

Title	Loss of olfaction in sea snakes provides new perspectives on the aquatic adaptation of amniotes
Author(s)	Kishida, Takushi; Go, Yasuhiro; Tatsumoto, Shoji; Tatsumi, Kaori; Kuraku, Shigehiro; Toda, Mamoru
Citation	Proceedings of the Royal Society B: Biological Sciences (2019), 286(1910)
Issue Date	2019-09-04
URL	http://hdl.handle.net/2433/244023
Right	This is the accepted manuscript of the article, which has been published in final form at https://doi.org/10.1098/rspb.2019.1828; This is not the published version. Please cite only the published version. この 論文は出版社版でありません。引用の際には出版社版を ご確認ご利用ください。
Туре	Journal Article
Textversion	author

2	
3	Authors: Takushi Kishida ^{1*} , Yasuhiro Go ^{2,3} , Shoji Tatsumoto ^{2,3} , Kaori Tatsumi ⁴ , Shigehiro
4	Kuraku ⁴ , Mamoru Toda ⁵
5	
6	Affiliations:
7	¹ Wildlife Research Center, Kyoto University, 2-24 Tanaka Sekiden-cho, Sakyo, Kyoto 606-
8	8203, Japan
9	² Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of
10	Natural Sciences, Okazaki, Aichi 444-8585, Japan
11	³ National Institute for Physiological Science, Okazaki, Aichi 444-8585, Japan
12	⁴ RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
13	⁵ Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa 903-0213,
14	Japan
15	*Corresponding author: Takushi Kishida (e-mail: takushi@zoo.zool.kyoto-u.ac.jp)
16	
17	
18	
19	
20	Key Words: OR, V1R, V2R, TAAR, amphibious, fully aquatic

Loss of olfaction in sea snakes provides new perspectives on the aquatic adaptation of amniotes

21 Abstract

22 Marine amniotes, a polyphyletic group, provide an excellent opportunity for studying 23 convergent evolution. Their sense of smell tends to degenerate, but this process has not been 24 explored by comparing fully-aquatic species with their amphibious relatives in an evolutionary 25 context. Here, we sequenced the genomes of fully-aquatic and amphibious sea snakes, and 26 identified repertoires of chemosensory receptor genes involved in olfaction. Snakes possess 27 large numbers of the *olfactory receptor* (OR) genes and the type-2 vomeronasal receptor (V2R) 28 genes, and expression profiling in the olfactory tissues suggests that snakes use the ORs in the main olfactory system (MOS) and the V2Rs in the vomeronasal system (VNS). The number of 29 OR genes has decreased in sea snakes, and fully-aquatic species lost the MOS which is 30 responsible for detecting airborne odors. In contrast, sea snakes including fully-aquatic species 31 32 retain a number of V2R genes and a well-developed VNS for smelling underwater. This study 33 suggests that the sense of smell also degenerated in sea snakes, particularly in fully-aquatic species, but their residual olfactory capability is distinct from that of other fully-aquatic 34 35 amniotes. Amphibious species show an intermediate status between terrestrial and fully-aquatic 36 snakes, implying their importance in understanding the process of aquatic adaptation. 37 38 39 40

42

41

44 BACKGROUND

45

46	Shifts between terrestrial and aquatic lifestyles are among the most striking types of
47	evolutionary transitions in the history of life. Vertebrates invaded land during the Devonian to
48	the Carboniferous in two steps: first, they became amphibious (<i>i.e.</i> , both aquatic and terrestrial
49	habitats are required) with the emergence of tetrapods, and then they adapted for terrestriality
50	with the emergence of amniotes [1]. Among groups containing mostly terrestrial amniotes, there
51	are several groups which re-adapted to the aquatic habitat independently from each other.
52	Amniotes are also suggested to have re-invaded water from land with two major steps: they
53	become amphibious prior to the completion of aquatic invasion. For example, all extant
54	cetaceans are fully-aquatic but their intermediate ancestors from the Early Eocene were
55	amphibious [2] (Fig. 1). Marine elapids (Suborder Serpentes, Order Squamata, Class Reptilia),
56	collectively called sea snakes, consist of two monophyletic clades, Laticaudini and Hydrophiini.
57	Laticaudins are oviparous and lay eggs on land, whereas hydrophiins are viviparous and spend
58	all their life in water. Both groups have a paddle-shaped tail adapted to aquatic locomotion, but
59	laticaudins retain enlarged ventrals required for terrestrial locomotion which hydrophiins lost
60	[3]. Although recent studies suggested that laticaudins and hydrophiins adapted to the marine
61	habitat independently, these two clades are phylogenetically close to each other with a
62	divergence time of approx. 12–20 million years ago [4-7]. Thus, sea snakes provide an excellent
63	study system of aquatic adaptation because phylogenetically closely related fully-aquatic and
64	amphibious species can be compared directly.

Aquatic amniotes offer a valuable opportunity for studying convergent evolution because
evolutionary hypotheses of specific adaptation can be tested for multiple aquatic groups that
migrated from land to water independently to each other [8, 9]. One of the most remarkable
differences between terrestrial and aquatic vertebrates involves the sense of smell. Broad taxa of

69 vertebrates detect odorants mainly using four major groups of G-protein coupled receptors 70 (GPCRs) encoded by different multigene families: olfactory receptors (ORs), trace amine-71 associated receptors (TAARs) and two types of vomeronasal receptors (V1Rs and V2Rs) [10]. It 72 has been hypothesized that olfactory GPCRs are functionally divided into two groups, receptors 73 for airborne molecules and those for water-soluble molecules [10, 11]. The OR gene repertoire 74 changed drastically in our ancestors during their transition from water to land, and amphibians 75 show an intermediate form. Modern anurans retain mostly ancestral OR gene subfamilies for 76 detecting water-soluble molecules which amniotes lost, but they also share newly diverged OR 77 gene subfamilies with amniotes which are considered to detect airborne odorants [12-14]. 78 Aquatic tadpoles (larvae of amphibians) possess olfactory organs for smelling underwater, but 79 extreme remodeling occurs during metamorphosis to meet the requirement of the adult lifestyle, and adult anurans develop a so-called "air nose" for smelling in the air [15], in which the newly-80 81 diverged OR genes are expressed [16]. The OR genes possessed by terrestrial amniotes are 82 prone to secondary loss from the genomes of aquatic amniotes [17-21], and extant toothed 83 whales possess no olfactory nervous systems [22]. Baleen whales, the other group of extant 84 cetaceans, still possess a functional olfactory system, but anatomical, histological and genomic 85 studies suggest that they cannot smell underwater and their olfactory capability is highly limited 86 [23-26]. However, olfactory capabilities of non-cetacean aquatic amniotes remain largely elusive. Furthermore, no extensive studies on genomes of amphibious amniotes have ever been 87 compared and contrasted with those of fully-aquatic relatives, in spite of their importance upon 88 89 aquatic adaptation. Here, we sequenced and assembled the genomes of fully-aquatic and 90 amphibious sea snakes. Olfactory GPCR genes were identified in each genome assembly, and 91 the expression profiling of these receptors was performed. Our present study explores the 92 genomic traces of evolution of olfaction in sea snakes and provides new perspectives on the 93 aquatic adaptation of amniotes.

95

96 RESULTS

97

98 Sea snake genome assemblies

99 We sequenced and assembled the genomes of two hydrophiins (Hydrophis melanocephalus and

100 *Emydocephalus ijimae*) and two laticaudins (*Laticauda laticaudata* and *L. colubrina*). These

101 genome assemblies are estimated to contain at least 90% of all protein-coding genes (including

those recognized as 'Fragmented' by BUSCO [27, 28] or 'Partial' by CEGMA [29]) based on

103 completeness assessments using an one-to-one reference ortholog set (Table S1).

104 Different methodologies were employed for performing *de novo* assembly of the genomes of

105 four snakes (see Materials and Methods for detail). We assembled the genome of *L. colubrina*

based on the linked-read sequencing technology [30, 31]. It is known that this method allows us

107 to generate relatively long genome sequences of diploid species with a single library for short

108 read sequencing [32]. Among the four species sequenced in this study, the L. colubrina

assembly shows the largest scaffold N50 length (3.1 Mbp) and completeness score of one-to-

110 one ortholog coverage (Table S1). However, the proportion of truncated genes in the *L*.

111 *colubrina* genome assembly do not differ greatly in comparison with other assemblies (Table

S2). Consistently, the contig N50 lengths do not largely vary between the assemblies of the fourspecies (Table S1).

114

115 Olfactory GPCR gene repertoires in snake genomes

116 We identified the olfactory GPCR genes in the genome assemblies of sea snakes and their

117 terrestrial relatives. Snakes possess large numbers of *OR*s and *V2R*s, which vary between

species (mean numbers of intact *ORs* and *V2Rs* are 194 ± 136 and 240 ± 136 [mean \pm standard

deviation, calculated using all snake species shown in Fig. 2], respectively), whereas the

120 numbers of *TAARs* and *VIRs* are small and comparable across species (snakes possess only two

- 121 or three intact *TAARs* and two intact *VIRs*, as described below) (Fig. 2).
- 122 Sea snakes possess a smaller number of intact OR genes with higher proportions of pseudogenes
- 123 (Table S2) compared with terrestrial snakes (mean number of intact ORs of hydrophiins: $63.5 \pm$
- 124 14.9, laticaudins: 114 ± 12.7 , terrestrial snakes: 335 ± 40.8 [mean \pm standard deviation]) mainly
- due to massive loss of the OR genes in the sea snake lineages (Fig. 3A). They also possess a
- relatively small number of intact V2Rs, but the numbers of intact V2R genes vary greatly
- 127 between species (mean number of intact V2Rs of hydrophiins: 137 ± 95 , laticaudins: $177.5 \pm$
- 128 121, terrestrial snakes: 351 ± 104 [mean \pm standard deviation]), and massive gain of the V2R
- 129 genes is observed in two species of sea snakes, *E. ijimae* and *L. colubrina* (Fig. 3B). Snakes
- 130 possess two intact TAARs (TAAR1 and TAAR5). In addition, terrestrial snakes and laticaudins
- 131 possess one more intact *TAAR* gene (*TAAR2*, which is pseudogenized in the hydrophiin
- 132 genomes). All snakes including sea snakes (except for the common viper) possess two intact
- 133 *VIRs*, the *ancVIR* [33] and a *VIR* gene which is not orthologous to the mammalian *VIRs*

134 (Squamata-V1R, Fig. S1).

135

136 Expression of the olfactory GPCR genes

137 There are two anatomically distinctive olfactory systems in terrestrial snakes, the main olfactory

138 system (MOS) and the vomeronasal system (VNS). The olfactory epithelium of the MOS (the

139 main olfactory epithelium) is located in the nasal cavity (NC), and that of the VNS (the

140 vomeronasal epithelium) is located in the vomeronasal organ (VNO) [34]. The snake tongue

also plays a role in the VNS by delivering chemicals to the VNO [34]. We performed

142	transcriptome sequencing with RNA-seq on these potential olfactory organs of L. laticaudata
143	and H. melanocephalus. The expression pattern of these genes in L. laticaudata suggests that
144	most of ORs are used in the MOS, while V2Rs function in the VNS (Fig. 4). It is noted that
145	some pseudogenes are also expressed in the olfactory organs, coinciding with previous reports
146	(e.g. Zhang et al. [35]). Expression levels of VIRs and TAARs suggest that the ancVIR is
147	expressed in the VNO of both species, and the TAAR2, which is pseudogenized in the
148	hydrophiin genomes, is expressed in the NC of L. laticaudata (Table S3).
149	An intact OR gene is expressed in the tongue in each snake species (Fig. 4, indicated by arrows).
150	The arrowed gene of Hydrophis and that of Laticauda are orthologous to each other. All
151	squamates investigated in this study (except for Emydocephalus) possess one-to-one
152	orthologues of this OR gene (Fig. S2).
153	
155	
154	
155	DISCUSSION
156	

157 **Evolution of the main olfactory system**

158 The repertoires and expression pattern of the olfactory GPCR genes shown in this study suggest

that snakes mainly use *OR*s in the MOS and *V2R*s in the VNS. It has been widely considered

160 that the VNS is the predominant chemosensory system in snakes, being more responsible than

- 161 the MOS for their sense of smell [34, 36]. However, in our results, the numbers of intact ORs
- and *V2R*s are almost comparable among terrestrial snakes (Fig. 2), implying that terrestrial
- snakes potentially detect and discriminate as many chemicals using the MOS as using the VNS.

164 Sea snakes possess an apparently smaller number of intact OR genes compared with terrestrial 165 snakes, and our phylogenetic analysis suggests that it is mainly because of massive loss of the 166 OR genes in the sea snake lineages after the king cobra-sea snakes split (Fig. 3A). Although the most recent common ancestor of hydrophiins and laticaudins, which lived on land, was also 167 168 estimated to possess a smaller number (205) of intact OR genes than other terrestrial snakes (Fig. 169 3A), it is possible that hydrophiins and laticaudins lost OR orthologs in their unique lineages 170 independently. In any case, massive loss of OR genes was also confirmed in both hydrophiin 171 and laticaudin lineages after the Hydrophiini-Laticaudini split, coinciding with their transition 172 from land to water. Amphibious carnivorans (pinnipeds and otters) and fully-aquatic cetaceans 173 were also estimated to have lost a large number of intact OR genes when they migrated from 174 land to water [21, 24], showing a remarkable case of convergent evolution on becoming aquatic. 175 Although both hydrophiins and laticaudins possess fewer intact OR genes, their expression 176 patterns are different from each other. Most of the OR genes possessed by L. laticaudata are 177 expressed in the NC, while those possessed by H. melanocephalus are not (Fig. 4). This contrast 178 indicates that most of the OR genes possessed by hydrophiins do not have olfactory function, 179 and that hydrophiins lost a functional MOS. Loss of the MOS in hydrophiins is also supported 180 by the evolution of the TAAR genes — the TAAR2 gene, which is expressed in the NC of 181 laticaudins (Table S3), is pseudogenized in the hydrophiin genomes. Histological studies 182 showed that a relative size of the olfactory region in the NC is highly reduced in sea snakes, and particularly, that of hydrophins lacks an external nasal gland which lubricates the olfactory 183 epithelium [37, 38]. The role of the MOS is poorly understood in snakes, but these findings 184 185 suggest that the MOS became less useful for snakes to sense surrounding environment on becoming aquatic, and it was completely lost in fully-aquatic hydrophiins, probably because the 186 187 snake MOS functions only in the air.

189 Evolution of the vomeronasal system

190 The evolutionary pattern of the gain and loss of V2R genes differs from that of ORs in snakes. 191 Although sea snakes possess a relatively small number of intact V2Rs, the numbers of intact 192 V2R genes vary largely even among hydrophiins and laticaudins (Fig. 2). Snakes are known to 193 have a pair of well-developed vomeronasal organs [34, 37], and fully-aquatic hydrophiins are no 194 exception [37-39]. Most of the intact V2Rs are expressed in the VNO even in the case of 195 hydrophiins (Fig. 4). The snake VNO is linked to the oral cavity, and snakes deliver odor 196 molecules to their VNOs through tongue-flicking [36]. Underwater tongue-flicking is widely 197 observed among squamates [37] including hydrophins [37, 40], and Hydrophis can distinguish 198 fish species solely by tongue-flicking [41]. All these pieces of evidence strongly suggest that the 199 hydrophiin VNS is functional, and that sea snakes can smell underwater through tongue-flicking. 200 A recent study reported that presence/absence of a VIR gene named ancVIR corresponds to 201 presence/absence of the functional VNO among tetrapods [33]. We found an intact VIR gene 202 orthologous to the ancVIR in each snake genome (Fig. S1), and expression of this VIR in the 203 VNO is confirmed in hydrophiins (Table S3), supporting the suggestion that the hydrophiin 204 VNS is functional. Gene duplication and loss of the V2R genes are more frequent than that of 205 OR genes, and massive gain of the V2Rs is observed even in two species of sea snakes, E. ijimae 206 and L. colubrina (Fig. 3B). Previous studies showed that Emydocephalus relies heavily on the 207 VNS for foraging [40], while not only olfaction but vision plays an important role for 208 Hydrophis to find prey [41]. This implies that Emydocephalus relies more on olfaction than 209 Hydrophis, which is consistent with our results that *Emydocephalus* possesses a larger number 210 of intact V2Rs than Hydrophis. Olfactory capabilities through the VNS may differ largely 211 between snake species including sea snakes.

We found an *OR* gene expressed in the tongue. This gene is conserved among snake species,implying that the function of this OR is evolutionarily maintained and important for snakes.

214 Unlike most of other OR genes, the expression of this gene is confirmed even in hydrophiins

(Fig. 4). Snakes do not use the tongue as a gustatory organ because it lacks taste buds [36]. Still,

the tongue may be used as a chemosensory organ which enables efficient tongue-flicking of

snakes. Further studies are required for testing this hypothesis.

218

219 Olfactory capabilities of sea snakes

220 In this study, we investigated the molecular basis of snake olfaction and showed the presence of 221 the VNS but absence of the MOS in fully-aquatic hydrophiins. Although hydrophiins cannot 222 smell in the air using the MOS, they smell underwater using the VNS. To our knowledge, 223 hydrophiins are the only vertebrates which possess a functional VNS without presence of a 224 MOS. The functional VNS is absent from all extant fully-aquatic mammals (cetaceans and 225 sirenians) though their terrestrial relatives (artiodactyls and terrestrial afrotherians) have it [42], 226 indicating that the VNS is required only on land in most mammals. However, squamates are 227 suggested to smell underwater using the VNS. This may be because V2Rs, which are abundant 228 in diverse aquatic vertebrates and putatively detect water-soluble molecules, are predominant in 229 squamate genomes over VIRs, which have diversified in mammals after their terrestrial invasion 230 to detect odorants on land [43-47]. Modern anurans, particularly in the larval form, also use the 231 VNS for smelling underwater [15] with the VNOs in which V2Rs are predominantly expressed 232 [47-49].

233 The olfactory capability of amphibious laticaudins is speculated to be an intermediate between

terrestrial snakes and hydrophiins: they still possess a functional MOS, but their *OR* gene

235 repertoire has largely degenerated. This is consistent with our assumption that amphibious

236 species are intermediates between fully-terrestrial and fully-aquatic. Amphibious mammals also

tend to show intermediate status between fully-terrestrial and fully-aquatic mammals. For

example, the majority of pinnipeds retain putatively functional VNS, while some species suchas harbor seals lack it [50]. Careful interpretation is required for amphibious species when

241

240

242 <u>Comparison among fully-aquatic amniotes</u>

studying convergent evolution among marine amniotes.

243 Our results show that hydrophiins, which adapted to water independently from aquatic 244 mammals, also reduced olfaction profoundly. However, the residual olfactory abilities are very 245 different between fully-aquatic mammals and hydrophiins. Baleen whales smell in the air using 246 a highly degenerated but functional MOS [23, 26]. Little is known about olfactory capacities of 247 sirenians, but they also possess a putatively functional though degenerated MOS [42, 51], and 248 their olfactory anatomy suggests that they smell in the air, not underwater [51]. On the other 249 hand, hydrophiins possess well-developed VNOs, and behavioral studies suggest that they smell 250 underwater using the VNS [40, 41] (Table 1). The well-developed underwater-functional VNS 251 of sea snakes is derived from the V2R-predominant well-developed snake VNS, and the 252 difference of the olfactory capabilities between hydrophiins and fully-aquatic mammals is 253 explained by the difference of the olfactory capabilities between their terrestrial ancestors. 254 Underwater olfaction might have been favored by natural selection if it was adaptive for whales 255 and sirenians to survive in water, but they have never acquired underwater-functional olfactory 256 systems. This shows a striking contrast with the terrestrial adaptation of vertebrates. Tetrapods 257 modified their olfactory organs and generated novel OR gene subfamilies for smelling in the air 258 when they migrated from water to land [13, 15]. In addition, adults of secondarily aquatic pipid 259 frogs acquired an additional olfactory epithelium called "water nose" for smelling underwater 260 [47, 52-54]. But no amniotes are known to have modified their olfactory organs for sensing the newly invaded environment upon aquatic adaptation. Histological and genomic studies imply 261 262 that whales lack innate avoidance behavior against predator odors probably because their

predators cannot be detected by smelling in the air [24, 25]. Amniotes belonging to various taxa
have to adapt themselves to handle similar problems inflicted by their new environment upon
aquatic adaptation. However, not only the ecological demands but phylogenetic backgrounds
play important roles in the formation of sensory modalities in this process.
MATERIALS and METHODS
Specimens
The following specimens were used for DNA/RNA extraction. Specimens used for genome
sequencing were not used for RNA extraction in order to save all internal/external organs for
future studies. All specimens used in the study are deposited in the Zoological Collection of the
Kyoto University Museum (KUZ) with the specimen vouchers shown below.
Laticauda laticaudata Linnaeus 1758 (blue-lipped sea krait, Laticaudini)
1. specimen voucher: KUZ R72402, sex: male, locality: Okinawa Island, Japan (genome
sequencing, Fig. S3A).
2. specimen voucher: KUZ R68692, sex: female, locality: Okinawa Island, Japan (RNA
sequencing).
Hydrophis melanocephalus Gray 1849 (slender-necked sea snake, Hydrophiini)
1. specimen voucher: KUZ R72403, sex: male, locality: Okinawa Island, Japan (genome
sequencing, Fig. S3B).

284	2. specimen voucher: KUZ R73056, sex: female, locality: Okinawa Island, Japan (RNA
285	sequencing).
286	Laticauda colubrina Schnieder 1799 (yellow-lipped sea krait, Laticaudini)
287	Specimen voucher: KUZ R77260, sex: male, locality: Ishigaki Island, Japan (genome
288	sequencing).
289	Emydocephalus ijimae Stejneger 1898 (turtlehead sea snake, Hydrophiini)
290	Specimen voucher: KUZ R72604, sex: male, locality: Okinawa Island, Japan (genome
291	sequencing).
292	
293	DNA extraction, sequencing and performing <i>de novo</i> assembly
294	DNA was extracted manually, following the methods of Blin and Stafford [55] with
295	modifications, from muscle tissues of specimens KUZR72402, KUZR72403 and KUZR72604.
296	Whole-genome shotgun (WGS) sequences were generated using Illumina platforms. Paired-end
297	libraries were prepared using the TruSeq DNA PCR-free Sample Prep kit (Illumina) (specimen
298	KUZR72604) and the TruSeq Nano DNA Sample Prep kit (Illumina) (KUZR72402 and
299	KUZR72043). Mate-pair libraries were prepared following Tatsumi et al. [56] having a size
300	range of 6-10 kb with a peak of around 7 kb. A PacBio RS II sequencer was also employed for
301	sequencing the L. laticaudata genome using the PacBio DNA Template Prep Kit 1.0 (Pacific
302	Biosciences). The details of sequencing results are provided in Table S4, and k-mer frequency
303	spectrum of the WGS reads of each specimen is shown in Fig. S4. Platanus_trim and
304	Platanus_internal_trim [57] were employed to trim low-quality regions and adapters of paired-
305	end and mate-pair sequences respectively with default parameters, except for reads of L.
306	colubrina. Regarding PacBio long-reads, following filtering criteria were used to obtain

307 subreads from the polymerase reads: minimum subread length 50, minimum polymerase read 308 quality 0.75. For the L. colubrina (specimen KUZR77260), high-molecular weight (HMW) 309 DNA was extracted from the liver using Nuclei PURE Prep Kit (Sigma). Using the Chromium System (10xGenomics), a linked-read library was constructed from 1.25 ng of HMW DNA of 310 311 50 kb or longer. The library was sequenced on an Illumina HiSeq platform, and then processed 312 using Supernova v1.2.2[30, 31] with default settings. Assembling the L. laticaudata genome: Trimmed paired-end reads were used to construct contig assembly using the PLATANUS v1.2.4 313 314 [57] with a step size of k-mer extension set at 1. Scaffolds were constructed based on this contig 315 assembly using the Redundans v0.12c [58]. Finally, the PacBio subreads were merged, and gap-316 closing was performed using the PBJelly software in the PBSuite package v15.8.24 [59, 60]. 317 The H. melanocephalus genome: PLATANUS v1.2.4 [57] was employed for contig assembling, scaffolding and gap-closing with step size of k-mer extension set to be 1. Only paired-end reads 318 319 were used for contig assembling, and then mate-pair reads were added for scaffolding and gap-320 closing. The E. ijimae genome: SOAPdenovo2 [61] was employed for contig assembling, 321 scaffolding and gap-closing with a k-mer set to be 81. Completeness of these genome 322 assemblies was evaluated using CEGMA v2.5 [29] and BUSCO v3 [27, 28] referring to the 323 ortholog set CVG [62].

324 In addition to these sea snake genome assemblies, genome assemblies of terrestrial snakes

325 closely related to sea snakes [king cobra Ophiophagus hannah (Elapidae, GenBank Accession

326 GCA_000516915.1), garter snake *Thamnophis sirtalis* (Colubridae, GCA_001077635.2) and

327 common viper Vipera berus (Viperidae, GCA_000800605.1)] and a green anole Anolis

328 *carolinensis* (Iguanidae, GCA_000090745.2) were obtained from the GenBank FTP server.

329

330 Identification of the olfactory GPCR genes

331 **OR:** The OR genes were searched against the genome assemblies of seven snake species (four 332 sea snake genomes assembled in this study, and three terrestrial snake genomes retrieved from 333 the GenBank) using the TBLASTN program in the BLAST+ v2.6.0 package [63] with the cutoff *E*-value of 1×10^{-5} . Deduced amino acid sequences of all intact *OR* genes of the green 334 335 anole and the western clawed frog identified by Niimura [64] were used as queries. Each 336 sequence thus obtained was searched against the NCBI protein database using the BLASTX 337 program and was discarded if its best hit was not an OR. A sequence was judged to be a non-338 functional pseudogene if the sequence was interrupted by premature stop codon(s) and/or frame 339 shift(s), or it lacked five or more consecutive amino acids including a trans-membrane domain. 340 If a sequence was interrupted by contig-gap(s) although it was not judged to be a pseudogene, it 341 was labeled as 'truncated'. The OR gene repertoires of the anole and the python were retrieved from the dataset provided by Vandewege et al. [65] 342

TAAR and *V1R*: Essentially a uniform method employed to find the *OR* genes was used to
identify intronless *TAAR* and *V1R* genes from the genome assemblies of seven snakes and a
green anole with following amino acid sequences as queries: *TAAR*, all intact mammal TAARs
identified by Kishida *et al.* [24]; *V1R*, all intact vertebrate V1Rs identified by Zapilko and
Korsching [46].

V2R: Only the longest exon (3rd exon, approx. 800 bp) of *V2R* genes was analyzed in this study
because *V2R*s are multi-exon genes and it is difficult to identify all exons derived from a *V2R*gene if exons are scattered in two or more scaffolds. Using deduced amino acid sequences of the
3rd exon of all intact vertebrate *V2R* genes identified by Shi and Zhang [43] as queries, *V2R*sequences were searched and identified based on the same method employed to identify *OR*genes.

355 **RNA extraction, sequencing and expression analyses**

- 356 Total RNA was extracted from three potential olfactory organs (the VNO, the NC and the
- tongue) and the liver (as a negative control) of specimens KUZR68692 (L. laticaudata) and
- 358 KUZR73056 (*H. melanocephalus*) using the RNeasy Mini kit (Qiagen) and following the
- 359 manufacturer's guidelines. Regarding the NC, we sampled entire tissues around the NC broadly
- 360 from both specimens for RNA extraction because the olfactory epithelia of both specimens were
- hard to be located exactly. It is noted that this might cause reduction of the estimated expression
- 362 level of chemosensory receptors due to contamination of non-olfactory tissues. The extracted
- 363 RNA was used to construct paired-end sequencing libraries using the TruSeq RNA Sample Prep
- 364 Kit v2 (Illumina), and these libraries were sequenced using an Illumina HiSeq platform
- 365 (2×101bp). As a result, the following sizes of RNA-seq reads were obtained: [KUZR68692]
- 366 VNO 5.19 Gbp, NC 5.27 Gbp, tongue 5.91 Gbp, liver 5.24 Gbp; [KUZR73056] VNO 4.73 Gbp,
- 367 NC 5.74 Gbp, tongue 5.38 Gbp, liver 8.46 Gbp. Low-quality sequences and adapters were
- 368 removed using the Trimmomatic v0.36 [66] with the following parameters:
- 369 ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10, LEADING:20, TRAILING:20,
- 370 SLIDINGWINDOW:5:25 and MINLEN:36. Trimmed RNA-seq reads were mapped to the
- 371 conspecific genome assembly using HISAT2 [67] v2.1.0 with default parameters. Gene
- expression levels were quantified with FPKM values using Cufflinks [68, 69] v2.2.1 after
- 373 removal of duplicated reads.
- 374

375 <u>Phylogenetic analyses</u>

376 Deduced amino acid sequences were aligned using the L-INS-i program in the MAFFT package

v7.266 [70], and gap sites were excluded from further analyses. Trees were inferred using the

neighbor-joining method [71] based on the Poisson-corrected distance matrices. Evolutionary

379	changes in the number of $OR/V2R$ genes were inferred using the reconciled tree method [72].
380	Amniote ORs are clearly classified into two classes, class I and class II [73]. All intact OR genes
381	were classified into 35 clades identified by Niimura and Nei (a class I clade and 34 class II
382	clades) [72] based on sequence similarities, and a calculation was performed for each clade
383	separately. Eight human class I ORs (OR51Q1, OR51G1, OR51L1, OR51I1, OR52K1,
384	OR52H1, OR52B4, OR56A1) retrieved from the HORDE database [74] build #44 were used as
385	outgroups for class II OR trees; 16 human class II ORs (OR1C1, OR1Q1, OR2C1, OR5F1,
386	OR5J2, OR5P3, OR6B2, OR6N1, OR7D4, OR8D2, OR8U1, OR9Q2, OR10A3, OR10K1,
387	OR11H4, OR13D1) for a class I OR tree. Vandewege et al. [65] reported the OR gene repertoire
388	of a python, a phylogenetically distant snake species which possesses much larger number of
389	intact OR genes (481) than that of any snakes investigated in this study. We included the python
390	intact ORs identified by them for this analysis to estimate the ancestral OR gene repertoires
391	thoroughly. V2R genes were classified into two clades (families C and non-C [44]) based on a
392	phylogenetic tree using green anole Tas1Rs (Tas1R1; GenBank accession no. XM_016998922,
393	Tas1R2; XM_008124605, Tas1R3; XM_003228934) as outgroups, and the evolutionary gains
394	and losses of non-C V2Rs were calculated using the family-C V2Rs as outgroups. Because all
395	snakes possess exactly one family-C V2R, we concluded that the number of family-C V2R did
396	not change through the evolution of snakes. Bootstrap values were obtained by 500 resamplings,
397	and a bootstrap value of 70% was used as a threshold for reconciliation. Truncated genes and
398	pseudogenes were excluded from this calculation. Phylogenetic trees of class I and class II OR
399	genes are shown in Figs. S5 and S2 respectively, and changes in the number of class I and class
400	II OR genes are shown in Fig. S6.

404 Acknowledgements

We are grateful to Prof. Tsutomu Hikida for helping dissection of snakes; Takahide Sasai, Koji
Mochida and members of Tropical Biosphere Research Center, University of the Ryukyus for
supporting sampling and fixation of specimens; Dr. Rob Ogden for checking the English of the
text; reviewers of this manuscript for helpful comments. Computations were partially performed
on the NIG supercomputer at ROIS National Institute of Genetics.
Data accessibility

- 412 Specimens: Zoological Collection of the Kyoto University Museum (KUZ) with specimen
- 413 vouchers KUZ R68692, R72402, R72403, R72604, R73056 and R77260. Sequencing data and
- 414 assembled genome sequences: GenBank BioProject accessions PRJDB7221 (E. ijimae genome
- 415 sequencing), PRJDB7226 (L. laticaudata genome sequencing), PRJDB7271 (H.
- 416 melanocephalus genome sequencing), PRJDB7284 (L. colubrina genome sequencing),
- 417 PRJDB7257 (L. laticaudata RNA-seq) and PRJDB7258 (H. melanocephalus RNA-seq). The
- 418 locus of each gene (Supplemental Tables S6-S13) and amino acid sequences of intact olfactory
- 419 GPCRs (Supplemental Data S1) identified in this study: Dryad doi:10.5061/dryad.t8sm4m6 [78].

420

421 Funding

- 422 This work was supported by JSPS KAKENHI [grant numbers 15K07184 and 18K06378 to TK,
- 423 16H06531 to YG]; and the Collaborative Research of Tropical Biosphere Research Center,
- 424 University of the Ryukyus.

426 References

- 427 1. Benton M.J. 2008 *The history of life*. New York, Oxford University Press.
- 4282.Thewissen J.G.M., Cooper L.N., George J.C., Bajpai S. 2009 From land to water: the
- 429 origin of whales, dolphins, and porpoises. *Evo Edu Outreach* **2**(2), 272-288.
- 430 (doi:10.1007/s12052-009-0135-2).
- 431 3. Heatwole H. 1999 *Sea snakes*. Sydney, University of New South Wales Press.
- 432 4. Sanders K.L., Mumpuni, Lee M.S. 2010 Uncoupling ecological innovation and
- 433 speciation in sea snakes (Elapidae, Hydrophiinae, Hydrophiini). *J Evol Biol* 23(12),
- 434 2685-2693. (doi:10.1111/j.1420-9101.2010.02131.x).
- 435 5. Sanders K.L., Lee M.S., Leys R., Foster R., Keogh J.S. 2008 Molecular phylogeny and
 436 divergence dates for Australasian elapids and sea snakes (hydrophiinae): evidence from
- 437 seven genes for rapid evolutionary radiations. *J Evol Biol* **21**(3), 682-695.
- 438 (doi:10.1111/j.1420-9101.2008.01525.x).
- 439 6. Sanders K.L., Lee M.S. 2008 Molecular evidence for a rapid late-Miocene radiation of
 440 Australasian venomous snakes (Elapidae, Colubroidea). *Mol Phylogenet Evol* 46(3),
- 441 1165-1173. (doi:10.1016/j.ympev.2007.11.013).
- Rasmussen A.R., Murphy J.C., Ompi M., Gibbons J.W., Uetz P. 2011 Marine Reptiles. *PLoS ONE* 6(11), e27373. (doi:10.1371/journal.pone.0027373).
- 444 8. Thewissen J.G.M., Nummela S. 2008 Introduction: on becoming aquatic. In *Sensory*445 *evolution on the threshold: adaptations in secondarily aquatic vertebrates* (eds.
- 446 Thewissen J.G.M., Nummela S.), pp. 1-25. Berkeley, University of California Press.
- 447 9. Foote A.D., Liu Y., Thomas G.W.C., Vinar T., Alfoldi J., Deng J., Dugan S., van Elk
- 448 C.E., Hunter M.E., Joshi V., et al. 2015 Convergent evolution of the genomes of marine
- 449 mammals. *Nat Genet* **47**, 272-275. (doi:10.1038/ng.3198).

450	10.	Nei M., Niimura Y., Nozawa M. 2008 The evolution of animal chemosensory receptor
451		gene repertoires: roles of chance and necessity. Nat Rev Genet 9(12), 951-963.
452		(doi:10.1038/nrg2480).
453	11.	Korsching S. 2016 Aquatic olfaction. In Chemosensory Transduction (eds. Zufall F.,
454		Munger S.D.), pp. 81-100, Academic Press.
455	12.	Niimura Y., Nei M. 2005 Evolutionary dynamics of olfactory receptor genes in fishes
456		and tetrapods. Proc Natl Acad Sci USA 102(17), 6039-6044.
457		(doi:10.1073/pnas.0501922102).
458	13.	Niimura Y. 2009 Evolutionary dynamics of olfactory receptor genes in chordates:
459		interaction between environments and genomic contents. Hum Genomics 4(2), 107-118.
460		(doi:10.1186/1479-7364-4-2-107).
461	14.	Mezler M., Fleischer J., Breer H. 2001 Characteristic features and ligand specificity of
462		the two olfactory receptor classes from <i>Xenopus laevis</i> . J Exp Biol 204 (17), 2987-2997.
463	15.	Reiss J.O., Eisthen H.L. 2008 Comparative anatomy and physiology of chemical senses
464		in amphibians. In Sensory evolution on the threshold: adaptations in secondarily
465		aquatic vertebrates (eds. Thewissen J.G.M., Nummela S.), pp. 43-63. Berkeley,
466		University of California Press.
467	16.	Freitag J., Krieger J., Strotmann J., Breer H. 1995 Two classes of olfactory receptors in
468		<i>Xenopus laevis. Neuron</i> 15 (6), 1383-1392.
469	17.	Hayden S., Bekaert M., Crider T.A., Mariani S., Murphy W.J., Teeling E.C. 2010
470		Ecological adaptation determines functional mammalian olfactory subgenomes.
471		Genome Res 20(1), 1-9. (doi:10.1101/gr.099416.109).
472	18.	Kishida T., Hikida T. 2010 Degeneration patterns of the olfactory receptor genes in sea
473		snakes. <i>J Evol Biol</i> 23 (2), 302-310. (doi:10.1111/j.1420-9101.2009.01899.x).
474	19.	Kishida T., Kubota S., Shirayama Y., Fukami H. 2007 The olfactory receptor gene
475		repertoires in secondary-adapted marine vertebrates: evidence for reduction of the

- 476 functional proportions in cetaceans. *Biol Lett* **3**(4), 428-430.
- 477 (doi:10.1098/rsbl.2007.0191).
- 478 20. McGowen M.R., Gatesy J., Wildman D.E. 2014 Molecular evolution tracks
- 479 macroevolutionary transitions in Cetacea. *Trends Ecol Evol* **29**(6), 336-346.
- 480 (doi:10.1016/j.tree.2014.04.001).
- 481 21. Beichman A.C., Koepfli K.-P., Li G., Murphy W., Dobrynin P., Kliver S., Tinker M.T.,
- 482 Murray M.J., Johnson J., Lindblad-Toh K., et al. Aquatic adaptation and depleted
- 483 diversity: a deep dive into the genomes of the sea otter and giant otter. *Mol Biol Evol*, in
- 484 press. (doi:10.1093/molbev/msz101).
- 485 22. Oelschlager H.H.A., Oelschlager J.S. 2008 Brain. In *Encyclopedia of marine mammals,*486 *second edition* (eds. Perrin W.F., Wursig B., Thewissen J.G.M.), pp. 134-149.
- 487 Amsterdam, Elsevier.
- Thewissen J.G.M., George J., Rosa C., Kishida T. 2011 Olfaction and brain size in the
 bowhead whale (*Balaena mysticetus*). *Mar Mamm Sci* 27(2), 282-294.
- 490 (doi:10.1111/j.1748-7692.2010.00406.x).
- 491 24. Kishida T., Thewissen J.G.M., Hayakawa T., Imai H., Agata K. 2015 Aquatic
- 492 adaptation and the evolution of smell and taste in whales. *Zool Lett* 1(1), 9.
- 493 (doi:10.1186/s40851-014-0002-z).
- 494 25. Kishida T., Thewissen J.G.M., Usip S., Suydam R.S., George J.C. 2015 Organization

and distribution of glomeruli in the bowhead whale olfactory bulb. *PeerJ* **3**, e897.

- 496 (doi:10.7717/peerj.897).
- 497 26. Kishida T., Thewissen J.G.M. 2012 Evolutionary changes of the importance of olfaction
- 498 in cetaceans based on the olfactory marker protein gene. *Gene* **492**(2), 349-353.
- 499 (doi:10.1016/j.gene.2011.11.013).

500	27.	Simão F.A., Waterhouse R.M., Ioannidis P., Kriventseva E.V., Zdobnov E.M. 2015
501		BUSCO: assessing genome assembly and annotation completeness with single-copy
502		orthologs. Bioinformatics 31(19), 3210-3212. (doi:10.1093/bioinformatics/btv351).
503	28.	Waterhouse R.M., Seppey M., Simão F.A., Manni M., Ioannidis P., Klioutchnikov G.,
504		Kriventseva E.V., Zdobnov E.M. 2017 BUSCO Applications from quality assessments
505		to gene prediction and phylogenomics. Mol Biol Evol 35(3), 543-548.
506		(doi:10.1093/molbev/msx319).
507	29.	Parra G., Bradnam K., Ning Z., Keane T., Korf I. 2009 Assessing the gene space in
508		draft genomes. Nucleic Acids Res 37(1), 289-297. (doi:10.1093/nar/gkn916).
509	30.	Marks P., Garcia S., Martinez Barrio A., Belhocine K., Bernate J., Bharadwaj R.,
510		Bjornson K., Catalanotti C., Delaney J., Fehr A., et al. 2017 Resolving the full spectrum
511		of human genome variation using linked-reads. <i>bioRxiv</i> . (doi:10.1101/230946).
512	31.	Zheng G.X.Y., Lau B.T., Schnall-Levin M., Jarosz M., Bell J.M., Hindson C.M.,
513		Kyriazopoulou-Panagiotopoulou S., Masquelier D.A., Merrill L., Terry J.M., et al. 2016
514		Haplotyping germline and cancer genomes with high-throughput linked-read
515		sequencing. Nat Biotechnol 34, 303. (doi:10.1038/nbt.3432).
516	32.	Weisenfeld N.I., Kumar V., Shah P., Church D.M., Jaffe D.B. 2017 Direct
517		determination of diploid genome sequences. Genome Res 27(5), 757-767.
518		(doi:10.1101/gr.214874.116).
519	33.	Suzuki H., Nishida H., Kondo H., Yoda R., Iwata T., Nakayama K., Enomoto T., Wu J.,
520		Moriya-Ito K., Miyazaki M., et al. 2018 A single pheromone receptor gene conserved
521		across 400 million years of vertebrate evolution. Mol Biol Evol 35(12), 2928-2939.
522		(doi:10.1093/molbev/msy186).
523	34.	Schwenk K. 1995 Of tongues and noses: chemoreception in lizards and snakes. Trends
524		<i>Ecol Evol</i> 10 (1), 7-12.

525	35.	Zhang X., De la Cruz O., Pinto J.M., Nicolae D., Firestein S., Gilad Y. 2007
526		Characterizing the expression of the human olfactory receptor gene family using a novel
527		DNA microarray. Genome Biol 8(5), R86. (doi:10.1186/gb-2007-8-5-r86).
528	36.	Halpern M. 1992 Nasal chemical senses in reptiles. In Biology of the Reptilia (eds. Gans
529		C., Crews D.), pp. 423-523. Chicago, The University of Chicago Press.
530	37.	Schwenk K. 2008 Comparative anatomy and physiology of chemical senses in nonavian
531		aquatic reptiles. In Sensory evolution on the threshhold: adaptations in secondarily
532		aquatic vertebrates (eds. Thewissen J.G.M., Nummela S.), pp. 65-81. Berkeley,
533		University of California Press.
534	38.	Gabe M., Saint Girons H. 1976 Contribution a la morphologie comparee des fosses
535		nasales et de leurs annexes chez les lepidosoriens. Momories du Museum National
536		d'Histoire Naturelle, Serie A 98, 1-87.
537	39.	Hibbard E. 1975 Eyes and other sense organs of sea snakes. In The biology of sea
538		snakes (ed. Dunson W.A.), pp. 355-382. Baltimore, University Park Press.
539	40.	Shine R., Bonnet X., Elphick M., Barrott E. 2004 A novel foraging mode in snakes:
540		browsing by the sea snake Emydocephalus annulatus (Serpentes, Hydrophiidae). Funct
541		<i>Ecol</i> 18 (1), 16-24. (doi:10.1046/j.0269-8463.2004.00803.x).
542	41.	Kutsuma R., Sasai T., Kishida T. 2018 How snakes find prey underwater: sea snakes
543		use visual and chemical cues for foraging. Zool Sci 35(6), 483-486.
544		(doi:10.2108/zs180059).
545	42.	Pihlström H. 2008 Comparative anatomy and physiology of chemical senses in aquatic
546		mammals. In Sensory evolution on the threshold: adaptations in secondarily aquatic
547		vertebrates (eds. Thewissen J.G.M., Nummela S.), pp. 95-109. Berkeley, University of
548		California Press.

- 549 43. Shi P., Zhang J. 2007 Comparative genomic analysis identifies an evolutionary shift of
- 550 vomeronasal receptor gene repertoires in the vertebrate transition from water to land.
- 551 *Genome Res* **17**(2), 166-174. (doi:10.1101/gr.6040007).
- 552 44. Brykczynska U., Tzika A.C., Rodriguez I., Milinkovitch M.C. 2013 Contrasted
- evolution of the vomeronasal receptor repertoires in mammals and squamate reptiles.
- 554 *Genome Biol Evol* **5**(2), 389-401. (doi:10.1093/gbe/evt013).
- 555 45. Saraiva L.R., Korsching S.I. 2007 A novel olfactory receptor gene family in teleost fish.
 556 *Genome Res* 17, 1448-1457. (doi:10.1101/gr.6553207).
- 46. Zapilko V., Korsching S.I. 2016 Tetrapod V1R-like ora genes in an early-diverging ray-
- finned fish species: the canonical six *ora* gene repertoire of teleost fish resulted from
 gene loss in a larger ancestral repertoire. *BMC Genomics* 17(1), 83.
- 560 (doi:10.1186/s12864-016-2399-6).
- 561 47. Syed A.S., Sansone A., Hassenklöver T., Manzini I., Korsching S.I. 2017 Coordinated
 562 shift of olfactory amino acid responses and V2R expression to an amphibian water nose
 563 during metamorphosis. *Cell Mol Life Sci* 74(9), 1711-1719. (doi:10.1007/s00018-016-
- 564 2437-1).
- 565 48. Syed A.S., Sansone A., Nadler W., Manzini I., Korsching S.I. 2013 Ancestral
- amphibian *v2rs* are expressed in the main olfactory epithelium. *Proc Natl Acad Sci US*
- 567 *A*, 201302088. (doi:10.1073/pnas.1302088110).
- 49. Hagino-Yamagishi K., Moriya K., Kubo H., Wakabayashi Y., Isobe N., Saito S.,
- 569 Ichikawa M., Yazaki K. 2004 Expression of vomeronasal receptor genes in *Xenopus*570 *laevis. J Comp Neurol* 472(2), 246-256. (doi:10.1002/cne.20073).
- 571 50. Meisami E., Bhatnagar K.P. 1998 Structure and diversity in mammalian accessory
- 572 olfactory bulb. *Microsc Res Tech* **43**(6), 476-499. (doi:10.1002/(sici)1097-
- 573 0029(19981215)43:6<476::aid-jemt2>3.0.co;2-v).

574	51.	Mackay-Sim A., Duvall D., Graves B.M. 1985 The west Indian manatee (<i>Trichechus</i>
575		manatus) lacks a vomeronasal organ. Brain Behav Evol 27(2-4), 186-194.
576	52.	Dittrich K., Kuttler J., Hassenklöver T., Manzini I. 2016 Metamorphic remodeling of
577		the olfactory organ of the African clawed frog, Xenopus laevis. J Comp Neurol 524(5),
578		986-998. (doi:10.1002/cne.23887).
579	53.	Higgs D.M., Burd G.D. 2001 Neuronal turnover in the Xenopus laevis olfactory
580		epithelium during metamorphosis. J Comp Neurol 433(1), 124-130.
581		(doi:10.1002/cne.1130).
582	54.	Hansen A., Reiss J.O., Gentry C.L., Burd G.D. 1998 Ultrastructure of the olfactory
583		organ in the clawed frog, Xenopus laevis, during larval development and metamorphosis.
584		J Comp Neurol 398(2), 273-288. (doi:10.1002/(sici)1096-
585		9861(19980824)398:2<273::aid-cne8>3.0.co;2-y).
586	55.	Blin N., Stafford D.W. 1976 A general method for isolation of high molecular weight
587		DNA from eukaryotes. <i>Nucleic Acids Res</i> 3 (9), 2303-2308. (doi:10.1093/nar/3.9.2303).
588	56.	Tatsumi K., Nishimura O., Itomi K., Tanegashima C., Kuraku S. 2015 Optimization and
589		cost-saving in tagmentation-based mate-pair library preparation and sequencing.
590		Biotechniques 58(5), 253-257. (doi:10.2144/000114288).
591	57.	Kajitani R., Toshimoto K., Noguchi H., Toyoda A., Ogura Y., Okuno M., Yabana M.,
592		Harada M., Nagayasu E., Maruyama H., et al. 2014 Efficient de novo assembly of
593		highly heterozygous genomes from whole-genome shotgun short reads. Genome Res 24,
594		1384-1395. (doi:10.1101/gr.170720.113).
595	58.	Pryszcz L.P., Gabaldón T. 2016 Redundans: an assembly pipeline for highly
596		heterozygous genomes. Nucleic Acids Res 44(12), e113. (doi:10.1093/nar/gkw294).
597	59.	English A.C., Richards S., Han Y., Wang M., Vee V., Qu J., Qin X., Muzny D.M., Reid
598		J.G., Worley K.C., et al. 2012 Mind the gap: upgrading genomes with Pacific

- 599 Biosciences RS long-read sequencing technology. PLoS ONE 7(11), e47768.
- 600 (doi:10.1371/journal.pone.0047768).
- 601 60. English A.C., Salerno W.J., Reid J.G. 2014 PBHoney: identifying genomic variants via
- 602 long-read discordance and interrupted mapping. BMC Bioinformatics 15(1), 180.
- 603 (doi:10.1186/1471-2105-15-180).
- 604 61. Luo R., Liu B., Xie Y., Li Z., Huang W., Yuan J., He G., Chen Y., Pan Q., Liu Y. 2012 605 SOAPdenovo2: an empirically improved memory-efficient short-read de novo 606
- assembler. GigaScience 1(1), 18.
- 607 62. Hara Y., Tatsumi K., Yoshida M., Kajikawa E., Kiyonari H., Kuraku S. 2015
- 608 Optimizing and benchmarking de novo transcriptome sequencing: from library
- preparation to assembly evaluation. BMC Genomics 16(1), 977. (doi:10.1186/s12864-609

610 015-2007-1).

611 63. Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. 612 1997 Gapped BLAST and PSI-BLAST: a new generation of protein database search

613 programs. Nucleic Acids Res 25(17), 3389-3402.

- 614 64. Niimura Y. 2009 On the origin and evolution of vertebrate olfactory receptor genes:
- 615 comparative genome analysis among 23 chordate species. Genome Biol Evol 1, 34-44. 616 (doi:10.1093/gbe/evp003).
- 617 Vandewege M.W., Mangum S.F., Gabaldón T., Castoe T.A., Ray D.A., Hoffmann F.G. 65. 2016 Contrasting patterns of evolutionary diversification in the olfactory repertoires of 618
- reptile and bird genomes. Genome Biol Evol 8(3), 470-480. (doi:10.1093/gbe/evw013). 619
- 620 66. Bolger A.M., Lohse M., Usadel B. 2014 Trimmomatic: a flexible trimmer for Illumina
- sequence data. Bioinformatics 30(15), 2114-2120. (doi:10.1093/bioinformatics/btu170). 621
- 622 67. Kim D., Langmead B., Salzberg S.L. 2015 HISAT: a fast spliced aligner with low
- 623 memory requirements. Nat Methods 12(4), 357-360. (doi:10.1038/nmeth.3317).

624	68.	Trapnell C., Williams B.A., Pertea G., Mortazavi A., Kwan G., van Baren M.J.,
625		Salzberg S.L., Wold B.J., Pachter L. 2010 Transcript assembly and quantification by
626		RNA-Seq reveals unannotated transcripts and isoform switching during cell
627		differentiation. Nat Biotechnol 28, 511-515.
628	69.	Roberts A., Trapnell C., Donaghey J., Rinn J.L., Pachter L. 2011 Improving RNA-Seq
629		expression estimates by correcting for fragment bias. Genome Biol 12(3), R22.
630		(doi:10.1186/gb-2011-12-3-r22).
631	70.	Katoh K., Standley D.M. 2013 MAFFT multiple sequence alignment software version
632		7: improvements in performance and usability. Mol Biol Evol 30(4), 772-780.
633		(doi:10.1093/molbev/mst010).
634	71.	Saitou N., Nei M. 1987 The neighbor-joining method: a new method for reconstructing
635		phylogenetic trees. Mol Biol Evol 4(4), 406-425.
636	72.	Niimura Y., Nei M. 2007 Extensive gains and losses of olfactory receptor genes in
637		mammalian evolution. PLoS ONE 2(1), e708. (doi:10.1371/journal.pone.0000708).
638	73.	Niimura Y., Nei M. 2006 Evolutionary dynamics of olfactory and other chemosensory
639		receptor genes in vertebrates. J Hum Genet 51(6), 505-517. (doi:10.1007/s10038-006-
640		0391-8).
641	74.	Glusman G., Yanai I., Rubin I., Lancet D. 2001 The complete human olfactory
642		subgenome. Genome Res 11(5), 685-702. (doi:10.1101/gr.171001).
643	75.	Thewissen J.G.M., Hussain S.T., Arif M. 1994 Fossil evidence for the origin of aquatic
644		locomotion in archaeocete whales. Science 263(5144), 210-212.
645		(doi:10.1126/science.263.5144.210).
646	76.	Domning D.P. 2001 The earliest known fully quadrupedal sirenian. Nature 413, 625-
647		627. (doi:10.1038/35098072).
648	77.	Kim I., Park J., Suk H., Bae H., Min M., Tsai T., Park D. 2018 Phylogenetic
649		relationships of three representative sea krait species (genus Laticauda; Elapidae;

650		Serpentes) based on 13 mitochondrial genes. <i>Mitochondrial DNA Part A</i> 29(5), 772-777.				
651		(doi:10.1080/24701394.2017.1357710).				
652	78.	Kishida T., Go Y., Tatsumoto S., Tatsumi K., Kuraku S., Toda M. 2019 Data from:				
653		Loss of olfaction in sea snakes provides new perspectives on the aquatic adaptation of				
654		amniotes. Dryad Digital Repository. (doi: 10.5061/dryad.t8sm4m6).				
655						
656						
657						
658						
659	Figure	captions				
660	Figure	1. A schematic view of the evolution of terrestrial adaptation of vertebrates and three				
661	major groups of extant fully-aquatic amniotes. Branch color indicates representative lifestyle in					
662	each branch (brown: terrestrial, purple: amphibious, blue: fully-aquatic), and circles in ancestral					
663	nodes represent lifestyles at these points in evolution. Extinct amphibious species are also					
664	shown	for cetaceans (Amburocetus [75]) and sirenians (Pezosiren [76]).				
665	Figure	2. Phylogenetic relationship of squamates analyzed in this study, and the numbers of				
666	olfactory GPCR genes identified in the genome assemblies of these species. Red, pink and grey					
667	bars indicate the numbers of intact genes, truncated genes and pseudogenes, respectively.					
668	Approximate divergence time follows Sanders et al. [4-6] and Kim et al. [77]. Notes: *Only the					
669	third exon of the V2R genes was identified and analyzed. **The OR gene repertoire of a green					
670	anole is	s taken from Vandewege et al. [65].				
669	third ex	xon of the $V2R$ genes was identified and analyzed. The OR gene repertors				

Figure 3. Evolution of the gain and loss of *OR* and *V2R* genes in snakes. Evolutionary changes

672 in the number of intact OR(A) and V2R(B) genes are estimated using the reconciled-tree

673 method [72]. Python intact ORs identified by Vandewege et al. [65] were included in the dataset

674 for this calculation.

675	Figure 4. Expression levels of the OR and V2R genes in the three potential olfactory organs and
676	the liver. Each dot represents a single $OR/V2R$ gene identified in this study, and the y-axis
677	shows normalized gene expression levels in FPKM (fragments per kilobase of exon per million
678	mapped fragments) values. Red, pink and black dots represent intact genes, truncated genes and
679	pseudogenes, respectively. Mean FPKM values of intact, truncated and pseudogenes in each
680	organ are shown as bars in the background. Difference of mean FPKM values of intact OR/V2R
681	genes between each chemosensory organ and a control (liver) is calculated, and chemosensory
682	organs with obviously (>1) and significantly (p <0.01, paired t-test) larger FPKM values
683	compared to the control are shown with asterisks (see Table S5 for detail). Arrows indicate an
684	intact OR gene expressed in the tongue. Approximate position of each organ in a fully-aquatic
685	hydrophiin (H. melanocephalus) is also shown.
686	

687

 Table 1. Olfactory capabilities of extant fully-aquatic amniotes.

		main olfactory system (MOS)	vomeronasal system (VNS)	references
Cetacea	Odontoceti	absent	absent	[22, 42]
	Mysticeti	present, smelling in the air	absent	[23-26]
Sirenia		present, smelling in the air	absent	[42, 51]
Hydrophiini		absent	present, smelling underwater*	[37-41], this study

*It remains unknown whether hydrophiins use the VNS for smelling in the air or not.

V2R