d by Kyoto Unive

Kyoto University Research Info	
Title	Scapular kinematic and shoulder muscle activity alterations after serratus anterior muscle fatigue
Author(s)	Umehara, Jun; Kusano, Ken; Nakamura, Masatoshi; Morishita, Katsuyuki; Nishishita, Satoru; Tanaka, Hiroki; Shimizu, Itsuroh; Ichihashi, Noriaki
Citation	Journal of Shoulder and Elbow Surgery (2018), 27: 1205-1213
Issue Date	2018-07
URL	http://hdl.handle.net/2433/244284
Right	© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.; This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社 版をご確認ご利用ください。
Туре	Journal Article
Textversion	author

1	Title	page
---	-------	------

2 Scapular kinematic and shoulder muscle activity alterations after serratus anterior muscle

- 3 fatigue
- 4

5	Jun Umehara,	MS, PT_1)*,	Ken Kusano,	, MS, PT2)	, Masatoshi Naka	amura, PhD, F	YT3), Katsuyuki
----------	--------------	----------------	-------------	------------	------------------	---------------	-----------------

- 6 Morishita, PhD, PT1,4), Satoru Nishishita, MS, PT1), Hiroki Tanaka, MS, PT5), Itsuroh
- 7 Shimizu, MS, PT6), Noriaki Ichihashi, PhD, PT1)
- 8

9 1) Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan

- 10 2) ASICS Corporation, Institution of Sports Science, Kobe, Japan
- 11 3) Institute for Human Movement and Medical Sciences, Niitaga University of Health and
- 12 Welfare, Niigata, Japan
- 13 4) Department of Physical Therapy, Faculty of Social Work Studies, Josai International
- 14 University, Chiba, Japan
- 15 5) Rehabilitation Unit, Kyoto University Hospital, Kyoto, Japan
- 16 6)Department of Physical Therapy, Fukui General Clinic, Fukui, Japan

- 18 *Corresponding author: Jun Umehara, Human Health Sciences, Graduate School of
- 19 Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Kyoto 606-8507, Japan

0	0
Ζ	υ

- 21 Phone: +81 20 -75-751-3935; Fax: +81-75-751-3909
- 22 E-mail: umehara.jun.77z@st.kyoto-u.ac.jp
- 23

24 **Financial biases**: None

- 26 Ethical approval: This study design was approved by the ethics committee of Kyoto
- 27 University Graduate School and the Faculty of Medicine (R0327).

28 Abstract

29	Background: Although the serratus anterior muscle has an important role in scapular movement,
30	no study to date has investigated the effect of serratus anterior fatigue on scapular kinematics
31	and shoulder muscle activity. The purpose of this study was to clarify the effect of serratus
32	anterior fatigue on scapular movement and shoulder muscle activity.
33	Methods: The study participants were 16 healthy men participated in this study. Electrical
34	muscle stimulation was used to fatigue the serratus anterior muscle. Shoulder muscle strength
35	and endurance, scapular movement, and muscle activity were measured before and after the
36	fatigue task. The muscle activity of the serratus anterior, upper and lower trapezius, anterior
37	and middle deltoid, and infraspinatus muscles were recorded and the median power frequency
38	of these muscles was calculated to examine the degree of muscle fatigue.
38 39	of these muscles was calculated to examine the degree of muscle fatigue. Results: The muscle endurance and median power frequency of the serratus anterior muscle
39	Results: The muscle endurance and median power frequency of the serratus anterior muscle
39	Results: The muscle endurance and median power frequency of the serratus anterior muscle decreased after the fatigue tasks, whereas the muscle activities of the serratus anterior, upper
39 40 41	Results: The muscle endurance and median power frequency of the serratus anterior muscle decreased after the fatigue tasks, whereas the muscle activities of the serratus anterior, upper trapezius, and infraspinatus muscles increased. External rotation of the scapula at the shoulder
39404142	Results: The muscle endurance and median power frequency of the serratus anterior muscle decreased after the fatigue tasks, whereas the muscle activities of the serratus anterior, upper trapezius, and infraspinatus muscles increased. External rotation of the scapula at the shoulder elevated position increased after the fatigue task.
 39 40 41 42 43 	Results: The muscle endurance and median power frequency of the serratus anterior muscle decreased after the fatigue tasks, whereas the muscle activities of the serratus anterior, upper trapezius, and infraspinatus muscles increased. External rotation of the scapula at the shoulder elevated position increased after the fatigue task. Conclusion: Selective serratus anterior fatigue due to electric muscle stimulation decreased the

- 47 and scapular muscle compensated to avoid the increase in internal rotation of the scapula caused
- 48 by the dysfunction of the serratus anterior muscle.
- 49 Level of evidence: Basic Science, Kinesiology Study
- 50 Key words: Shoulder, Scapula, Fatigue, Serratus anterior muscle, Biomechanics,
- 51 Rehabilitation
- 52

53 Introduction

The shoulder complex consist of the scapula, humerus, and clavicle, and the scapula upwardly and externally rotates and posteriorly tilts during shoulder elevation.^{28,30} This coordinated movement is controlled by the neuromuscular function and capsular ligaments.²² Dysfunction of the control system alters the scapular movement and might cause a shoulder disorder. Previous studies reported that the scapular movement during shoulder elevation changed in people with subacromial impingement syndrome,^{27,29} rotator cuff tear,³⁷ or shoulder instability.^{37,41}

Shoulder muscle activity plays an important role in controlling scapular movement, and 61 62 the dysfunction of these muscles might be a factor that changes scapular movement. Previous studies found decreased activity of the serratus anterior muscle²⁷ and increased activity of the 63 upper trapezius muscle^{10,27} in subacromial impingement syndrome. Furthermore, the serratus 64 anterior and the upper and lower trapezius muscles work as a force couple for upward rotation 65 of the scapula. Decreased activity of the serratus anterior muscle relative to the upper trapezius 66 muscle associated with the change in scapulohumeral rhythm and the decrease in scapular 67upward rotation during shoulder elevation were found in people with impingement 68 syndrome.^{19,36} These findings in previous studies suggested that the change in muscle activity 69 70of the serratus anterior was related to the change in scapular movement. In addition, it was proposed in the consensus statement from the scapular summit also proposed that the serratus 71

72	anterior is one of the causes of scapular dyskinesis ²⁴ and is one of the target muscles for its
73	rehabilitation. ¹² However, the cause-consequence relationship between the dysfunction of the
74	serratus anterior muscle and abnormal scapular movement is unknown.
75	Some studies investigated the effect of muscle dysfunction caused by acute muscle
76	fatigue on the scapular movement to clarify the relationship between shoulder muscle activity
77	and scapular movement. ^{7,14,32} A previous study of serratus anterior fatigue and scapular
78	movement, a previous study examined the effect of a push-up plus task on muscle activity and
79	scapular movement and found an increase in scapular internal rotation and decrease in posterior
80	tilt during scapular plane elevation. However, electromyographically, fatigue of the serratus
81	anterior and upper and lower trapezius and infraspinatus muscles was seen in this study. ⁵
82	Therefore, the relationship between selective fatigue of the serratus anterior and changes in
83	scapular kinematics is unknown, whereas the effect of selective muscle fatigue on scapular
84	kinematics should be elucidated to further develop our knowledge of the shoulder complex.
85	Many previous studies evaluated 3-dimensional scapular motion during only shoulder
86	elevation. However, it is possible that muscle endurance at the shoulder elevated position is
87	important for evaluating shoulder function because some shoulder functional tests apply muscle
88	endurance at the shoulder elevated position, which is impaired in people with shoulder
89	disease. ^{8,39}

90

The purpose of this study was to investigate the effect of selective fatigue of the serratus

anterior on muscle activity and scapular movement. We hypothesized that scapular upward
rotation increased at the shoulder elevated position after the fatigue task due to the
compensatory increase in muscle activity of the upper trapezius.

95 Materials and Methods

96 Participants

This study was a controlled experimental study. The study participants were 16 men (mean age, 97 25.6 ± 3.4 years; mean height, 172.4 ± 5.4 cm; mean weight, 66 ± 7.2 kg) who were students 98from our institution. At the time of recruitment, the participants confirmed that they did not 99meet the exclusion criteria, which included present or history of orthopedic or nervous system 100 disease in the upper limb, athletes, or persons who perform perform any extensive exercise, and 101102female gender. Before the experiment, no participants were excluded. The aim and procedure of this study was explained to all participants, each of whom provided informed consent. The 103 104 sample size was calculated based on a 2-way analysis of variance (ANOVA) with repeated measures (effect size = 0.25, α error = 0.05, power = 0.8) using G*Power 3.1 (Heinrich Hein 105University, Düsseldorf, Germany) before the participants were recruited and showed that a 106group size of 10 subjects was required for this analysis to enable the detection of statistical 107 108 significance. Therefore, 16 healthy men were recruited for this study.

109

110 Experimental procedures

The dominant and non-dominant upper limb was identified as the control and fatigue limb, respectively. The participants performed maximal isometric shoulder flexion at 90° and then kept their arm at shoulder flexion at 90° to measure the shoulder muscle strength and endurance,

114	respectively. Scapular kinematics and electromyography (EMG) measurements were collected
115	during the muscle endurance test. The participants underwent the fatigue task for 25 minutes.
116	Muscle strength and endurance, scapular movement, and muscle activity were measured again
117	after the fatigue task.
118	
119	Fatigue task
120	The fatigue task consisted of electric muscle stimulation of the serratus anterior muscle using
121	musculoskeletal electric stimulator (EU-910, Ito Co. Ltd., Tokyo, Japan) to induce selective
122	muscle fatigue. Participants sat on a stool and skin was shaved and cleaned to reduce the skin
123	resistance. Bipolar electrodes (2 cm \times 2 cm) were attached to the skin over the lower parts of
124	the serratus anterior with tape at level of the sixth rib on the midaxillary line along the leading
125	edge of the latissimus dorsi muscle. The motor point of the lower parts of the serratus anterior
126	muscle was interposed between these electrodes to activate this muscle as much as possible. A
127	high-voltage pulsed current with a 50-µs pulse width and 100-Hz frequency was used in this
128	study. During the initial 5 minutes of muscle stimulation, the intensity was gradually increased
129	to the maximum level that each subject could tolerate and then sustained for the following 20
130	minutes. The average voltage intensity was about 30 V. Fatigue induced by electrical muscle
131	stimulation was applied in previous studies and acute loss of muscle strength after electrical
132	muscle stimulation was reported. ^{6,35,38} Fatigue indicates the condition of muscle fatigue induced

133 by electrical muscle stimulation using a musculoskeletal electric stimulator.

134

135 Muscle strength and endurance

The muscle strength of shoulder flexion was measured in both upper limbs using the handheld 136dynamometer (HHD) (Mobile, SAKAI Medical Co. Ltd., Tokyo, Japan). The participant sitting 137on a stool performed maximal isometric shoulder flexion for 3 seconds at 90° shoulder flexion 138with the elbow in full extension and the forearm in a neutral position. The shoulder flexion 139140angle was confirmed by the investigator using the goniometer. The handheld dynamometer was place on the distal radius, and maximal isometric strength of shoulder flexion was examined 3 141times with optimal interval. The shoulder flexion strength was expressed as torque, the product 142of the mean value of the 3 maximal isometric strength measurements and the length of upper 143limb from the acromion of the scapula to the styloid process of the radius. The intraclass 144correlation coefficient (1,3) values, which represent the reliability of muscle strength 145measurement, fell within a range of 0.88 to 0.94. This value indicated "almost perfect", meaning 146high reliability according to the previous study.²⁵ 147

The muscle endurance of shoulder flexion was measured in both upper limbs. The participants kept their arms at 90° of shoulder flexion with the elbow in maximal extension and the forearm in a neutral position holding a load, which was adjusted as 40% of the maximal isometric strength of shoulder flexion mentioned above (Figure 1). Muscle endurance was

152	represented as the maximum time that the participant could maintain his posture without
153	deviating while holding the load. The investigator visually confirmed whether the participants
154	could maintain the correct posture and even the slightest lowering of the flexed upper limb,
155	flexion of the elbow, or compensation of the trunk was noted as a deviation from the correct
156	posture. The evaluation of correct posture by the investigator using visual confirmation based
157	on a previous study. ³³ The maximum time for muscle endurance in each upper limb was
158	examined once in a random order with optimal interval.

159

160 EMG protocol

161 Muscle activity was determined using surface EMG (TeleMyo2400; Noraxon, Scottsdale, AZ, USA) with sampling at 1500 Hz. The skin at the electrode sites was shaved and cleaned using 162scrubbing gel and alcohol. Disposable pre-gelled Ag-AgCl electrodes (Blue Sensor, Medicotest, 163Olstykke, Denmark) were placed over the anterior and middle deltoid, upper and lower 164 trapezius, infraspinatus in the fatigued limb, and serratus anterior in the both limbs with a fixed 1652.5-cm spacing parallel to the muscle fiber. According to previous studies, the electrode 166locations for the anterior and middle deltoid were defined as 4 cm below the distal clavicle²³ 167and the halfway point between the acromion of the scapula and the deltoid tuberosity of the 168humerus,⁹ respectively; those for the upper and lower trapezius were defined as the halfway 169 point between the spinous process of the seventh cervical vertebra and the acromion of the 170

171	scapula ²³ and the halfway point between the spinous process of the seventh thoracic vertebra
172	and the trigonum scapula, ⁹ respectively; that for the infraspinatus was defined as the halfway
173	point between the inferior angle of the scapula and the middle point between the acromion and
174	the trigonum scapula; ¹⁸ and that for the serratus anterior was defined as the halfway point
175	between the leading edge of the latissimus dorsi and the trailing edge of the pectoralis major on
176	the seventh rib ¹⁵ (Figure 2).
177	The raw EMG signal during the muscle endurance test was recorded and analyzed for
178	the first 3 seconds of every 10 seconds up to 53 seconds (i.e. 0-3 seconds; 10-13 seconds; 20-
179	23 seconds; 30-33 seconds; 40-43 seconds; 50-53 seconds), and all participants maintained a
180	flexed arm position without deviating their posture. The EMG signal of the maximal voluntary
181	contraction (MVC) during the 3-second period for each muscle was obtained as described in
182	previous studies. ^{1,4} The raw EMG signals were processed using a bandpass filter and the root
183	mean square (RMS) of the raw EMG signal was smoothed. The RMS amplitude of each muscle
184	was normalized by the MVC of each muscle and the muscle activity was represented as
185	percentage MVC. In addition, the median power frequency (MDPF) of the power spectrum was
186	calculated for first 3 seconds during the muscle endurance test to analyze muscle fatigue. The
187	decline in MDPF indicates muscle fatigue.

188

189 Scapular movement

190	Three-dimensional motion of the scapula and the humerus was measured during the muscle
191	endurance test using a 6-df electromagnetic tracking device (Liberty, Polhemus, Colchester, VT,
192	USA) at 120 Hz in the fatigued limb. This system consists of a transmitter, five sensors, and a
193	digitizing stylus operated by an electronic unit. The transmitter was fixed on a rigid wooden
194	board 40 cm from the floor and 30 cm behind the subjects. An electromagnetic field generated
195	by the transmitter was sensed by these sensors and the stylus. This electromagnetic field
196	represented the global coordinate system, with the X-axis pointing forward, Y-axis pointing
197	upward, Z-axis pointing to the right, and origin located at the transmitter. Next, the sensors were
198	attached to the bony landmarks of the subjects with tape. The thoracic sensor was placed on the
199	sternum just inferior to the jugular notch, the humeral sensor was placed on the middle point of
200	the humerus with a thermoplastic cuff, and the scapular sensor was placed on the flat surface of
201	the acromion. Based on these sensor placement, the local coordinate system of the thorax,
202	humerus, and scapula were established by digitizing each bony landmark.

All definitions of the local coordinate system agreed with the shoulder standardization proposal of the International Society of Biomechanics.⁴³ The rotation of the distal coordinate system was described with respect to the proximal coordinate system according to the Euler angle of the International Society of Biomechanics. The kinematics of the scapula segment relative to the thorax segment around the Sy-axis was defined as internal (positive) and external (negative) rotation, that around the Sx-axis was defined as downward (positive) and upward

209	(negative) rotation, that around the Sz-axis was defined as posterior (positive) and anterior
210	(negative) tilt, and that of the humerus segment relative to the thorax segment around the Hx-
211	axis was defined as elevation (positive) and depression (negative) based on the shoulder
212	standardization proposal of the International Society of Biomechanics (Figure 3). The
213	kinematics data of the scapula in the shoulder flexion position were analyzed every 10 seconds
214	from 0 to 50 seconds, and all participants maintained the flexed arm position without deviating
215	their posture.
216	
217	Data analysis
218	The statistical analysis was performed using SPSS Statistical software (version 22; IBM,
219	Armonk, NY, USA). Shapiro-Wilk test was used to confirm normality distribution. For the
220	
	muscle strength and endurance and the MDPF of the bilateral serratus anterior muscles, two-
221	muscle strength and endurance and the MDPF of the bilateral serratus anterior muscles, two- way ANOVA with repeated measures on two factors (time [two levels, pre-fatigue; post-

serratus anterior muscle fatigue on each parameter. When a significant interaction was found, a
paired *t*-test for normal distribution or Wilcoxon signed rank test for non-normal distribution
for post hoc analysis was performed to compare the pre- and post-fatigue values of each limb.
The MDPF values of all muscles except the serratus anterior were compared between the pre-

and post-fatigue states using a paired *t*-test in the fatigued limb to confirm whether these

228	muscles were fatigued due to the electric muscle stimulation. For the muscle activity and
229	scapular kinematics during the muscle endurance test, a two-way ANOVA with repeated
230	measures of two factors (time [pre- and post-fatigue]) \times (seconds [six levels: 0, 10, 20, 30, 40,
231	50]) was used. When a significant main effect was found, Bonferroni comparison of the post
232	hoc test was performed to compare the pre- and post-fatigue in each muscle. The significant
233	main effect of seconds was ignored because the present study was interested in the comparison
234	of pre- and post-fatigue. In addition, for the amount of change in the muscle activity calculated
235	by subtracting pre-fatigue from post-fatigue in each muscle, a split-plot ANOVA with two
236	factors (muscle [six levels: anterior deltoid, middle deltoid, upper trapezius, lower trapezius,
237	infraspinatus, serratus anterior]) \times (seconds (six levels: 0, 10, 20, 30, 40, 50]) was used to
238	determine which muscle was activated via serratus anterior fatigue though the muscle
239	endurance test. When a significant main effect was found, a Tukey comparison of the post hoc
240	test was performed to compare muscles. A confidence level of .05 was used in all of the
241	statistical tests.

243	Results
244	Muscle strength and endurance
245	The muscle strength and endurance results are shown in Table 1. For muscle strength, two-way
246	ANOVA showed no significant interaction or main effects. For muscle endurance, two-way
247	ANOVA showed a significant interaction between time and limb and a significant main effect
248	of time. A post hoc test indicated that the muscle endurance significantly decreased in the
249	fatigued limb after the fatigue task ($P < .001$).
250	
251	Muscle activity
201	
252	The muscle activity and degree of change in all muscles during the muscle endurance test are
	·
252	The muscle activity and degree of change in all muscles during the muscle endurance test are
252 253	The muscle activity and degree of change in all muscles during the muscle endurance test are shown in Figure 4. For muscle activity, two-way ANOVA showed significant main effects of
252 253 254	The muscle activity and degree of change in all muscles during the muscle endurance test are shown in Figure 4. For muscle activity, two-way ANOVA showed significant main effects of time in the SA, UT, and ISP, while the muscle activity significantly increased after the fatigue
252 253 254 255	The muscle activity and degree of change in all muscles during the muscle endurance test are shown in Figure 4. For muscle activity, two-way ANOVA showed significant main effects of time in the SA, UT, and ISP, while the muscle activity significantly increased after the fatigue task. For amount of change in muscle activity, two-way ANOVA showed a significant main

259 The MDPF values of the bilateral serratus anterior muscles and the other muscles are 260 shown in Tables 1 and 2, respectively. For the MDPF of the serratus anterior, ANOVA showed 261 a significant interaction, and then Wilcoxon signed rank test indicated a significantly decreased

- MDPF in the fatigued limb after the fatigue task (P < .001). The paired *t*-test indicated that the
- 263 MDPF of the upper trapezius significantly increased only in the fatigue task.
- 264

265 Scapular movement

266	Scapular movement before versus after the fatigue task is shown in Figure 5. Two-way ANOVA
267	showed no significant interaction and main effects in upward/downward rotation and
268	posterior/anterior tilt. For internal/external roation, there was no significant interaction (F =
269	0.008, $P = .99$); there was no significant main effect of seconds (F = 0.68, P = .64) but a
270	significant effect of time (F = 5.87, P = $.02$). The post hoc test indicated that the external rotation
271	after the fatigue task was significantly greater than that before it at all seconds ($P = .02$).

273 Discussion

The present study investigated the effect of selective serratus anterior fatigue on muscle strength 274and endurance, scapular movement, and muscle activity at the flexed shoulder position. The 275results indicated no change in muscle strength but a significant change in muscle endurance. 276Additionally, scapular movement and shoulder muscle activity were influenced by serratus 277anterior muscle fatigue. However, our hypothesis that the increase in scapular upward rotation 278was caused by compensatory activation of the upper trapezius muscle due to serratus anterior 279fatigue was rejected because upper trapezius, infraspinatus, and serratus anterior muscle 280activities were increased and the external rotation of the scapula was altered after the fatigue 281task. To our knowledge, this is the first study to demonstrate the changes in muscle endurance, 282scapular kinematics, and muscle activity following selective fatigue of the serratus anterior 283284muscle.

In this study, the serratus anterior muscle was fatigued using electrical stimulation and muscle fatigue was confirmed electromyographically via measurement of MDPF. A previous study indicated that the decline in MDPF was a sign of the physiological change in the muscle due to fatigue such as the slowing of muscle fiber conduction velocity, synchronization of motor units, and/or decreased firing frequency.⁴⁰ Here we stimulated the serratus anterior muscle using a musculoskeletal electric stimulator, so the fatigue of the selective serratus anterior muscle could have been caused by the electric muscle stimulation because the decreased MDPF of the

292	serratus anterior only occurred in the fatigued limb after the fatigue task.
293	Theoretically, muscle flexion strength of the serratus anterior muscle at the flexed
294	shoulder position decreases after the fatigue because the serratus anterior muscle contributes to
295	the upward rotation of the scapula during arm elevation ²⁸ and is maximally activated at shoulder
296	flexion of 90–130°, ¹ which is similar to the position used to measure the muscle strength of
297	shoulder flexion in this study. However, muscle strength did not change after the fatigue task in
298	this study. The serratus anterior does not flex the glenohumeral joint; rather, it stabilizes the
299	scapula in the scapulothoracic joint due to its origin and insertion from the first to eighth or
300	ninth ribs to the medial border of the scapula. Since the upper and lower trapezius muscles also
301	stabilize the scapula, they may have compensated for the serratus anterior muscle's inability to
302	stabilize the scapula; resulting no change in muscle strength was seen.
303	The present study showed that endurance decreased after serratus anterior muscle
304	fatigue and that the upper trapezius, serratus anterior, and infraspinatus muscles were activated
305	at the flexed shoulder position, which is inconsistent with our hypothesis. For the upper
306	trapezius muscle, Ludewig and Cook ²⁷ reported an increase in the muscle activity of the upper
307	trapezius and a decrease in that of the serratus anterior muscle in the patient with shoulder

impingement syndrome. Considering this report, it is possible that the upper trapezius muscles

were activated to compensate for the functional impairment of the serratus anterior. For the

serratus anterior muscle, greater muscle activity after the fatigue task is characteristic of muscle

308

309

310

fatigue, the regulation of motor unit recruitment and rate coding patterns.³⁴ The increased activity of the serratus anterior muscle after the fatigue task in this study is in accordance with this phenomenon. It is unknown how the mechanism to activate the infraspinatus muscle occurs after serratus anterior fatigue. Further research to investigate the interaction between muscles after fatigue is needed.

The external rotation of the scapula during the muscle endurance test significantly 316 increased after the fatigue task due to the change in the activities of the upper trapezius, serratus 317318anterior, and infraspinatus muscles. In addition, the amount of change in the upper trapezius muscle activity was significantly greater than those of the other muscles. Moreover, the MDPF 319 320 of the upper trapezius muscle increased significantly after the fatigue task. The upper trapezius retracts and upwardly rotates the scapula¹³, and the retraction corresponds to external rotation 321of the scapula in this study. Given the contribution of the upper trapezius muscle to the scapular 322movement, the increase in scapular external rotation that occurred in this study was a result of 323 compensation of the upper trapezius for the functional impairment of the serratus anterior, 324causing so-called scapular winging.⁴² Scapular winging, in which the scapula rotates downward 325at rest and its inferior border becomes more prominent, corresponds to the scapular internal 326 rotation in this study. Contrary to our hypothesis, no significant difference in upward scapular 327rotation angle was seen before versus after the fatigue task, which may be a result of 328compensation by the upper trapezius to avoid downward scapular rotation. 329

330	The muscle activities of the trapezius and the serratus anterior muscle are important
331	factors in shoulder management. The excessive activation of the upper trapezius combined with
332	the decreased activation of the lower trapezius and the serratus anterior has been proposed to
333	be a contributor to abnormal scapular movement. ^{10,11,27} Subjects with shoulder impingement
334	syndrome or shoulder pain typically present with excessive upper trapezius activity, attenuation
335	of the lower trapezius and serratus anterior activity ^{17,26} and the scapular dysfunction at the same
336	time. ¹⁷ In the current study, however, sole increase in upper trapezius muscle activation to
337	compensate for the fatigue of the serratus anterior without the decrease in the lower trapezius
338	muscle activation induced external rotation of the scapula which is similar to the impingement-
339	sparing change. These findings suggest that single muscle dysfunction could induce alteration
340	in scapular muscle balance. Therefore, therapists need to examine scapular muscular imbalance
341	and identify not only the secondarily occurring compensation but also the primary muscle
342	dysfunction.

The present study investigated the acute effect of selective serratus anterior fatigue on shoulder muscle activity and scapular movement to increase our knowledge of shoulder biomechanics. However, it has some limitations. First, scapular kinematics up to 120° were analyzed in this study because the previous study ensured adequate reliability and validity of scapular measurement up to 120° and suggested that measurement errors increased past 120° .²⁰ Therefore, the changes in the scapular kinematics at >120° remain unclear. Second, the subjects

349	were all healthy men. Therefore, it is unclear whether our findings can be generalized to
350	selective cases of shoulder disease. Third, the degree of fatigue might not have been equal
351	among subjects, although the same duration of electrical muscle stimulation (i.e., 20 minutes)
352	was used. This may affect the results to some extent. Fourth, the fatigue induced by electrical
353	muscle stimulation would differ from the fatigue in a clinical situations to some extent. Fatigue
354	is classified into central fatigue, which occurs at central nervous system and involves central
355	activation failure, ^{3,31} and peripheral fatigue, which occurs at the intramuscular contractile
356	machinery and involves metabolic inhibition of the contractile process and excitation-
357	contraction coupling failure. ^{2,16,21} The fatigue in the current study is mainly accounted for with
358	peripheral fatigue. In other words, the current results could precisely show compensation
359	strategies in the shoulder joint in terms of biomechanics.

361 Conclusion

362	The present study showed no changes in muscle strength but decreased muscle endurance after
363	selective fatigue of the serratus anterior. Increased muscle activities of the upper trapezius,
364	infraspinatus, and serratus anterior and external rotation of scapula were noted after the fatigue
365	task at the flexed shoulder position. These findings suggest that the compensatory motion to
366	avoid the internal scapular rotation occurred due to the increased shoulder muscle activity after
367	the fatigue task.

References

370	1.	Bandholm T, Rasmussen L, Aagaard P, Jensen BR, Diederichsen L. Force steadiness,
371		muscle activity, and maximal muscle strength in subjects with subacromial
372		impingement syndrome. Muscle Nerve 2006;34:631-639. doi:10.1002/mus.20636
373	2.	Baker AL, Kostov KG, Miller RG, Weiner MW. Slow force recovery after long-
374		duration exercise: metabolic and activation factors in muscle fatigue. J Appl Physiol
375		1993;74:2294-2300.
376	3.	Bigland-Ritchie B, Jones DA, Hosking GP, Edwards RH. Central and peripheral
377		fatigue in sustained maximum voluntary contractions of human quadriceps muscle.
378		Clin Sci Mol Med 1978;54:609-614.
379	4.	Boettcher CE, Ginn KA, Cathers I. Which is the optimal exercise to strengthen
380		supraspinatus? Med. Sci. Sports Exerc 2009;41:1979–1983.
381		doi:10.1249/MSS.0b013e3181a740a7
382	5.	Borstad JD, Szucs K, Navalgund A. Scapula kinematic alterations following a modified
383		push-up plus task. Hum. Mov. Sci 2009;28:738–751. doi:10.1016/j.humov.2009.05.002
384	6.	Chaubet V, Maitre J, Cormery B, Paillard T. Stimulated and voluntary fatiguing
385		contractions of quadriceps femoris similarly disturb postural control in the bipedal
386		stance. EurJ Appl Physiol. 2012;112:1881-1887. doi:10.1007/s00421-011-2168-9
387	7.	Chopp JN, Fischer SL, Dickerson CR. The specificity of fatiguing protocols affects

388		scapular orientation: Implications for subacromial impingement. Clin. Biomech.
389		(Bristol, Avon) 2011;26:40-45. doi:10.1016/j.clinbiomech.2010.09.001
390	8.	Cook KF, Roddey TS, Gartsman GM, Olson SL. Development and psychometric
391		evaluation of the Flexilevel Scale of Shoulder Function. Med. Care 2003;41:823–835.
392		doi:10.1097/01.MLR.0000068540.82233.A8
393	9.	Cools AM, Witvrouw EE, Declercq GA, Danneels LA, Cambier DC. Scapular muscle
394		recruitment patterns: trapezius muscle latency with and without impingement
395		symptoms. Am. J. Sports Med 2003;31:542-549. doi:10.1177/03635465030310041101
396	10.	Cools AM, Declercq GA, Cambier DC, Mahieu NN, Witvrouw EE. Trapezius activity
397		and intramuscular balance during isokinetic exercise in overhead athletes with
398		impingement symptoms. Scand. J. Med. Sci. Sports 2007;17:25-33.
399		doi:10.1111/j.1600-0838.2006.00570.x
400	11.	Cools AM1, Dewitte V, Lanszweert F, Notebaert D, Roets A, Soetens B, et al.
401		Rehabilitation of scapular muscle balance: which exercises to prescribe? Am J Sports
402		Med. 2007;35:1744-1751. doi:10.1177/0363546507303560
403	12.	Cools AM, Struyf F, De Mey K, Maenhout A, Castelein B, Cagnie B. Rehabilitation of
404		scapular dyskinesis: from the office worker to the elite overhead athlete. Br J Sports
405		Med. 2014;48:692-697. doi:10.1136/bjsports-2013-092148
406	13.	De Mey K, Danneels L, Cagnie B, Van den Bosch L, Flier J, Cools AM. Kinetic chain

407		influences on upper and lower trapezius muscle activation during eight variations of a
408		scapular retraction exercise in overhead athletes. J. Sci. Med. Sport 2013;16:65–70.
409		doi:10.1016/j.jsams.2012.04.008
410	14.	Ebaugh DD, McClure PW, Karduna AR. Effects of shoulder muscle fatigue caused by
411		repetitive overhead activities on scapulothoracic and glenohumeral kinematics. J.
412		Electromyogr. Kinesiol 2006;16:224–235. doi:10.1016/j.jelekin.2005.06.015
413	15.	Ekstrom RA, Bifulco KM, Lopau CJ, Andersen CF, Gough JR. Comparing the
414		function of the upper and lower parts of the serratus anterior muscle using surface
415		electromyography. J. Orthop. Sports Phys. Ther 2004;34:235–243.
416		doi:10.2519/jospt.2004.34.5.235
417	16.	Fitts RH. Cellular mechanisms of mucle fatigue. Physiol Rev 1994;74:49-94.
418	17.	Huang TS, Ou HL, Huang CY, Lin JJ. Specific kinematics and associated muscle
419		activation in individuals with scapular dyskinesis. J Shoulder Elbow Surg
420		2015;24:1227-1237. doi:10.1016/j.jse.2014.12.022
421	18.	Jaggi A, Malone AA, Cowan J, Lambert S, Bayley I, Cairns MC. Prospective blinded
422		comparison of surface versus wire electromyographic analysis of muscle recruitment in
423		shoulder instability. Physiother. Res. Int 2009;14:17-29. doi:10.1002/pri.407
424	19.	Kamkar A, Irrgang JJ, Whitney SL. Nonoperative management of secondary shoulder
425		impingement syndrome. J. Orthop. Sports Phys. Ther 1993;17:212-224.

- 426 doi:10.2519/jospt.1993.17.5.212
- 427 20. Karduna AR, McClure PW, Michener LA, Sennett B. Dynamic measurements of three-
- 428 dimensional scapular kinematics: a validation study. J. Biomech. Eng 2001;123:184–
- 429 190. doi:10.1115/1.1351892
- 430 21. Kent-Braun JA. Central and peripheral contributions to muscle fatigue in humans
- 431 during sustained maximal effort. Eur J Appl Physiol 1999;80:57-63.
- 432 doi:10.1007/s004210050558
- 433 22. Kibler W Ben, McMullen J. Scapular dyskinesis and its relation to shoulder pain. J.
- 434 Am. Acad. Orthop. Surg 2003;11:142–151.
- 435 23. Kibler W Ben, Sciascia AD, Uhl TL, Tambay N, Cunningham T. Electromyographic
- 436 analysis of specific exercises for scapular control in early phases of shoulder
- 437 rehabilitation. Am. J. Sports Med 2008;36:1789–1798.
- 438 doi:10.1177/0363546508316281
- 439 24. Kibler W Ben, Ludewig PM, McClure PW, Michener LA, Sciascia AD. Clinical
- 440 implications of scapular dyskinesis in shoulder injury: the 2013 consensus statement
- 441 from the 'Scapular Summit'. Br J Sports Med 2013;47:877-875. doi:10.1136/bjsports-
- 442 2013-092425
- 443 25. Landis JR, Koch GG. The measurement of ovserver agreement for categorical data.
- 444 Biometrics 1997;33:159-174.

445	26.	Lin JJ, Hsieh SC, Cheng WC, Chen WC, Lai Y. Adaptive patterns of movement during
446		arm elevation test in patients with shoulder impingement syndrome. J Orthop Res
447		2011;29:653-657. doi:10.1002/jor.21300
448	27.	Ludewig PM, Cook TM. Alterations in shoulder kinematics and associated muscle
449		activity in people with symptoms of shoulder impingement. Phys. Ther 2000;80:276-
450		291.
451	28.	Ludewig PM, Cook TM, Nawoczenski DA. Three-dimensional scapular orientation
452		and muscle activity at selected positions of humeral elevation. J. Orthop. Sports Phys.
453		Ther 1996;24:57–65
454	29.	Lukasiewicza C, McClure P, Michener L, Pratt N, Sennett B. Comparison of 3-
455		dimensional scapular position and orientation between subjects with and without
456		shoulder impingement. J. Orthop. Sports Phys. Ther 1999;29:574-586
457	30.	McClure PW, Michener LA, Sennett BJ, Karduna AR. Direct 3-dimensional
458		measurement of scapular kinematics during dynamic movements in vivo. J. Shoulder
459		Elbow Surg 2001;10:269–277
460	31.	McKenzie DK, Bigland-Ritchie B, Gorman RB, Gandevia SC. Central and peripheral
461		fatigue of human diaphragm and limb muscles assessed by twitch interpolation. J
462		Physiol 1992;454:463-656
463	32.	McQuade KJ, Dawson J, Smidt GL. Scapulothoracic muscle fatigue associated with

464		alterations in scapulohumeral rhythm kinematics during maximum resistive shoulder
465		elevation. J. Orthop. Sports Phys. Ther 1998;28:74-80
466	33.	Maenhout A, DhoogeF, Van Herzeele M, Palman T, Cools A. Acromiohumeral
467		distance and 3-dimentional scapular position change after overhead muscle fatigue. J
468		Athl Train 2015;50:281-283. doi:10.4085/1062-6050-49.3.92
469	34.	Moritani T, Sherman WM, Shibata M, Matsumoto T, Shinohara M. Oxygen
470		availability and motor unit activity in humans. Eur. J. Appl. Physiol. Occup. Physiol
471		1992;64:552–556.
472	35.	Paillard T, Maitre J, Chaubet V, Borel L. Stimulated and voluntary fatiguing
473		contractions of quadriceps femoris differently disturb postural control. Neurosci Lett.
474		2010;477:48-51. dio:10.1016/j.neulet.2010.04.034
475	36.	Paine RM, Voight M. The role of the scapula. J. Orthop. Sports Phys. Ther
476		1993;18:386–391
477	37.	Paletta GA, Warner JJP, Warren RF, Deutsch A, Altchek DW. Shoulder kinematics
478		with two-plane x-ray evaluation in patients with anterior instability or rotator cuff
479		tearing. J. Shoulder Elbow Surg 1997;6:516–527
480	38.	Ponce A, Fouque F, Cahouët V, Martin A. Effect of plantar flexor muscle fatigue
481		induced by electromyostimulation on postural coordination. Neurosci Lett
482		2007;414:16-20. doi:10.1016/j.neulet.2006.10.025

483	39.	Shimo S, Sakamoto Y, Amari T, Gemma S. Validation of the shoulder36 for the
484		activities of daily living with shoulder disorders. J. Phys. Ther. Sci 2017;29:635-640.
485		doi:10.1589/jpts.29.635
486	40.	Vestergaard-Poulsen P, Thomsen C, Sinkjaer T, Stubgaard M, Rosenfalck A,
487		Henriksen O. Simultaneous electromyography and 31P nuclear magnetic resonance
488		spectroscopywith application to muscle fatigue. Electroencephalogr. Clin.
489		Neurophysiol 1992;85:402–411.
490	41.	Warner JJ, Micheli LJ, Arslanian LE, Kennedy J, Kennedy R. Scapulothoracic motion
491		in normal shoulders and shoulders with glenohumeral instability and impingement
492		syndrome. A study using Moiré topographic analysis. Clin. Orthop. Relat. Res
493		1992;285:191–199.
494	42.	Watson CJ, Schenkman M. Physical therapy management of isolated serratus anterior
495		muscle paralysis. Phys. Ther 1995;75:194–202.
496	43.	Wu G, van der Helm FCT, (DirkJan) Veeger HEJ, Makhsous M, Van Roy P, Anglin C,
497		et al. ISB recommendation on definitions of joint coordinate systems of various joints
498		for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand. J.
499		Biomech 2005;38:981–992. doi:10.1016/j.jbiomech.2004.05.042
500		

502 Figure and Table Legends

Figure 1. Measurement posture of the muscle endurance test. Participants sat and flexed the shoulder 90°, fully extended the elbow, and kept the trunk upright while holding a dumbbell corresponding to 40% of the muscle strength as long as possible.

506

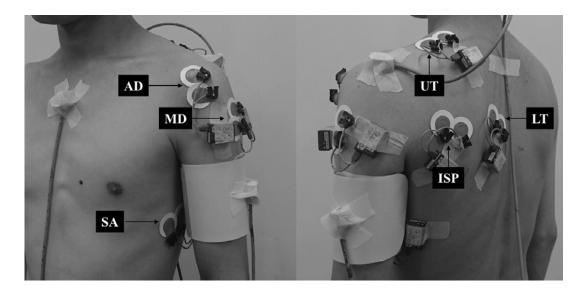
Figure 2. Locations of EMG electrodes for each muscle. AD, anterior deltoid muscle; MD,
middle deltoid muscle; UT, upper trapezius muscle; LT, lower trapezius muscle, ISP,
infraspinatus muscle; SA, serratus anterior muscle.

510

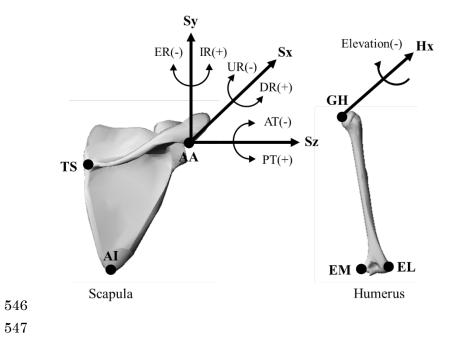
Figure 3. Definition of the coodinate system and motions relative to the thorax for the scapula 511and humerus. In the local coordinate system of the scapula, the Sx axis was perpendicular to 512the plane defined by the TS, AA, and AI; Sy-axis was defined as the cross product of the Sx-513axis and Sz-axis; and Sz-axis was directed from the TS to the AA. In the local coordinate system 514of the humerus, the Hx-axis was perpendicular to the plane defined by the GH, LH, and MH. 515TS, trigoum spina scapula; AA, acromial angle; AI, inferior angle; GH, glenohumeral rotation 516center; EL, lateral epicondyle; EM, medial epicondyle; ER, external rotation, IR, internal 517rotation; UR, upward rotation; DR, downward rotation; AT anterior tilt; PT, posterior tilt. 518

519

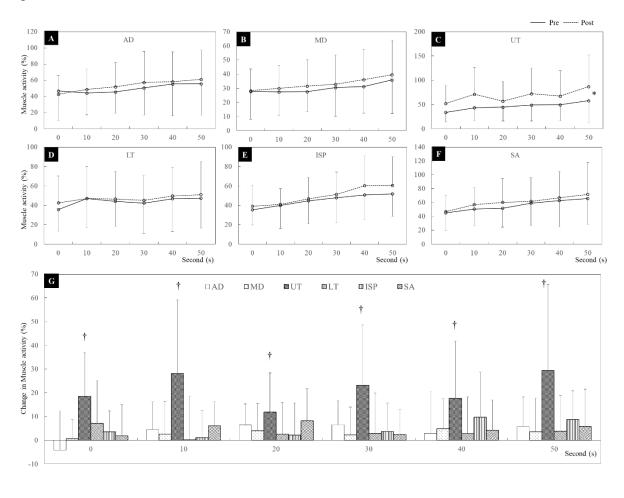
520 Figure 4. Muscle activity and amount of change of muscle activity at the flexed shoulder


521	position. AD, anterior deltoid (A); MD, middle deltoid (B); UT, upper trapezius (C); LT, lower
522	trapezius (D); ISP, infraspinatus (E); SA, serratus anterior (F); Change in muscle activities (G);
523	Pre, the value of pre-fatigue task; Post, the value of post fatigue task. The asterisk represents
524	the significant main effect and indicated that the value of Post is significantly greater than that
525	of Pre. The dagger represents the significant main effect and indicates that the changes in UT
526	was significantly greater than that of other muscles.
527	
528	Figure 5. Scapular kinematics at the flexed shoulder position. Left, internal/external rotation of
529	the scapula; middle, downward/upward rotation of the scapula; right, posterior/anterior tilt. The
530	solid line and the dotted line represent the values of the scapula in pre- and post-fatigue,
531	respectively. The asterisk indicates the significant main effect of the period and that the external
532	rotation after the fatigue task was significantly greater than that before it.
533	
534	Table 1. Muscle strength and endurance and MDPF of the serratus anterior before versus after
535	the fatigue task.
536	
537	Table 2. MDPF of all muscles but the serratus anterior before versus after the fatigue task.
538	

539 Figure 1

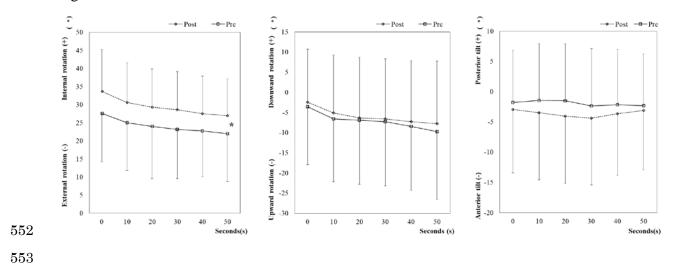

540 541

542 Figure 2



543

545 Figure 3



548 Figure 4

 $\begin{array}{c} 549 \\ 550 \end{array}$

551 Figure 5

Table 1

	Muscle strength (Nm)		Muscle endurance (sec)		MDPF of serratus anterior	
	Fatigue	Control	Fatigue	Control	Fatigue	Control
Pre	57.5±13.5	58.3±10.8	80.7±13.0	77.0±17.1	59.8±7.2	59.0±10.8
Post	58.2±12.2	57.6±11.6	66.5±15.3*	76.7±16.7	51.2±6.0*	59.1±11.0
Interaction	F = 1.08, P = .32		F = 16.91, P < .001		F = 41.92, P < .001	
Main offerst	Period: F < 0.01, P = .97		Period: F = 15.53, P < .001		Period: F = 73.72, P < .001	
Main effect	Limb: F < 0.01, P = .98		Limb: F = 0.78, P = .42		Limb: F = 2.92, P = .11	

555 Fatigue, fatigue limb; Control, control limb; Pre, the value of pre fatigue task; Post, the value 556 of post fatigue task. The asterisk indicates that the value of Post is significantly lower than that 557 of Pre.

558

MDPF (Hz)	AD	MD	UT	LT	ISP
Pre	78.9±12.7	68.5±10.5	68.6±10.6	52.1±9.9	101.4±23.7
Post	80.3±12.8	68.0±11.7	71.3±11.6	52.1±9.6	101.7±21.6
P value	P = .30	P = .69	P = .02	P = .99	P = .93

560 Table 2

AD, anterior deltoid; MD, middle deltoid; UT, upper trapezius; LT, lower trapezius; ISP, infraspinatus; Pre, the value of pre fatigue task; Post, the value of post fatigue task.

563