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On the two‐dimensional steady Navier‐Stokes
equations related to flows around a rotating obstacle

Dedicated to Professor Yoshinori Morimoto

By

Mitsuo HIGAKI* Yasunori MAEKAWA and Yuu NAKAHARA***

Abstract

We study a model problem related to the two‐dimensional stationary Navier‐Stokes equa‐
tions with a rotating effect, which naturally appears in the analysis of the flows around a
rotating obstacle. The unique existence of solutions and their asymptotic behavior at spatial
infinity are established when the given external force is sufficiently small in a scale critical
space.

§1. Introduction

Let  \mathcal{B} be a rigid body immersed in a viscous incompressible fluid that fills the whole

space. Assume that the body rotates with a constant angular velocity  a\in \mathbb{R}\backslash \{0\} and
the exterior of  \mathcal{B}(t) is described as  \Omega(t)  \subset  \mathbb{R}^{2} . The time dependent domain  \Omega(t) is
defined as

 \Omega(t) = \{y\in \mathbb{R}^{2} | y=O(at)x, x \in \Omega\},

(1.1)  o (at)  =  (\begin{array}{l}
sinatcosat-
sinatcosat
\end{array}) ,
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where a given exterior domain  \Omega(0)  =  \Omega  \subset  \mathbb{R}^{2} has a smooth boundary  \partial\Omega . The flow

around the rotating body is described by the following Navier‐Stokes equations:

(1.2)  \{\begin{array}{ll}
\partial_{t}v-\triangle v+v\cdot\nabla v+\nabla q = g,   t>0, y\in\Omega(t) ,
divv = 0,   t>0, y\in\Omega(t) .
\end{array}
Here  v=v(y, t)=(v_{1}(y, t), v_{2}(y, t))^{T} and  q=q(y, t) are respectively unknown velocity

field and pressure field, and  g  =g(y, t)  =  (g_{1}(y, t), g_{2}(y, t))^{T} is a given external force.
We use the standard notation for derivatives:  \partial_{t}  =   \frac{\partial}{\partial t},  \partial_{j}  =

 \overline{\partial x_{j}},
 \triangle  =   \sum_{=1}^{2}\partial_{j}^{2},

 divv  =   \sum_{=1}^{2}\partial_{j}v_{j},  v  \nabla v  =   \sum_{=1}^{2}v_{j}\partial_{j}v , while  x^{\perp}  =  (-x_{2}, x_{1})^{T} denotes the vector

which is perpendicular to  x  =  (x_{1}, x_{2})^{T} . To get rid of the difficulty due to the time‐

dependence of the domain we take the reference frame by making change of variables

 y = O(at)x, u(x, t) = O(at)^{T}v(y, t) , p(x, t) = q(y, t) ,

 f(x, t) = O(at)^{T}g(y, t)

for  t\geq 0 nd   x\in\Omega . Then (1.2) is equivalent to the equations:

(1.3)  \{\begin{array}{ll}
\partial_{t}u-\triangle u-a(x^{\perp}\cdot\nabla u-u^{\perp})+\nabla p = -u\cdot
\nabla u+f,   t>0, x\in\Omega,
divu = 0,   t>0, x\in\Omega.
\end{array}
In order to understand the structure of solutions at spatial infinity it is important to

study this system in  \mathbb{R}^{2} . The effect of the boundary is expressed as a force in this case.

Motivated by this observation, as a model problem, in this paper we study the above

nonlinear system in  \mathbb{R}^{2} and in the steady case. Thus, assuming that  f is independent

of  t , we are interested in the following system:

 (NS_{a})  \{\begin{array}{ll}
-\triangle u-a(x^{\perp}\cdot\nabla u-u^{\perp})+\nabla p = -u\cdot\nabla u+f,  
x\in \mathbb{R}^{2},
divu = 0,   x\in \mathbb{R}^{2}
\end{array}
Our aim is to show the existence and the asymptotic behavior of the solution to (NSa).
For this purpose we first consider the linearized problem

 (S_{a})  \{\begin{array}{ll}
-\triangle u-a(x^{\perp}\cdot\nabla u-u^{\perp})+\nabla p = f,   x\in \mathbb{R}
^{2},
divu = 0,   x\in \mathbb{R}^{2}
\end{array}
We will show that there exists a unique solution to  (S_{a}) such that the leading term

of the asymptotic behavior of the flow at infinity is the rotational profile  c \frac{x^{\perp}}{|x|^{2}} whose

coefficient  c is determined by the external force  f.

Before stating the main theorem, let us recall some known results on the mathe‐

matical analysis of flows around a rotating obstacle.
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So far the mathematical results on this topic have been obtained mainly for the

three‐dimensional problem, as listed below. For the nonstationary problem the existence

of global weak solutions is proved by Borchers [1], and the unique existence of time‐
local regular solutions is shown by Hishida [11] and Geissert, Heck, and Hieber [9],
while the global strong solutions for small data are obtained by Galdi and Silvestre [8].
The spectrum of the linear operator related to this problem is studied by Farwig and

Neustupa [2]; see also the linear analysis by Hishida [12]. The existence of stationary
solutions to the associated system is proved in [1], Silvestre [15], Galdi [7], and Farwig
and Hishida [3]. In particular, in [7] the stationary flows with the decay order  O(|x|^{-1})
are obtained, while the work of [3] is based on the weak  L^{3} framework, which is another
natural scale‐critical space for the three‐dimensional Navier‐Stokes equations. In  3D

case the asymptotic profiles of these stationary flows at spatial infinity are studied by

Farwig and Hishida [4, 5] and Farwig, Galdi, and Kyed [6], where it is proved that
the asymptotic profiles are described by the Landau solutions, stationary self‐similar
solutions to the Navier‐Stokes equations in  \mathbb{R}^{3}\backslash \{0\} . It is worthwhile to mention that,

also in the two‐dimensional case, the asymptotic profile is given by the stationary self‐

similar solution  c \frac{x^{\perp}}{|x|^{2}} . The stability of the above stationary solutions has been well

studied in the three‐dimensional case; The global  L^{2} stability is proved in [8], and the
local  L^{3} stability is obtained by Hishida and Shibata [14].

All results mentioned above are considered in the three‐dimensional case, while

only a few results are known so far for the flow around a rotating obstacle in the two‐

dimensional case. An important progress has been made by Hishida [13], where the
asymptotic behavior of the two‐dimensional stationary Stokes flow around a rotating

obstacle is investigated in details. Recently, the nonlinear problem (1.2) is analyzed
in [10], and the existence of the unique solution decaying as  O(|x|^{-1}) is proved for
sufficiently small  a and  f when the external force  f is of divergence form  f=divF and
 F has a scale critical decay. Moreover, the leading profile at spatial infinity is shown as

 C \frac{x^{\perp}}{|x|^{2}} under the additional decay condition on  F such as  F=O(|x|^{-2-r}) ,  r>0.

Since we consider the problem in  \mathbb{R}^{2} in this paper, by virtue of the absence of the

physical boundary, we can show the existence of solutions to (NSa) without assuming
the smallness of the angular velocity  a . To state our result let us introduce the function

space. For a fixed number  s\geq 0 the weighted  L^{\infty} space  L_{s}^{\infty}(\mathbb{R}^{2}) is defined as

 L_{s}^{\infty}(\mathbb{R}^{2}) = \{f\in L^{\infty}(\mathbb{R}^{2}) | (1+|x|)
^{s}f\in L^{\infty}(R2)\} :

The space is equipped with the natural norm

 \Vert f\Vert_{L_{s}^{1}}  = ess.supx  \in \mathbb{R}^{2}(1+|x|)^{s}|f(x)| :

The first result of this paper is on the linear problem (Sa), which extends the result  0

[  13 , Proposition 5.3.2] (see also Remark 1 (2) below).
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Theorem 1.1. Let   a\in  \mathbb{R}\backslash \{0\} and  r  \in  [0 , 1). Assume that  f  \in  L_{3+r}^{\infty}(\mathbb{R}^{2})^{2}.
Then there exists a unique  (u, p)  \in L_{1}^{\infty}(\mathbb{R}^{2})^{2}  \cross L^{\infty}(\mathbb{R}^{2}) such that:

1. The couple  (u,p) satisfies  (S_{a}) in the sense of distributions.

2. The velocity  u belongs to  L_{1}^{\infty}(\mathbb{R}^{2})^{2} and satisfies

(1.4)  u(x)  =

 |y|< \frac{|x|}{2}y^{\perp}\cdot f(y)dy   \frac{x^{\perp}}{4\pi|x|^{2}}+\mathcal{R}[f](x) ,

with

(1.5)  |\mathcal{R}[f](x)|  \leq   \frac{C}{(1+|x|)^{1+r}}(\frac{1}{1-r}+\frac{1}{|a|^{\frac{1+r}{2}}})
||f||_{L_{3+r}^{1}},
and in particular, it follows that

(1.6)  \Vert \mathcal{R}[f]\Vert_{L_{1+r}^{1}}  \leq C  ( \frac{1}{1-r}+\frac{1}{|a|^{\frac{1+r}{2}}})\Vert f\Vert_{L_{3+r}^{1}}
with a numerical constant  C.

3. The pressure  p is given by

(1.7)  p(x)  =   \frac{1}{2\pi}   \mathbb{R}^{2}\frac{x-y}{|x-y|^{2}}\cdot f(y) dy:

Remark 1. (1) The representation (1.7) leads to the regularity and the decay
of the pressure such as  \nabla p  \in  L^{q}(\mathbb{R}^{2}) for  q  \in  (1, \infty) and  p  \in  L_{1}^{\infty} (R2). The solution
 (u,p)  \in  L_{1}^{\infty}(\mathbb{R}^{2})^{2}  \cross  L_{1}^{\infty}(\mathbb{R}^{2}) satisfying  (S_{a}) in the sense of distribution is unique by

virtue of the uniqueness result in Hishida [13, Lemma 5.3.5].
(2) In [13, Proposition 5.3.2] the result of Theorem 1.1 is firstly established under
the conditions on  f such as  f  \in  L^{1}(\mathbb{R}^{2})^{2}\cap L^{\infty}(\mathbb{R}^{2})^{2},  x^{\perp}.  f  \in  L^{1}(\mathbb{R}^{2})^{2} , and  f(x)  =

 O(|x|^{-3}(\log|x|)^{-1}) as  |x|  arrow  \infty . Our result improves his result, and in particular, the

critical case  f(x)=O(|x|^{-3}) is treated. We note that, in the case  r=0 , the integral in

the right‐hand side of (1.4) does not converge in general when  |x|  arrow 1 . The reason why
we can treat the critical case  f(x)=O(|x|^{-3}) is briefly explained as follows. Both in our

paper and in [13] the key is to estimate the function   \int_{\mathbb{R}^{2}}\Gamma_{a}(x, y)f(y) dy, where  \Gamma_{a}(x, y)
is the fundamental solution to (Sa). Our improvement is achieved in the estimate  0

the part   \int_{\frac{|x|}{2}<|y|<2|x|}\Gamma_{a}(x, y)f(y) dy, where the loss of the logarithmic order appears in

[13]. The fundamental solution  \Gamma_{a}(x, y) can be expressed in terms of the time integral,
see (2.1) below, and we use the effect of the oscillation (due to the rotation) by using
the integration by part in time even in the regime  0   \frac{|x|}{2}  <  |y|  <  2|x| , while in [13]
this technique is not essentially used in this regime, though it is effectively used by

[13] in the other regimes  |y|  \leq   \frac{|x|}{2} and  |y|  \geq  2|x| . The use of the oscillation in the
term   \int_{\frac{|x|}{2}<|y|<2|x|}\Gamma_{a}(x, y)f(y)dy enables us to remove the logarithmic loss in [13]. For
details, see Section 3 and the estimate of  U_{2,1,2} there.
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To study the nonlinear problem it is reasonable to consider the linear problem when

the external force  f is given by  f=divF with  F(x)=O(|x|^{-2}) in view of the structure
of the nonlinear term  u\cdot\nabla u=div(u\otimes u) . Here the matrix  (u_{i}v_{j})_{1\leq i,j\leq 2} is written as

 u\otimes v . The following result is essentially obtained in [10].

Theorem 1.2  ( [10, Theorem  3.1 ii)]) . Let   a\in  \mathbb{R}\backslash  \{0\},  r  \in  [0 , 1), and  q  \in

 (1, \infty) . Assume that  f\in L^{2}(\mathbb{R}^{2})^{2} is of divergence form  f=divF with  F\in L_{2+r}^{\infty}(\mathbb{R}^{2})^{2\cross 2}.
Then there exists a unique  (u,p)  \in L_{1}^{\infty}(\mathbb{R}^{2})^{2}  \cross L^{q}(\mathbb{R}^{2}) such that  (u,p) satisfies  (S_{a})  i

the sense of distributions, and  u satisfie

(1.8)  u(x) = |y|< \frac{|x|}{2}(F_{21}(y)-F_{12}(y))dy\frac{x^{\perp}}{4\pi|x|^{2}}+
\mathcal{R}[f](x) ,

where  F_{ij} is  (i, j) component of the matrix  F=(F_{ij})_{1\leq i,j\leq 2} and  \mathcal{R}[f] satisfies

 | \mathcal{R}[f](x)| \leq C\min\{\frac{1}{|a||x|^{3}}, \frac{1}{|x|}\} 
|y|\leq\frac{|x|}{2} |F(y)|dy(1.9)

 + \frac{C}{(1+|x|)^{1+r}}\frac{1}{1-r}\Vert F\Vert_{L_{2+r}^{1}}.
Here  C is a numerical constant independent also of  a and  r . In particular, it follows
that

(1.10)   \Vert \mathcal{R}[f]\Vert_{L_{1+r}^{1}} \leq C (\frac{1}{1-r}+\frac{1+\log|a|}
{|a|^{\frac{r}{2}}})\Vert F\Vert_{L_{2+r}^{1}}
with a numerical constant  C.

Remark 2. (1) In fact, the statement of [10, Theorem 3.1] is a slightly different
from Theorem 1.2 above. So we give a sketch of the proof of Theorem 1.2 in Section 2,

based on the key pointwise asymptotic estimate of the fundamental solution, see Lemma

2.1 below, which is due to [10, Lemma 3.3].
(2) Estimate (1.10) is derived from (1.9). Indeed, when  |x|  \leq  1 the first term in the
right‐hand side of (1.9) is estimated as  C|x|\Vert F\Vert_{L^{1}} , while when  |x|  \geq  1 this term is
estimated by dividing into two cases (i)  |a||x|^{2}  \leq  1 and (ii)  |a||x|^{2}  \geq  1 . The factor
 \log|a| in (1.10) is required only when  r is near  0 in order to ensure that the constant  C

is independent of  r.

The linear results of Theorem 1.1 and 1.2 are applied to the nonlinear problem

(NSa). The result for the nonlinear problem is stated as follows.

Theorem 1.3. Let   a\in  \mathbb{R}\backslash \{0\},  r  \in  [0 , 1), and  q  \in  (2, \infty) . Then there exists
 \delta=\delta(a, r)  >0 such that, for any  f\in L_{3+r}^{\infty}(\mathbb{R}^{2})^{2} satisfying  x^{\perp}\cdot f\in L^{1}(\mathbb{R}^{2}) and

(1.11)  \Vert x^{\perp}\cdot f\Vert_{L^{1}}+\Vert f\Vert_{L_{3+r}^{1}} <\delta,
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there exists a unique solution  (u,p)  \in L_{1}^{\infty}(\mathbb{R}^{2})^{2}  \cross L^{q}(\mathbb{R}^{2}) to (NSa) such that

(1.12)  u(x) = \alpha U(x)+v(x) ,

where

(1.13)  \alpha  =   \frac{1}{2}  \mathbb{R}^{2}y^{\perp}\cdot f(y) dy,

and

 U(x)  =   \frac{1}{2\pi}\frac{x^{\perp}}{|x|^{2}}(1-e^{-\frac{|x|^{2}}{4}}) ,

(1.14)   \Vert v\Vert_{L_{1+r}^{1}} \leq C_{r} (\frac{1}{1-r}+\frac{1}{|a|^{\frac{1+r}
{2}}})(\Vert x^{\perp}\cdot f\Vert_{L^{1}}+\Vert f\Vert_{L_{3+r}^{1}}) ,

and the pressure  p is given by

(1.15)  p(x) = \nabla\cdot(-\triangle)^{-1}\nabla\cdot(u\otimes u)-\nabla\cdot(-
\triangle)^{-1}f.

Here the constant  C_{r} depends only on  r.

Remark 3. In Theorem 1.3 the solution is constructed as the solution to the

integral equation associated with (NSa), which is formulated based on the fundamental
solution to the linearized problem (Sa). The uniqueness is proved for this class  0

solutions.

This paper is organized as follows. In Section 2 we collect the estimates which reflect

the effect of the rotation. Most of them are the abstractions from [13, 10]. Theorem 1.1
is proved in Section 3. Finally, Theorem 1.3 is proved in Section 4.

§2. Preliminaries

Let us consider the linear problem in the whole plane for  a\in \mathbb{R}\backslash \{0\} :

 (S_{a})  -\triangle u-a(x^{\perp}\cdot\nabla u-u^{\perp})+\nabla p  =  f,  divu  =  0,  x\in \mathbb{R}^{2}

The couple  (u,p) is said to be a weak solution to  (S_{a}) if  (u,p)  \in  L^{q_{1}}(\mathbb{R}^{2})^{2}  \cross  L^{q_{2}}(\mathbb{R}^{2})
for some  q_{1},  q_{2}  \in  [1, \infty ), and (i)  divu  =  0 in the sense of distributions, and (ii)  (u, p)
satisfies

  u\cdot T_{-a}\phi dx— pdiv  \phi dx  =

 \mathbb{R}^{2} \mathbb{R}^{2}

where

 f\cdot\phi dx for all  \phi\in S(\mathbb{R}^{2})^{2},
 \mathbb{R}^{2}

 T_{a}u = -\triangle u-a(x^{\perp}\cdot\nabla u-u^{\perp})_{:}
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Let I  =  (\delta_{ij})_{1\leq i,j\leq 2} be the identity matrix. The velocity part of the fundamental

solution to  (S_{a}) plays a central role throughout this paper, which is defined as
 \infty

(2.1)  \Gamma_{a}(x, y)  =  O(at)^{T}K(O(at)x-y, t) dt,
 0

where

(2.2)  K(x, t) = G(x, t)I+H(x, t) ,
 \infty

 H(x, t)  =  \nabla^{2}G(x, s) ds,
 t

and  G(x, t) is the two‐dimensional Gauss kernel

 G(x, t) =  \frac{1}{4\pi t}e^{-\frac{|x|^{2}}{4t}}
Similarly, the pressure part of the fundamental solution is defined as

 Q(x-y) =  \frac{1}{2\pi}\log|x-y|,
for the following identity holds.

 div(x^{\perp}\cdot\nabla u-u^{\perp})=x^{\perp}\cdot\nabla divu = 0.

Remark 4. We can also write  H(x, t) in (2.2) as follows

 H(x, t) = - \frac{(x\otimes x)}{|x|^{2}}G(x, t)+ (\frac{x\otimes x}{|x|^{2}}-
\frac{I}{2})\frac{1-e^{-\frac{|x|^{2}}{4t}}}{\pi|x|^{2}}.
The next lemma is proved in [13, 10].

Lemma 2.1 ( [13, Proposition 5.3.1], [10, Lemma 3.3]). Set

(2.3)  L(x, y) =  \frac{x^{\perp}\otimes y^{\perp}}{4\pi|x|^{2}}.
Then for  m=0 , 1 the kernel  \Gamma_{a}(x, y) satisfies

 |\nabla_{y}^{m}(\Gamma_{a}(x, y)-L(x, y))|

(2.4)   \leq C(\delta_{0m}\min\{\frac{1}{|a||x|^{2}}, \frac{1}{|a|^{\frac{1}{2}}|x|}\}
+|x|^{1-m}\min\{\frac{1}{|a||x|^{3}}, \frac{1}{|x|}\}+\frac{|y|^{2-m}}{|x|^{2}}) ,

for  |x|  >2|y| :

Here  \delta_{0m} is the Kronecker delta and  C is independent of  x,  y , and  a.

Remark 5. (1) The asymptotic estimate like (2.4) is proved in [13] when  m=0,

and then the dependence on  |a| is improved by [10] which is needed to solve the nonlinear
problem. The detailed proof for the case  m=1 of (2.4) is given by [10].
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(2) Note that, when  |y|  >2|x| , since  \Gamma_{a}(x, y)=\Gamma_{-a}(y, x)^{T} and  (y^{\perp}\otimes x^{\perp})^{T}  =x^{\perp}\otimes y^{\perp}
we have a similar estimate:

 | \Gamma_{a}(x, y)-\frac{x^{\perp}\otimes y^{\perp}}{4\pi|y|^{2}}|
(2.5)   \leq C(\min\{\frac{1}{|a||y|^{2}}, \frac{1}{|a|^{\frac{1}{2}}|y|}\}+
|y|\min\{\frac{1}{|a||y|^{3}}, \frac{1}{|y|}\}+\frac{|x|^{2}}{|y|^{2}}) ,

for  |y|  >2|x| :

Proof of Theorem 1.2. Here we give a sketch of the proof of Theorem 1.2. The unique

solution  u to  (S_{a}) decaying at spatial infinity is expressed as  u(x)= \int_{\mathbb{R}^{2}}\Gamma_{a}(x, y)f(y) dy,

and we focus on the proof of (1.9) and (1.10). By the integration by parts we have

  \mathbb{R}^{2}\Gamma_{a}(x, y)f(y)dy = -\int_{\mathbb{R}^{2}}\nabla_{y}\Gamma_
{a}(x, y)F(y)dy
 = - ( |y|< \frac{|x|}{2}+ \frac{|x|}{2}\leq|y|)\nabla_{y}\Gamma_{a}(x, y)F(y)dy
 = I(x)+II(x) .

The term  I is further decomposed as

 I(x)  =  -  \nabla_{y}L(x, y)F(y) dy‐
 |y|< \frac{|x|}{2}

 =  I_{1}(x)+I_{2}(x) .

 \nabla_{y}(\Gamma_{a}(x, y)-L(x, y))F(y)dy
 |y|< \frac{|x|}{2}

By the definition of  L(x, y) we have  -( \nabla_{y}L(x, y))F=(F_{21}-F_{12})\frac{x^{\perp}}{4\pi|x|^{2}} , which implies

(2.6)  I_{1}(x) = |y|< \frac{|x|}{2} (F_{21}(y)-F_{12}(y))dy^{\frac{x^{\perp}}
{4\pi|x|^{2}}} :

As for  I_{2} , when  |x|  \geq  1 we have from (2.4) with  m=1,

 |I_{2}(x)|   \leq C\min\{\frac{1}{|a||x|^{3}}, \frac{1}{|x|}\}  | \leq\frac{|x|}{2}  |F(y)| dy+\frac{C}{|x|^{2}}  | \leq\frac{|x|}{2}
 |y||F(y)|dy

(2.7)   \leq C\min\{\frac{1}{|a||x|^{3}}, \frac{1}{|x|}\} |y|\leq\frac{|x|}{2} |F(y)
|dy+\frac{C}{(1+|x|)^{1+r}}\frac{1}{1-r}\Vert F\Vert_{L_{2+r}^{1}},
where  C is a numerical constant independent also of  r . Next we have from the direct
calculation

 |(\nabla_{x}K)(x, t)|  \leq C (  t^{-\frac{3}{2}}e^{-\frac{|x|^{2}}{16t}}+  \infty s^{-\frac{5}{2}}e^{-\frac{|x|^{2}}{16s}} ds),
 t

which implies

 0^{\infty}|( \nabla K)(O(at)x, t)|dt\leq \frac{C}{|x|}, x\neq 0.
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Then by the change of the variables  y=O(at)z we have

 |II(x)|  \leq  | \int_{|y|\geq\frac{|x|}{2}}\nabla_{y}\Gamma_{a}(x, y)F(y)dy|
 \infty

 \leq |(\nabla K)(O(at)x-y, t)||F(y)|dydt
 0 |y| \geq\frac{|x|}{2}

  \leq C\Vert F\Vert_{L_{2+r}^{1}} |z|\geq\frac{|x|}{2} ( 0^{\infty}|(\nabla K)
(O(at)(x-z), t)|dt)(1+|z|)^{-2-\gamma}dz
 \leq C\Vert F\Vert_{L_{2+r}^{1}} |x-z|^{-1}(1+|z|)^{-2-\gamma}dz

 |z| \geq\frac{|x|}{2}

(2.8)   \leq \frac{C}{(1+|x|)^{1+\gamma}}\Vert F\Vert_{L_{2+r}^{1}} :

Here  C is a numerical constant. From (2.6), (2.7), and (2.8), we conclude (1.8) and
(1.9) for   r\in  [0 , 1). The proof of Theorem 1.2 is complete.

§3. Proof of linear result

In this section we prove Theorem 1.1. Set

(3.1)  L[f](x)  =  \Gamma_{a}(x, y)f(y) dy,
 \mathbb{R}^{2}

where  \Gamma_{a}(x, y) is given by (2.1). It is known by [13, Lemma 5.3.5] that  u=L[f] together
with  p defined by (1.7) is the unique weak solution to  (S_{a}) decaying at spatial infinity.
So we focus on the proof of the estimates (1.4) and (1.5) here. To apply Lemma 2.1 we
first divide (3.1) into three parts:

 L[f](x) = U_{1}(x)+U_{2}(x)+U_{3}(x)

 =  ( |y|< \frac{|x|}{2}+ \frac{|x|}{2}\leq|y|\leq 2|x|^{+} 2|x|<|y|)\Gamma_{a}(x, 
y)f(y) d  y :

By Lemma 2.1 we have

(3.2)  U_{1}(x) = |y|< \frac{|x|}{2}y^{\perp}\cdot f(y)dy\frac{x^{\perp}}{4\pi|x|^{2}}
+W_{1}(x)
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with

 |W_{1}(x)|   \leq C\min\{\frac{1}{|a||x|^{2}}, \frac{1}{|a|^{\frac{1}{2}}|x|}\}  |y|< \frac{|x|}{2}
 |f(y)|dy

 +C \min\{\frac{1}{|a||x|^{2}}, 1\} |<\frac{|x|}{2} |f(y)|dy+\frac{C}{|x|^{2}} 
|<\frac{|x|}{2} |y|^{2}|f(y)|dy
 \leq  \{\begin{array}{l}
C(\frac{1}{|a|^{\frac{1}{2}}}+1)\Vert f\Vert_{L^{1}}, |x| \leq 1,
C\{\frac{1}{|a|^{\frac{1+r}{2}}|x|^{1+r}}+\frac{1}{(1-r)|x|^{1+r}}\}\Vert 
f\Vert_{L_{3+r}^{1}}, |x| \geq 1
\end{array}

(3.3)   \leq \frac{C}{(1+|x|)^{1+r}} (\frac{1}{|a|^{\frac{1+r}{2}}}+\frac{1}{1-r})
\Vert f\Vert_{L_{3+r}^{1}} :

Similarly, by Remark 5 we have

 |U_{3}(x)|   \leq C\int_{2|x|<|y|} (mi   \{\frac{1}{|a||y|^{2}},   \frac{1}{|a|^{\frac{1}{2}}|y|}\}+\min\{\frac{1}{|a||y|^{2}},1\}+\frac{|x|}
{|y|} )  |f(y)|dy

(3.4)  \leq  \{\begin{array}{l}
C(\frac{1}{a|^{\frac{1}{2}}}+1)\Vert f\Vert_{L_{3+r}^{1}}, |x| \leq 1,
\overline{|x|^{1+r}}(\frac{1}{|a|^{\frac{1}{2}}}+1)\Vert f\Vert_{L_{3+r}^{1}}, 
|x| \geq 1.
\end{array}
From (3.4) we have

 (1
(3.5)  |U_{3}(x)|  \leq \frac{C}{(1+|x|)^{1+r}}(\frac{1}{|a|^{\frac{1}{2}}}+1)\Vert 
f\Vert_{L_{3+r}^{1}}
with a numerical constant  C . Finally, we decompose  U_{2}(x) as

(3.6)  U_{2}(x) = U_{2,1}(x)+U_{2,2}(x) , U_{2,1}(x) = U_{2,1,1}(x)+U_{2,1,2}(x)

with

 U_{2,1,1}(x)  =   \frac{|x|}{2}\leq|y|\leq 2|x|\int_{0}^{l}o(at)^{T}\frac{1}{8\pi t}e^{-\frac{|O
(at)x-y|^{2}}{4t}}f(y)dt dy,

 U_{2,1,2}(x)  =   \frac{|x|}{2}\leq|y|\leq 2|x|\int_{l}^{\infty}o(at)^{T}\frac{1}{8\pi t}e^{-
\frac{|O(at)x-y|^{2}}{4t}}f(y)dt dy,

 U_{2,2}(x)  =

  \frac{|x|}{2}\leq|  |\leq 2|x|  0^{\infty}O(at)^{T}(K(O(at)x-y)- \frac{1}{8\pi t}e^{-\frac{|O(at)x-y|^{2}}{4t}
I)f(y)dtdy}
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where  l=l(a, |x|)  >0 will be chosen later. We start from the estimate of  U_{2,1,1}(x) . By

Fubini’s theorem and changing the variable as  z=O(at)x-y we obtain

 |U_{2,1,1}(x)|  \leq \frac{C}{(1+|x|)^{3+r}}\Vert f\Vert_{L_{3+r}^{1}} 
\frac{|x|}{2}-| |\leq 2|x| 0^{l_{t^{-1}e^{-\frac{|O(at)x-y|^{2}}{4t}}dtdy}}
  \leq \frac{C}{(1+|x|)^{3+r}}\Vert f\Vert_{L_{3+r}^{1}} 0^{l} \mathbb{R}^{2}t^{
-1}e^{-\frac{|O(at)x-y|^{2}}{4t}}dydt
  \leq \frac{C}{(1+|x|)^{3+r}}\Vert f\Vert_{L_{3+r}^{1}} 0^{l} \mathbb{R}^{2}t^{
-1}e^{-\frac{|z|^{2}}{4t}}dzdt

(3.7)   \leq \frac{C}{(1+|x|)^{3+r}}l\Vert f\Vert_{L_{3+r}^{1}}.
Here  C is a numerical constant. Next we estimate  U_{2,1,2} . Since

 O  ( at  )^{T}  =  - \frac{1}{a}\frac{d}{dt} Ò  ( at  )^{T},
the integrating by parts yields

 U_{2,1,2}(x)=-\underline{1} 2a  \frac{|x|}{2}\leq|y|\leq 2|x|\int_{l}^{\infty}(\frac{d}{dt}\`{O}(at)^{T})
G(O(at)x-y, t)f(y)dtdy
(3.8)  =  \underline{1} \infty\`{O}(at)^{T}\frac{d}{dt}(G(O(at)x-y, t))f(y)dtdy+W_{2}
(x) ,

 2a  \frac{|x|}{2}\leq| |\leq 2|x| l
and the remainder term  W_{2} is estimated as

 |W_{2}(x)|  \leq \frac{C}{|a|} \frac{|x|}{2}\leq|y|\leq|x|^{|G(O(al)x-y,l)f(y)
|dy}
(3.9)   \leq \frac{C}{(1+|x|)^{1+r}}\frac{1}{l|a|}\Vert f\Vert_{L_{3+r}^{1}}.
To estimate the first term in the right‐hand side of (3.8) we use the following calculation,

  \frac{d}{dt}G(O(at)x-y, t)
 =  \frac{e^{-\frac{|O(at)x-y|^{2}}{4t}}}{4\pi}\{-t^{2}+t^{-3}\frac{|O(at)x-
y|^{2}}{4}-at^{-2}\frac{(\dot{O}(at)x)(O(at)x-y)}{2}\}.

Hence we have
 \infty

Ò  (at)^{T} \frac{d}{dt}(G(O(at)x-y, t))f(y)dtdy|  \frac{|x|}{2}\leq|y|\leq 2|x| l

 \leq C  \infty(t^{-2}+t^{-3}|O(at)x-y|^{2})e^{-\frac{|O(at)x-y|^{2}}{4t}}|f(y)|dtdy
  \frac{|x|}{2}\leq|y|\leq 2|x| l

 +C |a| \infty t^{-2}|x||O(at)x-y|e^{-\frac{|O(at)x-y|^{2}}{4t}}|f(y)|dtdy
  \frac{|x|}{2}\leq|y|\leq 2|x| l

 \leq   \frac{C}{(1+|x|)^{3+r}}\Vert f\Vert_{L_{3+r}^{1}} (   \frac{1}{l}|x|^{2}+|a||x|   \frac{|x|}{2}\leq|  |\leq 2|x|  0^{\infty}t^{-\frac{3}{2}}e^{-\frac{|O(at)x-y|^{2}}{8t}}dt dy),
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and then, by the change of variables as  z=O(at)^{T}y we see

 \leq   \frac{C}{(1+|x|)^{3+r}}\Vert f\Vert_{L_{3+r}^{1}} (   \frac{1}{l}|x|^{2}+|a||x|   \frac{|x|}{2}\leq|z|\leq 2|x|  0^{\infty}t^{-\frac{3}{2}}e^{-\frac{|x-z|^{2}}{8t}}dt d  z )

  \leq \frac{C}{(1+|x|)^{3+r}}\Vert f\Vert_{L_{3+r}^{1}}(\frac{1}{l}|x|^{2}+
|a||x| |x-z|\leq 3|x|\frac{dz}{|x-z|})
(3.10)   \leq \frac{C}{(1+|x|)^{1+r}}(\frac{1}{l}+|a|)\Vert f\Vert_{L_{3+r}^{1}} :

Then (3.8), (3.9), and (3.10) implies that

(3.11)  |U_{2,1,2}(x)|  \leq \frac{C}{(1+|x|)^{1+r}}(\frac{1}{l|a|}+1)\Vert 
f\Vert_{L_{3+r}^{1}} :

Here  C is a numerical constant. On the other hand, the term  U_{2,2} converges absolutely

without using the effect of rotation. Indeed, changing the variables  y=O(at)z , we have

  \frac{|x|}{2}\leq|y|\leq 2|x|  0^{\infty}O  (at  )^{T}(K(O(at)x-y, t)- \frac{1}{8\pi t}e^{-\frac{|O(at)x-y|^{2}}{4t}}I)f(y)dtdy|
(3.12)

 \leq   \frac{C}{(1+|x|)^{3+r}}\Vert f\Vert_{L_{3+r}^{1}}  |z|\leq 2|x|  0^{\infty}|B(x-z, t)|dt d  z ,

where  B(x, t) is given by

 B(x, t) = ( \frac{e^{-\frac{|x|^{2}}{4t}}}{8\pi t}-\frac{1-e^{-\frac{|x|^{2}}
{4t}}}{2\pi|x|^{2}})(I-2\frac{x\otimes x}{|x|^{2}})
For any fixed  x-z we have from the change of variables as  s=   \frac{|x-z|^{2}}{4t},

(3.13)  0^{\infty}|B(x-z, t)| dt\leq |I-2\frac{(x-z)\otimes(x-z)}{|x-z|^{2}}| 
0^{\infty}\frac{-se^{-s}+1-e^{-s}}{s^{2}}ds\leq C,
where  C is independent of  x-z . Here we have used the identity

  \frac{d}{ds}(\frac{e^{-s}-1}{s}) = \frac{-se^{-s}+1-e^{-s}}{s^{2}} >0.
We combine (3.12) with (3.13) to conclude

(3.14)  |U_{2,2}(x)|  \leq \frac{C}{(1+|x|)^{3+r}}\Vert f\Vert_{L_{3+r}^{1}} :

Here  C is a numerical constant. Collec ing (3.6), (3.7), (3.11), and (3.14), we see

 |U_{2}(x)|  \leq \frac{C}{(1+|x|)^{1+r}}\{\frac{l}{(1+|x|)^{2}}+\frac{1}{l|a|}+
1\}\Vert f\Vert_{L_{3+r}^{1}},
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and thus, by taking  l=   \frac{1+|x|}{|a|^{\frac{1}{2}}},
(3.15)  |U_{2}(x)|  \leq \frac{C}{(1+|x|)^{1+r}} \{\frac{1}{(1+|x|)|a|^{\frac{1}{2}}}+1
\}\Vert f\Vert_{L_{3+r}^{1}} :

From (3.1), (3.2), (3.3), (3.5), and (3.15), we obtain (1.4) and (1.5). The proof  0

Theorem 1.1 is complete.

§4. Proof of nonlinear result

We are now in a position to give a proof of our main result. The unique existence

and the asymptotic behavior of solutions to (NSa) will be obtained by combining the
results of Theorem 1.2 and Theorem 1.1 by applying the standard fixed point argument.

For   r\in  [0 , 1  ) and  \delta\in  (0 , 1  ) we introduce the function space  X_{r,\delta} as follows.

 X_{r,\delta} = \{v\in L_{1+r}^{\infty}(\mathbb{R}^{2})^{2} | ||v||_{L_{1+r}^{1}
} \leq\delta, divv=0\} :

We also set

 U(x) =  \frac{1}{2\pi}\frac{x^{\perp}}{|x|^{2}}(1-e^{-\frac{|x|^{2}}{4}}) ,

(4.1)  \alpha  =   \frac{\int_{\mathbb{R}^{2}}y^{\perp}.\cdot f(y)dy}{\int_{\mathbb{R}^{2}}
y^{\perp}\triangle U(y)dy}  =   \frac{1}{2}  \mathbb{R}^{2}y^{\perp}\cdot f(y) dy,

 w(x) = u(x)-\alpha U(x) ,

Here we have used the fact   \int_{\mathbb{R}^{2}}x^{\perp}\cdot\triangle Udx=2 , which is derived from the identity

  \triangle U = (-\partial_{2}G, \partial_{1}G)^{T}, G(x) = \frac{1}{4\pi}e^{-
\frac{|x|^{2}}{4}}
The direct computation leads to the existence of a scalar function  P_{U}  \in  L^{\infty}(\mathbb{R}^{2}) such
that

 -a(x^{\perp}\cdot\nabla\alpha U-\alpha U^{\perp})+\alpha^{2}U\cdot\nabla U = 
\nabla P_{U}.

Then  w satisfies the following equations in  \mathbb{R}^{2} :

 \{\begin{array}{l}
-\triangle w-a(x^{\perp}\cdot\nabla w-w^{\perp})+\nabla\pi
= -\alpha(U\cdot\nabla w+w\cdot\nabla U) -w\cdot\nabla w-\alpha\triangle U+f,
divw = 0.
\end{array}
Here  \pi  =  p

 -  P_{U} . Let us recall that for  f  \in  L_{3}^{\infty}(\mathbb{R}^{2})^{2} , the function  L[f](x)  =

  \int_{\mathbb{R}^{2}}\Gamma_{a}(x, y)f(y)dy defines the unique weak solution to  (S_{a}) decaying at spatial infinity.

Then we introduce the map  \Phi as

(4.2)  \Phi[w](x) = L[-\alpha(U\cdot\nabla w+w\cdot\nabla U)-w\cdot\nabla w-
\alpha\triangle U+f](x)_{:}
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Here we consider the leading profile of (4.2). Since  U\cdot\nabla w+w\cdot\nabla U=div(U\otimes w+w\otimes U)
and  w\cdot\nabla w=div(w\otimes w) , we see that

  \frac{1}{4\pi}\{  (U\otimes w+w\otimes U)_{2,1}-(U\otimes w+w\otimes U)_{1,2}  dy
 |y|< \frac{|x|}{2}

(4.3)

 + |< \frac{|x|}{2}(w\otimes w)_{2,1}-(w\otimes w)_{1,2} dy\}
 =  0.

From (4.2) and (4.3), Theorems 1.1 and 1.2 yield

 \Phi[w](x) =\mathcal{R}[-\alpha(U\cdot\nabla w+w\cdot\nabla U)-w\cdot\nabla w-
\alpha\triangle U+f](x)

(4.4)

 + ( | |< \frac{|x|}{2}y^{\perp}\cdot fdy-\alpha | |<\frac{|x|}{2}y^{\perp}\cdot
\triangle Udy)\frac{x^{\perp}}{4\pi|x|^{2}}.
To estimate the last term of (4.4), we have from the definition of  \alpha in (4.1) and   \int_{\mathbb{R}^{2}}x^{\perp}.
 \triangle Udx=2,

 y^{\perp}\cdot fdy-\alpha y^{\perp}\cdot\triangle Udy|
 |y|< \frac{|x|}{2} |y|<\frac{|x|}{2}

 =   \frac{1}{2}|  \mathbb{R}^{2}y^{\perp}\cdot\triangle Udy   \int_{|y|<\frac{|x|}{2}}y^{\perp}\cdot f d  y —  |y|< \frac{|x|}{2}y^{\perp}\cdot\triangle Udy  \mathbb{R}^{2}y^{\perp}\cdot fdy|
 =   \frac{1}{2}|  \mathbb{R}^{2}y^{\perp}\cdot\triangle Udy (  |  |< \frac{|x|}{2}y^{\perp}\cdot f d  y —  \mathbb{R}^{2}y^{\perp}\cdot fdy)

 - (  |y|< \frac{|x|}{2}y^{\perp}\cdot\triangle U d  y —  \mathbb{R}^{2}y^{\perp}\cdot\triangle Udy)  \mathbb{R}^{2}y^{\perp}\cdot fdy|

 =  \frac{1}{2}|- \mathbb{R}^{2}y^{\perp}\cdot\triangle Udy \frac{|x|}{2}
\leq|y|^{y^{\perp}\cdot fdy+} \frac{|x|}{2}\leq|y|^{y^{\perp}\cdot\triangle Udy}
\mathbb{R}^{2}y^{\perp}\cdot fdy|
(4.5)  \leq   \frac{C_{r}}{(1+|x|)^{r}}(\Vert y^{\perp}\cdot f\Vert_{L^{1}}+\Vert f\Vert_{L_
{3+r}^{1}}) , for  |x|  >  1.

Here the constant  C_{r} depends only on  r . Note that the boundedness of  \Vert y^{\perp}.  f\Vert_{L^{1}} is

always valid when  r>0 . When  |x|  \leq  1 it is easy to see

(4.6)  | y^{\perp}\cdot fdy-\alpha y^{\perp}\cdot\triangle Udy| \leq C(\Vert y^{\perp}
\cdot f\Vert_{L^{1}}+\Vert f\Vert_{L^{1}}) .
 |y|< \frac{|x|}{2} |y|<\frac{|x|}{2}

Estimates (4.5) and (4.6) combined with (4.4) imply that

 \Phi[w](x) =\mathcal{R}[-\alpha(U\cdot\nabla w+w\cdot\nabla U)-w\cdot\nabla w-
\alpha\triangle U+f](x)
(4.7)

 +O((\Vert y^{\perp}\cdot f\Vert_{L^{1}}+\Vert f\Vert_{L_{3+r}^{1}})(1+|x|)^{-1-
r})
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By (4.7) and Theorems 1.1 and 1.2, we can verify that

  \Vert\Phi[w]\Vert_{L_{1+r}^{1}} \leq C(\frac{1}{1-r}+\frac{1+\log|a|}
{|a|^{\frac{r}{2}}})\Vert\alpha(U\otimes w+w\otimes U)+\frac{1}{2}w\otimes 
w\Vert_{L_{2+r}^{1}}
 +C( \frac{1}{1-r}+\frac{1}{|a|^{\frac{1+r}{2}}})\Vert-\alpha\triangle U+f\Vert_
{L_{3+r}^{1}}

 +C_{r}(\Vert y^{\perp}\cdot f\Vert_{L^{1}}+\Vert f\Vert_{L_{3+r}^{1}})

  \leq C(\frac{1}{1-r}+\frac{1+\log|a|}{|a|^{\frac{r}{2}}})(|\alpha|\Vert 
w\Vert_{L_{1+r}^{1}}+\Vert w\Vert_{L_{1+r}^{1}}^{2})
(4.8)

 +C_{r}( \frac{1}{1-r}+\frac{1}{|a|^{\frac{1+r}{2}}})(\Vert f\Vert_{L_{3+r}^{1}}
+\Vert y^{\perp}\cdot f\Vert_{L^{1}}) ,

where  C_{r} depends only on  r , while  C is a numerical constant. We may take  C and  C_{r}

larger than 1, and note that  |\alpha|  \leq 2^{-1}\Vert y^{\perp}\cdot f\Vert_{L^{1}}.  I

 0< \delta\leq \frac{1}{3C(\frac{1}{1-r}+\frac{1+\log|a|}{|a|^{\frac{r}{2}}})}
and

  \lambda(f) = \Vert f\Vert_{L_{3+r}^{1}}+\Vert y^{\perp}. f\Vert_{L^{1}} \leq 
\frac{\delta}{3C_{r}(\frac{1}{1-r}+\frac{1}{|a|^{\frac{1+r}{2}}})},
then we see that  \Phi[w] becomes a mapping from  X_{r,\delta} into  X_{r,\delta} . Moreover, from (1.10)
there is a numerical constant  C'>0 such that

 \Vert\Phi[w_{1}]-\Phi[w_{2}]\Vert_{L_{1+r}^{1}}

 = \Vert \mathcal{R}[-\alpha\{U\cdot\nabla(w_{1}-w_{2})+(w_{1}-w_{2})\cdot\nabla
U\}-w_{1} . \nabla w_{1}+w_{2}\cdot\nabla w_{2}]\Vert_{L_{1+r}^{1}}

  \leq C'(\frac{1}{1-r}+\frac{1+\log|a|}{|a|^{\frac{r}{2}}})\Vert-
\alpha\{(U\otimes(w_{1}-w_{2})+(w_{1}-w_{2})\otimes U)\}
 - \frac{1}{2}(w_{1}\otimes w_{1}-w_{2}\otimes w_{2})\Vert_{L_{2+r}^{1}}

  \leq C'(\frac{1}{1-r}+\frac{1+\log|a|}{|a|^{\frac{r}{2}}})(|\alpha|+\Vert 
w_{1}\Vert_{L_{1+r}^{1}}+\Vert w_{2}\Vert_{L_{1+r}^{1}})\Vert w_{1}-w_{2}
\Vert_{L_{1+r}^{1}}
  \leq C'(\frac{1}{1-r}+\frac{1+\log|a|}{|a|^{\frac{r}{2}}})(\frac{\lambda(f)}
{2}+2\delta)\Vert w_{1}-w_{2}\Vert_{L_{1+r}^{1}}
  \leq 3\delta C'(\frac{1}{1-r}+\frac{1+\log|a|}{|a|^{\frac{r}{2}}})\Vert w_{1}-
w_{2}\Vert_{L_{1+r}^{1}}
 = \tau\Vert w_{1}-w_{2}\Vert_{L_{1+r}^{1}},

for all  w_{1},  w_{2}  \in  X_{r,\delta} , where we have set  \tau  =  3\delta C'  ( \frac{1}{1-r} + \frac{1+\log|a|}{|a|^{\frac{r}{2}}}) . Hence, if  \delta (and

thus, also  \lambda(f) ) is sufficiently small so that  \tau\in  (0 , 1  ) is justified, then we can conclude
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that  \Phi is a contraction on  X_{r,\delta} . By the fixed point theorem, there exists a fixed point
 v , which is unique in  X_{r,\delta} , such that

 u(x) = \alpha U(x)+v(x) , v\in X_{r,\delta}

is a unique solution to (NSa) with the pressure  p defined by (1.15). Finally, the estimate
(1.14) follows from (4.8) for the fixed point  v of  \Phi by virtue of the smallness of  |\alpha| and

 \delta . The proof of Theorem 1.3 is complete.
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