• 2D flow inside a ring: to obtain the convergence rates of the presented for-

mulation and assess its behaviour with faceted approximations of curved

geometries.

• 2D squeezing flow: to obtain the convergence rates of the presented for-

mulation in the high Re and inviscid scenarios.315

• 2D elbow with internal wall: to test the presented formulation when mod-

elling embedded flow discontinuities at low Re number.

• 2D flow around cylinder: to compare the three slip formulations when

modelling bodies with internal volume at high Re number.

• 2D flow around vertical plate: to prove the capabilities of the presented320

discontinuous embedded formulation when modelling volumeless immersed

bodies.

• 2D divergent channel with moving cylinder: to preliminary assess the

capabilities of the discussed embedded formulations when facing moving

boundaries problems.325

• 3D elbow with internal wall: to test the presented discontinuous embedded

formulation in a 3D case.

• 3D flow around two boat sails: to show a potential industrial application

of the presented discontinuous embedded formulation.

3.1. 2D flow inside a ring330

This first example has two main objectives. The first one is to obtain the

velocity and pressure convergence rates of the presented formulation. The sec-
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ond one is to assess the behaviour of the method when dealing with polygonal

approximations of curved boundaries.

As pointed out in [16], the imposition of slip boundary conditions on curved335

boundaries might become an issue when such faceted approximations are used.

In [16], the method of manufactured solutions is applied to check the convergence

of a Stokes formulation together with a Nitsche-based slip boundary condition

imposition. According to the authors, it can be observed that velocity approx-

imations almost vanish at the boundary vertices of the curve approximation340

when convergence does not hold. They associate this behaviour to the fact that

the slip boundary condition tends to impose the velocity field to be parallel

to each face of the polygonal approximation, which is to say to vanish at the

common vertex between faces.

The geometry of the problem, which is equivalent to the one discussed in [16],

consists of two concentric cylinders generating an interior fluid cavity. Thus, the

fluid domain Ω can be described as (x, y) ∈ R2 : 0.25 ≤ x2 + y2 ≤ 1 (a ring

with inner radius equal to 0.5 m and outer radius equal to 1.0 m). Initially,

the fluid is at rest, but a movement is induced by imposing a constant angular

velocity in the outer cylinder. The analytical solution which corresponds to the

application of a slip BC over the inner boundary is

vr = 0 (28a)

vΘ = r (28b)

p =
ρ

2

(
r2 − 1

)
(28c)

The dynamic viscosity µ and density ρ are 1.0Kg/m3 and 1e-3Kg/ms. Re-345

garding the boundary conditions, the velocity and pressure fields are fixed to

the analytical solution along the outer contour. The BDF2 time scheme is used

for the time discretization. 10 time steps of 200s (∆t) are computed, resulting in

a total simulation time of 2000s, which guarantees that a steady-state solution

is reached.350

A centred structured mesh is used in all the cases. The domain is meshed

without taking the inner cylinder into account, which is represented by a radial
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discontinuous distance function. The elemental sizes for each refinement level as

well as the radial and perimeter subdivisions are collected in the Table 1. Fig.

5a depicts the mesh after the first refinement (Mesh 1 in Table 1) while Fig. 5b355

details the intersection pattern which results from the distance function. As it

can be observed, the pink region in Fig. 5b represents the fluid domain whereas

the light blue one is the interior part of the inner cylinder.

Table 1: 2D flow inside a ring mesh refinement settings.

Mesh 0 Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Mesh 6

Element size [m] 0.1428 0.06667 0.03448 0.01754 0.00884 0.00444 0.00223

Radial divisions 7 15 29 57 113 225 449

Perimeter divisions 21 43 85 169 337 673 1345

(a) Mesh 1 capture. (b) Distance intersection pattern.

Figure 5: 2D flow inside a ring.

Table 2 collects the L2 (Ω)-norm of both the velocity and pressure errors.

Figures 6 and 7 display a convergence rate of the order of h3/2 for both the360

velocity and the pressure unknowns. These results are in line with the ones

obtained by Ausas et al. in [37] and are perfectly expected due to the worse
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interpolation properties of the modified discontinuous FE space used in the

intersected elements.

Table 2: 2D flow inside a ring velocity and pressure error norms.

Mesh 0 Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Mesh 6

‖u− uh‖L2(Ω) 0.351411 0.245968 0.15305 0.075216 0.030324 0.011653 0.004751

‖p− ph‖L2(Ω) 0.149445 0.080384 0.050110 0.025281 0.010379 0.004016 0.001641

Figure 6: 2D flow inside a ring. Velocity convergence rates. Solid lines represent the obtained

results. Dashed lines represent h and h3/2 convergence rates.

Finally, the velocity and the pressure fields are shown in Fig. 8 for the365

coarsest, intermediate and finest meshes. The coarsest mesh solution is far

from the expected one, while the intermediate and finest meshes give a good

approximation. As observed by Urquiza et. al. in [16], the coarsest mesh is

very inaccurate, however upon mesh refinement the method converges to the

analytical solution.370
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Figure 7: 2D flow inside a ring. Pressure convergence rates. Solid lines represent the obtained

results. Dashed lines represent h and h3/2 convergence rates.

3.2. 2D squeezing flow

The aim of this test is to evaluate the convergence rates of the presented

formulation for the transient high Re and inviscid scenarios. To that purpose,

the squeezing flow between two moving plates with time dependent velocity is

solved. However, only the top half of the domain is considered. The symmetry375

condition is used to verify the proposed embedded slip formulation.

After such simplification, the problem geometry consists of a rectangular

shaped domain of 1x0.25m (width x height). A space and time dependent

velocity equal to

vy =

−2tx x < 0.5

−2(1− x)t x ≥ 0.5

(29)

is imposed to the top plate. Since a symmetric solution is expected, the hor-

izontal velocity component vx is also fixed to 0 on the top edge midpoint. A

free outlet condition is assumed in both the left and right edges. Zero dynamic

viscosity and unit density are considered in the inviscid limit case. For the high380

Re scenario, the dynamic viscosity is set to 5e-9Kg/ms to have a Re number

equal to 105Re.
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The reference solutions (ū,p̄) for the convergence study are computed using

an extremely fine body-fitted mesh. On the other hand, Table 3 collects the

mesh settings (horizontal and vertical edges subdivisions) for the embedded385

cases. Note that the embedded meshes height is 0.3 m and a distance field

d(x, y) = y is used to get an equivalent computational domain.

Table 3: 2D squeezing flow mesh refinement settings.

Mesh 0 Mesh 1 Mesh 2 Mesh 3 Mesh 4

Element size [m] 0.008333 0.004166 0.002083 0.001042 0.000521

Vertical divisions 31 61 121 241 481

Horizontal divisions 120 240 480 960 1920

The BDF2 scheme is used for the time discretization. A total of 3 time

steps of 1e-5s (∆t) are run in both test cases. A previous convergence study

using the body fitted solution proved that the selected time step value is small390

enough to ensure that the error in space dominates the time dependent one for

the reference mesh.

Tables 4 and 5 collect the L2 (Ω)-norm of both the velocity and pressure

errors for the 105Re and inviscid scenarios. As it can be observed from figs. 9

and 10, the velocity and pressure convergence rate is around h2 for the 105Re395

case. On the other hand, figs. 11 and 12 show that in the inviscid limit the

convergence rates for both velocity and pressure fields deteriorate to h. This

behaviour might be explained by the fact that the penalty constant κ (Eq. 27)

converges to a finite value in the inviscid limit. This can be seen as, in the

assumption that Aint ≈ hd−1, h → 0 and µ → 0, the penalty coefficient κ400

converges to CPenρ‖u‖. We observe however that to the best of our knowledge

classical convergence estimates are not valid for the inviscid scenario.

Finally, the obtained velocity and pressure fields are shown in Figs. 13 and
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Table 4: 2D squeezing flow velocity and pressure error norms (105Re).

Mesh 0 Mesh 1 Mesh 2 Mesh 3

‖ū− uh‖L2(Ω) 8.22085e-7 5.78898-7 1.22989e-7 3.33973e-8

‖p̄− ph‖L2(Ω) 3.39966e-2 2.38613e-2 4.60455e-3 8.71143e-4

Table 5: 2D squeezing flow velocity and pressure error norms (inviscid).

Mesh 0 Mesh 1 Mesh 2 Mesh 3 Mesh 4

‖ū− uh‖L2(Ω) 8.83323e-7 7.52714e-7 2.6534e-7 1.41099e-7 7.18316e-8

‖p̄− ph‖L2(Ω) 3.65597e-2 3.10994e-2 1.06083e-2 5.45133e-3 2.76408e-3

14 for the reference body fitted and embedded solutions. As it is clearly seen,

no differences can be detected between the two solutions, showing that the405

formulation also works for the transient high Re and inviscid limit cases.

3.3. 2D elbow with internal wall

The purpose of this test is to assess the correctness and performance of

the presented discontinuous formulation, as well as its capability of modelling

embedded flow discontinuities. For that aim, the presented theoretical example,410

which has analytical solution, has been solved with several mesh refinement

levels. The obtained solution is compared with the body fitted and literature

ones.

This example was firstly proposed in [39], and consists of a 90◦ curved 2D

pipe conforming to an elbow shape. A zero-thickness wall is placed inside the415

curved pipe, generating two separated fluid ducts with varying cross section

area. The geometry of the problem is depicted in Fig. 15.

The fluid properties are selected such that the Re number has unit value.
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Taking the radius of each one of the ducts as reference length, such unit Re

number can be achieved by setting density ρ to 1Kg/m3, dynamic viscosity µ to420

1Kg/ms and a constant inlet velocity ux of 1m/s. Furthermore, the pipe walls

are assumed to be no-slip and the pressure is fixed to zero on the outlet.

Concerning the time discretization, the BDF2 time scheme is used with a

time step (∆t) of 10-2s. The total simulation time is 1s, which is enough to

reach a stationary solution.425

The meshes employed were as similar as possible to the ones used for the

reference solution. Thus, four structured triangular grids were used. The num-

ber of elements employed on each grid, together with the reference ones in [39],

are presented in Table 6.

Table 6: 2D elbow with internal wall number of elements for different refinement levels.

Mesh Reference Present work

Coarse 2400 2300

Medium 9600 8900

Fine 38400 36200

Very fine 153600 147000

In the following, the performance of the proposed discontinuous embedded430

formulation is assessed. First of all, the new formulation results are presented.

After that, the obtained solution is compared with the expected and body-fitted

ones and a different discontinuous formulation proposed in [39]. Besides that,

the results of the mesh refinement study are also discussed.

Fig. 16 shows the presented discontinuous formulation velocity and pressure435

fields for the medium mesh. As expected, the contraction generated by the wall

in the right duct induces a pressure gradient, which turns to a flow acceleration
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that preserves the inlet flow rate. The opposite behaviour can be observed in

the left duct, since the cross section remains constant.

The medium mesh results obtained with the presented discontinuous embed-440

ded formulation are compared with the body fitted solution and with the refer-

ence ones in Fig. 17a. Such comparison is done by means of the y-component

velocity distribution at the outlet. At a first glance, an extremely good corre-

lation can be seen. However, minor differences can be observed in the values

close to the wall. Taking into account that the meshes are quite similar but not445

perfectly equal between the three cases, sufficiently good agreement is found

to asseverate that the proposed discontinuous embedded formulation correctly

solves the posed problem.

A mesh refinement study is done by using the proposed embedded formula-

tion. The y-component of the outlet velocity is used again as the comparison450

magnitude. As it can be observed in Fig. 17b, the results in the region close to

the internal wall improve as long as the mesh is refined.

Table 7 shows the maximum y-component velocity values in the outlet of

both sides of the membrane. As it pointed out in [39], considering that the flow

is parabolic in both sides of the internal wall, it can be proven that the ana-455

lytical maximum velocity must be 1.5m/s and 3m/s in the left and right ducts.

Taking these two values as a reference, the absolute errors are also computed

and presented in Table 7. The values converge to the expected solution as the

mesh is refined.

3.4. 2D flow around cylinder460

The fourth benchmark is the inviscid incompressible flow around a cylinder.

The purpose of this test is to compare the two described embedded slip formu-

lations with the body fitted one. This problem has analytical solution, so the

three presented solutions are also compared with the theory.

The problem geometry consists of a cylinder with radius 0.1m, which has its465

centre point in (0.0,0.0)m, placed inside a 10.0x4.0m channel. The bottom left

corner of the channel is located in (-2.0,-2.0)m. Note that, the channel size is
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Table 7: 2D elbow with internal wall. Maximum vertical velocity in the outlet using different

meshes [m/s].

|vy|leftmax abs. err. |vy|rightmax abs. err.

Expected 1.5 - 3.0 -

Coarse 1.4261 0.0739 2.7301 0.2699

Medium 1.4561 0.0439 2.8874 0.1126

Fine 1.4630 0.0370 2.9413 0.0587

Very fine 1.4759 0.0241 2.9367 0.0633

set such that the blockage coefficient is equal to the 5%. This ensures that the

problem boundaries do not affect the solution around the immersed cylinder. A

constant inlet is imposed at the left edge, symmetry boundary conditions are470

used in both the top and bottom edges and the pressure is fixed to zero at the

right end edge.

Owing to the inviscid assumption, the Re number is infinite. The dynamic

viscosity µ is set to 0.0Kg/ms, the density ρ to 1Kg/m3 and the inlet velocity

to 1m/s. Concerning the time discretization, the BDF2 scheme is used with a475

time step ∆t of 10-2s and a total simulation time of 1s.

A distance modification criterion is used to avoid badly defined intersections

that might compromise the convergence of the embedded cases. Thus, when the

distance value is less than 0.01% the elemental size (i.e. the zero of the level set

function is close to a node) the distance field is corrected by slightly modifying480

it as it is explained in the next paragraph. This makes it possible to avoid the

use of small-cut stabilization techniques [14].

For the continuous distance case (Nitsche formulation), this is only needed

in those elements where the fluid portion is almost null. Thus, the threshold
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tolerance is set with negative sign to deactivate the almost empty elements. On485

the contrary, this is not a problem when using the presented discontinuous for-

mulation, since both sides of the level set are assembled and solved. Therefore,

an absolute threshold criterion is enough to ensure that the distance value is

not too close to 0.

Fig. 18 describes the problem geometry as well as the auxiliary meshing490

subregions, which mesh sizes are collected in Table 8.

Table 8: 2D flow around cylinder mesh settings.

Region A B C D

Mesh size [m] 0.05 0.025 0.01 0.001

The pressure coefficient (Cp) is selected as reference comparison magnitude.

From a known pressure in the far field p∞, the pressure coefficient can be com-

puted in each node as

Cp,i =
pi − p∞
1
2ρ‖vi‖2

(30)

The Cp analytical solution for the presented case can be found in [40] and is

computed as

Cp(θ) = 1− 4 sin2(θ) (31)

Figure 19 describes the evolution of the pressure coefficient according to the

angle θ, being θ = 0 in the cylinder downstream point. At first glance, the

evolution of the body fitted Cp has almost perfect agreement with the analyt-

ical solution. With regard to both embedded formulations, no differences can495

be observed in the evolution of Cp if they are compared with the body fitted

solution.

However, if it is zoomed in on the downstream region (θ ≈ 0) minor dis-

parities with respect to the analytical solution are observed (Fig. 20a). In

this region, the Cp values are slightly below the expected ones, confirming that500
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both embedded formulations are a bit more diffusive than the body fitted one.

Such numerical diffusivity results in an artificial flow separation located in the

leeward region of the cylinder.

On the other hand, it is worth to comment something on the results obtained

for either the top (θ ≈ π/2) or bottom (θ ≈ 3π/2) parts of the cylinder. By505

a close-up inspection, it can be noted that minor oscillations appear in both

embedded solutions (Fig. 20b). Such oscillations are much less significant in

the Nitsche solution and are most likely to be associated to poorly-conditioned

intersection patterns. Furthermore, the the Ausas FE space solution presents a

staggered pattern, reflecting the interpolation properties of the method.510

The expected and obtained peak Cp values are presented in Table 9 for each

one of the presented solutions. The relative errors of such values with respect to

the analytical solution are collected in Table 10. As it has been pointed before,

significant differences between the different formulations can only be found in

θ = 0 region. In his location, the Cp relative error of the Nitsche formulation is515

11.3% while the discontinuous Ausas formulation one is 12.29%.

Table 9: Inviscid incompressible 2D flow around a cylinder. Cp peak values.

Formulation
Cp

θ = 0 θ = π
2 θ = π θ = 3π

2

Theory 1.0 −3.0 1.0 −3.0

Body fitted 0.9823 −3.0179 1.0017 −3.0146

Embedded (Nitsche) 0.8870 −3.0180 1.0011 −3.0191

Embedded (Ausas) 0.8771 −3.0185 1.0000 −3.0053

Finally, the velocity field contour lines surrounding the cylinder are shown

in Fig. 21. If both embedded solutions are compared with the body fitted one,
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Table 10: Inviscid incompressible 2D flow around a cylinder Cp. Peak values relative errors.

Formulation
Cp rel. err. [%]

θ = 0 θ = π
2 θ = π θ = 3π

2

Body fitted 1.77 0.60 0.17 0.49

Embedded (Nitsche) 11.30 0.60 0.11 0.64

Embedded (Ausas) 12.29 0.62 0.0 0.18

the previously commented small flow separation in the downstream region of

the cylinder becomes evident. Such artificial flow separation is slightly more520

significant in the discontinuous formulation case, which is something that can

be expected due to the worse interpolation properties of the Ausas FE space.

3.5. 2D flow around vertical plate

The objective of this test is to assess the capability of the proposed discontin-

uous formulation to model bodies without internal volume at high Re numbers.525

As commented before, the viscous-slip approach makes sense when the wall vis-

cous effects are negligible. This is an assumable simplification in convection

dominated flows which is to say, in high Re number flows. To this end, the

flow around a vertical plate problem is solved using the presented discontinuous

embedded formulation. The performance of the obtained solution is analysed530

by comparing with the body-fitted solution.

In this case, the channel geometry and boundary conditions are the same

as in the previous example. Concerning the immersed object, a vertical plate,

which has a height and center as 0.2m and (0.0,0.0)m respectively, is placed

instead of the cylinder. Fig. 22a depicts the problem geometry together with535

the auxiliary mesh regions.

It is worth mentioning that the plate has an almost zero thickness of 10-4m
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in the body fitted case. If a zero-thickness plate is considered, the nodal normals

in both plate tips are zero. This results in a zero-column in the rotation matrix

(Eq. 17) that causes the body-fitted slip formulation to fail. Furthermore, the540

body fitted plate tips are modified to be sharp ended so that the effect onto the

fluid flow properly represents a thin plate (Fig. 22b).

On the other hand, no special treatment for the plate tips were done in the

embedded case. Even though this induces a non-physical jump, it has been

proven in [23] that these discontinuities are negligible, meaning that no special545

procedure is required in the elements containing the plate endpoints.

Taking the plate height as reference length, the fluid properties and flow

conditions are set such that the Re number is 106Re. Therefore, the density

ρ is 1Kg/m3, the dynamic viscosity µ is 2e-7Kg/ms and a constant inlet value

ux of 1m/s is imposed in the left edge of the domain. Concerning the time550

discretization, the BDF2 scheme is used again with a time step ∆t equal to

10-2s and a total simulation time of 20s. The bad intersections correction that

has been explained in the previous subsection is applied as well.

With regard to the space discretization, Table 11 shows the mesh size in

each one of the meshing subdivisions depicted in fig 22a.555

Table 11: 2D flow around vertical plate mesh settings.

Region A B C D

Mesh size (m) 0.05 0.025 0.01 0.0025

The pressure coefficient (Eq. 30) is the main comparison magnitude. How-

ever, since this problem has a periodic solution, a time averaged Cp is used

instead. Thus, the time averaged Cp values considering the results from simu-

lation time 10s to 20s are used for the results assessment.

Fig. 23 presents the evolution of the time averaged Cp values along the560

plate. First of all, it has to be said that the disparity of the results in both plate
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ends is associated to the plate thickness discrepancies. Note that the plate has

the ideal zero thickness in the embedded case but it is modelled considering an

infinitesimal thickness in the body fitted one. Preliminary tests showed that

such disparities are even larger if a rectangular body-fitted plate (without the565

modified sharp tips) is analysed.

Disregarding the plate edges disparities, the embedded formulation results

have quite good agreement with the reference body fitted ones in the upstream

side of the plate. The Cp value in the stagnation point (y = 0 m) is 0.996

for the body fitted case and 0.978 for the discontinuous embedded formulation.570

Considering that the pressure coefficient in the stagnation point is expected to

be equal to 1.0, a relative error of 0.4% and 2.2% is obtained.

Concerning the results in the downstream side, a similar trend but with dif-

ferences in the obtained values is observed. Having a look onto the downstream

Cp peak values, the body fitted one is -4.201 meanwhile the discontinuous em-575

bedded one is -4.060, representing a relative difference of 3.36%.

Besides that, it is interesting to comment on the staggered distribution of

the discontinuous embedded solution. Once again, this behaviour is explained

by the worse interpolation properties of the Ausas FE space, which always yields

a continuous interpolation in one of the element subdivisions.580

As in the previous example, Fig. 24 shows the body fitted and embedded

velocity contour lines for a period of oscillation. Comparing both velocity dis-

tributions, it can be said that both solutions are in good agreement in the plate

surroundings. However, the aforementioned poorer interpolation properties of

the Ausas FE space are noted in the downstream side of the plate, where a sharp585

staggered velocity distribution is observed. These results are in accordance with

the results that have been discussed in the Cp distribution.

3.6. 2D divergent channel with moving cylinder

This example is intentionally set to show two of the main potential applica-

tions of the presented formulations. On one hand, it is intended to prove the590

capabilities of embedded formulations in dealing with large moving boundaries
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without remeshing. On the other hand, it is also good to assess how the pseudo-

compressibility term, added to the mass conservation equation, can alleviate the

convergence problems in those cases where the pressure tends to blow up.

Thus, the problem geometry (Fig. 25) consists of a 2D divergent channel595

together with a moving cylinder of radius 0.1m immersed in the divergent region.

This problem tries to reproduce, in an extremely simplified manner, a valve

which regulates the flow by opening according to the pressure value.

Complementary, Eq. 32 describes the horizontal displacement of the cylinder

centre point for a given period of oscillation T . In this case, the period is set

to 5s. Assuming that the cylinder origin is placed in (xcyl,0)m coordinates, the

x-component of the cylinder centre point can be computed as

xcyl = 0.15 + 0.5(1− abs(sin(
2.0πt

T
))) (32)

yielding a maximum displacement of 0.5m.

For the sake of simplicity, the cylinder movement is considered to be quasi-600

static. This means that the cylinder skin velocity is assumed to be null and is

not included in the fluid problem.

The fluid density ρ is unitary and the dynamic viscosity µ is 10-3kg/ms.

Besides, the pseudo-compressibility constant c (speed of sound velocity) is re-

duced to 106m/s. Such choice is enough to guarantee that the problem remains605

well defined even though isolated fluid cavities appear. A constant unit inlet is

imposed at the left edge, slip boundary conditions are set at the the channel

top and bottom walls and the pressure is fixed to zero at the right edge.

The BDF2 time scheme is used again with a time step of 0.1s. The mesh

employs approximately 60k elements featuring an average size of 5e-3m.610

Finally, the same correction to bad intersections explained in the previous

examples is used. However the distance threshold is increased to 1% the element

size due to the larger possibility of having poor intersections owing to the large

boundary movement.

In the next lines, the solutions obtained with both embedded formulations615

discussed in this work are compared.
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First of all, it is important to mention that both embedded slip formulations

discussed in this paper are capable of solving the posed problem. Taking into

account the fact that solving this test case using a body fitted formulation

might require remeshing due to the extremely large displacement, the utility of620

embedded techniques in the resolution of this kind of problems is proven.

If the solution between the proposed discontinuous embedded formulation is

compared to the Nitshche one, no differences can be observed. Fig. 26 and Fig.

27 collect such comparison for the velocity and pressure fields for a quarter of a

period of oscillation. As it can be observed in these sequence of snapshots, the625

pressure in the inlet channel becomes larger as long as the cylinder approximates

to it. Similar behaviour can be noted in the velocity field, which peak values

appear in the cylinder surroundings in order to keep the flow rate.

3.7. 3D elbow with internal wall

This example is a 3D extension to the previously presented one and is aimed630

to prove that the presented formulation also works in 3D. For that purpose,

the problem is solved using the presented discontinuous formulation as well as

the Nitsche one. Note that the Nitsche formulation is not capable of handling

immersed objects without internal volume such as the membrane separating

the two ducts. As a consequence, two different Nitsche cases are solved: one635

for each one of the ducts. This can be easily done by switching the distance

function sign. As reference solution for the comparison, the same case is solved

using the body fitted formulation.

With regard to the geometry, the one described in Fig. 15 is extruded to

have a unit thickness value. To preserve the 2D flow pattern, a symmetry640

boundary condition is imposed at both sides of the 3D domain. Moreover, the

other boundary conditions remain as in the original 2D case. Concerning the

rest of the problem settings, the original 2D ones are used again.

For the sake of computational effort, the 3D equivalent mesh to the medium

refinement level described in Table 6 is used. Thus, all meshes are conformed645

by equal order pressure-velocity linear tetrahedra.
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The main comparison magnitude is the outlet velocity (z-component in the

3D case). Even though there are no 3D reference results, the analytical values

in [39] have been taken as reference solution since the flow is expected to behave

as in the 2D case because of the symmetry conditions.650

Table 12 shows the midplane vertical velocity component values for the three

described formulations. The results show good agreement with the expected

results for all the studied cases. Similar relative errors can be observed, in-

dependently of the formulation used, indicating that the new formulation is

performing on par with well established approaches.655

Table 12: 3D elbow with internal wall. Midplane maximum vertical velocity in the outlet

[m/s] formulations comparison.

|vy|leftmax rel. err. |vy|rightmax rel. err.

Expected 1.5 - 3.0 -

Body fitted 1.446 3.60 2.9081 3.06

Embedded (Nitsche - left) 1.4368 4.21 - -

Embedded (Nitsche - right) - - 2.8936 3.55

Embedded (Ausas) 1.4851 0.99 2.9007 3.31

The obtained velocity and pressure fields are compared in Fig. 28 and Fig.

29. Recall that in the Nitsche formulation case, each one of the ducts needs to

be computed separately. As it can be observed, the obtained flow distribution

is in good agreement with the 2D one (Fig. 16a) and no differences can be

observed between the different solutions. Regarding the pressure field, the body660

fitted (Fig. 29a) and Nitsche (Fig. 29c and 29d) formulations have a remarkable

similarity. In general terms, this affirmation can be extended to the discontin-

uous embedded formulation (Fig. 29b) since only minor perturbations, which
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are associated to the intersected elements modified FE space, can be observed

in the elbow curvature region.665

3.8. 3D flow around two boat sails

The last example shows the application of the new method to a complex

double sided geometry. The model chosen here describes a two boat sails setting

(Fig. 30). No reference solution of any type is available for the problem at

hand so that the example simply represents a proof-of-concept application of670

the proposed technique in a volumeless scenario. Here the sail geometry is

imported directly from a .stl file, and the solution is performed without any

preprocessing step thus proving our point on the robustness of the proposed

approach.

The two sails, which height is approximately 4m, are placed inside a 7x9x16m675

channel. A constant inlet velocity ux of 3.6m/s (7 knots) is set. The pressure

is fixed at the outlet and a slip boundary condition is set in the other channel

boundaries. The BDF2 time discretization scheme is used with a time step ∆t

of 0.1s and a total simulation time of 20s. Concerning the space discretization,

a mesh conformed by approximately 4.8M linear tetrahedral elements is used.680

Unlike in the previous examples, where the distance could be computed ana-

lytically, a robust distance calculation algorithm is required [35]. Fig. 31 depicts

the reconstructed geometry, which matches the input shape quite well except

at the sails boundary, where a saw-toothed shape is obtained as a consequence

of the employed distance algorithm, which cannot represent “partial” intersec-685

tions, in other words, the elements that are not completely intersected by the

sails skin.

Despite the lack of reference results makes a comparison of the obtained

solution with alternative formulations impossible, the results appear to be con-

vincing. The formulation is capable of representing the discontinuities between690

the windward and leeward sides within one element. A positive overpressure

appears in the windward region of the sails (Fig. 32b) while suction appears in

the leeward one (Fig. 32a) without any sign of numerical overshoots or under-
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shoots. As it is expected, the obtained velocity field (Fig. 33) is tangent to the

sails surface as corresponds to the imposition of the slip BC (Fig. 34).695

4. Conclusion

The aim of this work is to study the imposition of the slip boundary condi-

tion in the viscous incompressible Navier-Stokes equations in combination with

boundary non-conforming mesh discretizations. This objective is achieved on

the one hand, by discussing the imposition of the slip boundary condition in700

body fitted formulations by means of an MPC fashion technique. On the other

hand, two different formulations for the embedded boundary case were studied,

one based on a Nitsche imposition and another one based on the use of the

modified Ausas FE space.

The former one, which relies on the imposition of a Navier-Slip boundary705

condition using a stabilized Nitsche method, is intended to be used in those

cases in which the immersed object has a well defined internal volume, meaning

that its skin can be described with a continuous distance function. The latter,

which is proposed by the authors, modifies the FE space in the intersected

elements to use the aforementioned Ausas discontinuous shape functions set.710

The convergence of the presented method is confirmed as well as its capability

of representing bodies without internal volume. This interesting feature, which

makes possible to solve CFD analyses of slender structures, is successfully proved

in the simulation of the 2D/3D elbow with internal wall, the 2D flow around a

vertical plate and the flow around two boat sails cases.715

Apart from that, it is also important to stress the fact that cases with high

Re number have been solved (Re=∞ and Re=106), obtaining a good agreement

with the expected results. These results are crucial for the extension of the

proposed technique to real application cases, where the viscous-slip approach can

be used instead of the boundary layer mesh plus no-slip condition combination.720

Regarding the accuracy of the obtained results, the body fitted solution is in

general terms always better than the embedded ones. If the two studied embed-
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ded approaches are compared, both methods have a similar level of accuracy,

being the Nitsche method slightly more precise in some particular cases. This

is perfectly expectable according to the worse interpolation properties of the725

modified Ausas FE space.

Besides that, the capability of the discussed embedded formulations of solv-

ing large boundary movements problems is proven with the resolution of the

2D divergent channel with moving cylinder example. Furthermore, it has to

be stressed that the addition of the pseudo-compressibility term in the mass730

conservation equation prevents the pressure to blow up in those cases where the

pressure is only defined up to a constant. This feature is exploited here to solve

a problem where the flow is close to be interrupted. In addition, this capability

would make possible to solve isolated fluid cavities, likely associated to to bad

intersections coming from complex distance fields.735

To sum up, it can be said that the correctness of all the implementations is

proven. Regarding the discussed embedded slip formulations, for those bodies

with well-defined internal volume, the optimal choice is concluded to be the sta-

bilized Nitsche formulation, already published in [17], due to its slightly better

accuracy and performance. However, the discontinuous embedded formulation740

presented by the authors arises as a feasible alternative for the analysis of bodies

without internal volume, which could not be represented otherwise.

Finally, it is interesting to pinpoint the further capabilities that are still

pending to be explored, such as the extension to more complex large moving

boundary problems, which would require a robust initialization algorithm to be745

applied when topology changes occur, or the Fluid-Structure Interaction analy-

sis of membrane and shell structures. Furthermore, it could also be interesting

to investigate alternatives (e.g. Nitsche) to enhance the interface boundary

condition imposition in the presented discontinuous embedded formulation.
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[8] P. Frey, F. Alauzet, Anisotropic mesh adaptation for cfd computations,

Computer Methods in Applied Mechanics and Engineering 194 (48) (2005)

5068 – 5082. doi:10.1016/j.cma.2004.11.025.785

[9] P. Benard, G. Balarac, V. Moureau, C. Dobrzynski, G. Lartigue,

Y. D’Angelo, Mesh adaptation for large-eddy simulations in complex ge-

ometries, International Journal for Numerical Methods in Fluids 81 (12)

(2015) 719–740. doi:10.1002/fld.4204.

[10] F. Bertrand, P. Tanguy, F. Thibault, A three-dimensional fictitious domain790

method for incompressible fluid flow problems, Int. J. Num. Meth. Flu-

ids 25 (6) (1997) 719–736. doi:10.1002/(SICI)1097-0363(19970930)25:

6<719::AID-FLD585>3.0.CO;2-K.
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(a) Mesh 0 velocity. (b) Mesh 0 pressure.

(c) Mesh 3 velocity. (d) Mesh 3 pressure.

(e) Mesh 6 velocity. (f) Mesh 6 pressure.

Figure 8: 2D flow inside a ring. Coarsest, intermediate and finest meshes solutions.
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Figure 9: 2D squeezing flow. Velocity convergence rates (105Re). Solid lines represent the

obtained results. Dashed lines represent h and h2 convergence rates.

Figure 10: 2D squeezing flow. Pressure convergence rates (105Re). Solid lines represent the

obtained results. Dashed lines represent h and h2 convergence rates.
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Figure 11: 2D squeezing flow. Velocity convergence rates (inviscid). Solid lines represent the

obtained results. Dashed lines represent h and h3/2 convergence rates.

Figure 12: 2D squeezing flow. Pressure convergence rates (inviscid). Solid lines represent the

obtained results. Dashed lines represent h and h3/2 convergence rates.
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(a) Body fitted velocity.

(b) Body fitted pressure.

(c) Embedded mesh 3 velocity.

(d) Embedded mesh 3 pressure.

Figure 13: 2D squeezing flow. Reference body fitted and embedded solutions (105Re).
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(a) Body fitted velocity.

(b) Body fitted pressure.

(c) Embedded mesh 4 velocity.

(d) Embedded mesh 4 pressure.

Figure 14: 2D squeezing flow. Reference body fitted and embedded solutions (inviscid).
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Figure 15: 2D elbow with internal wall (source [39]).

(a) Velocity modulus (m/s). (b) Pressure (Pa).

Figure 16: 2D elbow with internal wall. Discontinuous embedded solution (medium mesh).
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(a) Medium mesh comparison. (b) Ausas solutions comparison.

Figure 17: 2D elbow with internal wall. Outlet vy .

Figure 18: 2D flow around cylinder problem geometry and mesh regions.
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Figure 19: Inviscid incompressible 2D flow around a cylinder. Cp(θ) complete evolution.

(a) θ ∈ [0, π/4] detail. (b) θ ∈ [3π/8, 5π/8] detail.

Figure 20: Inviscid incompressible 2D flow around a cylinder. Cp(θ) evolution details.
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(a) Body fitted (b) Embedded (Nitsche)

(c) Embedded (Ausas)

Figure 21: Inviscid incompressible 2D flow around a cylinder. Velocity field contour lines.

(a) Geometry and mesh regions.

0.0050

0.0001

(b) Sharp end.

Figure 22: 2D flow around a vertical plate. Problem set-up.
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Figure 23: 2D flow around a vertical plate. Cp time averaged values.
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(a) t0 = 16.0 s.

(b) t = t0 + 0.5 s.

(c) t = t0 + 1.0 s.

(d) t = t0 + 1.5 s.

(e) t0 = 16.3 s.

(f) t = t0 + 0.5 s.

(g) t = t0 + 1.0 s.

(h) t = t0 + 1.5 s.

Figure 24: 2D flow around a vertical plate. Body fitted (left) and discontinuous embedded

(right) formulations velocity field contour lines (results are shown for a period of oscillation

in each case). 56



Figure 25: 2D divergent channel with moving cylinder problem geometry. The maximum and

minimum displacement positions of the embedded cylinder are shown as well.

(a) t = 5.0 s.

(b) t = 5.4 s.

(c) t = 5.8 s.

(d) t = 6.2 s.

(e) t = 5.0 s.

(f) t = 5.4 s.

(g) t = 5.8 s.

(h) t = 6.2 s.

Figure 26: 2D divergent channel with moving cylinder. Embedded discontinuous (left) and

continuous (right) formulations velocity field (m/s) for a quarter of a period of oscillation.

Note that the contour legends are scaled between plots for a better visualization.
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(a) t = 5.0 s.

(b) t = 5.4 s.

(c) t = 5.8 s.

(d) t = 6.2 s.

(e) t = 5.0 s.

(f) t = 5.4 s.

(g) t = 5.8 s.

(h) t = 6.2 s.

Figure 27: 2D divergent channel with moving cylinder. Embedded discontinuous (left) and

continuous (right) formulations pressure field (Pa) for a quarter of a period of oscillation.

Note that the contour legends are scaled between plots for a better visualization.
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(a) Body fitted (b) Embedded (Ausas)

(c) Embedded (Nitsche - left) (d) Embedded (Nitsche - right)

Figure 28: 3D elbow with internal wall. Velocity modulus (m/s) comparison.
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(a) Body fitted (b) Embedded (Ausas)

(c) Embedded (Nitsche - left) (d) Embedded (Nitsche - right)

Figure 29: 3D elbow with internal wall. Midplane pressure (Pa) comparison.
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Figure 30: 3D flow around two boat sails. .stl input geometry.

Figure 31: 3D flow around two boat sails. Element intersections from discontinuous distance

field.
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(a) Leeward view (b) Windward view

Figure 32: 3D flow around two sails. Pressure field (Pa).

(a) Leeward view (b) Windward view

Figure 33: 3D flow around two sails. Velocity field (m/s).

Figure 34: 3D flow around two boat sails. Velocity vector field on horizontal cut.
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