on Re

Kyoto University Research Info	rmation Repository
Title	Cats match voice and face: cross-modal representation of humans in cats (Felis catus)
Author(s)	Takagi, Saho; Arahori, Minori; Chijiiwa, Hitomi; Saito, Atsuko; Kuroshima, Hika; Fujita, Kazuo
Citation	Animal cognition (2019), 22(5): 901-906
Issue Date	2019-09
URL	http://hdl.handle.net/2433/243873
Right	This is a post-peer-review, pre-copyedit version of an article published in 'Animal cognition'. The final authenticated version is available online at: https://doi.org/10.1007/s10071-019-01265-2.; The full-text file will be made open to the public on 10 May 2020 in accordance with publisher's 'Terms and Conditions for Self-Archiving; This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。
Туре	Journal Article
Textversion	author

- 1 Cats match voice and face: cross-modal representation of humans in cats (Felis catus)
- 2 Saho Takagi^{1,3}
- 3 Minori Arahori^{1,3}
- 4 Hitomi Chijiiwa^{1,3}
- 5 Atsuko Saito²
- 6 Hika Kuroshima¹
- 7 Kazuo Fujita¹
- 8
- 9 ¹Affiliation: Department of Psychology, Graduate School of Letters, Kyoto
- 10 University
- 11 ¹Affiliation address: Yoshida-honmachi, Sakyo, Kyoto, 606-8501, Japan.
- 12 ² Affiliation: Department of Psychology, Faculty of Human Sciences, Sophia
- 13 University
- 14 ² Affiliation address: 7-1, Kioicho, Chiyoda-ku, Tokyo, 102-8554, Japan
- 15 ³Affiliation: Japan Society for the Promotion of Science
- 16 ³Affiliation address: 5-3-1, Chiyoda-ku, Tokyo, 102-0083, Japan.

- 18 Corresponding author: Saho Takagi, takagi.saho.67x@st.kyoto-u.ac.jp
- 19 **Telephone:** +81 75-753-2442
- 20

21 Abstract

22	We examined whether cats have a cross-modal representation of humans, using a
23	cross-modal expectancy violation paradigm originally used with dogs by Adachi et
24	al. (2007). We compared cats living in houses and in cat cafés to assess the
25	potential effect of postnatal experience. Cats were presented with the face of either
26	their owner or a stranger on a laptop monitor after playing back the voice of one of
27	two people calling the subject's name. In half of the trials the voice and face were of
28	the same person (congruent condition) whereas in the other half of trials the
29	stimuli did not match (incongruent condition). The café cats paid attention to the
30	monitor longer in incongruent than congruent conditions, showing an expectancy
31	violation. By contrast, house cats showed no similar tendency. These results show
32	that at least café cats can predict their owner's face upon hearing the owner's voice,
33	suggesting possession of cross-modal representation of at least one human. There
34	may be a minimal kind or amount of postnatal experiences that lead to formation
35	of a cross-modal representation of a specific person.
36	Keywords: Cross-modal representation, Cats, Felis catus, Expectancy violation

37 method

38 Introduction

39	Integration of multi - sensory information facilitates the detection or
40	identification of external stimuli. For example, often we hear someone's voice
41	calling us, but we cannot see the person. In this situation we can recall the person's
42	face. This shows that we have a mental representation that integrates information
43	from visual and auditory modalities (cross-modal representation) (see Campanella
44	and Belin 2007 for review). In humans this ability emerges early in life. Bahrick et
45	al. (2005) reported that even 4- to 6-month-old infants perceived face - voice
46	relations of unfamiliar adults.
47	Nonhuman animals also have cross-modal representation of others. This
48	should be an important ability especially for social animals living in complex
49	societies; allowing them to identify individuals, avoid conflicts and maintain social
50	balance, rank, and perhaps cooperation. Some social species are known to have
51	cross-modal representations of conspecifics (chimpanzees (<i>Pan troglodytes</i>): Kojima
52	et al. 2003, rhesus macaques (<i>Macaca mulatta</i>): Adachi and Hampton 2011; Sliwa
53	et al. 2011, Grey-Cheeked mangabeys (<i>Lophocebus albigena</i>): Bovet and Deputte
54	2009, horses (<i>Equus caballus</i>): Proops et al. 2009, lions (<i>Panthera leo</i>): Gilfillan et
55	al. 2016, goats (<i>Capra hircus</i>): Pitcher et al. 2017, crows (<i>Corvus macrorhynchos</i>):
56	Kondo et al. 2012). Furthermore, rhesus monkeys, squirrel monkeys (Saimiri

boliviensis) and dogs (*Canis familiaris*) can also form cross-modal representation of 57familiar members of at least one other species, namely humans (Adachi et al. 2007; 58Adachi and Fujita 2007; Sliwa et al. 2011). 5960 Adachi and Fujita (2007) reported that squirrel monkeys responded differently depending on the familiarity of the human stimuli, using a symbolic matching-to-6162sample task. They trained monkeys to match photographs of two caretakers and a 63 symbolic visual stimulus. One caretaker was a primary caretaker, more familiar 64 than the other (secondary caretaker). In test trials, a voice which belonged to either 65the primary or secondary caretaker was played back immediately after the visual 66 sample stimulus disappeared, then two comparison stimuli appeared, one of which 67 the monkey was required to choose. The authors predicted that congruency 68 between voice and sample stimulus would affect matching accuracies. Results 69showed that accuracies did not differ between congruent and incongruent trials 70when the primary caretaker's face was the sample, but accuracies were higher in 71congruent than incongruent trials when the secondary caretaker's face was the sample. Thus, the secondary caretaker's voice did not interfere with matching the 7273primary caretaker's face to the symbolic stimulus, whereas the primary caretaker's 74voice interfered with matching the secondary caretaker's face to the corresponding

75	symbolic stimulus. Thus, familiarity of the specific person affected the monkeys'
76	cross-modal representation.
77	Adachi et al. (2007) reported that pet dogs have a cross-modal representation
78	of their owner. Dogs were presented with a photo of either their owner's or a
79	stranger's face on a monitor after a voice calling subject's name was played back.
80	The voice and face matched in half of the trials and mismatched in the other half.
81	Results showed that dogs looked at the photo longer in both incongruent
82	conditions, suggesting that they predicted the owner's face upon hearing the
83	owner's voice, and another face upon hearing a stranger's voice. Conceivably,
84	extensive experience with a specific person strengthens the formation of such cross-
85	modal representations. Do other companion animals show the same tendency as
86	dogs?
87	Like dogs, cats are a popular companion animal for humans, and recent
88	studies have shown that like dogs, cats also have remarkable social cognitive
89	abilities. They respond to human pointing cues (Miklósi et al. 2005) and gaze cues
90	(Pongrácz et al. 2018), discriminate human emotional expressions (Galvan and
91	Vonk 2016) and human attentional states (Ito et al. 2016), and refer to human
92	facial expressions in the presence of a mildly frightening object (Merola et al.

 $\mathbf{5}$

93	2015).Saito and Shinozuka (2013), using a habituation-dishabituation procedure,
94	reported that cats discriminated their owner's voice from a stranger's voice.
95	However, it is unknown whether they predict their owner's face after hearing the
96	owner's voice, as expected if integration of the relevant audio-visual information
97	occurs.
98	Here we asked whether cats (<i>Felis catus</i>) have cross-modal representations of
99	their owners, using the task originally used with dogs in Adachi et al. (2007). If
100	familiarity of the person affects cross-modal representation, as seen in previous
101	studies, the rearing environment should affect formation of a cross-modal
102	representation of the owner. More specifically, house cats – with a closer
103	relationship with their owner – should show stronger results than cats living at a
104	cat café where many people interact with them each day. In previous research data
105	from these two groups of cats analyzed separately their responses to human voices
106	were different (Saito et al. 2019). The expectancy violation-based prediction was
107	that if cats have a cross-modal representation of their owner they should pay
108	attention to the monitor for longer in incongruent (mis-matching) conditions than
109	congruent (matching) conditions.
110	

- 111 Methods
- 112 Subjects

113Eighty-seven domestic cats (Felis catus) (48 males, 39 females) participated. Fortythree were kept at five "cat cafés" (24 males, 19 females, mean age 4.14 years, SD= 114 2.98 years, range 4 months to 10.7 years), where many unfamiliar visitors have 115116 contact with the cats. There are various types of cat cafes in Japan. Some serve both 117 as a normal cat café where visitors can enjoy interacting with cats and consider 118fostering a cat. Cats leave these cafés when they find a foster family. We tested cats 119in cafes where the cats were permanent residents and where they spend all their 120 time. The remaining subjects were house cats (24 males, 20 females, mean age 5.14 121 years, SD = 3.18 years, range 8 months to 12.4 years). Subjects had been with their 122owner for at least for 4 months in cat cafés and 11 months in households. An 123additional 23 cats (12 cats from cat cafés and 11 from households) were excluded due 124to camera error (3 cats), fear (3), or failure to look at the stimuli (no look in all 4 test 125trials) (17). In addition to approval from the institutional animal experiment 126committee (see paragraph on compliance with ethical standards), informed consent was obtained from all owners. Cats were not deprived of water or food during the 127128study.

130 Apparatus & Stimuli

131 The auditory stimuli consisted of a recording of either the owner or a same-sex 132unfamiliar person (stranger) calling the subject's name once. Each owner was 133instructed to call out the cat's name as they normally would; the stranger was instructed to call out the name in the way the owner did. We recorded the calls 134135using a handheld digital audio recorder (Roland EDIROL R-09, Japan) in WAV 136format. The sampling rate was 44,100 Hz and the sampling resolution was 16-bit. 137We used 1-s call stimuli regardless of the cats' names; all voices were adjusted to 138 the same volume with the help of version 2.3.0 of Audacity(R) recording and editing 139software (Audacity Team 2018). Voice stimuli were played from a speaker (Sanwa 140 MM-SPS2UBK, Japan) connected to a laptop personal computer (NEC Lavie G 141 type Z, Japan) which controlled all experimental stimuli. The visual stimuli 142consisted of a photo of the face of either the owner or a stranger. We took a digital, 143full-face, color photo of each person smiling, and stored the photo in PNG format. 144Presented photos were ca. 16.5 x 16 cm on the 13.3 -in. monitor of the laptop 145computer. The background was always black. 146The test was recorded by three video cameras (JVC GZ-E565-R, Japan; SONY 147HDR-CX390, Japan; SONY HDR-CX675, Japan), one placed in front of subject,

another placed slightly to one side, and the other placed behind subject; allcameras focused on the cat.

150

151 Procedure

Cats were tested individually in their familiar place: house or café. Before testing 152153we waited until cats appeared relaxed in the presence of the experimenter; this 154took about 15 min for house cats whereas almost all café cats ended no such 155familiarization time. An experimenter gently restrained the cat on the floor in front 156of the laptop computer, about 40 cm away. The experimenter started a trial by 157pressing a key on the computer when the subject was looking toward the monitor. 158Each trial consisted of two phases: the voice phase and the face phase. In the voice 159phase, one stimulus voice was played back from the speakers linked to the laptop 160 every 1 s, for a total of four presentations. Immediately after the fourth auditory 161 stimulus either the owner's or a stranger's face appeared on the monitor for 7-s 162(face phase) (see Fig.1). The experimenter restrained the cat throughout the voice 163phase and released it at the start of the face phase; some cats stayed, whereas 164others moved around to explore the monitor. A trial ended when the face on the 165monitor disappeared.

166	There were four experimental conditions according to the combination of face
167	and voice: owner-congruent, owner-incongruent, stranger-congruent, and stranger-
168	incongruent. For example, in the owner-incongruent condition, a stranger's voice
169	was played in the voice phase, but the owner's face appeared in the face phase.
170	These four trials were presented in pseudo-random order with the restriction that
171	the same voice was never repeated on consecutive trials.
172	Our hypothesis was that cats would pay attention to the face (the monitor)
173	longer in the incongruent condition than the congruent condition. Each subject
174	received four trials in a single session, with an inter-trial interval of at least 3 min.
175	For ethical reasons we immediately halted the procedure if the subject refused to
176	be placed in front of the monitor; three subjects participated in only the first trial,
177	three in the first and second trials, while four subjects received no fourth trial.
178	During the interval, cats acted freely in the experimental room. The experimenter
179	restraining the cat was ignorant of the condition; she closed her eyes during the
180	test trials and avoided making eye contact with the subject. Presentation of voice
181	and face stimuli was controlled via a Visual Studio 2013 program on the laptop
182	personal computer.
180 181	test trials and avoided making eye contact with the subject. Presentation of voice and face stimuli was controlled via a Visual Studio 2013 program on the laptop

184 Analysis

185A coder (H.C.), blind to the conditions, counted the number of frames (30 186frames/1 sec.) in which cats paid attention to the monitor in the face phase (total 7 187 sec) for each condition. Paying attention was defined as looking at or sniffing the 188monitor. We could not discriminate these two acts because a few cats did not touch 189 the monitor with their nose while sniffing. Trials in which subject did not look at 190the monitor at all were excluded from the analyses because we could not know if 191 expectancy violation occurred. Sixty-four trials were excluded for café cats, 65 for 192house cats (no significant difference; Fisher's Exact Test: p = .73). Table 1 shows 193valid data points, i.e., the number of trials cats looked at the monitor in each 194 condition. The videos were analyzed using Adobe Premiere CS6 (USA) software. 195To check the reliability of coding, an assistant who was blind to the conditions coded a randomly chosen 20% of the videos. The correlation between the two coders 196 197 was excellent for time spent paying attention to the monitor (Pearson's r = 0.97, n = 40, p < 0.01). 198All statistical analyses were conducted with R version 3.5.1 (R Core Team, 1992002018). Attention to the monitor was analyzed by a linear mixed model (LMM) using

a lmer function in lme4 package version 1.1.10 (Bates Martin Bolker and Walker

202	2015), in which face (owner/stranger), congruency (congruent/incongruent), home
203	environment (café/house) and an interaction between congruency and home
204	environment were entered as fixed factors and subject identity was entered as a
205	random factor. To test whether effects of factor were significant, we ran F tests by
206	an Anova function in car package (Fox et al 2012). We used a difflsmeans function
207	in lmerTest package (Kuznetsova Brockhoff and Christensen 2017) which tested
208	differences of least squares means to compare each condition. Degrees of freedom
209	were adjusted by Kenward-Roger and p-value was adjusted by the Holm procedure.
210	
211	Results
212	Fig. 2 shows time spent paying attention to the monitor during the face phase
213	in café cats (A) and house cats (B). Contrary to our prediction, café cats showed
214	more attention to the monitor in both incongruent conditions, whereas house cats
215	showed no clear tendency; they attended to the monitor almost randomly. LMM
216	revealed that significant main effects of congruency ($F(1, 60.87) = 4.10, p = .04$),
217	home environment ($F(1, 79.03) = 8.06, p < .01$), and an interaction between
218	congruency and home environment ($F(1, 60.71) = 7.76, p < .01$). There was no
219	significant main effect of face $(F(1, 96.78) = 0.06, p = .79)$.
220	The test of differences of least squares means showed a significant difference

between congruent and incongruent conditions in café cats (p < .01), between café 221222cats and house cats in congruent conditions (p < .01), and between café cats in congruent conditions and house cats in incongruent conditions (p < .01). 223224Discussion 225226We used an expectancy violation procedure to ask whether cats have a cross-227modal representation of their owner. We presented the face of either the owner or 228stranger after playing back the voice of the owner or a stranger calling the subjects' 229name. Results showed that café cats paid attention to the monitor for longer in 230both incongruent conditions, when voices and face were mismatched, whereas 231house cats showed no clear trends. These results contradict our prediction and suggest clearly that café cats predict the owner's face upon hearing the 232233corresponding voice, demonstrating a cross-modal representation of a specific 234person; whether house cats have this cross-modal ability remains to be further 235examined. The results also indicate that cross-modal representations of others are 236not exclusive to species that form complex social groups, such as dogs, but also more solitary species, such as cats (Bradshaw 2016). 237238There are three possible explanations for our failure to demonstrate a cross-239modal representation in house cats. First, cross-modal representation of a specific

240	person might be affected by factors other than familiarity with that individual.
241	Café cats typically see and interact with multiple strangers on a daily basis. People
242	with greater experience of heterospecific faces can discriminate them better than
243	people with fewer such experiences (Dufour and Petit 2010). Also, older captive
244	chimpanzees discriminated human faces better than younger chimpanzees
245	probably because older chimpanzees had more experiences to see a variety of
246	human faces (Dahl et al 2013). These results raise the possibility that café cats
247	greater experience of a variety of human faces and voices might result in better
248	discrimination abilities.
940	
249	Second, greater experience of seeing and interacting with people might promote
249 250	second, greater experience of seeing and interacting with people might promote application of an "exclusive rule." Our task required cats to predict a stranger from
250	application of an "exclusive rule." Our task required cats to predict a stranger from
250 251	application of an "exclusive rule." Our task required cats to predict a stranger from a stranger's voice in one of the incongruent conditions. It should be more difficult to
250 251 252	application of an "exclusive rule." Our task required cats to predict a stranger from a stranger's voice in one of the incongruent conditions. It should be more difficult to predict the stranger from the stranger's voice than the owner from the owner's
250 251 252 253	application of an "exclusive rule." Our task required cats to predict a stranger from a stranger's voice in one of the incongruent conditions. It should be more difficult to predict the stranger from the stranger's voice than the owner from the owner's voice using and exclusion rule. Kondo et al (2012) demonstrated that crows did not
250 251 252 253 254	application of an "exclusive rule." Our task required cats to predict a stranger from a stranger's voice in one of the incongruent conditions. It should be more difficult to predict the stranger from the stranger's voice than the owner from the owner's voice using and exclusion rule. Kondo et al (2012) demonstrated that crows did not react even when a familiar crow's calls were played back followed by an unfamiliar

258	incongruent conditions; they showed no asymmetry. This suggests that the café
259	cats exclusively predicted a non-owner face, using the exclusion rule. Conceivably,
260	increased opportunities to see various people might improve cross-modal
261	representations of others. Home environments that differ from normal pet
262	environments in terms of seeing human strangers might explain why café cats
263	showed the clearer expectancy violation.
264	Finally, house cats might have been more nervous during the test. We asked the
265	owner to remain in another room because we wanted to test cats' representation of
266	their owner. Some cats may not have felt sufficiently at ease in the presence of only
267	the experimenter. More house cats remained immobile after the experimenter
268	released them in the face phase; a freezing reaction might have resulted in longer
269	looking times in all conditions compared to café cats. To exclude such a possibility
270	future work should use a more natural experimental setting less likely to cause
271	stress in house cats, or conduct a test that objectively estimates their stress level.
272	One may argue that house cats did not discriminate between the owner's face
273	and a stranger's face, given their lack of differential responses across conditions.
274	However, previous studies have shown that house cats respond differently to
275	familiar and unfamiliar humans facing them directly (Collard 1967; Ellis

276	Thompson Guijarro and Zulch 2015; Galvan and Vonk 2016). Further research
277	should be conducted on cats' ability to discriminate the owner's face from a
278	stranger's face when only visual information is presented.
279	We used voice and face to examine cats' cross-modal recognition of humans.
280	However, cats also use their olfactory sense to recognize others (Gorman and
281	Trowbridge 1989). Further research should examine whether olfactory information
282	is also integrated in cross-modal representations of others.
283	Cross-modal recognition is not limited to a one-to-one relation (owner's voice -
284	face) as in this study. For example, dogs can show more general cross-modal
285	recognition: Taylor Reby and McComb (2011) examined whether dogs could match
286	frequency of growls and dogs' body size. Dogs spent more time looking at a correct
287	model (small body - high frequency, or big body - low frequency) than an incorrect
288	model (small body - low frequency, or big body - high frequency), suggesting that
289	they relate information about body size to "voices." Furthermore, dog cross-modally
290	matched a human male or female voice and a male or female face (Takaoka et al
291	2013). It is still unknown whether cats have similar cross-modal recognition
292	abilities beyond one-to-one correspondence; this is another issue for future study.
293	

294 Acknowledgments

295	This study was financially supported by the Grant-in-aid for Scientific
296	Research (KAKENHI) No. 17J08974 to S. Takagi, No. JP16J1034 to M. Arahori,
297	No. JP16J08691 to H. Chijiiwa, No. 25118003 to A. Saito and Nos. 25240020,
298	26119514, 16H01505, 15K12047, 25118002, and 16H06301 to K. Fujita from the
299	Japan Society for the Promotion of Science (JSPS). The authors acknowledge with
300	thanks all owners and cats who volunteered in this study. The authors also wish to
301	thank Dr. James R. Anderson for editing the article.
302	
303	Compliance with ethical standards
304	This study adhered to the ethical guidelines of Kyoto University, and was
305	approved by the Animal Experiment Committee of the Graduate School of Letters,
306	Kyoto University.
307	
308	Competing interests
309	The authors declare no conflicts of interest.
310	

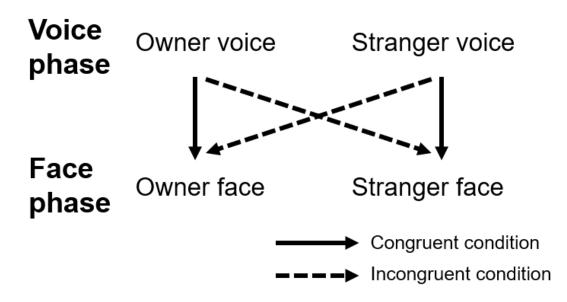
- 311 Reference
- 312 Adachi, I., & Fujita, K. (2007). Cross-modal representation of human caretakers in
- 313 squirrel monkeys. *Behavioural Processes*, 74, 27-32.
- 314 Adachi, I., & Hampton, R. R. (2011). Rhesus monkeys see who they hear:
- spontaneous cross-modal memory for familiar conspecifics. *PLoS One*, 6,
 e23345.
- 317 Adachi, I., Kuwahata, H., & Fujita, K. (2007). Dogs recall their owner's face upon
- hearing the owner's voice. *Animal Cognition*, 10, 17-21.
- 319 Audacity Team (2018). Audacity(R): Free Audio Editor and Recorder [Computer
- 320 application]. Version 2.3.0 retrieved December 20th 2018 from
- 321 https://audacityteam.org/ .
- 322 Bahrick, L. E., Hernandez-Reif, M., & Flom, R. (2005). The development of infant
- 323 learning about specific face-voice relations. *Developmental Psychology*, 41,
- 324 **541-552**.
- 325 Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-
- 326 Effects Models Using lme4. *Journal of Statistical Software*, 67, 1-48.
- 327 Bovet, D., & Deputte, B. L. (2009). Matching vocalizations to faces of familiar
- 328 conspecifics in grey-cheeked mangabeys (Lophocebus albigena). Folia
- 329 *Primatologica*, 80, 220-232.

- 330 Bradshaw, J. W. (2016). Sociality in cats: A comparative review. Journal of
- 331 *Veterinary Behavior: Clinical Applications and Research*, 11, 113-124.
- 332 Campanella, S., & Belin, P. (2007). Integrating face and voice in person perception.
- 333 Trends in Cognitive Sciences, 11, 535-543.
- Collard, R. R. (1967). Fear of strangers and play behavior in kittens with varied
 social experience. *Child Development*, 877-891.
- 336 Dahl, C. D., Rasch, M. J., Tomonaga, M., & Adachi, I. (2013). Developmental
- 337 processes in face perception. *Scientific Reports*, 3, 1044.
- 338 Ellis, S. L. H., Thompson, H., Guijarro, C., & Zulch, H. E. (2015). The influence of
- body region, handler familiarity and order of region handled on the domestic
- 340 cat's response to being stroked. *Applied Animal Behaviour Science*, 173, 60-67.
- 341 Fox, J., Weisberg, S., Adler, D., Bates, D., Baud-Bovy, G., Ellison, S., & Heiberger,
- 342 R. (2012). Package 'car'. Vienna: R Foundation for Statistical Computing.
- 343 Galvan, M., & Vonk, J. (2016). Man's other best friend: domestic cats (F. silvestris
- 344 *catus*) and their discrimination of human emotion cues. *Animal Cognition*, 19,
 345 193-205.
- 346 Gilfillan G, Vitale J, McNutt JW, McComb K. (2016). Cross-modal individual
- 347 recognition in wild African lions. *Biology Letters*, 12, 20160323.

348	Gorman, M. L., & Trowbridge, B. J. (1989). The role of odor in the social lives of
349	carnivores. In Carnivore behavior, ecology, and evolution (pp. 57-88). Springer,
350	Boston, MA.
351	Ito, Y., Watanabe, A., Takagi, S., Arahori, M., & Saito, A. (2016). Cats beg for food
352	from the human who looks at and calls to them: Ability to understand humans'
353	attentional states. Psychologia, 59, 112-120.
354	Kojima, S., Izumi, A., & Ceugniet, M. (2003). Identification of vocalizers by pant
355	hoots, pant grunts and screams in a chimpanzee. <i>Primates</i> , 44, 225-230.
356	Kondo, N., Izawa, E. I., & Watanabe, S. (2012). Crows cross-modally recognize
357	group members but not non-group members. Proceedings of the Royal Society
358	of London B: Biological Sciences, 279, 1937-1942.
359	Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package:
360	tests in linear mixed effects models. Journal of Statistical Software, 82.
361	Merola, I., Lazzaroni, M., Marshall-Pescini, S., & Prato-Previde, E. (2015). Social
362	referencing and cat-human communication. Animal Cognition, 18, 639-648.
363	Miklósi, Á., Pongrácz, P., Lakatos, G., Topál, J., & Csányi, V. (2005). A comparative
364	study of the use of visual communicative signals in interactions between dogs

- 365 (*Canis familiaris*) and humans and cats (*Felis catus*) and humans. *Journal of*366 *Comparative Psychology*, 119, 179-186.
- 367 Pitcher, B. J., Briefer, E. F., Baciadonna, L., & McElligott, A. G. (2017). Cross-
- modal recognition of familiar conspecifics in goats. *Royal Society Open Science*,
 4, 160346.
- 370 Pongrácz, P., Szapu, J. S., & Faragó, T. (2018). Cats (Felis silvestris catus) read
- 371 human gaze for referential information. *Intelligence*, in press.
- 372 Proops, L., & McComb, K. (2012). Cross-modal individual recognition in domestic
- 373 horses (*Equus caballus*) extends to familiar humans. *Proceedings of the Royal*

374 Society of London B: Biological Sciences, rspb20120626.


- 375 Proops, L., McComb, K., & Reby, D. (2009). Cross-modal individual recognition in
- 376 domestic horses (*Equus caballus*). *Proceedings of the National Academy of*
- 377 *Sciences*, 106, 947-951.
- 378 R Core Team (2018). R: A language and environment for statistical computing. R
- Foundation for Statistical Computing, Vienna, Austria. URL https://www.Rproject.org/.
- 381 Saito, A., & Shinozuka, K. (2013). Vocal recognition of owners by domestic cats
- 382 (Felis catus). Animal Cognition, 16, 685-690.

383	Saito, A., Shinozuka, K., Ito, Y., & Hasegawa, T. (2019) Domestic cats (<i>Felis catus</i>)
384	discriminate their names from other words, <i>Scientific Reports</i> , in press.
385	Sliwa, J., Duhamel, J. R., Pascalis, O., & Wirth, S. (2011). Spontaneous voice–face
386	identity matching by rhesus monkeys for familiar conspecifics and humans.
387	Proceedings of the National Academy of Sciences, 108, 1735-1740.
388	Takagi, S., Arahori, M., Chijiiwa, H., Tsuzuki, M., Hataji, Y., & Fujita, K. (2016).
389	There's no ball without noise: cats' prediction of an object from noise. Animal
390	Cognition, 19, 1043-1047.
391	Takaoka, A., Morisaki, A., & Fujita, K. (2013). [in Japanese with English abstract]
392	Cross-modal concept of human gender in dogs (Canis familiaris). The Japanese
393	Journal of Animal Psychology, 63, 123-130.
394	Taylor, A. M., Reby, D., & McComb, K. (2011). Cross modal perception of body size
395	in domestic dogs (<i>Canis familiaris</i>). <i>PLoS One</i> , 6, e17069.
396	

397						
398	Legend					
399	Fig. 1					
400	Fig.1 Diagram illustrating each condition. Face was presented in the monitor (Face					
401	phase) immediately after voices was played back (Voice phase). The face and voice					
402	matched in half of the trials (congruent condition) whereas they mismatched in the					
403	other half of trials (incongruent condition). Black line represents Congruent					
404	conditions, dotted line represents Incongruent conditions.					
405						
406	Fig.2					
407	Time spent paying attention to the monitor in (A) Café cats and (B) House cats in					
408	the Face phase. White bar represents congruent conditions, Black bar represents					
409	incongruent conditions. Error bar indicates SE. Unit of Y axis is frames (30 frames/1					
410	sec.).					
411						
412						
413	Table. 1 The number of valid data points representing the number of trials cats					

414 looked at the monitor in each condition.

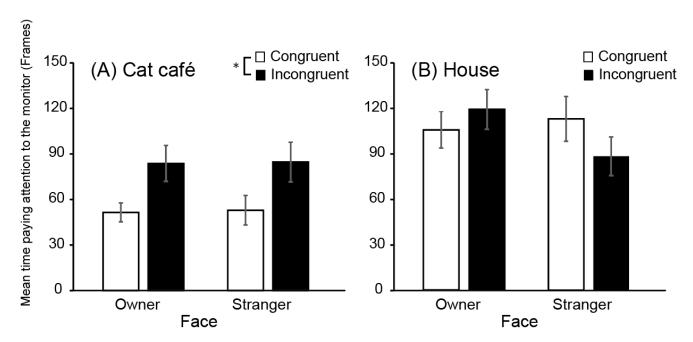


Figure 2

Table.1

Face	Owner		Stranger	
	Congruent	Incongruent	Congruent	Incongruent
Café	22	28	23	22
House	29	23	28	25