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Abstract

Binding prediction between targets and drug-like compounds through Deep Neural

Networks have generated promising results in recent years, outperforming traditional

machine learning-based methods. However, the generalization capability of these clas-

sification models is still an issue to be addressed. In this work, we explored how

di↵erent cross-validation strategies applied to data from di↵erent molecular databases

a↵ect to the performance of binding prediction proteochemometrics models. These

strategies are: (1) random splitting, (2) splitting based on K-means clustering (both
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of actives and inactives), (3) splitting based on source database and (4) splitting based

both in the clustering and in the source database. These schemas are applied to a

Deep Learning proteochemometrics model and to a simple logistic regression model to

be used as baseline. Additionally, two di↵erent ways of describing molecules in the

model are tested: (1) by their SMILES and (2) by three fingerprints. The classification

performance of our Deep Learning-based proteochemometrics model is comparable to

the state of the art. Our results show that the lack of generalization of these models

is due to a bias in public molecular databases and that a restrictive cross-validation

schema based on compounds clustering leads to worse but more robust and credible

results. Our results also show better performance when representing molecules by their

fingerprints.

Introduction

Proteochemometrics or quantitative multi-structure-property-relationship modeling (QM-

SPR) is an extension from the traditional quantitative structure-activity relationship (QSAR)

modeling.1 In QSAR, the target protein is fixed and its interaction with ligands (small

molecules or compounds) is predicted only from ligands descriptors. On the contrary, the

aim of proteochemometrics is to predict the binding a�nity value by modeling the interac-

tion of both proteins and ligands.1 For this, a data matrix is built, each of its rows containing

descriptors of both target and ligand linked to some experimentally measured biological ac-

tivity. A statistical or machine learning method is then used to induce the model. The

main advantages over QSAR are twofold: first, that the induced model can be applied for

predictions of interaction with new proteins as well as ligands and second, that it can con-

sider the underlying biological information carried by the protein as well as other possible

cross-interactions of the ligand.

Deep learning (DL) is a branch of machine learning that stems from artificial neural

networks, which are computational models inspired in the structure of the brain and the
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interconnection between the neurons. DL is able to learn representations of raw data with

multiple levels of abstraction.2 These concepts started to be developed in the 1940s3 but it

was not until 2012 that there was a break through of the Deep Neural Networks (DNN).4

Since then, DL has been successfully applied in natural language processing,5 image recog-

nition,6 drug discovery7 or computational biology.8 The increase of computational power

by parallel computing with graphics processing units (GPU) and the improvement of opti-

mizers9,10 and regularization techniques11,12 contributed to this resurgence, along with the

development of software platforms that allow to make prototyping faster and automatically

manage GPU computing, like Theano13 or Tensorflow.14

DL provides a framework for the identification of both of biological targets and biologi-

cally active compounds with desired pharmacological e↵ects.7 In 2012, DNN won a QSAR

machine learning challenge on drug discovery and activity prediction launched by Merck,15

outperforming Merck’s Random Forests baseline model by 14% accuracy.16 Since then, the

application of DL to pharmaceutical problems gained popularity,17–27 although it has been

mainly applied to multitask QSAR modeling. Regarding DL-based proteochemometrics, lit-

tle has been done except for the work of Lenselink et al,28 where they compared di↵erent

machine learning methods for proteochemometrics, being DNN the top performer.

Independently of the machine learning technique used, a curated design of the cross-

validation strategy is critical for the proper evaluation of the binding prediction model.

The predictive power of a consistent model must remain stable when applied to data that

comes from a di↵erent source than the training set. Moreover, possible redundancy in the

data must be controlled. Proteins are divided into families, which usually have similarities

in sequence or structure. Compounds might be part of the same chemical series. The

performance of classification model should be tested when applied to families of proteins

or compounds with di↵erent sca↵olds than those used to train it. On the latter, Wallach

and Heifets concluded that performance of most of the reported ligand-based classification

problems reflect overfitting to training benchmarks rather than good prospective accuracy,29
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mainly because of the redundancy between training and validation sets. This issue becomes

more critical when using random cross-validation: in the pharmaceutical field, compounds

are usually synthesized serially to enhance molecular properties. This leads to training and

validation sets following the same distribution, which is desirable in most machine learning

problems, but a poor estimate of reality in drug discovery.22

Time-split validation is common practice in pharmaceutical environment to overcome this

issue.22,28,30,31 This strategy is well suited to the realistic scenario, where we are interested

in prospective performance of the models.30 However, most public data lack of temporal

information, hindering this strategy to be applied. Additionally, time-split data has also

shown to be biased because of the high similarity between discovered actives in di↵erent

phases.22,29

Other techniques have been applied to reduce bias and data redundancy between training

and validation sets. Unterthiner et al.17,27 clustered compounds using single linkage to avoid

having compounds sharing sca↵olds across training and validation sets. Rohrer and Bau-

mann designed the Maximally Unbiased Validation (MUV) benchmark to be challenging for

standard virtual screening: actives have been selected to avoid biases of enrichment assess-

ment and inactives have been biologically tested against their target.32 Xia et al.33 presented

a method to ensure chemical diversity of ligands while keeping the physicochemical similarity

between ligands and decoys. Wallach et al. removed analogue bias in active molecules by

clustering and selected decoys to match in sets to actives with respect to some 1D physico-

chemical descriptors while being topologically dissimilar based on 2D fingerprints.18 However,

these unbiasing techniques only focus on redundancy between actives, overlooking the im-

pact of inactive-active or inactive-inactive similarity, which leads to models memorizing the

similarity between benchmark inactives and hence, overfitting.29

Another related issue is that the possible bias across the di↵erent data sources used

in some studies has not been properly studied yet.18 Di↵erent datasets might have di↵erent

structure, a↵ecting to the study of the generalization of the model. A related issue is found in
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the study of Altae-Tran et al,34 where after the collapse of their transfer learning experiments

it is a�rmed that one-shot learning methods may struggle to generalize to novel molecular

sca↵olds, and that there is a limit to their cross-tasks generalization capability.

Analysis of bias in binding classification models have been always focused on QSAR

models, but how could a↵ect the inclusion of proteins to bias in QMSPR models remains un-

known. Proteins are macromolecules constituted by amino acid residues covalently attached

to one another, forming long linear sequences which identify them, defining its folding and

its activity. The main value of DL in this context is that DL can directly learn from the

sequence, capturing nonlinear dependencies and interaction e↵ects, and hence providing

additional understanding about the structure of the biological data. The appropriate DL ar-

chitecture to manage this kind of data are bi-directional Recurrent Neural Networks (RNN),

well suited for modeling data with a sequential but non-causal structure, variable length and

long-range dependencies.35 Baldi et al have applied bi-directional RNN to protein sequence

for predicting secondary structure,36–38 for matching protein beta-sheet partners39 or for

predicting residue-residue contact.40 However, classical RNN cannot hold very long-range

dependencies and to overcome this issue Hochreiter et al applied Long Short Term Memory

(LSTM) networks to classify amino acid sequences into superfamilies.41 Jurtz et al applied

bi-directional LSTM to amino acid sequence for subcellular localization, secondary structure

prediction and peptides binding to a major histocompatibility complex.42

In this paper, we analyse and quantify the e↵ect of di↵erent cross-validation strategies on

the performance of binding prediction DL-based proteochemometrics models. Additionally,

we compare these DL models with baseline logistic regression (LR) models and explore

di↵erent representations for molecules.
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Table 1: Number of targets, number of compounds, average number of compounds per
target and average percentage of actives for each source database present in the Riniker et
al dataset43 after adapting it for our study. SD: standard deviation.

Original database # targets # compounds
# compounds/target

mean (SD)
% actives
mean (SD)

ChEMBL 50 29,986 599.7 (0.9) 16.7 % (0.1)
DUD 21 12,417 591.3 (80.5) 14.2 % (9.4)
MUV 17 9,001 529.5 (1.1) 5.7 % (0.0)
Total 88 51,404 584.1 (47.2) 13.9 % (6.1)

Unique 83 32,950 - -

Materials and Methods

Data

Models were trained on the dataset generated from three di↵erent publicly available sources

by Riniker and Landrum43 for true reproducibility and comparability of benchmarking stud-

ies. This dataset incorporates 88 targets from ChEMBL,44 the Directory of Useful Decoys

(DUD)45 and the MUV.32 The selection of actives and decoys was conducted on drug-like

molecules and in such a way as to cover the maximum range of the chemical spectrum,

based on diversity and physical properties. ChEMBL and DUD decoys were selected from

the ZINC database.46 The selection of ChEMBL targets was based on the 50 human targets

and actives proposed by Heikamp and Bajorath study47 and performed on ChEMBL version

14.43

We only selected 500 decoys randomly from all those available for each target, in order to

have a more computationally-approachable dataset and to decrease active/decoy imbalance

per target while keeping a plausible proportion. The list of molecules identified by their

SMILES48 was then standardized to avoid multiple tautomeric forms. Finally, these com-

pounds were filtered to remove salts, those with molecular weight >900Da or >32 rotatable

bonds and those containing elements other than C, H, O, N, S, P or halides. Table 1 pro-

vides a summarized description of the final dataset used in our study, while Table S1 of the

Supporting Information contains a more detailed description.
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Descriptors

We tested two ways of representing input molecules: (1) as sequences of symbols, using the

SMILES notation and (2) as the combination of molecular fingerprints,49 where structural

information is represented by bits in a bit string. The SMILES representation as input for a

DL model was based on the DeepCCI by Kwon et al.26 Model input has to be numerical, so

SMILES notation was one-hot encoded (Figure 1B). This means that every character of the

SMILES string was represented by a binary vector of size 35, with all but its corresponding

entry set to zero. SMILES were padded to the length of the longest string, 94.

For the fingerprints representation we selected three of them: topological torsions (TT)

fingerprint,50 extended connectivity fingeprint and functional connectivity fingerprint, both

with a diameter of 6 (ECFP6 and FCFP6, respectively)51 (Figure 1C). TT describe four

atoms forming a torsion, and the atom type includes the element, the number of non-

hydrogen neighbors and number of ⇡ electrons. ECFP6 and FCFP6 encode circular atom

environment up to 6 bond length. In ECFP6, atom type includes the element, the number of

heavy-atom neighbors, the number of hydrogens, the isotope and ring information. FCFP6

use pharmacophoric features. All of them were generated using the RDKit package,52 and

defined with a length of 1024 bits, since there is proof of a very low number of collisions with

this size.43

For protein representation, raw amino acid sequences were fed to the model (Figure

1A). As for SMILES strings, these sequences were converted to numerical through one-hot

encoding, only that in this case each amino acid was represented by a binary vector of length

20. Amino acid sequences were then padded to the length of the longest target, in this case,

1988.

Cross-validation strategies

Four di↵erent cross-validation strategies were applied to both active and inactive Riniker

dataset compounds (see Figure 2A), omitting binding targets. In all cases active/inactive
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Figure 1: Schema of descriptors and encoding process of the di↵erent inputs of

the model A. Amino acid sequence is first one-hot encoded and then padded at the end
to the length of the longest target (n

max

), in this case 1987. B. Compound represented
by its SMILES identifier is also one-hot encoded and then padded to the length of the
longest SMILES string (k

max

), in this case 93. C. Compound described by its fingerprints
is first identified by its SMILES, from which HASHTT, FCFP6 and ECFP6 bit strings are
generated.
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ChEMBL
DUD
MUV

A. B. C.

D. E.

Training
Validation
Test

Figure 2: Di↵erent cross-validation strategies applied to the Riniker et al dataset.43

A. Original dataset B. Random splitting of the compounds. C. Database-based division of
compounds. D. Clustering-based splitting. E. Intermediate splitting.
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proportion was preserved for training, validation and test sets. (1) Random, where com-

pounds were randomly split 80/10/10 in training, validation and test with no further criteria

(Figure 2B). (2) Database-based, where division in training, validation and test was per-

formed according to the source database of the compounds (ChEMBL, MUV and DUD, as

seen in Data section) (Figure 2C). (3) Clustering-based, where K-Means clustering with

k=100 was applied to the fingerprint description of molecules (see Figure S1 of the Sup-

porting Information). This was used to avoid having similar molecules both in training and

validation/test set and thus control for the compound series bias.27,29 Clusters were randomly

joined and assigned to the splitting sets in order to have 80/10/10 splitting (Figure 2D). (4)

Intermediate, where the previous K-Means clustering was also applied, but only to those

compounds coming from ChEMBL (Figure 2D). In order for this schema to have a test set

of comparable size with the others, only one data source was used. We chose MUV dataset

since it was designed to be challenging, as seen in the Introduction, while data architectural

design of the original DUD is not that well suited for this problem.53 In Figures S2, S3, S4

and S5 of the Supporting Information, the proportion of actives/inactives for each target

in each splitting set is depicted for random, clustering, database-based and intermediate

cross-validation strategies, respectively.

Prediction models

A DL-based model was built to evaluate the e↵ect of di↵erent cross-validation strategies

on binding prediction. A LR model was also trained to have a baseline to compare with.

Besides, two di↵erent molecular representations were tested to evaluate their performance:

their SMILES string and three selected fingerprints (ECFP6, FCFP6 and HASHTT). Each

one of these models was trained according to the four cross-validation strategies presented

in the previous section. As a result, a total of 16 di↵erent models were evaluated.
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Figure 3: Schematic representation of the baseline logistic regression model A.

When the compound is encoded by its SMILES, both amino acid sequence and SMILES
inputs have to be flattened before entering the neurons of the input layer. B. When the
compound is represented by its fingerprints, only the amino acid sequences have to be flat-
tened.

Logistic Regression

This baseline model consisted on two input layers concatenated, one for the compound and

one for the target, with as many neurons as the size of the input (94 and 3072 in the case

of SMILES and fingerprints, respectively and 1988 in the case of targets) connected to a

sigmoidal unit (see Figure 3).

Deep Learning models

An schematic representation of the DL predictive models used can be seen in Figure 4, A

and B. The amino acid sequence analysis block is common for both models and it is a Convo-

lutional Recurrent Neural Network based on the one used by Jurtz et al for the prediction of

subcellular localization of proteins42 (Figure 4C). This architecture allows to build complex

representations from both targets and compounds for the prediction of binding, in contrast

to the LR models, which are directly fed with the input features.
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Figure 4: Schematic representation of Deep Learning models. AA: amino acids. (#)
after the name of a layer refers to the number of neurons. A. Complete DL model when the
compound is represented by their SMILES. B. Complete DL model when the compound is
represented by their fingerprints. C. Amino acids sequence analysis block, a Convolutional
Recurrent Neural Network architecture adapted from the model used by Jurtz et al.42 D.

SMILES-encoded compound analysis block., a Convolutional Recurrent Neural Network. E.
Fingerprints-encoded compound analysis block, a feed-forward deep neural network.
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The input of the model is the amino acid sequence one-hot encoded, which is passed

through a 1D Convolutional Neural Network (CNN).4 This 1D CNN comprises filters of

sizes 1, 3, 5, 9, 15 and 21, with the aim of detecting motifs of di↵erent length in the amino

acid sequence. Convolutional layers are followed then by a max pooling layer, downsampling

the input and thus, reducing the number of model parameters. The input is then introduced

to a bi-LSTM neural network.35 Dropout algorithm is used in di↵erent parts of the model

to prevent overfitting.12

The compound analysis block depends on the encoding of molecules. If molecules are

represented by their SMILES, then the compound processing block is similar to the sequence

processing block (Figure 4A). The SMILES string is one-hot encoded and the input is passed

to a bank of convolutional filters, in this case of size 3,4 and 5 based on the sizes of the

LINGO substrings analysed by Vidal et al.54 After that, a maximum pooling layer condenses

information and transfer it to a LSTM, but in this case uni-drectional since the SMILES

strings are causal, in the sense that they are read in only one direction. Dropout is also used

here to prevent overfitting. If molecules are represented by ECFP6, FCFP6 and HASHTT

fingerprints, namely a binary vector of length 3072, the input is passed through a feed-forward

neural network17,19 followed by dropout (Figure 4E).

Finally, the sequence and the compound analysis blocks are merged and the information

is processed by a sigmoid activation unit, which quantifies how likely the sequence-compound

binding is. Binary predictions are obtained thresholding the activation at 0.5. All the models

(both DL and LR) were trained with Adam optimizer10 for 500 epochs, with a batch size

of 128 for training and 64 for validation (learning rate=5e-6 for DL models encoded by

fingerprints, 5e-5 for the rest). Decay rate was defined as learning rate/number of epochs.

The other parameters were set as proposed by Jurtz et al (�
1

=0.1, �
2

=0.001, ✏=1e-8).42
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Implementation

Both the DL and the LR algorithms were implemented in Python (Keras55 > 2.0 using

as backend TensorFlow14 > 1.4) and run on the GPU NVIDIA TITAN Xp and NVIDIA

GeForce GTX 1070.

Characterization of data structure

Each one of the cross-validation strategies is analyzed in terms of imbalance and data re-

dundancy to better understand and interpret performance results. First, active/inactive

proportion is explored for each cross-validation schema. Then, overlap of targets and com-

pounds between split sets is computed as a percentage with respect to the total number

of targets (88) and compounds (32,950), respectively. Lastly, distribution of chemotypes

and protein classes is explored for each strategy. For targets, this distribution is studied

for the main protein families. Since for molecules there is no such classification, we decided

to group them in terms of their Bemis-Murcko sca↵old (BMS),56 a technique for extract-

ing molecular frameworks by removing side chain atoms which has been used for clustering

compounds.18,24,53

Performance metrics

Area under the receiver operating characteristic (ROC) curve (from now, referred to as

AUC), traditionally employed for measuring the performance of classification models, has

been reported for not being enough for evaluating virtual screening models because it is not

sensitive to early recognition and it is a↵ected by class imbalance.57 Thus, we complement

this information with partial AUC (pAUC) at 5%, which allows to focus on the region of

the ROC curve more relevant for virtual screening1 (up to 5% of the False Discovery Rate),

with Cohen’s kappa coe�cient (),58 which measures the agreement between real and pre-

dicted classification, and with the Boltzmann-enhanced discrimination of receiver operating
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characteristic (BEDROC), a metric proposed to overcome the limitations of AUC57 increas-

ingly popular in the evaluation of virtual screening models. BEDROC uses an exponential

function based on parameter ↵ and is bounded between 0 and 1, making it suitable for early

recognition. As recommended by Riniker et al,43 we focus on AUC and BEDROC with

↵=20, whilst also reporting ↵=100.

We implemented and trained DL and LR binding classification models. We then selected

the best training epoch in terms of F1 Score, the harmonic mean of precision and recall, on

the validation set, since it can handle class imbalance. Finally, we tested the selected models

on the corresponding test set of each cross-validation strategy. Stratified subsampling of

the 80% of the test data was used to sample 100 values from the performance estimates

distributions. The nonparametric Wilcoxon rank-sum test59 was used to compare AUC

and BEDROC(20) metrics between all pairs of models. P-values were adjusted for multiple

testing by computing the False Discovery Rate (FDR) by Benjamini-Hochberg60 for each

metric.

Results

Cross-validation strategies analysis

Figure 5: Proportion of active/inactive compounds in each set (training, validation and test),
for each cross-validation strategy.

In Figure 5, active/inactive imbalance in each split set is shown for each cross-validation
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*: DUD target-compound pairs are absent in this cross-validation schema as described in Figure 2.

Figure 6: A. Coverage and overlap of targets between splitting sets. Numbers inside tiles
refer to the percentage of overlapping targets respect to the total number of targets, 88. B.

Coverage and overlap of compounds between splitting sets. Numbers inside tiles refer to the
percentage of overlapping compounds respect to the total number of targets, 32,950.

Figure 6A shows overlap of targets between split sets for each cross-validation schema.

In clustering-based and random, every target is repeated on the three splitting sets. In

intermediate we only find overlapping targets between training and validation, since both

splitting sets are built from the ChEMBL dataset, while test corresponds to the MUV

database. In database-based, there is no overlap of targets between splitting sets.

Figure 6B shows overlap of compounds between splitting sets for each cross-validation

schema. In this case, in clustering-based there are no repeated compounds across groups. In

database-based and intermediate there is negligible overlap between groups, probably due to

repeated inactives for di↵erent targets. Since in random cross-validation splitting was made

randomly, there are repeated compounds in all splitting sets.

In Figure 7, Bemis-Murcko molecular sca↵olds overlap between split sets is shown. As
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Figure 7: Overlap of BMS between split sets for each cross-validation strategy.

above, in random cross-validation there are more overlapping sca↵olds between training,

test and validation. In the other strategies the number of overlapping sca↵olds decreases

significantly. Training set in clustering-based cross-validation has the highest number of

di↵erent sca↵olds.

Figure 8: Distribution of protein families between split sets for each cross-validation strategy.
CY: cytochromes P450, GR: G protein-coupled receptors, IC: ion channels, NR: nuclear
receptors, OE: other enzymes, PK: protein kinases, PR: proteases, TR: transporters.

In Figure 8 distribution of protein families between split sets for each validation strategy is

represented. G protein coupled-receptors and protein kinases are the most numerous families

in training sets. Every group has targets of each protein family, except for the validation set

in the database-based schema which lacks some protein families (transporters, cytochromes,

G protein-coupled receptors and ion channels).

Models performance

A summary of performance metrics of each model can be seen on Table 2.
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Table 2: Summary of performance of di↵erent cross-validation strategies for DL and LR
models, in terms of F1 score, AUC, partial AUC (pAUC) at 5%, BEDROC(↵=20) and
BEDROC(↵=100). In bold, the best performance for each CV strategy. CV: cross-validation.

CV strategy Encoding Algorithm Best epoch F1 score AUC pAUC(5%) BEDROC(20) BEDROC(100) 

Random
Fingerprints

LR 496 0.71 0.91 0.029 0.87 0.95 0.677
DL 348 0.88 0.89 0.031 0.89 0.99 0.838

SMILES
LR 499 0.54 0.81 0.018 0.74 0.97 0.465
DL 432 0.47 0.75 0.016 0.68 0.94 0.436

Clustering
Fingerprints

LR 491 0.36 0.84 0.015 0.53 0.55 0.360
DL 452 0.68 0.74 0.017 0.53 0.72 0.445

SMILES
LR 489 0.29 0.73 0.012 0.42 0.52 0.278
DL 463 0.25 0.66 0.008 0.31 0.45 0.250

Database based
Fingerprints

LR 22 0.25 0.54 0.001 0.10 0.04 9.47e-4
DL 19 0.51 0.54 0.002 0.11 0.09 0.043

SMILES
LR 230 0.08 0.50 0.001 0.08 0.06 7.16e-4
DL 494 0.14 0.55 0.002 0.10 0.09 0.031

Intermediate
Fingerprints

LR 57 0.60 0.52 0.001 0.09 0.05 -0.002
DL 309 0.62 0.54 0.002 0.13 0.11 0.032

SMILES
LR 428 0.40 0.50 0.001 0.08 0.06 -2.77e-4
DL 493 0.38 0.55 0.003 0.14 0.13 0.034

Models based on random cross-validation schema had consistently the best performance

for both DL and baseline LR algorithms. In all cases, except in the intermediate cross-

validation DL model, the architecture based on the fingerprints representation of compounds

had a better performance than the SMILES encoding. Regarding the algorithm used, results

are not conclusive on which one performs better. In terms of AUC, the best performance is

from a logistic regression model and in terms of BEDROC, a deep learning model. In general,

the best algorithm depends of the cross-validation strategy and the compound representation,

but there is a tendency of logistic regression being better for the SMILES representation of

the compound, and deep learning for the fingerprints representation.

In Figure 9, performance of the di↵erent cross-validation strategies is better depicted:

the values of AUC and BEDROC(20) for each schema, compound representation and al-

gorithm are compared between them and with a random prediction. Error bars show the

standard deviations obtained from subsampled estimates. It can be seen that random strat-

egy outperforms the rest in all the possibilities. After random, clustering-based strategy had

the best performance both in terms of AUC and BEDROC(20). Database-based and inter-

mediate strategies have both poor performance, specially in terms of BEDROC(20). The

same behavior can be seen in ROC curves of all possibilities in Figure S6 of the Supporting
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Figure 9: Comparison of performance of the di↵erent models, grouped by cross-validation
strategies and colored by algorithm used for the prediction. Top row compares results in
terms of AUC and bottom row in terms of BEDROC (↵ = 20) score. In blue, logistic
regression models metrics are shown; in red, deep learning-based models, and in green, a
set of random prediction synthetically generated. Left column shows results for fingerprints-
encoded models and right column for SMILES-encoded models. Error bars indicate standard
error of the mean.
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Figure 10: Mean di↵erence for BEDROC(20) metrics between pairs of models. Di↵erences
are calculated subtracting column performances from rows. Crossed tiles indicate that dif-
ference for that pair of models is not statistically significant (↵ = 0.05).

The mean di↵erence of BEDROC(20) metrics for each possible combination of models

is shown in 10. Di↵erences in terms of AUROC follow the same behavior but of a smaller

magnitude (see Figure S7 of Supplementary Information). The most remarkable di↵erences

can be seen on random models versus database-based and intermediate models. There are

also relevant di↵erences on performance between clustering-based cross-validation and the

rest of strategies.
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Discussion

Cross-validation strategy

The choice of cross-validation strategy is the most influential factor in this study. In general

terms, random cross-validation outperforms the other schemes. When adding constraints

for set splitting, performance su↵ers a pronounced drop. Such disagreements between cross-

validation strategies suggest that compounds from di↵erent databases have di↵erent prop-

erties, i.e. that molecular databases may be biased. This bias would explain why models

struggle to generalize between databases. On the other hand, any limitations derived from

the data selection and benchmark construction by Riniker and Landrum might a↵ect the

predictive power of the models.

Our results show that random cross-validation leads to the best performance estimates for

all the models. Likewise, random cross-validation shares the most proportion of compounds

and proteins between the training, validation and test folds (Figures 6A and 6B). This is also

true at the molecular sca↵olds level (Figure 7), suggesting that shared sca↵old inflate the

performance estimates. Despite this, random cross-validation has been traditionally used

in literature to evaluate binding prediction models. Our results are in line with previous

reports suggesting that the reported accuracy of most published virtual screening models is

unreliable.22,29

Among the non-random cross-validation strategies, database-based and intermediate

schemes lead to models barely outperforming a random predictor in terms of AUC and

BEDROC(20), see Figure 9 and Table 2. These schemes are probably too conservative, be-

cause the protein families and their proportions in their training, validation and test folds

di↵er (Figure 8). In addition, their number of sca↵olds in train (respectively 10,344 and

8,947) is smaller than random (19,066) and clustering (17,648) strategies, see Figure 7, lim-

iting the variety of examples the models can learn from the training data. The clustering

strategy allows training with more sca↵olds and keeping a similar proportion of protein
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families, while controlling for the data redundancy issue as the number of sca↵olds shared

between train and test decreases from 2,676 (random) to 275. It also leads to less optimistic

performance estimates than the random strategy, whereas the models still retain predictive

power. Therefore, the clustering strategy is chosen as our reference, in line with previous

studies.27

Compound encoding

In general, models for compounds represented by their fingerprints outperformed models

for SMILES representation in clustering-based and random strategies, for both AUC and

BEDROC(20), see Figure 9. This can be due to the specific architectures employed in each

case: the compound analysis block for SMILES-encoding is based on CNN and LSTM to

capture the sequence structure, while the compound analysis block for fingerprints is based on

a single feed-forward neural network. This di↵erence in model complexity and by extension,

in the number of parameters, could have resulted in a poorly fitted SMILES-encoded model.

Given that fingerprints-based models show a better performance, we will focus on them from

this point on.

Prediction algorithms

Regarding the algorithm used within the clustering strategy and FP encoding, DL and LR

appear technically tied at a BEDROC(20) around 0.53 (Table 2). LR outperforms DL in

terms of AUC (0.84 versus 0.74), but falls behind in the early recognition metrics pAUC(5%)

(0.015 versus 0.017), BEDROC(100) (0.55 versus 0.72) and other metrics such as Cohen’s

Kappa (0.360 versus 0.445) and F1 score (0.36 versus 0.68). In agreement with previous

studies,57 the AUC appears misleading for early recognition. Despite the tie between LR

and DL, the alternative metrics favor DL and is therefore preferred over LR by a small

margin.

On the other hand, performance of the random cross-validation fingerprints-based DL
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model (BEDROC(20) of 0.89) is slightly lower to the other published DL-based proteochemo-

metrics model28 (0.96). Lenselink et al represent proteins through standard physicochemical

descriptors, whereas we use their amino acid sequence. The fact that amino acid-based

representations attain a good predictive power poses the opportunity to gain insights into

the mechanisms causing protein-ligand binding by analyzing biological patterns in the CNN

filters and the long-range dependencies in the LSTM. Regarding the validation, Lenselink

et al apply a temporal split strategy that drops the BEDROC metric 0.11 units, while our

clustering strategy penalizes 0.33 units to our DL model. This is expected as time-split

cross-validation can still su↵er from chemical series bias.22,29

Conclusion

We have benchmarked protein-compound binding models using two molecular representa-

tions for compounds and two prediction algorithms under four cross-validation strategies.

One of our main findings is the existence of a database-specific bias that challenges the

generalization of machine learning models between databases. Performance estimates de-

rived from classical random cross-validation are overly optimistic, despite being widely used

in literature. Instead, we recommend a clustering-based cross-validation since it addresses

the chemical series bias while providing more reliable performance estimates. For molecular

representation, fingerprints have led to better models than the SMILES identification string.

Regarding the prediction algorithm, deep learning models have a small edge over a baseline

logistic regression and will allow further interpretation of the CNN-LSTM architecture to

provide valuable information on the binding mechanisms.
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