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Singular behavior of the macroscopic quantities
in the free molecular gas
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2Department of Mechanical Engineering and Intelligent Systems, The University of
Electro-Communications, Chofu, Tokyo 182-8585, Japan

(Received 20 October 2015; accepted 17 January 2016; published online 4 February 2016)

Steady behavior of the free molecular gas is studied with a special interest in the
behavior around a convex body. Two types of singular behavior are shown to occur
at the level of the macroscopic quantities. Their occurrence and the strength of
singularity are discussed in detail both numerically and analytically. A universal
law behind them is revealed by the consideration of the local geometry of the
boundary. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4940988]

I. INTRODUCTION

The conductivity or transport property in the usual fluid obeys Newton’s stress law and
Fourier’s heat law. From the microscopic point of view, this is a consequence of frequent inter-
molecular collisions during the flight of each molecule. In a rarefied gas, however, such colli-
sions become less frequent and the ballistic nature emerges in the conduction property. Accord-
ingly, the fluid dynamical or macroscopic quantities of a rarefied gas exhibit a peculiar feature
that is absent in the usual fluid. This is the topic that we would like to address in the present
paper.

In the present paper, we single out the ballistic aspect of a rarefied gas by considering its
collisionless limit. The gas in such a limit is called a free molecular gas.1 We will show that, due
to the ballistic nature, the gradient of fluid dynamical or macroscopic quantities can diverge on the
surface of a convex body in its normal direction, even if its temperature and geometry are smooth.
Furthermore, we show that the gradient of macroscopic quantities may lose the smoothness or even
has a jump discontinuity in the gas, so that their isolines show a sharp or “edged” bending. To our
best knowledge, these (fluid-dynamically) strange features have not been mentioned explicitly or
at least studied in detail so far. We do not simply show the occurrence of these features but rather
clarify the mechanism of their occurrence. We reveal the universality behind them by the geometric
argument. The clue is the propagation of discontinuity of the velocity distribution function,2 which
reflects the ballistic transport and the (local) convexity of the body. The geometric classification thus
naturally arises in our discussions.

The paper is organized as follows. The specific problem is introduced and formulated in Sec. II.
The expression of the solution is derived by the use of a statics for the free molecular gas1,3,4 in
Sec. III A. Then, a brief sketch of the way of computations follows in Sec. III B. Numerical results
are presented in Sec. IV. The detailed analyses and discussions on the numerical results are given
in Secs. IV A and IV B; the former is devoted to the study of the divergence on the body surface,
while the latter to that of the sharp or edged bend in the isolines. The paper is concluded with
Sec. V.
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II. PROBLEM AND FORMULATION

Consider a free molecular gas in the domain D between two straight pipes with different cross
sections, see Fig. 1. The inner pipe has a smooth convex cross section and is maintained at surface
temperature Tw. Here, Tw is nonuniform in general. The outer pipe has a rectangular cross section
with dimensions 2d1 × 2d2 and is maintained at uniform temperature T0. There is no external force.
We will investigate the steady behavior of the gas under the following assumptions:

1. The behavior of the gas is described by the collisionless Boltzmann equation for a monatomic
gas.

2. The gas molecules are diffusely reflected1 on the inner and outer pipes.
3. The surface temperature of the inner pipe Tw is uniform in the axial direction.

Let us denote by a the characteristic length of the inner pipe cross section and introduce the
Cartesian coordinates Xi or axi (i = 1,2,3) with its origin at the center of the outer pipe cross
section; see Fig. 1. We set X3 or ax3 to be in the axial direction. Let us denote by (2RT0)1/2ζi the
molecular velocity and by ρs(2RT0)−3/2φ(x1, x2,ζ ) the velocity distribution function of gas mole-
cules. Here, R is the specific gas constant and ρs is the density of the gas in the equilibrium state at
rest when the inner pipe is maintained at the uniform temperature T0. Then, the problem is reduced
to solving the following boundary-value problem:

ζ1
∂φ

∂x1
+ ζ2

∂φ

∂x2
= 0, (ax ∈ D), (1a)

φ =
σ̂0

π3/2 exp(−ζ2
j ), (ζ jn j > 0, Gout = 0), (1b)

σ̂0 = −2
√
π


ζ jn j<0

ζ jn jφdζ , (1c)

φ =
σ̂w

(πT̂w)3/2
exp *

,
−
ζ2
j

T̂w
+
-
, (ζ jn j > 0, Gin = 0), (1d)

σ̂w = −2


π

T̂w


ζ jn j<0

ζ jn jφdζ , (1e)

where T̂w = Tw/T0 and n j is the unit vector normal to the inner Gin(x1, x2) = 0 or the outer surface
Gout(x1, x2) = 0, pointing to the gas side. The functional form of Gin will be specified soon later,
while Gout = (|x1| − d̂1)(|x2| − d̂2) for |x1| ≤ d̂1 and |x2| ≤ d̂2, where d̂i = di/a (i = 1,2). In what
follows, we simply call the pipe surfaces the boundary and follow the convention that the curvature
of the boundary, κ, is positive when the center of curvature does not lie in the gas side.

FIG. 1. Problem configuration.
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(a) G1 (b) G2

(c) G3 (d) G4

FIG. 2. Four types of setting: (a) G1, (b) G2, (c) G3, and (d) G4. Only the first quadrant is shown.

The gas density ρs ρ̂, temperature T0T̂ , flow velocity (2RT0)1/2v̂i, and heat-flow vector
ρsRT0(2RT0)1/2q̂i are given by the following moments of φ:

ρ̂ =


φdζ , v̂i =

1
ρ̂


ζiφdζ , T̂ =

2
3 ρ̂


(ζi − v̂i)2φdζ , q̂i =


(ζi − v̂i)(ζ j − v̂ j)2φdζ . (2)

We will consider four types of physical setting (G1-G4) (Fig. 2),
G1:

Gin(x1, x2) = x2
1 + x2

2 − 1, (3a)
T̂w = T̂1 + (T̂2 − T̂1)| sin θw |, (−π < θw ≤ π). (3b)

G2:

Gin(x1, x2) = x2
1/b̂

2 + x2
2 − 1, (4a)

T̂w = T̂1 + (T̂2 − T̂1)sin2θw, (−π < θw ≤ π). (4b)

G3:

Gin(x1, x2) =



|x2| − 1, (−L̂ ≤ x1 ≤ L̂),
(|x1| − L̂)2 + x2

2 − 1, (L̂ < |x1| ≤ L̂ + 1), (5a)

T̂w =



T̂2 + (T̂3 − T̂2)cos2(π
2

x1

L̂
), (−L̂ ≤ x1 ≤ L̂),

T̂1 + (T̂2 − T̂1)sin2θw, (−π < θw ≤ π).
(5b)

G4:

Gin(x1, x2) = x4
1 + x2

2 − 1, (6a)

T̂w = T̂2 + (T̂1 − T̂2)sin2(π
2

x1), (−1 ≤ x1 ≤ 1). (6b)
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Here T̂1, T̂2, and T̂3 are parameters for the temperature distribution of the inner boundary, b̂ and L̂
are parameters for its geometry, and θw is the polar angle specifying the point on the inner boundary
shown in Fig. 2. The important feature of the inner boundary geometry Gin = 0 is as follows. In
G1, the curvature κ is positive and common to all the points of the inner boundary. In G2, κ is
positive but dependent on the boundary position. In G3, there is a flat part (κ = 0) and a circular
arc part (κ > 0). In G4, on the whole surface κ > 0, except for the point (x1, x2) = (0,1). At this
point, κ = 0, though the boundary is not flat. Furthermore, it should be noted that there are a few
exceptional points in the following sense of smoothness: (i) T̂w is not smooth at x1 = ±1 in G1.
(ii) The curvature of boundary is not continuous at x1 = ±L̂ in G3. The second derivative of the
temperature along the surface is not necessarily continuous there in G3.

Because both of the boundary geometry and the temperature distribution T̂w are symmetric with
respect to the x1-axis and x2-axis, we will consider only the first quadrant, as shown in Fig. 2.

III. OUTLINE OF THE SOLUTION METHOD

A. Application of statics for the free molecular gas

The free molecular gas is the collisionless limit of the gas that models an extremely rarefied
gas. In such a limit, the gas molecules go straight if there is no external force. Accordingly, the char-
acteristic of Eq. (1a) is a straight line, along which the velocity distribution function φ is constant.
Therefore, it is straightforward to have a general solution of Eq. (1a) itself. Nevertheless, it is not
trivial to find a solution of the boundary-value problem (1), because σ̂0 and σ̂w in the boundary data
(1b) and (1d) for reflected molecules are related to the flux of molecules impinging on the boundary
through Eqs. (1c) and (1e).

Fortunately, however, we can make use of a general solution algorithm established in Refs. 3
and 4 in the present problem. For the later convenience, let us introduce the polar coordinates
(ζρ,ψ) for the components of the molecular velocity (ζ1, ζ2) in the plane of the cross section,
i.e., ζ1 = ζρ cosψ and ζ2 = ζρ sinψ (0 ≤ ζρ < ∞, −π < ψ ≤ π). Then, the solution of the present
problem (1) is expressed as

φ(x1, x2,ζ ) =



π−3/2

T̂2
w(xB

1 , x
B
2 )

exp *
,
−

ζ2
ρ + ζ

2
3

T̂w(xB
1 , x

B
2 )

+
-
, for ψ1 ≤ ψ ≤ ψ2,

π−3/2 exp(−ζ2
ρ − ζ2

3), otherwise,

(7)

where ψ1 and ψ2 are the polar angles of the tangential lines from the point (x1, x2) to the inner
boundary (−π < ψ1 < ψ2 ≤ π), thus depending on (x1, x2). The position (xB

1 , x
B
2 ) is the intersection

of the inner boundary with the straight line through the point (x1, x2) with the slope tanψ (see
Fig. 3). As is seen from Eq. (7), φ is independent of d̂1 and d̂2; thus, we do not specify their values.

FIG. 3. Polar angles ψ1 and ψ2 of the tangential lines, and the intersection (xB
1 , x

B
2 ) of the surface with the characteristic

line.
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Substituting Eq. (7) in Eq. (2) yields the following expressions for ρ̂, v̂i, T̂ , and q̂i:

ρ̂ =
1

2π

(
2π +

 ψ2

ψ1

(T̂−1/2
w (xB

1 , x
B
2 ) − 1)dψ

)
, (8a)

v̂i = 0, (8b)

T̂ =
1

2π ρ̂

(
2π +

 ψ2

ψ1

(T̂1/2
w (xB

1 , x
B
2 ) − 1)dψ

)
, (8c)

q̂1 =
1

2
√
π

 ψ2

ψ1

(T̂w(xB
1 , x

B
2 ) − 1) cosψdψ, (8d)

q̂2 =
1

2
√
π

 ψ2

ψ1

(T̂w(xB
1 , x

B
2 ) − 1) sinψdψ, (8e)

q̂3 = 0, (8f)

among which we will be mainly concerned with ρ̂ and T̂ .
It is seen from Eq. (8b) that the steady flow is not induced in the present problem. It is not triv-

ial, because, in contrast to the usual fluid, various steady flows are known to be induced thermally
in a rarefied gas,5,6 such as the thermal creep,5,7–9 thermal stress-slip,10,11 nonlinear thermal-stress,12

and thermal-edge flows.13,14 Thermally driven compressors and gas separators were also proposed
and studied in the last two decades.15–19 No occurrence of flow in the free molecular limit is one
of the remarkable general statements of the statics (see Ref. 1), which applies to a wide class of
problems, assuming the Maxwell’s boundary condition. Incidentally, if another type of boundary
condition such as the Cercignani–Lampis condition20 is assumed, the thermally induced flow re-
mains finite even in the free molecular limit.21 However, the magnitude of the remaining flow is
small, compared to that for finite Knudsen numbers. Detailed discussions can be found in Ref. 21.

B. Sketch of actual computations

The computations of the macroscopic quantities at each spatial position (x1, x2) through Eq. (8)
are essentially reduced to those of the polar angles ψ1 and ψ2 and the intersection point (xB

1 , x
B
2 ); see

Fig. 3. For every fixed ψ, the intersection is determined by finding a solution of the simultaneous
equations

xB
2 = (xB

1 − x1) tanψ + x2, (9a)
Gin(xB

1 , x
B
2 ) = 0, (9b)

which minimizes (x1 − xB
1 )2 + (x2 − xB

2 )2. The polar angles ψ1 and ψ2 are determined to be the angle
for which Eq. (9) has a multiple root.

In the case of G1-G3, Eq. (9) is reduced to at most the second-order algebraic equation, so
that ψ1 and ψ2 [or (xB

1 , x
B
2 )] can be written explicitly as functions of (x1, x2) [or (x1, x2) and ψ]. In

the case of G4, Eq. (9) is the fourth-order algebraic equation, and we compute ψ1, ψ2, and (xB
1 , x

B
2 )

numerically by the Newton–Raphson method.23 Although the functional forms of the integrands in
Eq. (8) are known for G1-G3, we commonly apply the composite Simpson rule to the numerical
integrations in Eq. (8) for G1-G4.

IV. RESULTS AND DISCUSSIONS

We carried out the computations for various values of T̂1, T̂2, and T̂3 for each G1-G4. Repre-
sentative results are shown in Figs. 4–7. In each figure, the panel (a) shows the isoline map of the
temperature T̂ and the vector field of the heat flow q̂i, while the panel (b) the isoline map of the
density ρ̂.

In Figs. 4–7, the heat flow is commonly induced from the hotter to the colder region, which
is the same tendency as in the usual fluid. However, it does not imply that Fourier’s heat law
holds in the present problem. As is seen from Eq. (7), the transport property of the free molecular
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FIG. 4. Temperature, heat-flow, and density fields for G1 [T̂1= 1/2 and T̂2= (1+
√

2)/2]. (a) The isoline map of T̂ and vector
field of q̂i. (b) The isoline map of ρ̂. In panel (a), the arrows indicate the heat-flow vector q̂i at their starting points. The
scale of the vector is shown on the top right in the panel.

gas is ballistic and the resulting temperature field is necessarily different from that described by
the heat-conduction equation for the usual resting fluid. For instance, the jump in temperature is
observed between the gas and the boundary in the figures, which would be checked more easily on
the outer pipe because its (dimensionless) temperature is unity. It is one of the typical phenomena in
a rarefied gas, known as the temperature jump on the boundary.1,5,24

The isoline maps of the density in Figs. 4–7 look similar to those of the temperature, though
their increasing/decreasing trends are opposite to each other. In the case of G3 and G4, the isolines
of both temperature and density look sharply bent on the line x2 = 1 in the gas; see Figs. 6 and 7.
Such a strange feature is not observed in G1 and G2; see Figs. 4 and 5.

In Secs. IV A and IV B, we will discuss in detail the behavior of the macroscopic quantities
near the inner boundary and the strange feature of isolines observed in G3 and G4. The discussions
in Secs. IV A and IV B are the core of the present paper.

A. Universality of the gas behavior near the convex boundary

Let us denote by s the normal distance from the inner boundary (see Fig. 8 in the case of G1).
Figure 9 shows the variation of the density ρ̂ near the inner boundary as a function of s. The panels
(a)–(d) in the figure correspond to the cases shown in panel (b) of Figs. 4–7. Several points on the
boundary are chosen and specified by the polar angle θws or coordinate xs illustrated in Fig. 8. It is
found that the variation obeys the 1/2-power law in the vicinity most of those points. This suggests

(a) (b)

FIG. 5. Temperature, heat-flow, and density fields for G2 (b̂ = 2, T̂1= 1/2, T̂2= 3/2). See the caption of Fig. 4.
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FIG. 6. Temperature, heat-flow, and density fields for G3 (L̂ = 1, T̂1= 1, T̂2= 2, T̂3= 3). See the caption of Fig. 4.

the existence of universality for the behavior near the boundary: the gradient of ρ̂ in the direction
normal to the boundary diverges with the rate s−1/2 as s → 0. However, the different behavior is
also observed at θws = π/4 in G1 and G2, at the flat part of the boundary in G3 (0 ≤ xs < L̂), and
at θws = 0 and θws = π/2 in G4. In these cases except for the last, the gradient of density remains
finite. In the last case, i.e., at θws = π/2 in G4, the gradient diverges with the weaker rate s−1/4 as
s → 0.

Keeping in mind the above observations, let us first discuss the 1/2-power law in G1, which
is geometrically simplest. We denote the derivative with respect to s by ′. Below, the quantities
dependent on (x1, x2), such as ψ1, ψ2, and T̂w in Eq. (8), should be understood as functions of (θws, s)
or (xs, s). Note that dependence of T̂w on s occurs through its dependence on θw. Then, taking the
derivative of Eq. (8a) with respect to s yields

ρ̂′ =
1

2π
[F(·, ·,ψ2)ψ ′2 − F(·, ·,ψ1)ψ ′1] +

1
2π

 ψ2

ψ1

F ′dψ, (10)

where F is the integrand in Eq. (8a), i.e.,

F(θws, s,ψ) = T̂w(θw(θws, s,ψ))−1/2 − 1, (11a)

and ψ1, ψ2, and θw are expressed as functions of s through the relations that

(s + 1) sin(ψ − θws) = sin(ψ − θw), (11b)
− sin(ψ1 − θws) = sin(ψ2 − θws) = 1/(s + 1). (11c)

FIG. 7. Temperature, heat-flow, and density fields for G4 (T̂1= 1, T̂2= 2). See the caption of Fig. 4.
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FIG. 8. Distance s of the point (x1, x2) from the boundary in the case of G1. The nearest boundary point is specified with
the polar angle θws or the coordinates (xs, ys).

(a) G1 (b) G2

(d) G4(c) G3

FIG. 9. Density variation from the boundary in its normal direction. (a) G1 [T̂1= 1/2, T̂2= (1+
√

2)/2]. (b) G2 (b̂ = 2,
T̂1= 1/2, T̂2= 3/2). (c) G3 (L̂ = 1, T̂1= 1, T̂2= 2, T̂3= 3). (d) G4 (T̂1= 1, T̂2= 2).
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Here, Eq. (11b) is a simple geometric consequence (see Fig. 8), while Eq. (11c) is its special
(two) cases where the trajectory line in the figure is tangential to the inner boundary. Note that
the s-derivative of the polar angles of tangential lines, ψ ′1 and ψ ′2, appear in the first term on the
right-hand side of Eq. (10). This reflects the fact that the region of integration in Eq. (8a) changes
according to the distance s from the boundary, due to the discontinuity of φ at the directions ψ = ψ1
and ψ2; see Eq. (7). The second term in Eq. (10) is the integral of the s-derivative of the integrand
of Eq. (8a). As far as the temperature T̂w (and thus F) is smooth in θw, the second term vanishes as
s → 0. The reader is referred to the Appendix for the proof and related discussions. Thus, the first
term in Eq. (10), i.e., the change of the polar angle of the tangential line, should be the source of the
power law of our concern. Indeed, it is easily seen from Eq. (11c) that

ψ ′1 = −ψ
′
2 =

1

(s + 1)s(s + 2) . (12)

Both ψ ′1 and ψ ′2 diverge with the rate s−1/2 as s → 0, so does the first term of Eq. (10). This explains
the reason why the variation of ρ̂ near the boundary obeys the 1/2-power law in s. It should be
reminded that Eq. (12) purely comes from the geometric property of the boundary.

Since any boundary with non-zero curvature is locally identical to a circular arc, the discussions
in the previous paragraph apply to the vicinity of any boundary point with a positive curvature. In
this way, we see that the 1/2-power law should apply to the inner boundary entirely in G1 and G2,
its circular arc part in G3, and the entire inner boundary except for θws = π/2 in G4. The 1/2-power
law is concluded to be a curvature effect.

There are still, however, some points with nonzero curvature at which the 1/2-power law does
not hold: the points at θws = π/4 in G1 and G2 and at θws = 0 in G4. The clue to understand these
exceptions is the fact that T̂w at those points is commonly equal to unity by chance, i.e., the same
temperature as the outer boundary. In case of such a coincidence in temperature, F(·, ·,ψ1) and
F(·, ·,ψ2) are close to each other to make the singular factor in Eq. (12) less effective as s → 0.
Indeed, because θw(θws,0,ψ) = θws, T̂w in Eq. (11a) can be estimated for s ≪ 1 as

T̂w(θw) = T̂w(θws) + dT̂w
dθw

�����θw=θws

Θ +O(Θ2),

Θ ≡ θw − θws,

where Θ is estimated at ψ = ψ1 and ψ = ψ2 as

Θ(θws, s,ψ) =



(2s)1/2 +O(s3/2), when ψ = ψ1,

−(2s)1/2 +O(s3/2), when ψ = ψ2.

Since T̂w(θws) = 1, the magnitude of F(·, ·,ψ1) and F(·, ·,ψ2) in Eq. (10) is O(s1/2), not O(1).
Furthermore, they cancel each other out at this order, leaving the contributions of O(s) at most.
Consequently, the first term of Eq. (10) as a whole degenerates into O(s1/2), the same order as
that of the second term (see the Appendix). A further cancellation may happen, depending on the
distribution of the surface temperature T̂w. In this way, both terms in Eq. (10) change moderately
and the gradient of ρ̂ does not diverge. The degeneracy of singularity is thus caused by vanishing
the discontinuity of the velocity distribution function φ in the tangential direction to the boundary
when approaching the boundary. Here the trigger of the vanishing discontinuity is the coincidence
in temperature. In Figs. 9(a) and 9(b), ρ̂ obeys the 3/2-power law, which supports the above expla-
nation. In Fig. 9(d), ρ̂ obeys the 5/2-power law, which is higher by one order than that at the other
two points. The occurrence of the high order degeneracy is due to the very small variation of the
surface temperature there.

An extension of the above discussions on the curvature effect is possible. Let us consider the
boundary that is locally given by z = x2n, where n is a natural number and z < x2n is supposed
to be the gas side. Then, it is easily seen that ψ ′1, ψ

′
2 ∝ [s/(2n − 1)]−1/2n, and consequently the

variation of ρ̂ is proportional to 2n[s/(2n − 1)]1−1/2n near the boundary. The point at θws = π/2 in
G4 is exactly the case n = 2 and the density variation there shown in Fig. 9(d) obeys the 3/4-power
law as predicted by the present extended argument. Note that n = 1 is the boundary with nonzero
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curvature and we recover the 1/2-power law. The case n ≥ 2 is the convex body without curvature.
The limit n → ∞ is the flat boundary and predicts the 1st-power law. Thus, the behavior on the flat
part in G3 in Fig. 9(c) is also explained by the present extension. In this way, we have reached the
conclusion that, even though the variation of the surface temperature is smooth, the normal gradient
of the density diverges, in general, due to the local geometry of the boundary. We have also reached
a comprehensive understanding on the universality of the power law for the normal gradient.

Although we have discussed so far only the density, the temperature also follows the same
universality. Thus, the normal gradient of temperature also diverges at the position where that of
the density diverges. It seems unreasonable from the viewpoint of the conventional fluid dynamics,
because it suggests the infinite heat flux to the boundary. It is not the case, as is clearly observed
in panel (a) in Figs. 4–7. Rather, the divergence of the normal gradient of temperature is the clear
manifestation of the breakdown of Fourier’s heat law in a rarefied gas. Even when there occur
the intermolecular collisions, the divergence of the gradient of macroscopic quantities still occurs.
Detailed studies on this issue can be found, for instance, in Ref. 22.

B. A sharp and an edged bend of isoline

In the present subsection, we study in detail the strange behavior of the isolines, in particular
the isothermal lines, occurring in G3 and G4; see Figs. 6 and 7. The method and the results below
apply also to the isoline of the density, though we omit its explanation here.

In viewing Figs. 6 and 7, the isolines look bent sharply or even with a sharp edge on the line
x2 = 1. This line is the tangential to the inner boundary at (x1, x2) = (0,1), where the curvature of
the boundary is zero both in G3 and G4. If the isothermal line is really bent with a sharp edge
at some point (namely, if it has an “edged bend” there), the gradient of temperature has a jump
discontinuity there. In order to see whether it is the case, we show in Fig. 10 the profile of dT̂/dx2
around x2 = 1 along the lines x1 = 2, 3, and 4 in panel (a) for G3 and along the lines x1 = 1, 2, and
3 in panel (b) for G4. In drawing the figure, we have used the expression of dT̂/dx2 obtained from
Eqs. (8a) and (8c) by taking their x2-derivative.

It is clearly seen that dT̂/dx2 has a jump discontinuity at x2 = 1 in Fig. 10(a). Thus, the
isothermal line is bent with a sharp edge in G3. On the other hand, a different feature is observed in
Fig. 10(b). The gradient dT̂/dx2 is continuous but changes very steeply at x2 = 1 in G4.

In order to study the latter feature more closely, we consider the case that the geometry of
the inner boundary is generalized as x2n

1 + x2
2 = 1, where n is a natural number, but the surface

temperature T̂w is uniform, say T̂c(, 1), for simplicity. Numerical results for G4 with T̂1 = T̂2 = 2
exhibit the same feature as that in Fig. 7; thus, the simplification of the temperature does not spoil
the essence of the phenomenon of our interest; see Fig. 11. Without loss of generality, we may
restrict our consideration in the first quadrant. Note that the boundary is a circle when n = 1 and that
G4 is recovered when n = 2. The x2-gradient of temperature dT̂/dx2 along the line x1 = 1 is easily
obtained from Eqs. (8c) and (8a) as

dT̂
dx2
=

2π(T̂−1/2
c − T̂1/2

c )
[2π + (T̂−1/2

c − 1)(π/2 − ψ1)]2
dψ1

dx2
. (13)

Because ψ1 is continuous in x2 and −π/2 ≤ ψ1 < π/2, the denominator on the right-hand side is
strictly positive for any T̂c(>0). Thus, it is enough to study dψ1/dx2 to understand the property of
dT̂/dx2 around x2 = 1. Denoting the x1-coordinate of the tangential point by xB, the polar angle ψ1
of the tangential line is expressed by

tanψ1 =
−nx2n−1

B
1 − x2n

B

. (14)

Since the equation of the tangential line from the point (1, x2) yields the relation

x2 = (1 − xB) tanψ1 +


1 − x2n

B , (15)
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FIG. 10. Temperature gradient in the x2-direction along the line x1= const. (a) G3 (L̂ = 1, T̂1= 1, T̂2= 2, T̂3= 3). (b) G4
(T̂1= 1, T̂2= 2). From left to right, x1= 2, 3, and 4 in (a), while x1= 1, 2, and 3 in (b).

we obtain from Eqs. (14) and (15) that

dψ1

dx2
=

1 − x2n
B

(1 − xB)(1 − x2n
B + n2x4n−2

B ) . (16)

When x2 ≃ 1, the tangential line with the polar angle ψ1 is almost parallel to the x1-axis, so that
|xB| ≪ 1. The relation obtained by eliminating tanψ1 from Eqs. (14) and (15),

x2


1 − x2n

B = 1 − nx2n−1
B + (n − 1)x2n

B , (17)

can be simplified for |xB| ≪ 1 as x2 ≃ 1 − nx2n−1
B , and we have the estimate

xB ≃ ∓
�����
1 − x2

n

�����

1
2n−1

, (x2 ≷ 1), (18)
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(a) (b)

FIG. 11. Temperature, heat-flow, and density fields for G4 (T̂1= T̂2= 2). (a) The isoline map of T̂ and vector field of q̂i. (b)
The isoline map of ρ̂. See the caption of Fig. 4.

near x2 = 1. Applying this approximation to Eq. (16) finally yields

dψ1

dx2
(≃1 + xB) ≃ 1 ∓

�����
1 − x2

n

�����

1
2n−1

, (x2 ≷ 1). (19)

As is already mentioned, the geometry of G4 is recovered by setting n = 2. Equation (19) in
this case tells that dT̂/dx2 is continuous but its gradient or its rate of change diverges according to
the −2/3-power law. We refer such a case with diverging second derivative to the “sharp bend.” The
setting n = 1 is the case of the circular boundary and gives contrast to the above. Indeed, Eq. (19)
with n = 1 yields the continuous and smooth dT̂/dx2, so that the isolines should not have a sharp
nor edged bend. This explains the reason why the strange feature of the isolines does not appear in
G1 and G2; see Figs. 4 and 5. Incidentally, for any finite n ≥ 2, Eq. (19) predicts that dT̂/dx2 is
continuous but not smooth [see f2 and f3 in Fig. 12(a)]. Therefore, the vanishing or non-vanishing
of the curvature of the convex boundary affects the behavior of the isolines on its tangential line.
Furthermore, if we take the limit n → ∞, Eq. (19) is reduced to

dψ1

dx2
≃



0, (x2 > 1),
2, (x2 < 1). (20)

(a) (b)

FIG. 12. Illustration of the smooth, sharp, and edged bends of isolines for the function gn(x, y)= x+ (1+ x2) fn(y) with
fn(x)= |x | 2n

2n−1 (n = 1,2, . . .). (a) Profiles of fn. (b) Isolines of gn(x, y). In (a), f∞ has a jump in its derivative at x = 0
(edged bend); f3 and f2 have a continuous first derivative, but their second derivatives diverge at x = 0 (sharp bend); and f1 is
smooth. In (b), the isolines show a sharp and edged bend at y = 0 in g2 and g∞, respectively.
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Therefore, dT̂/dx2 has a jump discontinuity at x2 = 1. In this way, the edged bend in the isolines in
G3 (Fig. 10) is also explained in the same framework. The isolines show a real edged bend on the
tangential line to the flat part of the convex body. Figure 12(b) illustrates the feature of the sharp or
edged bend of isolines that we discussed.

V. CONCLUSION

We have investigated the steady behavior of the free molecular gas in spatially two-dimensional
problems, with a special interest in its behavior around a convex body. Four types of setting have
been considered as the prototype to draw a general law. We have shown that two types of singularity
come out at the level of the macroscopic quantity, even when both of the body-surface tempera-
ture and geometry are smooth. Those singularities are due to the propagation of discontinuity of
the velocity distribution function, i.e., the effects of the body-surface geometry. We have found a
universality and the power-law of the macroscopic quantities near the surface by focusing on its
local geometry. Main results are summarized as follows:

1. On the convex body surface, the gradient of macroscopic quantities in its normal direction
diverges. This happens at the non-flat part of the body surface. The rate of divergence is deter-
mined by the algebraic curve that locally approximates the surface. Especially, at the surface
point with nonzero curvature, the rate of divergence is the inverse square root of the distance
from the surface.

2. The isolines lose the smoothness in crossing the tangential line at the surface point with zero
curvature. In particular, they have an edged bend, if the surface is flat at that point. The isolines
remain smooth in crossing the tangential line at the point with nonzero curvature.

When the boundary data, say the surface temperature distribution, cancel out by chance the occur-
rence of the propagation of discontinuity of the velocity distribution function, the above general
law does not apply and no universality would be expected. However, we see that only the regular
behavior or a weaker singularity, if exists, occurs, since the dominant contribution to the divergence
degenerates.

APPENDIX: ESTIMATE OF THE SECOND TERM OF EQ. (10)

In this appendix, we show the finiteness or even vanishing of the second term of Eq. (10) as
s → 0.

Because of Eq. (11a), F ′ is written as

F ′ =
dF
dθw

∂θw
∂s
≡ G(θw)∂θw

∂s
.

Then, the second term of Eq. (10) is rewritten as

1
2π

 α∗

−α∗
G(θw) sin α

1 − (s + 1)2sin2α

dα =
1

2π

 π/2

−π/2

G(θws + Θ)
s + 1

sin β
(s + 1)2 − sin2β

dβ, (A1)

where α = θws − ψ, α∗ = ψ2 − θws = θws − ψ1, Θ = θw − θws, and β = Θ + α. The relative angle Θ
in the argument of G on the right-hand side depends only on s and β. Moreover, it is odd in β,
i.e., Θ(s,−β) = −Θ(s, β). Using this property, Eq. (A1) is further rewritten as

(A1) = 1
2π

 π/2

0

∆G
s + 1

sin β
(s + 1)2 − sin2β

dβ, (A2)

where ∆G ≡ G(θws + Θ) − G(θws − Θ).
When s is small, Θ is small and thus ∆G is estimated as ∆G ≃ 2(dG/dθw)θwsΘ. It is also seen

from Eq. (11b) that Θ ≃ s tan α = s sin β/

(s + 1)2 − sin2β for small s. We therefore obtain the
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(a) (b)

(c)

FIG. 13. Temperature, heat-flow, and density in G1 (T̂1= 1 and T̂2= 2). (a) The isoline map of T̂ and vector field of q̂i. (b)
The isoline map of ρ̂. (c) d ρ̂/ds near the boundary. In (c), the left is the semilog plot, while the right is the log-log plot. See
the caption of Fig. 4 for panel (a).

following estimate for the second term of Eq. (10):

(A2) ≃ 1
π

dG
dθw

�����θws

 π/2

0

s
s + 1

sin2β

(s + 1)2 − sin2β
dβ

=
1
2

dG
dθw

�����θws

s + 1 −


s(s + 2)
√

s + 2

s1/2

1 + s
= O(s1/2).

Incidentally, if T̂w is not smooth in θw at the surface position θws, G has a jump discontinuity
at Θ = 0, so that ∆G = O(1), not of O(Θ). Consequently, the integral like Eq. (A2) with ∆G = 1
remains, from which the divergence with the rate ln s comes out. This diverging rate is, how-
ever, weaker than s−1/2, so that it dominates the behavior of the gas only when s−1/2 singularity
degenerates, i.e., when T̂w(θws) = 1. Numerical results for G1 (T̂1 = 1, T̂2 = 2) supports the present
argument, see the case θws = 0 in Fig. 13(c).
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