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Abstract

We study a model problem related to the two-dimensional stationary Navier-Stokes equa-
tions with a rotating effect, which naturally appears in the analysis of the flows around a
rotating obstacle. The unique existence of solutions and their asymptotic behavior at spatial
infinity are established when the given external force is sufficiently small in a scale critical
space.

§1. Introduction

Let B be a rigid body immersed in a viscous incompressible fluid that fills the whole
space. Assume that the body rotates with a constant angular velocity a € R\ {0} and
the exterior of B(t) is described as Q(t) C R2. The time dependent domain Q(t) is
defined as

Q1) = {yeR? |y=0(at)z,z € O},
(1.1) Olat) = (cosat—sinat) ’

sinat cosat
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where a given exterior domain Q(0) = Q C R? has a smooth boundary 9Q. The flow
around the rotating body is described by the following Navier-Stokes equations:

(1.2)

ovw—Av+v-Vv+Vq =g, t>0, yeQt),
dive = 0, t>0, yeQit).

Here v = v(y,t) = (vi(y,t),v2(y,t)) " and ¢ = q(y, t) are respectively unknown velocity
field and pressure field, and g = g(y,t) = (91(y,1t),92(y,t)) " is a given external force.

We use the standard notation for derivatives: 0; = %, 0; = %, A = 2321 8]2-,
dive = Z?Zl 0vj, v- Vv = 2?21 v;0;v, while ¥+ = (—29,71)" denotes the vector

which is perpendicular to = (x1,72)". To get rid of the difficulty due to the time-
dependence of the domain we take the reference frame by making change of variables

y = Oat)z, wu(z,t) = O(at) v(y,t), plx,t) = qyt),
flz,t) = O(at) T g(y,t)

for t > 0 and = € 2. Then (1.2) is equivalent to the equations:

(1.3) ou — Au— a(zt - Vu—ut)+Vp = —u-Vu+ f, t>0, x e,
' divu = 0, t>0, 2€Q.

In order to understand the structure of solutions at spatial infinity it is important to
study this system in R2. The effect of the boundary is expressed as a force in this case.
Motivated by this observation, as a model problem, in this paper we study the above
nonlinear system in R? and in the steady case. Thus, assuming that f is independent
of t, we are interested in the following system:

(NS,) ~Au—a(zt -Vu—ut)+Vp = —u-Vu+f, r € R?,
¢ divu = 0, z e R2,

Our aim is to show the existence and the asymptotic behavior of the solution to (NS,).
For this purpose we first consider the linearized problem

S.) {—Au—a(xL-Vu—uL)%—Vp:f, reR?,

divu =0, r e R?.

We will show that there exists a unique solution to (S,) such that the leading term
of the asymptotic behavior of the flow at infinity is the rotational profile c% whose
coefficient ¢ is determined by the external force f.

Before stating the main theorem, let us recall some known results on the mathe-
matical analysis of flows around a rotating obstacle.
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So far the mathematical results on this topic have been obtained mainly for the
three-dimensional problem, as listed below. For the nonstationary problem the existence
of global weak solutions is proved by Borchers [1], and the unique existence of time-
local regular solutions is shown by Hishida [11] and Geissert, Heck, and Hieber [9],
while the global strong solutions for small data are obtained by Galdi and Silvestre [8].
The spectrum of the linear operator related to this problem is studied by Farwig and
Neustupa [2]; see also the linear analysis by Hishida [12]. The existence of stationary
solutions to the associated system is proved in [1], Silvestre [15], Galdi [7], and Farwig
and Hishida [3]. In particular, in [7] the stationary flows with the decay order O(|z|~1)
are obtained, while the work of [3] is based on the weak L3 framework, which is another
natural scale-critical space for the three-dimensional Navier-Stokes equations. In 3D
case the asymptotic profiles of these stationary flows at spatial infinity are studied by
Farwig and Hishida [4, 5] and Farwig, Galdi, and Kyed [6], where it is proved that
the asymptotic profiles are described by the Landau solutions, stationary self-similar
solutions to the Navier-Stokes equations in R3 \ {0}. It is worthwhile to mention that,
also in the two-dimensional case, the asymptotic profile is given by the stationary self-
similar solution c%. The stability of the above stationary solutions has been well
studied in the three-dimensional case; The global L? stability is proved in [8], and the
local L? stability is obtained by Hishida and Shibata [14].

All results mentioned above are considered in the three-dimensional case, while
only a few results are known so far for the flow around a rotating obstacle in the two-
dimensional case. An important progress has been made by Hishida [13], where the
asymptotic behavior of the two-dimensional stationary Stokes flow around a rotating
obstacle is investigated in details. Recently, the nonlinear problem (1.2) is analyzed
in [10], and the existence of the unique solution decaying as O(]z|™!) is proved for
sufficiently small a and f when the external force f is of divergence form f = div F' and
F has a scale critical decay. Moreover, the leading profile at spatial infinity is shown as
C% under the additional decay condition on F such as F' = O(|z|~27"), r > 0.

Since we consider the problem in R? in this paper, by virtue of the absence of the
physical boundary, we can show the existence of solutions to (NS,) without assuming
the smallness of the angular velocity a. To state our result let us introduce the function
space. For a fixed number s > 0 the weighted L space L°(R?) is defined as

LE(R?) = {f € L¥(R?) | (1 +[z])*f € L¥(R?)}.
The space is equipped with the natural norm

[fllzee = ess.sup,era (1 + [])°|f(2)]-

The first result of this paper is on the linear problem (S,), which extends the result of
[13, Proposition 5.3.2] (see also Remark 1 (2) below).
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Theorem 1.1. Let a € R\ {0} and r € [0,1). Assume that f € L35, (R?)%.
Then there exists a unique (u,p) € LS (R?)? x L>°(R?) such that:

1. The couple (u,p) satisfies (Sy) in the sense of distributions.

2. The velocity u belongs to LS (R?)? and satisfies

1 at
(1.4) u(z) = /HNJ S0y s + RU@).
with

C 1 1
(1.5) RIAE) S e (T + g,

and in particular, it follows that

1 1
(1.6) IRz, < Cly— + |a|1+2r)\|fHL§ir

with a numerical constant C'.

3. The pressure p is given by

1 T —y

(1.7) p(z) = %/Rz m‘f(y)d%

Remark 1. (1) The representation (1.7) leads to the regularity and the decay
of the pressure such as Vp € LI(R?) for ¢ € (1,00) and p € L°(R?). The solution
(u,p) € L°(R?)? x L°(R?) satisfying (S,) in the sense of distribution is unique by
virtue of the uniqueness result in Hishida [13, Lemma 5.3.5].

(2) In [13, Proposition 5.3.2] the result of Theorem 1.1 is firstly established under
the conditions on f such as f € L'(R?)2 N L>*°(R?)2, 2+ - f € L*(R?)?2, and f(x) =
O(|z|=3(log |z|)™1) as |z| — oo. Our result improves his result, and in particular, the
critical case f(z) = O(]z|™3) is treated. We note that, in the case r = 0, the integral in
the right-hand side of (1.4) does not converge in general when |z| — co. The reason why
we can treat the critical case f(x) = O(|xz|~3) is briefly explained as follows. Both in our
paper and in [13] the key is to estimate the function [, Toa(x,y)f(y) dy, where T'q(z,y)
is the fundamental solution to (S,). Our improvement is achieved in the estimate of
the part f%<|y|<2|x‘ To(x,y) f(y) dy, where the loss of the logarithmic order appears in
[13]. The fundamental solution I',(z,y) can be expressed in terms of the time integral,
see (2.1) below, and we use the effect of the oscillation (due to the rotation) by using
the integration by part in time even in the regime of % < ly| < 2|z|, while in [13]
this technique is not essentially used in this regime, though it is effectively used by
z|

: ] |
[13] in the other regimes |y| < 5

term f%<|y|<2|m| [y(z,y)f(y) dy enables us to remove the logarithmic loss in [13]. For

and |y| > 2|z|. The use of the oscillation in the

details, see Section 3 and the estimate of Uy ; o there.
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To study the nonlinear problem it is reasonable to consider the linear problem when
the external force f is given by f = div F' with F(z) = O(|z|2) in view of the structure
of the nonlinear term u - Vu = div (v ® u). Here the matrix (u;v;)1<; j<2 is written as
u ® v. The following result is essentially obtained in [10].

Theorem 1.2 ( [10, Theorem 3.1(ii)]). Let a € R\ {0}, r € [0,1), and q €
(1,00). Assume that f € L*(R?)? is of divergence form f = div F with F' € L$  (R?)?*2.
Then there exists a unique (u,p) € L (R?)? x L4(R?) such that (u,p) satisfies (Sq) in
the sense of distributions, and u satisfies

(1.9 wr) = [ (Fa) =~ Fal) dy g + R,

where Fy; is (i,7) component of the matriz F' = (Fj;)1<i j<2 and R[f] satisfies

RU@) < Coin{i ) [ PGy

(19) |y|§7
C 1 7

+ (I+|z))*r1— 7"” e

e .
247

Here C' is a numerical constant independent also of a and r. In particular, it follows
that

1 1+ logla
(1.10) IRz, < C(-— + L

r jal 2

NFlpg,
with a numerical constant C'.

Remark 2. (1) In fact, the statement of [10, Theorem 3.1] is a slightly different

from Theorem 1.2 above. So we give a sketch of the proof of Theorem 1.2 in Section 2,
based on the key pointwise asymptotic estimate of the fundamental solution, see Lemma
2.1 below, which is due to [10, Lemma 3.3].
(2) Estimate (1.10) is derived from (1.9). Indeed, when |z| < 1 the first term in the
right-hand side of (1.9) is estimated as C|x|||F| g, while when || > 1 this term is
estimated by dividing into two cases (i) |a||z|*> < 1 and (ii) |a||z|> > 1. The factor
log |a| in (1.10) is required only when 7 is near 0 in order to ensure that the constant C
is independent of .

The linear results of Theorem 1.1 and 1.2 are applied to the nonlinear problem
(NSg). The result for the nonlinear problem is stated as follows.

Theorem 1.3. Leta € R\ {0}, r € [0,1), and q € (2,00). Then there ezists
§ = d(a,r) > 0 such that, for any f € Ly, (R?)? satisfying - - f € L*(R?) and

(1.11) 2 fllos + 1 flleg, <9,
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there exists a unique solution (u,p) € L$°(R?*)? x LI(R?) to (NS,) such that

(1.12) u(z) = al(z) +v(z),
where

1 n 1zt E
13 a=g [t rw a. U = g,
and

1 1 N

(114) I, < Oy + age) (et o+ 11z, ),
and the pressure p is given by
(1.15) p(x) = V- (-A)'V- (u@u) - V- (=A)"'f.

Here the constant C,. depends only on r.

Remark 3. In Theorem 1.3 the solution is constructed as the solution to the
integral equation associated with (NS, ), which is formulated based on the fundamental
solution to the linearized problem (S,). The uniqueness is proved for this class of

solutions.

This paper is organized as follows. In Section 2 we collect the estimates which reflect
the effect of the rotation. Most of them are the abstractions from [13, 10]. Theorem 1.1
is proved in Section 3. Finally, Theorem 1.3 is proved in Section 4.

§ 2. Preliminaries

Let us consider the linear problem in the whole plane for a € R\ {0}:
(Sa) —Au—alzt -Vu—ubt)+Vp = f, divu = 0, r e R?.

The couple (u,p) is said to be a weak solution to (S,) if (u,p) € L% (R?)? x L% (R?)
for some ¢1,q2 € [1,00), and (i) divu = 0 in the sense of distributions, and (ii) (u,p)

satisfies
/u-T_aqﬁdaj—/ pdivedr = f-¢dx  forall ¢ € S(R?)?,
R2 R2 R2

where

T.u = —Au—a(z™-Vu—ub).
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Let I = (0;5)1<ij<2 be the identity matrix. The velocity part of the fundamental
solution to (S,) plays a central role throughout this paper, which is defined as

(2.1) Ty (z,y) = /OOO O(at) K (Oat)z — y, ) dt,
where
(22)  K@t) = GO+ Ht),  Hzt) = /OO V2G(x,5) ds,

and G(x,t) is the two-dimensional Gauss kernel

1 =
G(CL’,t) = 4_71't€ 4at

Similarly, the pressure part of the fundamental solution is defined as

1
Qz —y) = 5-loglz —yl,
for the following identity holds.
div (z1 - Vu —ut) = 2+ - Vdivu = 0.

Remark 4. We can also write H(z,t) in (2.2) as follows

|2

r®@x [\1—e 2t
[z 2

(z ® )
ks

H(z,t) = — Gz, t) + (

m|z|?
The next lemma is proved in [13, 10].
Lemma 2.1 ( [13, Proposition 5.3.1], [10, Lemma 3.3]).  Set

vt @yt
2.3 L -2 <J
(2. (@) = T
Then for m = 0,1 the kernel I'y(x,y) satisfies
|vzl<ra(x7 y) - L(ZL‘, y)) |

(2.4) < C'{ G min { ! ! }+ |z|' " min { ! i} + lyl*
' R lallz*" |a)? || lallz[*" || x> )

for |z| > 2Jyl.
Here gy, is the Kronecker delta and C' is independent of x, y, and a.

Remark 5. (1) The asymptotic estimate like (2.4) is proved in [13] when m = 0,
and then the dependence on |a| is improved by [10] which is needed to solve the nonlinear
problem. The detailed proof for the case m =1 of (2.4) is given by [10].
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(2) Note that, when |y| > 2|z, since T'y(z,y) =T _4(y,2) " and (yt @ 24T =zt @ y*+

we have a similar estimate:

J_
®?J
Ly(z,
L) - 20
2
(2:5) <C’(min \:c] )
< , + |y| m ,
(ae o |y|} s b0 e
for |y| > 2|z|.

Proof of Theorem 1.2. Here we give a sketch of the proof of Theorem 1. 2 The unique
solution u to (S,) decaying at spatial infinity is expressed as u(x) = [p. L'y f(y) dy,
and we focus on the proof of (1.9) and (1.10). By the integratlon by parts we have

[ Teeaf@yay = - [ 9, F@)ay

N (/|y|<|| [|<|y|>vr (z,y)F(y) dy

= I(x)+11(x

The term [ is further decomposed as
1@ =~ [ | VenFwa- [ 9, - L) P
<zl <zl

By the definition of L(z,y) we have —(V,L(z,y))F = (Fo1 — Fi2) 22— ‘;2, which implies
ot

dr|z|?

(2.6 @ = [ () - Faw) v,

As for Iy, when |z| > 1 we have from (2.4) with m =1,

C
I(x)] < C'min / ) dy + —= / F d
‘ 2( ‘ {|GHCE|3 |$‘} | Yy ‘ ’2 y<|x| ‘yH (y)| Y

‘<|z\

C 1
2. < )| d F| 1o
2D Cmin{ e |x\}/y<|x Il e T Pl

where C' is a numerical constant independent also of r. Next we have from the direct
calculation

M

(VoK) (x,t)] < C( t"3e ot +/ s*geflwls ds),
t

which implies

/0 T IVE)(O(at)e, 1) dt <
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Then by the change of the variables y = O(at)z we have

[11(z)| < | VyLa(z,y)F(y) dy|

ly|> 121

/ / 27 (O(at)z —y,)|[F(y)| dy dt

2

= C”F”Léir/lpzl (/OOOI(VK)(O(at)(:c—z),t)\dt)(l+ 12))"27 dz

< O)|F |1z, /| |l

C

(2.8) < WHFH

LE, -

Here C' is a numerical constant. From (2.6), (2.7), and (2.8), we conclude (1.8) and
(1.9) for r € [0,1). The proof of Theorem 1.2 is complete.

§3. Proof of linear result

In this section we prove Theorem 1.1. Set

(31 L@ = [ Taen)f)d,

where ', (z,y) is given by (2.1). It is known by [13, Lemma 5.3.5] that u = L[f] together
with p defined by (1.7) is the unique weak solution to (S,) decaying at spatial infinity.
So we focus on the proof of the estimates (1.4) and (1.5) here. To apply Lemma 2.1 we
first divide (3.1) into three parts:

Lifl(z) = Ui(z) + Us(z) + Us(z)
- </|y|<' ' /'<|y|<2|x /2|af:|<|y|)F )y

By Lemma 2.1 we have

(32) b = [ v i@ s s e
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with

i 1 1
W%@NSCmmﬁMmymVMﬁ/%&ﬁﬂwMy

+Cm1n{|a||$‘2, }/

C
Wity [ WP

|<\ x|
1
C(—1 + DIfllz~ . [z <1,
< la
C oo >1
{|a| S ||l " (1 —r)fzt*r Hifllegs, =l =
C 1 1
3.3 < o .
33 S TR g T W,
Similarly, by Remark 5 we have
. 1 1 . 1 ||
sl <C [ Qm1 i 1)+ 0]y
i allo i ™ Gl 1y
| Difllzs, - 7 <1,

(3.4) < é

MH“m| DIz, ol > 1.
From (3.4) we have

c 1

3.5 Us(z)| < —+1 o
( ) | 3( )‘ = (1+ |:L,|)1+r(|a|2 )Hf”LgM
with a numerical constant C. Finally, we decompose Us(z) as
(3.6) Us(z) = Uz i(x) + Usa(), Uzi(x) = Uspa(x) + Uz 2(x)

with
: T+ 1 |O(at)z—y|?
Us11(x) :/ /O(at) —e i f(y)dtdy,
o 2l <jy|<2lz| Jo
> + 1 l0(at)z—y|?
O(at) ——e 4 f(y)dtdy,
<ly|<2|z| /1

o0 - 1  joGhz—yl?
Us2(z) = O(at) ' (K(O(at)x —y) — —e w 1) f(y)dtdy,
s <lyl<2la] Jo st
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where | = [(a, |z|) > 0 will be chosen later. We start from the estimate of Us 1 1(x). By
Fubini’s theorem and changing the variable as z = O(at)z — y we obtain

C ! |O(at)e—y|2
Usi1(2)| € e flloee / /t_le_ 1t dt dy
GO e Ve foy o o

¢ : _1 _lo@nz—y?
= W"f“@ﬁﬂfo /R2t le 1t dy dt

<% sl /l/ e 4zt
= (1 |23t L3, o Jro
C

(3.7) s,

P —
(L [z])tr
Here C' is a numerical constant. Next we estimate Uz 1 2. Since

1d .
O(at)" = —=—O(at)"
(at)" = ———Oat)",
the integrating by parts yields

1 > d .
U2,1,2(13):—% ';”'<|y|<2|x|/l ($O(at)T)G(O(at)x—y,t)f(y)dtdy

1

(3.8) =

| Ot 5 (GOt —.1) £y dedy + Wala).
lal <ly|<2|a| Ji dt
and the remainder term Ws is estimated as

W) < & / GO(al)z — 3, 1) (y)] dy
lal Jizl <y <)l

C 1
(3.9) < — i flles,

— (L [z[) o]
To estimate the first term in the right-hand side of (3.8) we use the following calculation,

%G(O(at)x —y,t)

|O(at)z—y|2 .
e~ @t _ |O(at)a: — y|2 _ (O(at)x} . (O(at)x - y)
- J_ t2 t B S t 2 .
e 1 ¢ 2 J
Hence we have

oo . - d
| ';”'<|y|<2|x/z Ofat)' -5 (G(Olat)e —y, 1)) f(y) dt dy|

< C/ / (t2 +t73|0(at)z — y|?)e
5l <ly|<2la| Ji

_lo(atyz—y|?

L C / / t-2(2]|O(at)e — yle~ ““F |1 ()] de dy
Lzl <y <22 Ji

_|o(atyz—y|?
4t

f(y) didy

C 3 _ |0(a)z—yl?
t

1 o0 3
<l (Gl + lallz] / 3o 12l gy
e M RO )
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and then, by the change of variables as z = O(at) "y we see

<— % .y Ll + Jalj2 /OO t~3e =5 dtdz)
= (L a3 MY Lzl <121<2]2] Jo
C 1, 5 dz
< -_— o0 _— —
-1+ |x|)3+’““f”L3+T(l 2l + lalle] |—2| <3z |x—z|)
C 1
. <~
(3.10) < (1+|w|)1+’“( +laDllfllzge.. -

Then (3.8), (3.9), and (3.10) implies that

C 1
(3.11) |Uz,1,2(2)| < W(m + D fllrg, -

Here C'is a numerical constant. On the other hand, the term U; 2 converges absolutely
without using the effect of rotation. Indeed, changing the variables y = O(at)z, we have

|O(at)z—y|?

}/x<|y<2|x|/ O(at) (K (O(at)z —y,t) — c—e ) f(y) dt dy|

(3.12)
T / / Bz — 2, 1)|dtdz,
(1+ |m| P L <o

where B(x,t) is given by

T2 x
e~ 4t 1 —e 4t TR
B(z.1) = _ [ 22®TY
(z.1) (w 2 fa]? )< W)

For any fixed x — z we have from the change of variables as s = %,
o _ _ 1 _ 5,—S
(3.13) / |B(x—z,t)|dt§‘]l—2(x lﬁ : |/ + C as<c,
0 —z

where C' is independent of © — z. Here we have used the identity

d e -1 se S +1—e"°%

g( s ) = s2 >0
We combine (3.12) with (3.13) to conclude
14 U. < ¢
(3.14) Uz 2(z)| < WHNL?,‘;T'

Here C is a numerical constant. Collecting (3.6), (3.7), (3.11), and (3.14), we see

C l 1

Ua(2)] <
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14|

T
laf2

and thus, by taking [ =

C { 1
(4 D (1 falJal

From (3.1), (3.2), (3.3), (3.5), and (3.15), we obtain (1.4) and (1.5). The proof of
Theorem 1.1 is complete.

(3.15) Ua(2)] < + 1} llegs, -

§4. Proof of nonlinear result

We are now in a position to give a proof of our main result. The unique existence
and the asymptotic behavior of solutions to (NS,) will be obtained by combining the
results of Theorem 1.2 and Theorem 1.1 by applying the standard fixed point argument.
For r € [0,1) and ¢ € (0, 1) we introduce the function space X, 5 as follows.

Xrs = {v € LY, (R*)? | |llzg, <6, divv=0}.

We also set

1 zt z|?
(4.1) C Jeyify)dy 1 .
‘T fR]fyL-AU(y) dy 2/Rz v S dy,

w(z) = u(z) —al(x),
Here we have used the fact f]R2 zt - AU dz = 2, which is derived from the identity

AU = (0,6, 00),  Gla) = —e 5.

= —e
4r
The direct computation leads to the existence of a scalar function Py € L (R?) such
that

—a(zt - VaU —aU™) +a’U-VU = VPy.
Then w satisfies the following equations in R?:
—Aw — a(zt - Vw —wt) + V7
= —aU-Vu+w-VU) —w-Vw—aAU + f,
divw = 0.

Here 1 = p — Py. Let us recall that for f € L$°(R?)2, the function L[f](z) =
Jgz Ta(z,y) f(y) dy defines the unique weak solution to (S,) decaying at spatial infinity.
Then we introduce the map ® as

(4.2) ®[w](z) = L[ —a(U -Vw+w-VU) —w - Vw — aAU + f|(z).
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Here we consider the leading profile of (4.2). Since U-Vw+w-VU = div (Uuw+w®U)
and w - Vw = div (w ® w), we see that

1
il / Uw+wU) —Uw+weU) s dy
47 |y‘<%
(4.3)
+/ (W w21 — (WO w)r2 dy
lyl<1gt
=0.

From (4.2) and (4.3), Theorems 1.1 and 1.2 yield

Qw|(x) =R[—a(U -Vw+w-VU) —w - Vw — aAU + f](x)

4.4 L
(44) +(/ yL-fdy—oz/ yL-AUdy)x—z.
lyl< gl lyl<’3! drlz|

To estimate the last term of (4.4), we have from the definition of v in (4.1) and [, 2 -
AU dx = 2,

|/ . yL-fdy—a/ Ly AUdy|
lyl<‘5 lyl <5
1
=—|/ yLAUdy/ yL-fdy—/ yL-AUdy/ y* - fdy
2 e lwl<l3! vl <1l R
1
=§|/ yLAUdy(/ yl~fdy—/ yL-fdy)
R2 ly|< 12l R2
([t [ sum) s
|y|<7 R2 R2

1
=—|—/ yL-AUdy/ yL-fder/ yL-AUdy/ y* - fdy]
20 Je Lzl <jy) Lzl <jy) R2

2
C
——(ly" - fllr + I fllege,),  for |2 > 1.

45 < Ty

Here the constant C, depends only on 7. Note that the boundedness of ||y* - f||z1 is
always valid when r > 0. When |z| < 1 it is easy to see

wo) | wtfa-af AU <Oyt Sl ).
lyl<'3 lyl<i3t

Estimates (4.5) and (4.6) combined with (4.4) imply that
P[w|(x) =R[—a(U -Vw+w-VU) —w - Vw — oAU + f](z)

4.7
o +0(<||yL-f||L1 )+ |x|>—1—’“).
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By (4.7) and Theorems 1.1 and 1.2, we can verify that

1 1+ log|a
N §||
- lalz
1 1

—aA -
+C(1—T+|CL|1§T)H @ U+f||L3+r

1
1@[w]lleg, < C(3 JeUew+we )+ swew|wy

2+4r

+Co(ly* - fllo + 15, )
1 1+ log |al )
<O+ als )(lefllwllzy, + lwlize )

1 1
+C( +— ) (I, + My~ - fller) s
1—7r ‘a‘ 2
where C. depends only on r, while C' is a numerical constant. We may take C' and C,.
larger than 1, and note that || < 27|yt - f||p2. If

(4.8)

1
0<d<
~ 30 1 1+log1;ﬂ|a|
(2 + Bl
and
AP = Ifllzse, + vt - flls < g ,
s 30 (t5 4+ —=)

|a] 2
then we see that ®[w] becomes a mapping from X, 5 into X, s. Moreover, from (1.10)
there is a numerical constant C’ > 0 such that

[@[w:] — @lwa]l e

= ”R[_OK{U'V(wl—w2)—|—(w1—w2)-VU} — un -le +w2'vw2}”Li§ir

1 1+ logla

SC’(l_T"'— |a|§| |)||—Oé{(U®(w1—w2)+(w1—w2)®U)}
1
- §(w1 ® w1 — wa ®w2)|lLﬁT

1 1+ log|al
<0'(1— al5 )(lal + lwillngs, + lwellzeg Mwr — wallrss

1 1+ loglal,  A(f)
< = 26 — o
= (1—1" BE )( 9 + )le w2HL1+T

1 1+ logla

< 350/( n g ’)le — wQHLﬁr

1—r |a|2
= Tllwr —wallLgs

for all wy,ws € X, 5, where we have set 7 = 36C" (1 + M). Hence, if § (and

1—r |a|%

thus, also A(f)) is sufficiently small so that 7 € (0, 1) is justified, then we can conclude
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that ® is a contraction on X, ;5. By the fixed point theorem, there exists a fixed point
v, which is unique in X, 5, such that

u(z) = aU(z) +v(z), ve X, s

is a unique solution to (NS,) with the pressure p defined by (1.15). Finally, the estimate
(1.14) follows from (4.8) for the fixed point v of ® by virtue of the smallness of |a| and
0. The proof of Theorem 1.3 is complete.
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