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The Ihara zeta functions of a Ramanujan graph

By

Ken‐ichi SUGIYAMA*

Abstract

We will discuss the relationship between Ihara’s zeta functions of Ramanujan graphs and
Hasse‐Weil’s congruent congruent zeta functions of modular curves. The residue of the Hasse‐
Weil’s congruent zeta functions at  t  =  1 will be described by the number of supersingular
points and the complexity of the associated graphs.

§1. Introduction

The aim of this report is to study the relationship between the Ihara zeta functions

of a connected Ramanujan graphs and the Hasse‐Weil zeta functions of smooth proper
curves defined over a finite field.

Shortly a graph is a one dimensional simplicial complex. In this paper we will only

treat graphs oriented in both directions. The informations of a graph  G are encoded

in the adjacency matrix  A , which describes how edges and vertices are connected. Al‐

though graphs are geometric objects they are intimately related to number theory. In

fact let  \mathcal{P}(G) be the set of reduced and tail‐less primitive closed paths of  G i.e. the
set of closed path without backtracking and not around more than once. We call two

elements of  \mathcal{P}(G) are equivalent if one is a shift of the other and let  \mathfrak{P}(G) denote the
set of equivalent classes of  \mathcal{P}(G) . The length of a closed path  (= the number of edges
contained in the path) only depends on the equivalent class and we have a function

 l:\mathfrak{P}(G) arrow \mathbb{Z}.
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Now the zeta function of  G is defined as

(1.1)  Z(G;t)=  \prod \frac{1}{1-t^{l([c])}}
 [c]\in \mathfrak{P}(G)

(See Section 2 for these materials and the facts concerning graphs). The function is
originally defined by Ihara and called the Ihara zeta function. It is studied by various

mathematicians (we only refer [11], [12], [14], [15], [16], [13], [29] but there are much
more). One of the most remarkable properties is that  Z(G;t) is a rational function;

(1.2)  Z(G;t)=  \frac{(1-t^{2})^{\chi(G)}}{\det[1-At+Qt^{2}]}.
Here  Q is a diagonal matrix whose entry at the vertex  x is  d(x)-1 where  d(x) is the

number of edges exiting from  x and  \chi(G) denotes the Euler characteristic of  G . In this

paper we assume that  G is connected and  d‐regular i.e.  d(x)=d for any vertex  x . Then
 d is an eigenvalue of  A of multiplicity one. Moreover it is known that an eigenvalue  \lambda

of  A satisfies  |\lambda|  \leq  d and that  -d is an eigenvalue of  A if and only if  G is bipartite.

If  |\lambda|  \leq  2\sqrt{d-1} is satisfied for an eigenvalue  \lambda of  A other than  \pm d , then the graph is

called Ramanujan. The zeta function of a Ramanujan graph has similar properties as

the the Hasse‐Weil congruent zeta function, which we will now recall.

Let  C be a smooth proper curve defined over a finite field  \mathbb{F}_{q} of characteristic

 p . The q‐th power Frobenius  F  =  Fr_{q} acts on the set of closed points  C(F_{q})  :=

 Hom_{\mathbb{F}_{q}}({\rm Spec}(F_{q}), C) by the obvious way and  |C| denotes the orbit space. The degree  0

a closed point  x is defined to be the extension degree of the residue field  k(x) over  \mathbb{F}_{q}
and it descends to the map

 \deg :  |C|  arrow \mathbb{Z}.

Now the Hasse‐Weil zeta function  W(C;t) of  C is defined as

(1.3)  W(C;t)= \prod_{x\in|C|}\frac{1}{1-t^{\deg(x)}}=\exp(\sum_{n=1}^{\infty}\frac{|C
(\mathbb{F}_{q^{n}})|}{n}t^{n}) ,

where  C(\mathbb{F}_{q^{n}}) is the set of  \mathbb{F}_{q^{n}} ‐rational points which is identified with the set of fixed

poitns  C(F_{q})^{F^{n}} A priori this is only a formal power series but it is a rational function by

the Grothendieck‐Lefschetz trace formula ([5]). In fact for a prime  l(\neq p) let  H_{et}^{i}(\overline{C}, \mathbb{Z}_{l})
denote the  l‐adic étale cohomology, where  \overline{C} is the base change  C over the  F_{q} . It is a

free  \mathbb{Z}_{l} ‐module whose rank is the twice of the genus of  C . It has the action of  F and

(1.4)  W(C;t)=  \frac{\det(1-Ft|H_{et}^{1}(\overline{C},\mathbb{Z}_{l}))}{(1-t)(1-qt)}
.
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Now observe that (1.1) and (1.3) are quite similar if one corresponds  \mathcal{P}(G) and
 \mathfrak{P}(G) to  C(F_{q}) and  |C| , respectively. Hence it will be natural to expect that there

should be relation between (1.2) and (1.4). But there are obvious constraints. In fact
by the solution of the Weil conjecture, the eigenvalue of  F on  H_{et}^{1}(\overline{C}, \mathbb{Z}_{l}) are algebraic

integers of modulus  \sqrt{q} ([4]). The corresponding condition of  A is that the associated
graph is connected  (q+1) ‐regular Ramanujan not bipartite. After these consideration

our question is whether there is a pair  (G, C) of a Ramanujan graph and a curve defined
over  \mathbb{F}_{q} so that

  \frac{\det[1-At+Qt^{2}]}{(1-t)(1-qt)} =\det(1-Ft|H_{et}^{1}(\overline{C}, 
\mathbb{Z}_{l}))=(1-t)(1-qt)W(C;t) ,

or equivalently

(1.5)   \frac{1}{W(C;t)} = \frac{(1-t)^{2}(1-qt)^{2}}{(1-t^{2})^{\chi(G)}}Z(G;t) .

These relations between the zeta function of graphs and the Hasse‐Weil congruent zeta

function are pointed out by Ihara ([17]) and after that there are several ways to construct
Ramanujan graphs ([20], [21], [23]). Our construction is based on the way of Mestre
and Oesterlé, which is sketched in [23]. Here is a summary of our construction. Let
us fix a prime  N and take another prime  p . The Hecke operator  T_{p} naturally acts

on the free abelian group generated by supersingular elliptic curves over  F_{N} . The

representation matrix is called a Brandt matrix and will be denoted by  B(p) . Taking

adjacency matrix of a graph gives a bijective correspondence between the set of graphs

and the set of matrices satisfying certain conditions. The Brandt matrix is a candidate

of an adjacency matrix of our graph but unfortunately not in general since it does not

satisfy the necessary conditions to be an adjacency matrix of a graph. However, if  N-1

is divisible by 12,  B(p) becomes an adjacency matrix of a Ramanujan graph  G_{N}(p) .

Theorem 1.1. Let  N be a prime such that  N-1 is divisible by 12 and we set

 n=  \frac{N-1}{12}.
The

1.

 W(X_{0}(N)_{\mathbb{F}_{p}}, t)Z(G_{N}(p), t)=  \frac{1}{(1-t)^{2}(1-pt)^{2}(1-
t^{2})^{\frac{n(p-1)}{2}}}.
2.

  \lim_{tarrow 1}(t-1)W(X_{0}(N)_{\mathbb{F}_{p}}, t)= \frac{n\tau(G_{N}(p))}{p-
1}.
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Here  \tau(G_{N}(p)) is the complexity of  G_{N}(p) which is defined to be the number of

spanning trees in  G_{N}(p) (see §2 .

The assertion (2) of the theorem may be compared to the class number formula,
but we do not know how  \tau(G_{N}(p)) can be interpreted as a  K‐theoretical object. Let

 S_{2}(\Gamma_{0}(N)) be the space of cusp forms of weight 2 for the Hecke congruence subgroup

 \Gamma_{0}(N) of  SL_{2}(\mathbb{Z}) . Then the dimension of  S_{2}(\Gamma_{0}(N)) is  n-1 and we can take normalized

Hecke eigenforms  \{f_{1}, \cdots , f_{n-1}\} as its basis. Let

 f_{i}= \sum_{n=1}^{\infty}a_{n}(f_{i})q^{n}, q=e^{2\pi iz} ({\rm Im} z>0)
be the Fourier expansion which satisfies  a_{1}(f_{i})=1 by definition. The classical Kirchho

formula which is used to derive (2) of Theorem 1.1 and the Eichler‐Shimura relation
will imply the following congruence.

Theorem 1.2. Let  p(\neq N) be a prime such that  1+p is a multiple of  n=   \frac{N-1}{12}.
Then the product of p‐th coefficients  \mu_{N}(p)  := \prod_{i=1}^{n-1}a_{p}(f_{i}) is divisible by  n.

We have listed the results of numerical experiments for  N=37 , 61, 73 in the last

section. Theorem 1.2 immediately yields the following corollary.

Corollary 1.3. Let  r be a prime divisor of  n . Then there is a normalized Hecke

eigenform  f= \sum_{n=1}^{\infty}a_{n}(f)q^{n}\in S_{2}(\Gamma_{0}(N)) satisfyin

 |\{p is a prime:  a_{p}(f)\equiv 0(mod r) ,  p\equiv-1(mod n)\}|  =\infty

Acknowledgements. The author thanks Prof. Noro who has kindly informed us

of the results of numerical experiments, and Prof. Geisser for his careful reading the

manuscript. He also appreciates Prof. Aoki’s comments and valuable suggestions.

§2. The Ihara zeta function of a graph

In this section we recall basic facts of the Ihara zeta function of a graph. The basic

references are [2], [29] and [31].

 A (finite) graph  G consists of a finite set of vertices  V(G) and a finite set of oriented
edges  E(G) , which satisfy the following property. There are the end point maps,

 \partial_{0}, \partial_{1} :E(G)arrow V(G) ,

and an orientation resersal,

 J :  E(G)arrow V(G) ,  J^{2}= identity,
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such that  \partial_{i}\circ J=\partial_{1-i}  (i =0,1) . The quotient  E(G)/J is called the set of geometric

edges and is denoted by  GE(G) . We regard an element of  GE(G) as an unoriented

edge.

For  x\in V(G) we set

 E_{j}(x)=\{e\in E(G)|\partial_{j}(e)=x\}, =0, 1 .

Thus  JE_{j}(x)  =  E_{1-j}(x) . Intuitively  E_{0}(x) (resp.  E_{1}(x) ) is the set of edges starting
from (resp. arriving at)  x . The degree of  x,  d(x) , is defined by

 d(x)= |E_{0}(x)| = |E_{1}(x)|.

 E(G) is naturally divided into two classes, loops and passes. An edge  e\in E(G) is called
a loop if  \partial_{0}(e)  =\partial_{1}(e) and is called a pass otherwise. Let  \rho(x) and  p(x) be the number

of loops and passes starting from  x , respectively. Note that, because of the involution
 J , if we replace ”starting” by ”arriving” these number does not change. By definition,
it is clear that

 d(x)=2\rho(x)+p(x) .

We call  G  k‐regular if  d(x)  =  k for all  x  \in  V(G) . If  V(G) is a disjoint union of two

subsets  V_{+}(G) and  V_{-}(G) and every edge connects points  P_{+}  \in V+(G) and  P_{-}  \in V_{-}(G) ,

we mention that  G is bipartite.

A path of length  m is a sequence  c  =  (e_{1}, \cdots , e_{m}) of edges such that  \partial_{0}(e_{i})  =

 \partial_{1}(e_{i-1}) for all  1  <  i  \leq  m and the path is reduced if  e_{i}  \neq  J(e_{i-1}) for all  2  \leq  i  \leq  m.

The path is closed if  \partial_{0}(e_{1})  =  \partial_{1}(e_{m}) and the closed path has no tail if  e_{m}  \neq  J(e_{1}) .

A closed path of length one is called a loop. Two closed paths are equivalent if one is

obtained from the other by a cyclic shift of the edges. Let  C(G) be the set of reduced

and tail‐less closed paths of  G and  C(G) the collection of its equivalence classes. Since

the length is depend on the equivalence class the length function descends to the map;

 l:C(G)arrow \mathbb{N}, l([c])=l(c) ,

where  [c] is the class determined by  c . We define a reduced and tail‐less closed path  c to

be primitive if it is not obtained by going  r  (\geq 2) times some another closed path. Let

 \mathfrak{P}(G) be the subset of  C(G) consisting of the classes of primitive closed paths (which
are reduced and tail‐less by definition . Now the Ihara zeta function of  G is defined to
be

 Z(G;t)=  \prod \frac{1}{1-t^{l([c])}}.
 [c]\in \mathfrak{P}(G)
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For a finite set  X,  \mathbb{Z}^{X} denotes the set of  \mathbb{Z}‐valued function on  X which is a free abelian

group generated by  X . We set  q(x)  :=d(x)-1 and define endomorphism  Q and  Ao

 \mathbb{Z}^{V(G)} as

 Q :  \mathbb{Z}^{V(G)}  arrow \mathbb{Z}^{V(G)},  Q(x)=q(x)x  (x\in V(G)) ,

and

 A(x)= \sum_{e\in E(G),\partial_{0}(e)=x}\partial_{1}(e) , x\in \mathbb{Z}^{V(G)
}.
Note that because of the involution  J,

 A(x)= \sum_{e\in E(G),\partial_{1}(e)=x}\partial_{0}(e)
.

The operator  A will be called adjacency operator. We sometimes identify it with the

representing matrix with respect to the basis  \{x\}_{x\in V(G)} . Thus the xy‐entry of  A_{xy}
is the number of edges starting from  x and arriving at  y . The orientation reversing

involution  J implies

 A_{xy}=A_{yx}.

Note that  A_{xx}=2\rho(x) and  p(x)  = \sum_{y\neq x}A_{yx}.

Connecting distinct vertices  x and  y by  A_{xy} ‐edges and drawing   \frac{1}{2}A_{xx} ‐loops at  x,

the adjacency matrix  A determines a 1‐dimensional unoriented simplicial complex. We

call it the geometric realization of  G , and denote it by  G again. We say that  G is

connected if its the geometric realization is. The Euler characteristic  \chi(G) is equal to

 |V(G)|-|GE(G)| , hence if  G is connected, the fundamental group is a free group of rank

1—  |V(G)|+|GE(G)| . A tree is defined to be a graph which is connected and simply

connected. A tree  T contained in  G satisfying  V(T)  =  V(G) is called a spanning tree

of  G . Intuitively a spanning tree is a maximal tree in  G . Let  \tau(G) denote the number

of spanning trees of  G and we call  \tau(G) the complexity of  G . For a later purpose, we

summarize the relationship between a graph and its adjacency matrix.

Proposition 2.1. Let  A=  (a_{ij})_{1\leq i,j\leq m} be an  m\cross m ‐matrix satisfying the fol‐

lowing conditions.

1. The entries  \{a_{ij}\}_{ij} are non‐negative integers and satisfy

 a_{ij}=a_{ji},  \forall i andj.

2.  a_{ii} is even for every  i.

Then there is a unique graph  G whose adjacency matrix is A. Moreover,  G is  k ‐regula

if and only if one of the following conditions holds :
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1.

  \sum_{i=1}^{m}a_{ij} =k, \forall j
2.

  \sum_{j=1}^{m}a_{ij}=k, \forall i.
Proposition 2.2. ([30] Proposition 2.2) Let  G be a  k ‐regular graph with  m

vertices. Then the Euler characteristic  \chi(G) satisfie

  \chi(G)= \frac{m(2-k)}{2}.
In the following, a graph  G is always assumed to be connected. Here is the Ihara’s

formula for the zeta function.

Fact 2.3. ([2],[13],[16],[29])

 Z(G;t)=  \frac{(1-t^{2})^{\chi(G)}}{\det[1-At+Qt^{2}]}.
Proposition 2.2 and Fact 2.3 yield the following result.

Proposition 2.4. Let  G be a  k ‐regular graph with  m vertices. The

 Z(G;t)=  \frac{(1-t^{2})^{\frac{m(2-k)}{2}}}{\det[1-At+Qt^{2}]}.
Let  E_{0}(G)  \subset  E(G) be a section of the natural projection  E(G)  arrow GE(G) , which

is identified the set of oriented edges for a certain orientation. Let

 \partial:\mathbb{Z}^{E_{0}(G)}  arrow zv(G)

be the boundary map and  \partial^{t} the dual. Then the Laplacian  \triangle of  G is defined to be
 \triangle=\partial\partial^{t} . It is known that ([31], [13]),

(2.1)  \triangle=1-A+Q.

Here is the relationship between the complexity and the Laplacian.

Fact 2.5. (The Kirchhoff law, [3] Theorem 6.3) Let  \{0, \alpha_{1}, \cdots , \alpha_{n-1}\} be the
eigenvalues of  \triangle . The

  \tau(G)= \frac{\alpha_{1}\cdots\alpha_{n-1}}{n}.
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Let  G' be the graph obtained by deleting all loops of  G . By the equation (2.1) we
see that the Laplacian of  G and  G' are same, and Fact 2.5 implies

 \tau(G)=\tau(G') .

One may also observe this fact by inspection. Here is an example.

Example 2.6. Let  G and  G' be graphs with vertices  \{[1] , [2], [3], [4]  \} and whose
shape are described by the following adjacency matrices  A and  A' , respectively. The

 (i, j) ‐entry is the number of geometric edges connecting vertices  [i] and  [j].

1.

 A= (\begin{array}{l}
2101
1030
0301
1012
\end{array}) , Q= (\begin{array}{l}
3000
0300
0030
0003
\end{array})
2.

 A'= (\begin{array}{l}
0101
1030
0301
1010
\end{array}) , Q'= (\begin{array}{l}
1000
0300
0030
0001
\end{array})
Then  G is a 4‐regular graph which has loops at the vertices [1] and [4] and  G' is ob‐
tained by deleting these loops from  G . The equation (2.1) shows that the corresponding
Laplacians  \triangle and  \triangle' are equal. In fact

 \triangle=\triangle'= (\begin{array}{llll}
2   -1   0   -1
-1   4-3      0
0-3   4      -1
-10   -1      2
\end{array}) .

The eigenvalues of this matrix are  \{0, 2, 5+\sqrt{5}, 5-\sqrt{5}\} , and Kirchhoff law tells us

  \tau(G)=\tau(G')= \frac{2(5+\sqrt{5})(5-\sqrt{5})}{4}=10.
Drawing a picture, one can immediately verify this.

Since we have assumed that  G is connected,  0 is an eigenvalue of  \triangle with multiplicity

one. Hence if  G is a regular graph of degree  k , the above observation shows that  k is

an eigenvalue of  A with multiplicity one. It is known that

 |\lambda|  \leq k for any eigenvalue  \lambda of  A

that  -k is an eigenvalue of  A if and only if  G is bipartite ([31], Chapter 3).
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Definition 2.7. We say that  G is Ramanujan if for all eigenvalues  \lambda of  A that

 |\lambda|  \neq k satisfy

 |\lambda| \leq 2\sqrt{k-1}.

§3. Ramanujan graphs

In this section we will explain some ways to construct a Ramanujan graph.

Let  G be a group. A subset  S is called symmetric if the inverse of any element
 s\in S is also contained in  S . Then the Cayley graph  C(G, S) is a graph whose vertices
are the elements of  G and  x,   y\in  G are connected if  y=sx for a certain   s\in  S . If  d is

the cardinality of  S,  C(G, S) is  d‐regular.

§3.1. A trivial example

Fact 3.1. ([31] Chapter 3, Theorem 2) Let  S be a symmetric subset of
 \mathbb{Z}/n\mathbb{Z}=  \{0, 1, \cdots , n-1\} . Then the eigenvalues of the adjacency matrix of the Cayley

graph  C(\mathbb{Z}/n\mathbb{Z}, S) are

  \{\sum_{s\in S}\exp(-\frac{2\pi iks}{n})\}_{k=0,1,\cdots,n-1}.
Take  S=\{1, -1\} as a symmetric set . Then  C(\mathbb{Z}/n\mathbb{Z}, S) is the regular  n‐gon and

the adjacency matrix is

 A=  (
Fact 3.1 shows that the eigenvalues of  A are

  \{2\cos(\frac{2\pi k}{n})\}_{k=0,1}, n-1
and  C(\mathbb{Z}/n\mathbb{Z}, \{\pm 1\}) is a connected Ramanujan graph. Note that it is bipartite if and

only if  n is even.

§3.2. The construction due to Li ([20])

Let  p be an odd prime. Consider the norm map

 N:\mathbb{F}_{p^{2}}^{\cross} arrow \mathbb{F}_{p}^{\cross}, N(x)=x\cdot x^{p}
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and let  S be the kernel, namely

 S=\{x\in \mathbb{F}_{p^{2}}|x^{p+1} =1\}.

Take  G=\mathbb{F}_{p^{2}} (an additive group) and then  S is symmetric subset of  (p+1)‐elements.
Let us consider the Cayley graph  C(\mathbb{F}_{p^{2}}, S) , which is regular of degree  p+1 . In order to

describe the property it is convenient to identify the adjacency matrix with the linear

operator  A on the function space  L(\mathbb{F}_{p^{2}})  :=\{f : \mathbb{F}_{p^{2}} arrow \mathbb{C}\} which is defined to be

 (Af)(x)  := \sum_{s\in S}f(x+s) .  f\in L(\mathbb{F}_{p^{2}}) .

By [31] pp.74‐pp.75,

  \psi_{k}(x) :=\exp(\frac{2\pi iTr(kx)}{p}) (k\in \mathbb{F}_{p^{2}})
is an eigenfunction of  A of the eigenvalue

  \lambda_{k} := \sum \exp(\frac{2\pi iTr(x)}{p}) , k\neq 0,
 x\in \mathbb{F}_{p^{2}}^{\cross},N(x)=N(k)

and

 \lambda_{0}=p+1.

Here Tr is the trace

Tr (x)  :=x+x^{p}.

Note that  \lambda_{k}(k\neq 0) is the Kloosterman sum and Deligne has shown (see [6] pp.219 and
pp.220 (7.2.5)) that

 |\lambda_{k}| \leq 2\sqrt{p}, k\neq 0.

Hence  C(\mathbb{F}_{p^{2}}, S) is a connected Ramanujan graph which is not bipartite.

§3.3. The construction due to Lubotzky‐Phillips‐Sarnak ([21], [32])

Let  p and  q be distinct primes congruent 1  mod 4 . Then  -1 is a quadratic residue

 mod q and there is an integer  i such that

 i^{2}\equiv-1(mod q) .

Let us consider the equation

(3.1)  x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=p.

By a well‐known theorem due to Jacobi it has  8(p+1) integer solutions and let  a  =

 (a_{0}, a_{1}, a_{2}, a_{3}) be one of them. Then one finds that only one  a_{i} is odd and remains are
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even. Hence the number of the solutions with  a_{0}  >0 and odd is  p+1 and let  \Sigma denote

the collection of such solutions. To  a  =  (a_{0}, a_{1}, a_{2}, a_{3})  \in  \Sigma we associate a matrix in

 PGL_{2} (Fq),

 a= (\begin{array}{lll}
+a_{0}ia_{1}   a_{2}   +ia_{3}
+ia_{3^{-a_{2}}}   a_{0}   -ia_{1}
\end{array}) ,

and set

 S  :=\{a|a\in\Sigma\}\subset PGL_{2} (Fq).

It is symmetric and we form a Cayley graph  X^{p,q}  :=C (  PGL_{2} (Fq),  S). This is  (p+1)-
regular graph whose number of vertices is  q  (q^{2} - 1) . Since the determinant of a is

 p,  X^{p,q} is not connected if  ( \frac{p}{q})  =  1 (i.e.  p  \in  (\mathbb{F}_{q}^{\cross})^{2} ). In fact let us divide the set
of vertices  V(X^{p,q}) into  V+  :=  \{g \in PGL_{2}(\mathbb{F}_{q})|\det(g) \in (\mathbb{F}_{q}^{\cross})^{2}\} and  V_{-}  :=  \{g  \in

 PGL_{2}(\mathbb{F}_{q})|\det(g)  \not\in  (\mathbb{F}_{q}^{\cross})^{2}\} . If  ( \frac{p}{q})  =  1 any elements of  S never connect  V+ and  V_{-}

since  \det(a)(a\in S) is a quadratic residue  mod q . Hence if  ( \frac{p}{q})=1 we replace  PGL_{2}(\mathbb{F}_{q})
by the subgroup  PSL_{2}(\mathbb{F}_{q}) of index 2 and define  Y^{p,q}  =  C (  PSL_{2} (Fq),  S). Then both
 X^{p,q} (if (   \frac{p}{q} )  =  -1 ) and  Y^{p,q} (if  ( \frac{p}{q})  =  1 ) are connected regular graphs of degree  p+1.

Lubotzky, Phillips and Sarnak have shown that  X^{p,q} (resp.  Y^{p,q} ) is bipartite (resp. not
bipartite) Ramanujan graph ([21] Theorem 4.1). The proof is based on the harmonic
analysis on the algebraic group  G  =  \mathbb{H}^{\cross}/Z(\mathbb{H}^{\cross}) where  \mathbb{H}^{\cross} is the set of invertible

elements of the Hamilton quaternion  \mathbb{H} and  Z denotes the center.

§4. The Ramanujan graph of a modular curve

§4.1. The Brandt matrix

In this subsection we will recall the theory of Brandt matrices after [9]. Let  N be a
prime, and let  B be the quaternion algebra over  \mathbb{Q} ramified at two places  N and  \infty . Let
 R be a fixed maximal order in  B and  \{I_{1}, \cdots , I_{n}\} be the set of left  R‐ideals representing

the distinct ideal classes. We call  n the class number of  B and it is computed by  N as

shown in the following Table 1 ([9]Table 1.3). We choose  I_{1}  =R . For  1  \leq i\leq n,  R_{i}

denotes the right order of  I_{i} , and let  w_{i} the order of  R_{i}^{\cross}/\{\pm 1\} . The product

(4.1)  W= \prod_{i=1}^{n}w_{i}
is independent of the choice of  R and is equal to the exact denominator of   \frac{N-1}{12} ([9],
p.117). Eichler’s mass formula states that

  \sum_{i=1}^{n}\frac{1}{w_{i}}=\frac{N-1}{12}.
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 N  n

2 1

3 1

 \equiv 5(12) (N+7)/12
 \equiv 7(12) (N+5)/12

 \equiv 11(12) (N+13)/12
 \equiv 1(12) (N-1)/12

Table 1. The table of the class number

Let  \mathbb{F} be an algebraic closure of  \mathbb{F}_{N} . There are  n distinct isomorphism classes

 \{E_{1}, \cdots , E_{n}\} of supersingular elliptic curves over  \mathbb{F} such that End  (E_{i})\simeq R_{i} . Let  p be a
prime distinct from  N , and let  Hom  (E_{i}, E_{j})(p) denote the set of homomorphisms from

 E_{i} to  E_{j} of degree  p . The  (i, j) ‐entry of the Brandt matrix  B(p) is defined to be

(4.2)  b_{ij} =  \frac{1}{2w_{j}}|Hom(E_{i}, E_{j})(p)|.
Since  Hom  (E_{i}, E_{j})(p) has a faithful action of  R_{j}^{\cross} from the right,  b_{ij} is a non‐negative

integer. In fact  b_{ij} equals to the number of subgroup  C of order  p in  E_{i} such that

 E_{i}/C\simeq E_{j} ([9] Proposition 2.3).

Now we assume that  N-1 is divisible 12. Since   \frac{N-1}{12} is an integer  W= \prod_{i=1}^{n}w_{i}=1
and  w_{i}=1 for all  i . Hence by Eichler’s mass formula

(4.3)  n=  \frac{N-1}{12}.
Fact 4.1. ([25] Proposition 4.6, see also [30] Proposition 3.1) Let  N be

prime such that  N-1 is divisible by 12. Then the Brandt matrix   B(p)=(b_{ij})_{1\leq i,j\leq n}(p\neq
 N) satisfies the following.

1. Every entry is a non‐negative integer and  B(p) is symmetric;

 b_{ij}=b_{ji}.

2. The diagonal entires  \{b_{ii}\}_{i} are even for all  i.

3. For any  i=1,  \cdots ,  n,

  \sum_{j=1}^{n}b_{ij} =p+1.
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By Proposition 2.1  B(p) determines  a(p+1) ‐regular graph, which will be denoted

by  G_{N}(p) . Here is a remark. If   \frac{N-1}{12} is not an integer, then  w_{i}  >  1 for certain  i . This

implies that  B(p) is not symmetric and the assumption of Proposition 2.1 is not
satisfied.

§4.2. The construction of a Ramanujan graph

We will explain an outline of our construction of Ramanujan graphs. See [30] for
details. Our results are based on the idea of Mestre and Oésterle ([23]) but we adopt a
slightly different viewpoint.

Our idea is to relate  G_{N}(p) and the space of modular forms. Let  N be a prime and

 S_{2}(\Gamma_{0}(N)) the space of cusp forms of weight 2 for the Hecke’s congruence subgroup

 \Gamma_{0}(N) :=\{(\begin{array}{l}
ba
cd
\end{array}) \in SL_{2}(\mathbb{Z}) : c\equiv 0(mod N)\}.
Let  Y_{0}(N) be the modular curve which parametrizes isomorphism classes of a pair
 E  =  (E, \Gamma_{N}) of an elliptic curve  E and a cyclic subgroup  \Gamma_{N} of order  N of  E . It is
a smooth curve defined over  \mathbb{Q} , and the set of  \mathbb{C}‐valued points is the quotient of the

upper half plane by  \Gamma_{0}(N) . The compactification  X_{0}(N) of  Y_{0}(N) has the canonical

model over  \mathbb{Z} which has been studied by [7] and [19] in detail. Then  S_{2}(\Gamma_{0}(N)) is
identified with the space of holomorphic 1‐forms  H^{0}(X_{0}(N), \Omega) , and in particular with

the tangent space  TanJ_{0}(N) at the origin of the Jacobian variety  J_{0}(N) of  X_{0}(N) .

For a prime  p different from  N,  X_{0}(N) furnishes the p‐th Hecke operator defined

by

(4.4)  T_{p}(E,  \Gamma_{N}) :=\sum_{C}(E/C, (\Gamma_{N}+C)/C) ,

where  C runs through all cyclic subgroups of  E of order  p . By functoriality,  T_{p} acts

on  J_{0}(N) and in turn on  TanJ_{0}(N) , and the action coincides with the usual action

on  S_{2}(\Gamma_{0}(N)) (see [28]) under identification. We define the Hecke algebra as  \mathbb{T}  :=

 \mathbb{Q}[\{T_{p}\}_{p\neq N}\}] , which is a commutative subring of  EndJ_{0}(N) . Let  \mathcal{J}_{0}(N) be the Neron

model of  J_{0}(N) over Z. It is known that the connected components of the reduction

of  \mathcal{J}_{0}(N) at  N are tori. Following [26], we will describe its character group.  X_{0}(N)_{\mathbb{F}_{N}}
has two irreducible components  C_{F} and  C_{V} , which are isomorphic to the projective

line  \mathbb{P}^{1}  =  X_{0}(1) . Over  C_{F} (resp.  C_{V} ),  \Gamma_{N} is the kernel of the Frobenius  F (resp.
the Verschiebung  V), and they intersect at supersingular points  \Sigma_{N}=\{E_{1}, \cdots , E_{n}\} as
ordinary double points. Consider the homomorphism

 \partial :  \oplus_{E_{i\in\Sigma_{N}}}\mathbb{Z}E_{i}arrow \mathbb{Z}C_{F}\oplus 
\mathbb{Z}C_{V},  \partial(E_{i})=C_{F}-C_{V}.
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The image of  \partial is a free abelian group of rank one generated by  \delta  :=C_{F}-C_{V}.  X being

the kernel of  \partial , we have the exact sequence

(4.5)  0arrow Xarrow\oplus_{E_{i\in\Sigma_{N}}}\mathbb{Z}E_{i}arrow\partial \mathbb{Z}
\deltaarrow 0.

It is straightforward to check that

 X= \{\sum_{E_{i\in\Sigma_{N}}}a_{i}\cdot E_{i}|a_{i} \in \mathbb{Z}, \sum_{i=1}
^{n}a_{i}=0\},
and by [26]Proposition 3.1,  X is the character group of the connected component  0

the reduction  \mathcal{J}_{0}(N)_{\mathbb{F}_{N}} at  N . In particular we see that

 \dim J_{0}(N)=\dim S_{2}(\Gamma_{0}(N))=\dim X\otimes \mathbb{Q}=n-1.

Let  p be a prime with  p  \neq  N . Then  T_{p} operates on  \oplus_{E_{i\in\Sigma_{N}}}\mathbb{Z}E_{i} by (4.4). Note that
 \Gamma_{N}=0 , since  E_{i} is supersingular and we may write (4.4) as

(4.6)  T_{p}(E_{i}) := \sum_{C}E_{i}/C.
A simple computation shows that

(4.7)  T_{p}(C_{F})=(p+1)C_{F}, T_{p}(C_{V})=(p+1)C_{V}, T_{p}(\delta)=(p+1)\delta.

and  X is preserved by  T_{p} . Remember that  X is the character group of  \mathcal{J}_{0}(N)_{\mathbb{F}_{N}} and

this action of  T_{p} on  X is nothing but the action which is induced by  T_{p} on  \mathcal{J}_{0}(N)_{\mathbb{F}_{N}}.
Here is a relationship between  T_{p} and the Brandt matrix. By [9]Proposition 4.4,

(4.8)  T_{p}E_{i}= \sum_{j=1}^{n}b_{ij}E_{j},
hence  B(p) is the representation matrix of  T_{p} . Using the multiplicity one theorem ([1])
we show the following result, which is the main point of our construction.

Proposition 4.2. ([30] Proposition 3.2)  X\otimes \mathbb{C} and  S_{2}(\Gamma_{0}(N)) are isomorphic
as  \mathbb{T} ‐modules.

Hence Proposition 4.2 together with (4.5), (4.7) and (4.8) implies that

 \det[1-B(p)t+pt^{2}]=\det[1-T_{p}t+pt^{2}|X\otimes \mathbb{C}] .  \det[1-T_{p}t+pt^{2}|\mathbb{C}\delta]
 =\det[1-T_{p}t+pt^{2}|S_{2}(\Gamma_{0}(N))](1-t)(1-pt) .
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Now use Eichler‐Shimura relation ([6][27]) and we see that the characteristic polynomial
of the geometric Frobenius  Fr_{p} is computed by the Brandt matrix,

(4.9)  \det[1-B(p)t+pt^{2}] =\det(1-p_{l}(Fr_{p})t|H_{et}^{1}(X_{0}(N)_{F_{p}}, 
\mathbb{Z}_{l})(1-t)(1-pt) .

By the Weil conjecture, (4.9) implies that  G_{N}(p) is a connected  (p+1)‐regular Ramanu‐
jan graph that is not bipartite. Now (1) of Theorem 1.1 is an immediate consequence
of Proposition 2.4 and (4.9). Also (2) of Theorem 1.1 can be shown without diffi‐
culty (see [30] Theorem 3.1).

§5. Numerical tables

1. Take  N  =  37 . Then  n  =  3 , and the dimension of  J_{0}(37) is two. Hence there are

two cuspidal Hecke eigenform  f_{37,a} and  f_{37,b} . Let  p be a prime such that  p+1 is a

multiple of 3. Theorem 1.2 says that, for such a prime  p,  \mu_{37}(p) is a multiple  0

3. Here are some calculations.

5 11 17 23 29 41 47 p

 -2

 0

 -5

3

 0

6

2

6

6

 -6

 -9

 -9

 -9

3
 a_{p}(f_{37,a})
 a_{p}(f_{37,b})

 \ovalbox{\tt\small REJECT}_{37}(p)  0  -15  0 12 36 81  -27

2. Take  N  =  61 . Then  n  =  5 and the dimension of  J_{0}(61) is 4. Hence there are

four cuspidal Hecke eigenform  f_{61a} and  \{f_{61b,(i)}\}_{i=1,2,3} . Here  f_{61,a} is defined over
 \mathbb{Q} and  \{f_{61b,(i)}\}_{i=1,2,3} are defined over  K , where  K is the decomposition field  0

 x^{3}  -x^{2}  -3x+1  =  0 . Let  p be a prime such that  p+1 is a multiple of 5. By

Theorem 1.2, for such a prime  p,  \mu_{61}(p) is a multiple of 5.

19 29 59 79 89 p

4  -6 9 3  -4 a_{P}(f_{61a})
 a_{P}(f_{61b,(i)})  4\gamma^{2} 3\gamma_{i}  -  7  -\gamma^{2} i  +  2\gamma_{i}  +  3  -\gamma^{2} i  -3\gamma_{i}  +13  -4\gamma^{2}  i  -2\gamma_{i}  -10

 \ovalbox{\tt\small REJECT}_{37}(p) 80 120 2925

 i  -\gamma_{i}  +14

 -1875 320

Here  \{\gamma_{1}, \gamma_{2}, \gamma_{3}\} are the distinct solutions of  x^{3}-x^{2}-3x+1=0.
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3. Take  N=  73 . Then  n=6 and the dimension of  J_{0}(73) is 5. Hence there are five

cuspidal Hecke eigenform  f_{73,a},  f_{73,b}^{\pm} and  f_{73,c}^{\pm} . Although  f_{73,a} is defined over  \mathbb{Q},

 f_{73,b}^{\pm} and  f_{73,c}^{\pm} are defined over  \mathbb{Q}(\sqrt{5}) and  \mathbb{Q}(\sqrt{13}) , respectively. Here  \pm denotes

the conjugate over Q. Let  p be a prime such that  p+1 is a multiple of 6. Theorem

1.2 predicts that, for such a prime  p,  \mu_{73}(p) is a multiple of 6.

5 11 17 23 29 41 47 53 p

 -2 2 4 2 6 6 10

 -4\alpha-9
 a_{p}(f_{73,a}) 2

 a_{p}(f_{73b}\pm,)  \alpha

 a_{p}(f\pm,)  -\beta
 -6 \ovalbox{\tt\small REJECT}_{73}(p)

 -\alpha  -3  -6\alpha-9  \alpha-6  -4\alpha  -  3

 \beta +6 -4\beta +3 \beta  +3

 1122 8580

  4\alpha  +  6

 -6

720

9

396

 8\alpha+15

  4\beta  -  3

36210

In the table  \alpha and  \beta are the solutions  0

 \alpha^{2}+3\alpha+1=0, \beta^{2}-\beta-3=0.
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