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Regularity and lifespan of small solutions to systems
of quasi‐linear wave equations with multiple speeds,

I: almost global existence

By

Kunio HIDANO*

Abstract

In this paper, we show almost lobal existence of small solutions to the Cauchy problem
for symmetric system of wave equations with quadratic (in  3D ) or cubic (in  2D ) nonlinear terms
and multiple propagation speeds. To measure the size of initial data, we employ a weighted
Sobolev norm whose regularity index is the smallest among all the admissible Sobolev norms of
integer order. We must overcome the difficulty caused by the absence of the  H^{1}-L^{p} Klainerman‐
Sobolev type inequality, in order to obtain a required a priori bound in the low‐order Sobolev
norm. The introduction of good substitutes for this inequality is therefore at the core of this
paper. Using the idea of showing the well‐known Ladyženskaja inequality, we prove some
weighted inequalities, which, together with the generalized Strauss inequality, play a role as
the good substitute.

§1. Introduction

Let us start with some well‐known results on the Cauchy problem for the quasi‐

linear, scalar wave equation in three space dimensions of the form

(1.1)   \partial_{t}^{2}u-\triangle u=\sum_{\alpha,\beta,\gamma=0}^{3}
G^{\alpha\beta\gamma}(\partial_{\alpha}u)\partial_{\beta\gamma}^{2}u+
\sum_{\alpha,\beta=0}^{3}H^{\alpha\beta}(\partial_{\alpha}u)\partial_{\beta}u, 
t> 0, x \in \mathbb{R}^{3},
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where  x_{0}  :=  t,  \partial_{\alpha}  :=  \partial/\partial x_{\alpha},  \partial_{\alpha\beta}^{2}  :=  \partial^{2}/\partial x_{\alpha}\partial x_{\beta} , and  G^{\alpha\beta\gamma},  H^{\alpha\beta} are real constants.

Though our primary concern in the present paper is on the Cauchy problem for the

system of nonlinear wave equations with multiple speeds, we expect that to revisit

some fundamental results for the scalar equation (1.1) will serve as a guide to the main
problem discussed later. Just for simplicity, we suppose that  G^{\alpha 00}  =  0 for any  \alpha.

Moreover, without loss of generality, we may suppose  G^{\alpha\beta\gamma}  =  G^{\alpha\gamma\beta} for any  \alpha,  \beta , and

 \gamma because we are interested in classical solutions. It is then well known (see, e.g., page
113 of Hörmander [10]) that for any initial data in  H^{4}  \cross H^{3} with

  \sum_{\alpha=0}^{3}\sum_{b,c=1}^{3}|G^{\alpha bc}|\Vert\partial_{\alpha}u(0)
\Vert_{L^{1}}
small enough, there exists  T  >  0 and a unique solution  u to the Cauchy problem for

(1.1) such that  \partial_{\alpha}u\in C([0, T];H^{3}) . If we consider (1.1) in  \mathbb{R}^{n} instead of  \mathbb{R}^{3} and work
with fractional‐order Sobolev spaces, this result of local existence remains true for the
 H^{s+1}\cross H^{s} ‐data with  s>  (n/2)+1 (see, e.g, Proposition 5.  2.B of Taylor [27]). Note that,
for  n=2 , 3,  H^{4}  \cross H^{3} is the largest among all the admissible Sobolev spaces of integer

order, as far as the standard local existence theorem is concerned. We also remark that,

when considering (1.1) in  \mathbb{R}^{n}  (n=2,3) with more regular data in  H^{s+1}  \cross H^{s} for some
 s  \geq  4  (s \in \mathbb{N}) , it is possible to choose  T  >  0 depending only on   \sum_{\alpha}\Vert\partial_{\alpha}u(0)\Vert_{H^{3}} and

independently of  s such that the Cauchy problem for (1.1) admits a unique solution
satisfying  \partial_{\alpha}u  \in  C([0, T];H^{s}) . (See, e.g., Theorem 5.8 of Racke [21]. Note that the
equation (1.1) can be written in the form of the first order quasi‐linear system (see, e.g.,
page 19 of John [13]) to which we can apply Proposition 5.  2.B of [27] and Theorem 5.8
of [21].) This means that a continuation of local smooth solutions to a larger strip is
reduced to the a priori  H^{3}‐bound of their first derivatives.

Concerning long‐time existence, there exist positive constants  C_{1},  \epsilon_{1} depending on

the coefficients  G^{\alpha\beta\gamma},  H^{\alpha\beta} such that whenever compactly supported  C^{\infty} ‐initial data
satisfies

(1.2)  \mathcal{W}_{4}^{1/2}(u(0)) \leq\epsilon_{1},

we can obtain the a priori  L^{2} ‐bound of  \partial_{\alpha}\Gamma^{a}u(t) ,  \alpha  =  0 , :::, 3,  |a|  \leq  3 which is

strong enough to show that the smooth local solution exists at least for the interval

 [0, \exp(C_{1}\epsilon^{-1})] , where  \epsilon  :=  \mathcal{W}_{4}^{1/2}(u(0)) . Here and in the following discussion, we use
the notation:

(1.3)   \mathcal{W}_{1}(u(t)) := \frac{1}{2}\int_{\mathbb{R}^{3}}((\partial_{t}u(t, x)
)^{2}+|\nabla u(t, x)|^{2})dx,
(1.4)  \mathcal{W}_{\kappa}(u(t))  := \sum_{|a|\leq\kappa-1}\mathcal{W}_{1}(\Gamma^{a}u(t)) ,  \kappa=2 , 3, . . .
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For a multi‐index  a,  \Gamma^{a} stands for any product of the  |a| operators  \partial_{\alpha}  (\alpha = 0, \ldots, 3) ,

 \Omega_{ij}  :=x_{i}\partial_{j}-x_{j}\partial_{i}  (1\leq i<j\leq 3) ,  L_{k}  :=x_{k}\partial_{t}+t\partial_{k}  (k=1,2,3) , and  S  :=t\partial_{t}+x\cdot\nabla.

The proof of the a priori bound uses the Sobolev‐type inequality

(1.5)   \Vert v(t, \cdot)\Vert_{L^{p}(\mathbb{R}^{3})} \leq C(1+t)^{-2(1/2-1/p)}
\sum_{|a|\leq 1}\Vert\Gamma^{a}v(t, \cdot)\Vert_{L^{2}(\mathbb{R}^{3})}
(see, e.g., Ginibre and Velo [5]) as well as the Klainerman inequality [16]

(1.6)   \Vert v(t, \cdot)\Vert_{L^{i}(\mathbb{R}^{3})} \leq C(1+t)^{-1}\sum_{|a|\leq 
2}\Vert\Gamma^{a}v(t, \cdot)\Vert_{L^{2}(\mathbb{R}^{3})}.
(Note that, while a loss of just one derivative occurs in (1.5), we lose two derivatives
in applying (1.6) to the estimation of nonlinear terms.) We note that the interval
mentioned above becomes exponentially large as the size  \epsilon of initial data gets smaller

and smaller. Such results have been called “almost global existence theorem” in the

literature since the pioneering work of John and Klainerman [14] for the equation (1.1).
Now, let us turn our attention to the main concern in the present paper: the Cauchy

problem for the system of nonlinear wave equations of the form

(1.7)  (\partial_{t}^{2}-c_{l}^{2}\triangle)u^{l}=G_{ij}^{l,\alpha\beta\gamma}
(\partial_{\alpha}u^{i})\partial_{\beta\gamma}^{2}u^{j}+H_{ij}^{l,\alpha\beta}
(\partial_{\alpha}u^{i})\partial_{\beta}u^{j}, t>0, x\in \mathbb{R}^{3}
and its  2D counterpart

(1.8)  (\partial_{t}^{2}-c_{l}^{2}\triangle)u^{l}=G_{ijk}^{l,\alpha\beta\gamma\delta}(
\partial_{\alpha}u^{i})(\partial_{\beta}u^{j})\partial_{\gamma\delta}^{2}u^{k}
 +H_{ijk}^{l,\alpha\beta\gamma}(\partial_{\alpha}u^{i})(\partial_{\beta}u^{j})
\partial_{\gamma}u^{k}, t>0, x\in \mathbb{R}^{2}

Here,  u  =  (u1, :::, u^{N}) :  (0, T)  \cross \mathbb{R}^{n}  arrow \mathbb{R}^{N}  (n = 2,3, N \in \mathbb{N}) and, on the right‐hand

side of  (1.7)-(1.8) and in the following discussion as well, repeated indices are summed

if lowered and uppered. Greek indices range from  0 to  n , and roman indices from 1 to
 N . Suppose the symmetry condition

(1.9)  G_{ij}^{l,\alpha\beta\gamma}=G_{ij}^{l,\alpha\gamma\beta}=G_{i}^{j}
1^{\alpha\beta\gamma}
for any  i,  j,  l and  \alpha,  \beta,  \gamma in (1.7) or

(1.10)  G_{ijk}^{l,\alpha\beta\gamma\delta}=G_{ijk}^{l,\alpha\beta\delta\gamma}=G_{ijl}
^{k,\alpha\beta\gamma\delta}
for any  i , ,  k,  l and  \alpha,  \beta,  \gamma,  \delta in (1.8). Then the results of local existence mentioned
above for (1.1) carry over to (1.7), (1.8), because these systems can be written in the
form of the first order quasi‐linear symmetric system, such as (5.9) of [21], (5.2.1)  0

[27]. Concerning long‐time existence, for compactly supported smooth initial data  0

the form

(1.11)  u(0)=\epsilon f, \partial_{t}u(0)=\epsilon g,
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Sogge proved that there exist positive constants  C_{2},  \epsilon_{2} depending on the speeds  c_{1} , :::,  c_{N},

the coefficients  G_{ij}^{l,\alpha\beta\gamma},  H_{ij}^{l,\alpha\beta} , and a weighted  H^{10}‐norm of  \nabla f and  g such that  i

 0<\epsilon\leq\epsilon_{2} , then a unique solution to (1.7), (1.11) exists at least over the time interval
 [0, \exp(C_{2}\epsilon^{-1})] . (See Theorem 4.1 on page 67 of Sogge [25], the proof of which is based
on that of Theorem 1.2 of Keel, Smith, and Sogge [15].) Also, Kovalyov [18] proved that
there exist positive constants C3,  \epsilon_{3}  >0 depending on the speeds  c_{1} , :::,  c_{N} , the coeffi‐

cients  G_{ik}^{l,\alpha\beta\gamma\delta},  H_{ik}^{l,.\alpha\beta\gamma} , and a weighted  H^{5} ‐norms of  \nabla f and  g such that if  0<\epsilon\leq\epsilon_{3},

then a unique solution to (1.8), (1.11) exists at least over  [0, \exp(C_{3}\epsilon^{-2})] . In the present
paper, we aim at refining these results by employing a lower‐order norm to measure the

size of initial data. More precisely, we prove:

Theorem 1.1. Assume the symmetry condition (1.9), (1.10). Then there exist
positive constants  C_{0},  \epsilon_{0} depending on the propagation speeds and the coefficients of the

equations (1.7), (1.8) such that if compactly supported, smooth initial data is small so
that

(1.12)  N_{4}(u(0)) \leq\epsilon_{0}

may hold, then the systems (1.7), (1.8) admit unique solutions defined on the interva
 [0, T] such that  N_{4}(u(t))  \leq 2N_{4}(u(0)) ,  0\leq t\leq T . Here,

 T=\exp(C_{0}\epsilon^{-v}) (\epsilon :=N_{4}(u(0)))

with  v=1 for (1.7),  v=2 for (1.8).

Here, on the basis of the standard energy  E_{1}(u(t)) associated with unperturbed

wave equations

(1.13)  E_{1}(u(t))=  \frac{1}{2}\sum_{l=1}^{N} \mathbb{R}^{n}(|\partial_{t}u^{l}(t, x)
|^{2}+c_{l}^{2}|\nabla u^{l}(t, x)|^{2})dx,
we have defined the quantity  N_{\kappa}(v(t)) for  v=(v^{1}, \ldots, v^{N}) as

(1.14)  N_{1}(v(t))= \sqrt{E_{1}(v(t))}, N_{2}(v(t))= (\sum_{|a|+|b|+d\leq 1}E_{1}
(\partial_{x}^{a}\Omega^{b}S^{d}v(t)))^{1/2},
 N_{\kappa}(v(t))=  ( \sum_{d\leq 1}E_{1}(\partial_{x}^{a}\Omega^{b}S^{d}v(t)))^{1/2},  \kappa=3 , 4, . . . ,

where, for  a  = (a1, :::,  a_{n} ) and  b  =  (b1, :::, b_{m}) ( m=  1,3 for  n  =  2,3 , respectively),
 \partial_{x}^{a}\Omega^{b}S^{d}v  :=  (\partial_{x}^{a}\Omega^{b}S^{d}v^{1}, \ldots, \partial_{x}^{a}\Omega^{b}S^{d}
v^{N}) ,  \partial_{x}^{a}  :=\partial_{1}^{a_{1}}\cdots\partial_{n^{n}}^{a},  \Omega^{b}  :=\Omega_{12}^{b_{1}}\cdots\Omega_{n-1n}^{b_{7m}},  \Omega_{ij}  =
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 x_{i}\partial_{j}  -x_{j}\partial_{i}  (1 \leq i < j \leq n) , and  S  =  t\partial_{t}+x  \nabla . We set  Z  :=  \{\partial_{i},  \Omega_{jk},  S :  i  =

 1 , :::,  n,  1\leq j  <k\leq n\} . Note that none of the operators  L_{k}  =x_{k}\partial_{t}+t\partial_{k}  (k=1, \ldots, n)
is an element of the set  Z . Note also  \partial_{t}  \not\in Z.

There exist some difficulties in showing the almost global existence result for (1.7),
(1.8) when we employ the lower‐order norm, such as  N_{4} defined above, to measure
the size of data. Recall that, besides the standard energy inequality for the variable‐

coefficient wave equation, the generalized Sobolev‐type inequalities  (1.5)-(1.6) and the

nice commutation relations between the D’Alembertian (with the propagation speed
 c=  1) and the elements of  \{\Omega_{ij}, L_{k}, S\} play an important role in showing the almost

global existence for (1.1) with compactly supported, smooth data satisfying (1.2). When
considering the multiple‐speed system (1.7), (1.8), we must take into account the fact
that the operator  \tilde{L}_{k}  :=  c^{-1}x_{k}\partial_{t}  +ct\partial_{k} , which is a speed‐dependent variant of  L_{k},

commutes with  \square _{c}  :=  \partial_{t}^{2}  -c^{2}\triangle , but it no longer does with  \square _{\hat{c}}  :=  \partial_{t}^{2}  -\hat{c}^{2}\triangle  (\hat{c} \neq c) .

Indeed, we have  [\tilde{L}_{k}, \square _{\hat{c}}]  =2c^{-1}(\hat{c}^{2}-c^{2})\partial_{k}\partial_{t} , and this commutation relation is obviously

useless in our argument. We must therefore give up using such a modified operator  \tilde{L}_{k},
which in turn means that we must give up using the Sobolev‐type inequalities  (1.5)-
(1.6). On the other hand, we still enjoy the good commutation relations  [\Omega_{ij}, \square _{c}]  =0

and  [S, \square _{c}]  =-2\square _{c} , and some good substitutes for the Klainerman inequality (1.6) are
available on the basis of the use of the operators  \Omega_{ij} and  S and without relying upon

the operators  \tilde{L}_{k} . (See Lemma 6.1 of [24] and Lemma 1 of [22]. See also (4.2) of [6].)
These substitutes, combined with the Klainerman‐Sideris inequality (see (3.1) below),
would suffice to show almost global existence theorem for (1.7), (1.8) when a suitable
higher (than 4) order norm of data is small enough. See, e.g., Section 8 of Sideris and
Tu [24] and Theorem 3.1 of [6]. Therefore, it is a good substitute for (1.5) that plays
a key role in reducing the regularity index of norm to as low a level as in (1.2). To
the best of the present author’s knowledge, no substitute for (1.5) is available in the
literature. We explain that our key weighted inequalities  (2.7)-(2.13) are well combined

with the method of [24], and they play a role as the substitute for (1.5). To prove these
key inequalities, we follow the way of showing the well‐known Ladyženskaja inequality

[19] or use the generalization of the Strauss inequality. (See (2.20) for the generalized
Strauss inequality. See also [3] for recent, another extension of the classical inequality
of Strauss [26].)

The method in this paper has an application to the system of quasi‐linear wave

equations with quadratic nonlinear terms in  2D . Repeating essentially the same argu‐

ment as in the proof of Theorem 1.1, we obtain the following:

Theorem 1.2. Consider (1.7) in  \mathbb{R}^{2} . Assume the symmetry condition (1.9).
Then there exist positive constants  A_{0},  \epsilon_{0} depending on the propagation speeds and

the coe cients of (1.7) with the following property: if the compactly supported, smooth
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initial data is small so that  N_{4}(u(0))  \leq\epsilon_{0} may hold, then the problem (1.7) has a unique
solution satisfying  N_{4}(u(t))  \leq 2N_{4}(u(0)) ,  0<t<T . Here  T=A_{0}\epsilon^{-2}  (\epsilon :=N_{4}(u(0))) .

In [18], Kovalyov considered the system (1.7) not in  \mathbb{R}^{3} but in  \mathbb{R}^{2} with data of the
form (1.11), and obtained the slightly weaker lower bound  T\geq C\epsilon^{-2}(\log(1/\epsilon))^{-2} , while
in [11], assuming  H_{ij}^{l,\alpha\beta}=0 for all  i,  j,  l,  \alpha,  \beta , Hoshiga obtained the refined lower bound
 T\geq C\epsilon^{-2} with a positive constant  C computed explicitly from the propagation speeds
 c_{1} , :::,  c_{N} , the coefficients  G_{ij}^{l,\alpha\beta\gamma} , and the given functions  f,  g . Theorem 1.2 is an

improvement on the previous results of [18] and [11], for Kovalyov used a higher‐order
norm to measure the size of initial data and his lower bound of the lifespan is slightly

weaker than ours, and Hoshiga imposed the restriction  H_{i}^{l,.\alpha\beta}  =0 for all  i,  j,  l,  \alpha,  \beta , while

we no longer need his strict restriction.

Here we give three remarks. Firstly, as in the books [2], [10], [13], [21], and [25], we
have so far supposed that initial data is smooth and compactly supported, when con‐

sidering the lifespan of small solutions. This is mainly because a continuation argument

becomes considerably easier for compactly supported (in space at fixed times  t  >  0 ),
smooth solutions. See (4.31) below. Note that the constants  A_{0},  C_{0} , and  \epsilon_{0} appearing
Theorems 1.1 and 1.2 are completely independent of the “size” of the support of initial

data. Therefore, once we have proved these theorems, we should move on to removing

the compactness assumption of the support, as well as the regularity  (C^{\infty}) assumption,

of initial data. The idea of doing it can be found on page 122 of [10] (see Remark there).
In order to keep the present paper to a moderate length, we refrain from pursuing this

important problem.

Secondly, in the definition of  N_{\kappa}(u(t))  (\kappa \geq 3) we have limited the number  0

occurrences of  S to 1, in accordance with the idea of the earlier papers [15] and [9] that its
at most 1 occurrence is actually sufficient for the proof of almost global existence. With

this, there is an advantage that we can bypass the burdensome calculation of  \partial_{t}^{j}u(0, x)
 (j = 2,3,4) when computing  N_{4}(u(0)) , because  \partial_{t}  \not\in  Z and  \partial_{t}Su  =  \partial_{t}u+x  \nabla\partial_{t}u

at  t  =  0 . (Compare this with the fact that we must successively calculate  \partial_{t}^{j}u(0, x)
 (j=2,3,4) with the help of the equation (1.1) when computing  \mathcal{W}_{4}^{1/2}(u(0)) appearing
in (1.2).) Another feature lies in that, when initial data  (u(0), \partial_{t}u(0))  =  (\varphi, \psi) is
radially symmetric about  x=0 (and the system of equations is not necessarily so), we
easily see the condition (1.12) is satisfied whenever the norm with the “mild” weight

 \langle x\rangle  :=\sqrt{1+|x|^{2}}

(1.15)   \sum_{1\leq l\leq} (\sum_{1\leq|a|\underline{<}4}\Vert\langle 
x\rangle\partial_{x}^{a}\varphi^{l}\Vert_{L^{2}}+\sum_{|a|\leq 3}\Vert\langle 
x\rangle\partial_{x}^{a}\psi^{l}\Vert_{L^{2}})
is small enough. The result of almost global existence for symmetric (and not necessarily
diagonal) systems of quasi‐linear wave equations is new when smallness is required  0

only such mildly weighted Sobolev norm of radial data.
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Thirdly, the proof of Theorem 1.1 obviously remains valid for the scalar equation

(1.1), thus we obtain almost global existence result under the condition (1.12) with
 N=1 which is weaker than (1.2).

We conclude this section by mentioning that, in the sequel [7], assuming the null
condition in the different‐speed setting proposed by Agemi and Yokoyama [1], Yokoyama
[28], we will prove the global existence theorem for (1.7), (1.8) on a condition which
is stronger than (1.12), but weaker than that in the previous papers [28], [12], [24],
[25], [20]. In addition to the key tools used in the present paper, the proof will use
the estimation lemmas due to Sideris and Tu (see Lemma 5.1 of [24]) in  3D , Lindblad,
Nakamura, and Sogge (see Lemma A.4 of [20]) in  2D when handling the null‐form terms.

This paper is organized as follows. In the next section, some useful inequalities  0

the Sobolev type or the trace type are proved. Using the Klainerman‐Sideris inequality,

we bound weighted space‐time  L^{2} ‐norms of the second or some higher‐order derivatives

of the local solution in Section 3. In Sections 4 and 5, we carry out the energy integral

argument and complete the proof of Theorems 1.1 and 1.2.

§2. Preliminaries

As explained in Section 1, repeated indices will be summed if lowered and uppered.

Greek indices range from  0 to  n ( n=2 or 3), and roman indices from 1 to  N or 1 to  n . In
addition to the usual partial differential operators  \partial_{\alpha}  =\partial/\partial x_{\alpha}(\alpha=0, \ldots, n) , we use the

generator of Euclid rotation  \Omega_{ij}  =x_{i}\partial_{j}-x_{j}\partial_{i} and of space‐time scaling  S=t\partial_{0}+x\cdot\nabla.

The set of these  \mu (  \mu=4 for  n=2,  \mu=7 if  n=3 ) differential operators is denoted by
 Z=\{Z_{1}, :::, Z_{\mu}\}=\{\nabla, \Omega, S\} . Note that  \partial_{t} is not an element of  Z . For a multi‐index

 a=(a_{1}, \ldots, a_{\mu}) , we set  Z^{a}  :=Z_{1}^{a_{1}}\cdots Z_{\mu^{\mu}}^{a} . We also use  \overline{Z}=\{Z_{1}, :::, Z_{\mu-1}\}=\{\nabla, \Omega\},
with  \overline{Z}^{a}  :=\partial_{1}^{a_{1}}\partial_{2}^{a_{2}}\Omega_{12}^{a_{3}} (  a=(a_{1},  a_{2} , a3)),  \overline{Z}^{a}  :=\partial_{1}^{a_{1}}\partial_{2}^{a_{2}}\partial_{3}^{a_{3}}\Omega_{12}
^{a_{4}}\Omega_{13}^{a_{5}}\Omega_{23}^{a_{6}} (  a= (a1, :::,  a_{6}) )
for  n=2 , 3, respectively.

We collect several results concerning commutation relations and Sobolev‐type and

trace‐type inequalities. Let  [\cdot,  ] be the commutator:  [A, B]  :=AB-BA . It is easy to

verify that

(2.1)  [Z_{i}, \partial_{t}^{2}-c^{2}\triangle]  =0 for  i=1 , :::,  \mu-1,  [S, \partial_{t}^{2}-c^{2}\triangle]  =-2(\partial_{t}^{2}-c^{2}\triangle) ,

(2.2)  [Z_{j}, Z_{k}]  = \sum_{i=1}^{\mu}C_{i}^{j,k}Z_{i},  j,  k=1 , :::,  \mu,

(2.3)  [Z_{j}, \partial_{k}]  = \sum_{i=1}^{n}C_{i}^{j,k}\partial_{i},  j=1 , :::,  \mu,  k=1 , :::,  n,

(2.4)  [Z_{j}, \partial_{t}]  =0,  j=1 , . . . ,  \mu-1,  [S, \partial_{t}]  =-\partial_{t}.

Here  C_{i}^{j,k} denotes a constant depending on  i , , and  k.
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The following lemma is concerned with Sobolev‐type or trace‐type inequalities. We

use these inequalities in combination with the Klainerman‐Sideris inequality (see (3.1)
below). The auxiliary norms of  v=(v^{1}, :::, v^{N})

(2.5)  M_{2}(v(t))= \sum_{l=1}^{N}\sum_{0\leq\delta\leq n}  \Vert\langle c_{l}t-|x|\rangle\partial_{\delta}^{2}\cdot v^{l}(t)\Vert_{L^{2}
(\mathbb{R}^{n})},  M_{4}(v(t))= \sum_{|a|\leq 2}M_{2}(\overline{Z}^{a}v(t)) ,

which appear in the following discussion, play an intermediate role. We remark that

and  \partial_{t}^{2} are absent in the right‐hand side above. Here and later on as well, we use the
standard notation  \langle A\rangle  =  \sqrt{1+|A|^{2}} for a scalar or a vector  A . We also use the notation

 \partial_{r}  :=(x/|x|)\cdot\nabla,

(2.6)   \Vert w\Vert_{L_{r}^{1}L_{\omega}^{p}(\mathbb{R}^{n})} :=\sup_{r>0}\Vert 
w(r\cdot)\Vert_{L^{p}(S^{n-1})},

 \Vert w\Vert_{L_{r}^{2}L_{\omega}^{p}(\mathbb{R}^{n})} := ( 0^{\infty}\Vert w(r
\cdot)\Vert_{L^{p}(S^{n-1})}^{2}r^{n-1}dr)^{1/2} :
Lemma 2.1. Let  v be a vector‐valued function  v=(v^{1}, \ldots, v^{N}) :  (0, \infty)\cross \mathbb{R}^{n}arrow

 \mathbb{R}^{N} decaying sufficiently fast as  |x|  arrow  1 . The following inequalities hold for every
 l=1 , . . . ,  N :

(i) Suppose  n=2 . We have for  \alpha=0 , 1, 2

(2.7)   \Vert r^{1/2}\partial_{\alpha}v^{l}(t)\Vert_{L_{r}^{1}L_{\omega}^{2}
(\mathbb{R}^{2})} \leq CN_{1}^{1/2}(v(t))(\sum_{|a|=1}N_{1}(\partial_{x}^{a}v(t)
))^{1/2},
(2.8)  \Vert\langle c_{l}t-r\rangle^{1/2}\partial_{\alpha}v^{l}(t)\Vert_{L^{4}(\mathbb
{R}^{2})} \leq CN_{1}^{1/2}(v(t))(N_{1}(v(t))+M_{2}(v(t)))^{1/2} :

(ii) Suppose  n=3 . We have for  \alpha=0 , 1, 2, 3

(2.9)  \Vert\langle c_{l}t-r\rangle^{1/2}\partial_{\alpha}v^{l}(t)\Vert_{L^{3}(\mathbb
{R}^{3})} \leq CN_{1}^{1/2}(v(t))(N_{1}(v(t))+M_{2}(v(t)))^{1/2},
(2.10)  \Vert\langle c_{l}t-r\rangle\partial_{\alpha}v^{l}(t)\Vert_{L^{6}(\mathbb{R}
^{3})} \leq C(N_{1}(v(t))+M_{2}(v(t))) .

Moreover, for any  2\leq p<4 there exists a constant  C=C_{p}>0 such that we have

(2.11)   \Vert r\partial_{\alpha}v^{l}(t)\Vert_{L_{r}^{1}L_{\omega}^{p}(\mathbb{R}^{3})
} \leq C\sum_{|a|\leq 1}N_{1}(\overline{Z}^{a}v(t)) .

Remark. We give three remarks. Firstly, by the Sobolev embedding   W^{1,4}(\mathbb{R}^{2})\mapsto
 L^{\infty}(\mathbb{R}^{2}) and  W^{1,6}(\mathbb{R}^{3})  \mapsto L^{\infty}(R^{3}) , we get from (2.8) and (2.10)

(2.12)  \langle c_{l}t-r\rangle^{1/2}|\partial_{\alpha}v^{l}(t, x)|

  \leq C(\sum_{|a|\leq 1}N_{1}(\partial_{x}^{a}v(t)))^{1/2}(\sum_{|a|\leq 1}
N_{1}(\partial_{x}^{a}v(t))+\sum_{|a|\leq 1}M_{2}(\partial_{x}^{a}v(t)))^{1/2}
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for  n=2 and

(2.13)   \langle c_{l}t-r\rangle|\partial_{\alpha}v^{l}(t, x)| \leq C(\sum_{|a|\leq 1}
N_{1}(\partial_{x}^{a}v(t))+\sum_{|a|\leq 1}M_{2}(\partial_{x}^{a}v(t)))
for  n=3 , respectively. The former (2.12) was shown by Sideris (see the last inequality
on page 379 of [22]). After he submitted the manuscript, the author became aware  0

the recent paper of Zha [29] where the latter (2.13) had been proved (see (37) there).
In addition to  (2.8)-(2.10) , we will also use both (2.12) and (2.13) in the following
discussion. We also note that the multiplicative form of the right‐hand side of (2.8)
and (2.12) is very useful in our argument (see, e.g.,  (3.15)-(3.16) below). Secondly, we
remark that we will also use for  n=2 , 3

(2.14)   \Vert r^{(n-1)/2}\partial_{\alpha}v^{l}(t)\Vert_{L^{1}(\mathbb{R}^{n})} \leq C
\sum_{|a|\leq 2}N_{1}(\overline{Z}^{a}v(t)) ,

which follows immediately from the combination of (2.7), (2.11) with the Sobolev em‐
bedding  W^{1,2}(S^{1})  \mapsto L^{\infty}(S^{1}) ,  W^{1,p}(S^{2})  \mapsto L^{\infty}(S^{2}) with  p>  2 , respectively. Thirdly,

in fact we will use (2.9) not in the present paper but in [7]. The proof of (2.9) is similar
to that of (2.8), thus we prove it here.

Proof. Applying the well‐known inequality  \Vert\varphi\Vert_{L^{6}(\mathbb{R}^{3})}  \leq  C\Vert\nabla\varphi\Vert_{L^{2}(\mathbb{R}^{3})} with  \varphi  =

 \langle c_{l}t-  r\rangle\partial_{\alpha}v^{l}(t, x) , we easily obtain (2.10). The proof of (2.8) builds upon how to
obtain the well‐known Ladyženskaya inequality [19]  \Vert\varphi\Vert_{L^{4}(\mathbb{R}^{2})}^{4}  \leq 4\Vert\varphi\Vert_{L^{2}(\mathbb{R}^{2})}^{2}
\Vert\nabla\varphi\Vert_{L^{2}(\mathbb{R}^{2})}^{2}.
Indeed, we first obtain by a direct computation

 x_{1} d
(2.15)  \langle c_{l}t-r\rangle|\partial_{\alpha}v^{l}(t, x)|^{2}= -\infty^{\overline{d
\xi_{1}}}(\langle c_{l}t-\tilde{r}\rangle|\partial_{\alpha}v^{l}(t, \xi_{1}, 
x_{2})|^{2})d\xi_{1}

 \infty

 \leq C (|\partial_{\alpha}v^{l}(t, \xi_{1}, x_{2})|^{2}+\langle c_{l}t-
\tilde{r}\rangle|\partial_{\alpha}v^{l}(t, \xi_{1}, x_{2})||\partial_{1\alpha}
^{2}v^{l}(t, \xi_{1}, x_{2})|)d\xi_{1},
 -\infty

which yields

(2.16)  \langle c_{l}t-r\rangle^{2}|\partial_{\alpha}v^{l}(t, x)|^{4}
 \infty

 \leq C (|\partial_{\alpha}v^{l}(t, \xi_{1}, x_{2})|^{2}+\langle c_{l}t-
\tilde{r}\rangle|\partial_{\alpha}v^{l}(t, \xi_{1}, x_{2})||\partial_{1\alpha}
^{2}v^{l}(t, \xi_{1}, x_{2})|)d\xi_{1}
 \infty-\infty

 \cross  (|\partial_{\alpha}v^{l}(t, x_{1}, \xi_{2})|^{2}+\langle c_{l}t-\hat{r}\rangle|
\partial_{\alpha}v^{l}(t, x_{1}, \xi_{2})||\partial_{2\alpha}^{2}v^{l}(t, x_{1},
\xi_{2})|)d\xi_{2},
 -\infty

where  \tilde{r}:=(\xi_{1}^{2}+x_{2}^{2})^{1/2},  \hat{r}  :=  (x_{1}^{2}+\xi_{2}^{2})^{1/2} . Integrating both the sides above over  \mathbb{R}^{2} and

using the Fubini theorem and the Schwarz inequality, we get

(2.17)  \mathbb{R}^{2}\langle c_{l}t-r\rangle^{2}|\partial_{\alpha}v^{l}(t, x)|^{4}
dx\leq C(N_{1}(v(t))(N_{1}(v(t))+M_{2}(v(t))))^{2},
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ps desired. The proof of (2.9) is similar, and we follow the proof of  \Vert\varphi\Vert_{L^{3}(\mathbb{R}^{3})}  \leq

 2\Vert\varphi\Vert_{L^{2}(\mathbb{R}^{3})}^{1/2}\Vert\nabla\varphi\Vert_{L^{2}(
\mathbb{R}^{3})}^{1/2} which is a special case of the Gagliardo‐Nirenberg inequality

(see, e.g., page 25 of [4]). As in (2.16), we get

(2.18)  (\langle c_{l}t-r\rangle^{1/2}|\partial_{\alpha}v^{l}(t, x)|)^{3}

 \leq C( -\infty\infty(|\partial_{\alpha}v^{l}(t, X_{1})|^{2}+\langle c_{l}t-
\tilde{r}\rangle|\partial_{\alpha}v^{l}(t, X_{1})||\partial_{1\alpha}^{2}v^{l}
(t, X_{1})|)d\xi_{1})^{1/2}
  \cross (\int_{-\infty}^{\infty}(|\partial_{\alpha}v^{l}(t, X_{2})|^{2}+\langle
c_{l}t-\hat{r}\rangle|\partial_{\alpha}v^{l}(t, X_{2})||\partial_{2\alpha}^{2}v^
{l}(t, X_{2})|)d\xi_{2})^{1/2}
 \cross ( -\infty\infty(|\partial_{\alpha}v^{l}(t, X_{3})|^{2}+\langle c_{l}t-
\overline{r}\rangle|\partial_{\alpha}v^{l}(t, X_{3})||\partial_{3\alpha}^{2}
v^{l}(t, X_{3})|)d\xi_{3})^{1/2},

where  X_{1}  :=  (\xi_{1}, x_{2}, x_{3}) , :::, X3  :=  (x_{1}, x_{2}, \xi_{3}) ,  \tilde{r}  :=  |X_{1}|,  \hat{r}  :=  |X_{2}| , and  \overline{r}  :=  |X_{3}|.
Integrating both the sides above over  \mathbb{R}^{3} and using the Schwarz inequality repeatedly,

we get (2.9).
The other inequalities (2.7), (2.11) follow from the well‐known inequality (called

the Strauss inequality, especially when we focus on radially symmetric functions; see

[26] and [3])

(2.19)  \Vert r^{(n-1)/2}\varphi\Vert_{L_{r}^{1}L_{\omega}^{2}(\mathbb{R}^{n})} \leq 
2\Vert\partial_{r}\varphi\Vert_{L^{2}(\mathbb{R}^{n})}^{1/2}
\Vert\varphi\Vert_{L^{2}(\mathbb{R}^{n})}^{1/2}
or its generalization (see (2.10) of [8]): for  2\leq q\leq 1 and  2/p=1/2+1/q (the reader
is asked to interpret this as  p=4 for   q=\infty )

(2.20)  \Vert r^{(n-1)/2}\varphi\Vert_{L_{r}^{1}L_{\omega}^{p}(\mathbb{R}^{n})} \leq 
p\Vert\partial_{r}\varphi\Vert_{L^{2}(\mathbb{R}^{n})}^{1/2}
\Vert\varphi\Vert_{L_{r}^{2}L_{\omega}^{q}(\mathbb{R}^{n})}^{1/2}.
Indeed, we obtain (2.7) directly from (2.19). Moreover, we obtain (2.11) immediately
from the Sobolev embedding  W^{1,2}(S^{2})  \mapsto  L^{q}(S^{2}) for  2  \leq  q  <  1 owing to the fact

that in the condition for (2.20) to hold, the condition  2  \leq  p  <  4 is equivalent to
 2\leq q<\infty.  \square 

§3. Weighted  L^{2}‐estimates

It is necessary to bound  M_{4}(u(t)) by  N_{4}(u(t)) for the completion of the energy

integral argument (see Lemma 3.4 below). We carry out this by starting with the next
crucial inequality due to Klainerman and Sideris [17], the proof of which requires the
use of the operator  S ; see  N_{2}(v(t)) on the right‐hand side of (3.1) below. In what follows
we use the notation  \square _{l}  :=\partial_{t}^{2}-c_{l}^{2}\triangle.

Lemma 3.1 (Klainerman‐Sideris inequality) . The inequality

(3.1)  M_{2}(v(t))  \leq C(N_{2}(v(t))+\sum_{l=1}t\Vert\square _{l}v^{l}(t)
\Vert_{L^{2}(\mathbb{R}^{n})})
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holds for any function  v=(v^{1}, \ldots, v^{N}) .

Proof. See Lemma 3.1 of [17] (see also Lemma 7.1 of [24]). We have only to repeat
essentially the same argument as in the proof of (3.1) of [17]. Note that the proof there
is obviously valid for  n=2 as well as  n=3.  \square 

We also need the following auxiliary lemma, which compensates for the absence  0

 \partial_{t}^{i}  (i=2,3,4) in the norms appearing in (1.14), (2.5).

Lemma 3.2. There exists a constant  \epsilon^{*}  >0 depending on the propagation speeds
 c_{1} , :::,  c_{N} and the coefficients on the right‐hand side of (1.7) or (1.8) with the followin
property: whenever a smooth solution  u=  (u1, :::, u^{N}) to (1.7) or (1.8) satisfies

(3.2)   \max\{|\overline{Z}^{a}\partial_{\alpha}u^{i}(t, x)| : |a| \leq 1, 0\leq\alpha
\leq n, 1\leq i\leq N\}\leq\epsilon^{*},

the point‐wise inequality

(3.3)   \sum_{i=1}^{N}|\partial_{t}^{2}u^{i}(t, x)| \leq C\sum_{i=1}^{N}\sum_{\alpha=
0}^{n}(\sum_{m=1}^{n}|\partial_{m\alpha}^{2}u^{i}(t, x)|+|\partial_{\alpha}u^{i}
(t, x)|)
holds. Moreover, there holds for  |a|  =1 , 2

(3.4)   \sum_{i=1}^{N}|\overline{Z}^{a}\partial_{t}^{2}u^{i}(t, x)| \leq C\sum_{i=1}
^{N}\sum_{|b|=1}^{|a|}\sum_{\alpha=0}^{n}(\sum_{m=1}^{n}|\overline{Z}^{b}
\partial_{m\alpha}^{2}u^{i}(t, x)|+|\overline{Z}^{b}\partial_{\alpha}u^{i}(t, x)
|) .

Here,  n=2 , 3 for the solutions to (1.8), (1.7), respectively.

Proof. It suffices to prove the inequalities for the solutions to (1.7). The proo
of the inequalities for the solutions to (1.8) is essentially the same. We first note the
obvious equality for each  l=1 , :::,  N

(3.5)  \partial_{t}^{2}u^{l}-G_{ij}^{l,\alpha 00}(\partial_{\alpha}u^{i})\partial_{t}^
{2}u^{j}
 =c_{l}^{2}\triangle u^{l}+2G_{ij}^{l,\alpha m} (\partial_{\alpha}u^{i})
\partial_{m\gamma}^{2}u^{j}+H_{ij}^{l,\alpha\beta}(\partial_{\alpha}u^{i})
\partial_{\beta}u^{j}.

Whenever  |G_{ij}^{l,\alpha 00}\partial_{\alpha}u^{i}(t, x)|  \leq  1/(2N) for any  j,  l=1 , :::,  N , we get by (3.5)

(3.6)  |\partial_{t}^{2}u^{l}|-(2N)^{-1}(|\partial_{t}^{2}u^{1}|+ \cdot \cdot \cdot +|
\partial_{t}^{2}u^{N}|)

 \leq c_{l}^{2}|\triangle u^{l}|+2|G_{ij}^{l,\alpha m\gamma}||\partial_{\alpha}
u^{i}||\partial_{m\gamma}^{2}u^{j}|+|H_{ij}^{l,\alpha\beta}||\partial_{\alpha}u^
{i}||\partial_{\beta}u^{j}|.

Summing both the sides of (3.6) over  l=1 , :::,  N , we see that the inequality (3.3) holds
whenever   \max\{|\partial_{\alpha}u^{i}(t, x)| : \alpha=0, :::, 3, i=1, :::, l\} is small enough.
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Next, let us prove (3.4). Using the commutation relations (2.1) and (2.4), we get
for  |a|  =1 , 2

(3.7)  \partial_{t}^{2}\overline{Z}^{a}u^{l}-G_{i}^{l,\alpha 00}(\partial_{\alpha}
u^{i})(\partial_{t}^{2}\overline{Z}^{a}u^{j})

 =c_{l}^{2} \triangle\overline{Z}^{a}u^{l}+ \sum_{b+c=a,c\neq a}G_{ij}^{l,\alpha
00}(\overline{Z}^{b}\partial_{\alpha}u^{i})(\partial_{t}^{2}\overline{Z}^{c}
u^{j})
 + \sum_{b+c=a}2G_{ij}^{l,\alpha m\gamma}(\overline{Z}^{b}\partial_{\alpha}u^{i}
)(\overline{Z}^{c}\partial_{m\gamma}^{2}u^{j})+\sum_{b+c=a}H_{ij}^{l,
\alpha\beta}(\overline{Z}^{b}\partial_{\alpha}u^{i})(\overline{Z}^{c}
\partial_{\beta}u^{j}) .

Noting the obvious fact

  \sum_{b+c=a,c\neq a}G_{ij}^{l,\alpha 00}(\overline{Z}^{b}\partial_{\alpha}
u^{i})(\partial_{t}^{2}\overline{Z}^{c}u^{j})=G_{ij}^{l,\alpha 00}(\overline{Z}^
{a}\partial_{\alpha}u^{i})(\partial_{t}^{2}u^{j})
for  |a|  =1 , using (3.3) for the estimate of  |\partial_{t}^{2}u^{j}(t, x)| , and repeating the same argument
as above, we see that the inequality (3.4) holds for  |a|  =1 whenever   \max\{|\overline{Z}^{a}\partial_{\alpha}u^{i}(t, x)| :
 |a|  \leq  1,  0  \leq  \alpha  \leq  3,  1  \leq  i  \leq  N\} is small enough. Finally, using (3.3) and (3.4) with
 |a|  =  1 for the estimate of  |\partial_{t}^{2}\overline{Z}^{c}u^{j}(t, x)|  (|c| =0,1) (see the second term on the right‐
hand side of (3.7)) and repeating the above argument, we see that the inequality (3.4)
holds for  |a|  =  2 whenever   \max\{|\overline{Z}^{a}\partial_{\alpha}u^{i}(t, x)| : |a| \leq 1, 0 \leq 
\alpha \leq 3, 1 \leq i \leq N\} is

small enough. We have finished the proof.  \square 

Lemma 3.2 is useful in proving the following:

Lemma 3.3. Let  u=  (u1, :::, u^{N}) be a smooth solution to (1.7) or (1.8) defined
in  (0, T)  \cross \mathbb{R}^{n} satisfyin

:(3.8)   \sup \max\{|\overline{Z}^{a}\partial_{\alpha}u^{i}(t, x)| : |a| \leq 1, 
0\leq\alpha\leq n, 1\leq i\leq N\}\leq\epsilon^{*}
 (0,T)\cross \mathbb{R}^{n}

Then the following inequalities hold: for each  l=1 , 2, :::,  N and  |a|  \leq 2,

(3.9)  t\Vert\square _{l}\overline{Z}^{a}u^{l}(t)\Vert_{L^{2}(\mathbb{R}^{3})} \leq 
CN_{4}^{2}(u(t))+CN_{4}(u(t))M_{4}(u(t)) , 0<t<T

when  u is a solution to (1.7),

(3.10)  t\Vert\square _{l}\overline{Z}^{a}u^{l}(t)\Vert_{L^{2}(\mathbb{R}^{2})} \leq 
CN_{4}^{3}(u(t))+CN_{4}^{2}(u(t))M_{4}(u(t)) , 0<t<T

when  u is a solution to (1.8).

Proof. We start with the  3D case (3.9). Obviously, it suffices to deal with  |a|  =2.

Taking account of the form of the quadratic nonlinear terms of (1.7) and using the
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commutation relations  (2.1)-(2.4) and the point‐wise inequality (3.4), we get

(3.11)  \Vert\square _{l}\overline{Z}^{a}u(t)\Vert_{L^{2}(\mathbb{R}^{3})}

  \leq C\sum_{i,=1}^{N} |b|+|c|\sum_{\leq 2}(\Vert(\partial\overline{Z}^{b}u^{i}
(t))\partial\partial_{x}\overline{Z}^{c}u^{j}(t)\Vert_{L^{2}}+
\Vert(\partial\overline{Z}^{b}u^{i}(t))\partial\overline{Z}^{c}u^{j}(t)\Vert_{L^
{2}}) .

(Here, and in the following as well, we use the notation  \partial to mean any of the standard
partial differential operators  \partial_{a}  (a = 0, \ldots, n). ) It is enough to handle only the case
 |b|+|c|  =2 . We use the notation  B_{i}  :=\{x\in \mathbb{R}^{3} : |x| < (c_{i}/2)t+1\} , with  B_{i}' being the

complement of  B_{i} . Using the triangle inequality, (2.13), (2.14), (2.11), and the Sobolev
embedding  W^{1,2}(S^{2})  \mapsto L^{\infty-}(S^{2}) , we get for each  i,  =1 , :::,  N

(3.12)   \sum_{|b|+|c|=2}\Vert(\partial\overline{Z}^{b}u^{i}(t))\partial\partial_{x}
\overline{Z}^{c}u^{j}(t)\Vert_{L^{2}(\mathbb{R}^{3})}
  \leq C\sum_{|c|=2}\langle t\rangle^{-1}(\Vert\langle c_{i}t-r\rangle\partial 
u^{i}(t)\Vert_{L^{1}(B_{i})}\Vert\partial\partial_{x}\overline{Z}^{c}u^{j}(t)
\Vert_{L^{2}(\mathbb{R}^{3})}

 + \Vert r\partial u^{i}(t)\Vert_{L^{1}(B_{i}')}\Vert\partial\partial_{x}
\overline{z}^{c}u^{j}(t)\Vert_{L^{2}(\mathbb{R}^{3})})
 +  C   \sum  \langle t\rangle^{-1}(\Vert  \langle Cit —  r\rangle\partial_{Zu^{i}}^{-b}(t)\Vert_{L^{1}}(B_{i})\Vert\partial\partial_{x}
\overline{z}^{c}u^{j}(t)\Vert_{L}2(\mathbb{R}^{3})

 |b|=|c|=1

 + \Vert r\partial\overline{Z}^{b}u^{i}(t)\Vert_{L_{r}^{1}L_{\omega}^{2+}(B_{i}
')}\Vert\partial\partial_{x}\overline{z}^{c}u^{j}(t)\Vert_{L_{r}^{2}L_{\omega}^{
\infty-}(\mathbb{R}^{3})})
 +  C   \sum  \langle t\rangle^{-1}(\Vert\partial z^{-b}u^{i}(t)\Vert  L 2  (\mathbb{R}^{3})\Vert  \langle Cj  t —  r\rangle\partial\partial_{x}u^{j}(t)\Vert_{L^{1}}(B_{j})

 |b|=2

 +\Vert\partial\overline{Z}^{b}u^{i}(t)\Vert_{L^{2}(\mathbb{R}^{3})}\Vert 
r\partial\partial_{x}u^{j}(t)\Vert_{L^{1}(B_{j}')})
 \leq C\langle t\rangle^{-1}(N_{4}(u(t))+M_{4}(u(t)))N_{4}(u(t)) .

(Here and in what follows, by 2  + and 1‐ we mean arbitrary numbers  p_{2} and  p_{3},

respectively, such that  p_{2}  >  2,  p_{3}  <  1 , and  1/2=  1/p_{2}+1/p_{3}. ) For the second norm
on the right‐hand side of (3.11), we obtain in the same way as above

(3.13)   \sum_{|b|+|c|=2}\Vert(\partial\overline{Z}^{b}u^{i}(t))\partial\overline{Z}
^{c}u^{j}(t)\Vert_{L^{2}(\mathbb{R}^{3})}  \leq C\langle t\rangle^{-1}(N_{4}(u(t))+M_{4}(u(t)))N_{4}(u(t)) .

We have finished the proof of (3.9).
Next, let us prove (3.10). Again, we have only to handle the case  |a|  =  2 . As in

(3.11), we get

(3.14)   \Vert\square _{l}\overline{Z}^{a}u^{l}(t)\Vert_{L^{2}(\mathbb{R}^{2})} \leq 
C\sum(\Vert(\partial\overline{Z}^{b}u^{i}(t))(\partial\overline{Z}^{c}u^{j}(t))
\partial\partial_{x}\overline{Z}^{d}u^{k}(t)\Vert_{L^{2}}
 +\Vert(\partial\overline{Z}^{b}u^{i}(t))(\partial\overline{Z}^{c}u^{j}(t))
\partial\overline{Z}^{d}u^{k}(t)\Vert_{L^{2}}) .
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Here, the sum has been taken over  i,  j,  k=  1 , :::,  N and  b,  c,  d with  |b|+|c|+|d|  \leq  2.

We must treat the two cases  |d|  =  0 and  |d|  =  1 , 2 separately. In the case  |d|  =  0,

assuming  |b|  \leq  1 and  |c|  \leq 2 without loss of generality, we obtain by (2.12), (2.14)

(3.15)  \Vert(\partial\overline{Z}^{b}u^{i}(t))(\partial\overline{Z}^{c}u^{j}(t))
\partial\partial_{x}u^{k}(t)\Vert_{L^{2}(\mathbb{R}^{2})}
 \leq C\langle t\rangle^{-1}\Vert\langle c_{i}t-r\rangle^{1/2}
\partial\overline{Z}^{b}u^{i}(t)\Vert_{L^{1}(B_{i,k})}

 \cross \Vert\partial\overline{Z}^{c}u^{j}(t)\Vert_{L^{2}(\mathbb{R}^{2})}
\Vert\langle c_{k}t-r\rangle^{1/2}\partial\partial_{x}u^{k}(t)\Vert_{L^{1}(B_{i,
k})}
 +C\langle t\rangle^{-1}\Vert r^{1/2}\partial\overline{Z}^{b}u^{i}(t)
\Vert_{L^{1}(B_{i,k}')}\Vert\partial\overline{Z}^{c}u^{j}(t)\Vert_{L^{2}(\mathbb
{R}^{2})}\Vert r^{1/2}\partial\partial_{x}u^{k}(t)\Vert_{L^{1}(B_{i,k}')}
 \leq C\langle t\rangle^{-1}(N_{4}(u(t))+M_{4}(u(t)))N_{4}^{2}(u(t)) ,

where  B_{i,k}  :=   \{x \in \mathbb{R}^{2} : |x| < \min\{c_{i}t/2, c_{k}t/2\}+1\} with  B_{i,k}' being its complement.

On the other hand, for  |d|  =1 , 2, we obtain by assuming  |b|  =0,  |c|  \leq  1 without loss  0

generality

 (3.16)  \Vert(\partial u^{i}(t))(\partial\overline{z}^{c}u^{j}(t))
\partial\partial_{x^{Zu^{k}}}^{-d}(t)\Vert_{L}2(\mathbb{R}^{2})
 \leq \Vert(\partial u^{i}(t))\partial\overline{z}^{c}u^{j}(t)\Vert_{L^{1}}
(\mathbb{R}^{2})\Vert\partial\partial_{x}z^{-d}u^{k}(t)\Vert_{L}2(\mathbb{R}^{2}
)
 \leq   c\langle t\rangle^{-1}(\Vert  \langle Cit —   r\rangle^{1/2}\partial u^{i}(t)\Vert_{L^{1}}(B_{i,j})\Vert  \langle Cj  t —  r\rangle^{1/2}\partial\overline{z}^{c}u^{j}(t)\Vert_{L^{1}}(B_{i,j})

 + \Vert r^{1/2}\partial u^{i}(t)\Vert_{L^{1}(B_{i,j}')}\Vert r^{1/2}
\partial\overline{z}^{c}u^{j}(t)\Vert_{L^{1}(B_{i,j}')})
\Vert\partial\partial_{x}z^{-d}u^{k}(t)\Vert_{L^{2}(\mathbb{R}^{2})}
 \leq c\langle t\rangle^{-1} (N4(u(t)) + M4 (u(t)))N_{4}^{2}(u(t)) .

By  (3.15)-(3.16) , we have obtained the desired estimate of the first term on the right‐

hand side of (3.14). The proof of the estimate for the second term on its right‐hand
side is quite similar. We may omit it. The proof of Lemma 3.3 has been finished.  \square 

Lemma 3.4. There exists a small, positive constant  \delta_{0} with the following property:

suppose that, for a local smooth solution  u of (1.7) or (1.8), the supremum of  N_{4}(u(t))
over an interval  (0, T) is su ciently small so that

(3.17)   \sup_{0<t<} N_{4}(u(t)) \leq\delta_{0}
may hold. Then, the inequality

(3.18)  M_{4}(u(t)) \leq CN_{4}(u(t)) , 0<t<T

holds with a constant  C independent of  T.

Proof. Let us denote by  \delta_{*} the supremum of  N_{4}(u(t)) over the interval  (0, T) . By

the Sobolev embedding, we see that (3.8) is satisfied when  \delta_{*} is sufficiently small. Then,
we see that Lemma 3.1 with  v=\overline{Z}^{a}u  (|a| \leq 2) and Lemma 3.3 imply for  0<t<T

(3.19)  M_{4}(u(t)) \leq CN_{4}(u(t))+CN_{4}^{v}(u(t))(N_{4}(u(t))+M_{4}(u(t)))
 \leq C(1+\delta_{*}^{v})N_{4}(u(t))+C\delta_{*}^{v}M_{4}(u(t)) ,
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(  v=  1,2 for (1.7), (1.8), respectively) from which we easily verify the existence of the
constant  \delta_{0} , as claimed in the lemma.  \square 

Remark. In the above proof, especially when absorbing  C\delta_{*}^{v}M_{4}(u(t)) into the

left‐hand side of (3.19), we have used the fact that  M_{4}(u(t)) is finite for  t  \in  (0, T) .
Indeed, using (3.1), (3.17), and the standard Sobolev embedding, we get  M_{4}(u(t))  \leq

 CN_{4}(u(t))+CtN_{4}^{v+1}(u(t))  <1.

§4. Estimate for  N_{4}(u(t))

For the given smooth and compactly supported initial data, let us assume (1.12)
for a sufficiently small  \epsilon_{0}  >  0 such that  2\epsilon_{0}  \leq  \delta_{0} (see Lemma 3.4 for  \delta_{0} ). By the
local existence theorem mentioned in Section 1, a unique smooth solution exists locally

in time. Note that it is compactly supported for fixed times by the finite speed  0

propagation. Let  T^{*} be the supremum of the set of all  T>0 such that this solution to

(1.7) is defined in  (0, T)  \cross \mathbb{R}^{3} and satisfies

  \sup_{0<t<} N_{4}(u(t)) <1.

When considering (1.8), we define  T^{*} in the same way. When  T^{*}  =1 , nothing remains
to be done. We may therefore suppose  T^{*}  <1.

Recall the notation  \square _{l}  =\partial_{t}^{2}-c_{l}^{2}\triangle . We set  E_{4}(u(t))  =N_{4}^{2}(u(t)) (see (1.14) for the
definition of  N_{4}(u(t)) ). For (1.8), setting  Z^{a}  =\partial_{1}^{a_{1}}\partial_{2}^{a_{2}}\Omega_{12}^{a_{3}}S^{a_{4}} for  a=  (a_{1}, :::, a_{4}) and
letting  a_{*} stand for any multi‐index  a= (a1, :::,  a_{4} ) with  a_{4}  \leq  1 , we have the energy
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equality by the standard argument

(4.1)  \tilde{E}_{4}'(u(t))  =

 |a_{*}|=3 \sum_{1\leq\iota\leq N}  \mathbb{R}^{2}G_{ik}^{l,\alpha\beta\gamma\delta}(\partial_{\alpha}u^{i})
(\partial_{\beta}u^{j})([Z^{a_{*}}, \partial \partial_{\delta}]u^{k})
\partial_{t}Z^{a_{*}}u^{l}dx
 + |a_{*}|=3 \sum_{1\leq\iota\leq N} b+c+d=a_{*}\sum_{d\neq a_{*}} \mathbb{R}
^{2}G_{ijk}^{l,\alpha\beta\gamma\delta}(Z^{b}\partial_{\alpha}u^{i})(Z^{c}
\partial_{\beta}u^{j})(Z^{d}\partial_{\gamma}\partial_{\delta}u^{k})\partial_{t}
Z^{a_{*}}u^{l}dx
 + |a_{*}| \leq 2\sum_{1\leq\iota\leq N}\sum_{b+c+d=a_{*}} \mathbb{R}^{2}G_{ijk}
^{l,\alpha\beta\gamma\delta}(Z^{b}\partial_{\alpha}u^{i})(Z^{c}\partial_{\beta}
u^{j})(Z^{d}\partial \partial_{\delta}u^{k})\partial_{t}Z^{a_{*}}u^{l}dx

 |a_{*}|=3 \sum_{1\leq\iota\leq N} \mathbb{R}^{2}G_{ijk}^{l,\alpha\beta p\delta}
(\partial_{p}((\partial_{\alpha}u^{i})\partial_{\beta}u^{j}))(\partial_{\delta}
Z^{a_{*}}u^{k})\partial_{t}Z^{a_{*}}u^{l}dx
  \sum \frac{1}{2} \mathbb{R}^{2}(G_{ik}^{l,\alpha\beta 00}(\partial_{t}
((\partial_{\alpha}u^{i})\partial_{\beta}u^{j}))(\partial_{t}Z^{a_{*}}u^{k})
\partial_{t}Z^{a_{*}}u^{l}

 1\leq l\leq N|a_{*}|=3

 -G_{ijk}^{l,\alpha\beta pq}(\partial_{t}((\partial_{\alpha}u^{i})
\partial_{\beta}u^{j}))(\partial_{q}Z^{a_{*}}u^{k})\partial_{p}Z^{a_{*}}u^{l})dx
 + |a_{*}| \leq 3\sum_{1\leq\iota\leq N}\sum_{b+c+d=a_{*}} \mathbb{R}^{2}H_{ijk}
^{l,\alpha\beta\gamma}(Z^{b}\partial_{\alpha}u^{i})(Z^{c}\partial_{\beta}u^{j})
(Z^{d}\partial_{\gamma}u^{k})\partial_{t}Z^{a_{*}}u^{l}dx
 +  \sum ([\square _{l}, Z^{a_{*}}]u^{l})\partial_{t}Z^{a_{*}}u^{l}dx, 0<t<T^{*}

 \mathbb{R}^{2}

 1\leq l\leq N|a_{*}|\leq 3

Here, taking into account the quasi‐linear character of (1.8), we have introduced the
modified energy

(4.2)  \tilde{E}_{4}(u(t))  :=E_{4}(u(t))-  1 \leq l\leq N\sum_{|a_{*}|--3}   \frac{1}{2}  \mathbb{R}^{2}(G_{ijk}^{l,\alpha\beta 00}(\partial_{\alpha}u^{i})
(\partial_{\beta}u^{j})(\partial_{t}Z^{a_{*}}u^{k})\partial_{t}Z^{a_{*}}u^{l}

 -G_{ijk}^{l,\alpha\beta pq}(\partial_{\alpha}u^{i})(\partial_{\beta}u^{j})
(\partial_{q}Z^{a_{*}}u^{k})\partial_{p}Z^{a_{*}}u^{l})dx.

Note that, in  (4.1)-(4.2) , repeated indices have been summed when lowered and uppered.

Precisely, the Greek indices  \alpha,  \beta,  \gamma , and  \delta run from  0 to 2, while the roman  p and  q from

1 to 2. The roman indices  i , , and  k run from 1 to  N.

Similarly, for (1.7), setting  Z^{a}=\partial_{1}^{a_{1}}\partial_{2}^{a_{2}}\partial_{3}^{a_{3}}\Omega_{12}
^{a_{4}}\Omega_{13}^{a_{5}}\Omega_{23}^{a_{6}}S^{a_{7}} for  a= (a1, :::,  a_{7} ) and
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letting  a^{*} stand for any multi‐index  a=(a_{1}, \ldots, a_{7}) with   a_{7}\leq  1 , we get

(4.3)   \tilde{E}_{4}'(u(t))= \sum \sum G_{i}^{l,\alpha\beta\gamma}(\partial_{\alpha}
u^{i})([Z^{a^{*}}, \partial_{\beta}\partial_{\gamma}]u^{j})\partial_{t}Z^{a^{*}}
u^{l}dx
 \mathbb{R}^{3}

 1\leq l\leq |a^{*}|=3

 +  \sum \sum \sum \mathbb{R}^{3}G_{ij}^{l,\alpha\beta\gamma}(Z^{b}
\partial_{\alpha}u^{i})(Z^{c}\partial_{\beta}\partial_{\gamma}u^{j})\partial_{t}
Z^{a^{*}}u^{l}dx
 1\leq l\leq |a^{*}|=3^{b+c=a^{*}}c\neq a

 +  \sum \sum \mathbb{R}^{3}G_{ij}^{l,\alpha\beta\gamma}(Z^{b}\partial_{\alpha}
u^{i})(Z^{c}\partial_{\beta}\partial_{\gamma}u^{j})\partial_{t}Z^{a^{*}}u^{l}dx
 1\leq\iota\leq Nb+c=a^{*}|a^{*}|\leq 2

‐   \sum   \sum  \mathbb{R}^{3}G_{ij}^{l,\alpha p\gamma}(\partial_{p}\partial_{\alpha}u^{i})
(\partial_{\gamma}Z^{a^{*}}u^{j})\partial_{t}Z^{a^{*}}u^{l}dx
 1\leq l\leq |a^{*}|=3

  \sum \sum \mathbb{R}^{3^{\frac{1}{2}(G_{ij}^{l,\alpha 00}(\partial_{t}
\partial_{\alpha}u^{i})(\partial_{t}Z^{a^{*}}u^{j})\partial_{t}Z^{a^{*}}u^{l}}}
 1\leq l\leq |a^{*}|=3

‐  G_{ij}^{l,\alpha pq}(\partial_{t}\partial_{\alpha}u^{i})(\partial_{q}Z^{a^{*}}
u^{j})\partial_{p}Z^{a^{*}}u^{l})dx

 +  \sum \sum \sum \mathbb{R}^{3}H_{ij}^{l,\alpha\beta}(Z^{b}\partial_{\alpha}u^
{i})(Z^{c}\partial_{\beta}u^{j})\partial_{t}Z^{a^{*}}u^{l}dx
 1\leq l\leq |a^{*}|\leq 3b+c=a^{*}

 +  \sum \sum ([\square _{l}, Z^{a^{*}}]u^{l})\partial_{t}Z^{a^{*}}u^{l}dx, 
0<t<T^{*}
 \mathbb{R}^{3}

 1\leq l\leq |a^{*}|\leq 3

Here, we have defined

(4.4)  \tilde{E}_{4}(u(t))  :=E_{4}(u(t))- \sum_{1\leq l\leq}   \sum_{|a^{*}|=3}\frac{1}{2}  (G_{ij}^{l,\alpha 00}(\partial_{\alpha}u^{i})(\partial_{t}Z^{a^{*}}u^{j})
\partial_{t}Z^{a^{*}}u^{l}
 \mathbb{R}^{3}

 -G_{ij}^{l,\alpha pq}(\partial_{\alpha}u^{i})(\partial_{q}Z^{a^{*}}u^{j})
\partial_{p}Z^{a^{*}}u^{l})dx.

As in  (4.1)-(4.2) , repeated indices have been summed in  (4.3)-(4.4) when lowered and

uppered. The Greek indices  \alpha,  \beta , and  \gamma run from  0 to 3, while the roman  p and  q from
1 to 3. The roman indices  i and  j run from 1 to  N.

We may suppose without loss of generality that, for  \tilde{E}_{4}(u(t)) defined in (4.2), (4.4),
the inequality

(4.5)   \frac{2}{3}E_{4}(u(t)) \leq\tilde{E}_{4}(u(t)) \leq \frac{3}{2}E_{4}(u(t))
holds by the Sobolev embedding, whenever  N_{4}(u(t)) is small enough. We also note

that, owing to the commutation relations  (2.3)-(2.4) , the commutators  [Z^{a_{*}}, \partial_{\beta}\partial_{\gamma}] and

 [Z^{a^{*}}, \partial_{\beta}\partial_{\gamma}] , which appear in the first term on the right‐hand side of (4.1), (4.3), have
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the form

(4.6)  [Z^{a_{*}},  \partial_{\beta}\partial_{\gamma}] = \sum_{|b_{*}|\underline{<}2}
\sum_{\alpha,\delta=0}^{2}C_{\beta\gamma\alpha\delta}^{a_{*},b_{*}}
\partial_{\alpha}\partial_{\delta}Z^{b_{*}},
 [Z^{a^{*}},  \partial_{\beta}\partial_{\gamma}] = \sum_{|b^{*}|\underline{<}2}
\sum_{\alpha,\delta=0}^{3}C_{\beta\alpha\delta}^{a^{*},b^{*}}\partial_{\alpha}
\partial_{\delta}Z^{b^{*}},

respectively, for each  a_{*},  a^{*}  (|a_{*}| = |a^{*}| = 3) ,  \beta , and  \gamma . Here, by  C_{\beta\gamma\alpha\delta}^{a_{*},b_{*}} and  C_{\beta\gamma\alpha\delta}^{a^{*},b^{*}},
we mean suitable constants depending on  a_{*},  b_{*},  a^{*},  b^{*} , and  \alpha,  \beta,  \gamma , and  \delta . (Note
that by  b_{*} and  b^{*} , we mean any multi‐index  (b1, :::, b_{4}) with  b_{4}  \leq  1 , and (b1, :::, b7)
with   b_{7}\leq  1 , respectively.) Note also that, thanks to (2.1) and  a_{4}  \leq  1 , the commutator
 [\square _{l}, Z^{a_{*}}] appearing in the last term on the right‐hand side of (4.1) is  0 or  2\square _{l} . A similar
note applies equally to  [\square _{l}, Z^{a^{*}}] which appears on the right‐hand side of (4.3).

Let us start the estimate of  E_{4}(u(t)) with the case  n=2 . We remark that, under

the assumption that  N_{4}(u(t)) is small enough, we have by repeating quite the same

argument as in the proof of Lemma 3.2

(4.7)   \sum_{i=1}^{N}|\partial_{t}^{2}Z^{a}u^{i}(t, x)| \leq 
C\sum(|\partial_{m\alpha}^{2}Z^{b}u^{i}(t, x)|+|\partial_{\alpha}Z^{b}u^{i}(t, 
x)|)
for any multi‐index  a with  |a|  \leq  2,  a_{4}  \leq  1 . Here, on the right‐hand side the sum is

taken over all  1  \leq i\leq N,  1  \leq m\leq 2,  0\leq\alpha\leq 2 , and  b with  b_{k}  \leq a_{k} for all  1\leq k\leq 4.

In what follows, we assume  N_{4}(u(t)) is small so that (4.7) may hold. Using the
energy equality (4.1) and the commutation relations (2.3), (2.4), and  (4.6)-(4.7) , we get

(4.8)   \tilde{E}_{4}'(u(t)) \leq C\sum\Vert(\partial Z^{b}u^{i})(\partial Z^{c}u^{j})
\partial\partial_{x}Z^{d}u^{k}\Vert_{L^{2}(\mathbb{R}^{2})}N_{4}(u)
 +C \sum\Vert(\partial Z^{b}u^{i})(\partial Z^{c}u^{j})\partial Z^{d}u^{k}\Vert_
{L^{2}(\mathbb{R}^{2})}N_{4}(u) .

Here, on the first term on the right‐hand side above the sum is taken over all  i , ,  k=

 1 , :::,  N , and  b,  c,  d with  |b|+|c|+|d|  \leq  3,  |d|  \leq  2,  b_{4}+c_{4}+d_{4}  \leq  1 . On the second

term, the sum is taken over all  i,  j,  k  =  1 , :::,  N , and  b,  c,  d with  |b|  +  |c|  +  |d|  \leq  3,

 b_{4}+c_{4}+d_{4}  \leq  1 . Obviously, we have only to deal with the case  |b|  +  |c|  +  |d|  =  3.

Moreover, we may focus on the case of  b_{4}+c_{4}+d_{4}=1 because the argument otherwise

becomes much simpler. When treating the second term on the right‐hand side above,

we may also assume  |b|  \leq  |c|  \leq  |d| (hence  |b|,  |c|  \leq  1 ) without loss of generality. We
treat the two cases  d_{4}  =0 and  d_{4}  =  1 , separately. When  d_{4}  =0 , we know  b_{4}+c_{4}  =  1
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and  |d|  \leq 2 . If  b_{4}=0 , then we get by (2.8), (2.14)

(4.9)  \Vert(\partial Z^{b}u^{i})(\partial Z^{c}u^{j})\partial Z^{d}u^{k}\Vert_{L^{2}}

 \leq C\langle t\rangle^{-1}\Vert\langle c_{i}t-r\rangle^{1/2}\partial Z^{b}
u^{i}\Vert_{L^{4}(B_{i,k})}\Vert\partial Z^{c}u^{j}\Vert_{L^{1}}\Vert\langle 
c_{k}t-r\rangle^{1/2}\partial Z^{d}u^{k}\Vert_{L^{4}(B_{i,k})}
 +C\langle t\rangle^{-1}\Vert r^{1/2}\partial Z^{b}u^{i}\Vert_{L^{1}(B_{i,k}')}
\Vert r^{1/2}\partial Z^{c}u^{j}\Vert_{L^{1}(B_{i,k}')}\Vert\partial Z^{d}u^{k}
\Vert_{L^{2}}
 \leq C\langle t\rangle^{-1}N_{4}^{3}(u(t)) .

If  b_{4}=1 , then we know  c_{4}=0 and thus we obtain the same bound as (4.9) by considering

 \Vert\partial Z^{b}u^{i}\Vert_{L^{1}}\Vert\langle c_{j}t-r\rangle^{1/2}\partial
Z^{c}u^{j}\Vert_{L^{4}(B_{j,k})} in place of  \Vert\langle c_{i}t-r\rangle^{1/2}\partial Z^{b}u^{i}\Vert_{L^{4}(B_{i,k})}
\Vert\partial Z^{c}u^{j}\Vert_{L^{1}}.
When  d_{4}=1 , we know  b_{4}=c_{4}=0 and thus obtain by (2.12), (2.14)

(4.10)  \Vert(\partial Z^{b}u^{i})(\partial Z^{c}u^{j})\partial Z^{d}u^{k}\Vert_{L^{2}}

 \leq C\langle t\rangle^{-1}\Vert\langle c_{i}t-r\rangle^{1/2}\partial Z^{b}
u^{i}\Vert_{L^{1}(B_{i,j})}\Vert\langle c_{j}t-r\rangle^{1/2}\partial Z^{c}u^{j}
\Vert_{L^{1}(B_{i,j})}\Vert\partial Z^{d}u^{k}\Vert_{L^{2}}
 +C\langle t\rangle^{-1}\Vert r^{1/2}\partial Z^{b}u^{i}\Vert_{L^{1}(B_{i}',)}
\Vert r^{1/2}\partial Z^{c}u^{j}\Vert_{L^{1}(B_{i}',)}\Vert\partial Z^{d}u^{k}
\Vert_{L^{2}}
 \leq C\langle t\rangle^{-1}N_{4}^{3}(u(t)) .

Next, let us consider the bound for the first term on the right‐hand side of (4.8). We
may suppose  |b|  \leq  |c| (thus  |b|  \leq  1 ) without loss of generality. We discuss the two cases
 d_{4}=0 and  d_{4}=1 , separately. In the former case, we further treat the two cases  |d|  \leq  1

and  |d|  =2 , separately.

Suppose  d_{4}=0 and  |d|  \leq  1 . If  b_{4}=1 , then we have  c_{4}=0,  |c|  \leq 2 and thus obtain

by (2.7) and the Sobolev embedding on  S^{1}

(4.11)  \Vert(\partial Z^{b}u^{i})(\partial Z^{c}u^{j})\partial\partial_{x}Z^{d}u^{k}
\Vert_{L^{2}}

 \leq C\langle t\rangle^{-1}\Vert\partial Z^{b}u^{i}\Vert_{L^{1}}\Vert\langle c_
{j}t-r\rangle^{1/2}\partial Z^{c}u^{j}\Vert_{L^{4}(B_{j,k})}\Vert\langle c_{k}t-
r\rangle^{1/2}\partial\partial_{x}Z^{d}u^{k}\Vert_{L^{4}(B_{j,k})}
 +C\langle t\rangle^{-1}\Vert r^{1/2}\partial Z^{b}u^{i}\Vert_{L^{1}(B_{j,k}')}
\Vert r^{1/2}\partial Z^{c}u^{j}\Vert_{L_{r}^{1}L_{\omega}^{2}(B_{j,k}')}
\Vert\partial\partial_{x}Z^{d}u^{k}\Vert_{L_{r}^{2}L_{\omega}^{1}}
 \leq C\langle t\rangle^{-1}N_{4}^{3}(u(t)) .

If  b_{4}=0 , then  c_{4}=1 and obtain

(4.12)  \Vert(\partial Z^{b}u^{i})(\partial Z^{c}u^{j})\partial^{2}Z^{d}u^{k}
\Vert_{L^{2}}

 \leq C\langle t\rangle^{-1}\Vert\langle c_{i}t-r\rangle^{1/2}\partial u^{i}
\Vert_{L^{1}(B_{i,k})}\Vert\partial Z^{c}u^{j}\Vert_{L^{2}}\Vert\langle c_{k}t-r
\rangle^{1/2}\partial\partial_{x}u^{k}\Vert_{L^{1}(B_{i,k})}
 +C\langle t\rangle^{-1}\Vert r^{1/2}\partial u^{i}\Vert_{L^{1}(B_{i,k}')}
\Vert\partial Z^{c}u^{j}\Vert_{L^{2}}\Vert r^{1/2}\partial\partial_{x}u^{k}
\Vert_{L^{1}(B_{i,k}')}
 \leq C\langle t\rangle^{-1}N_{4}^{3}(u(t))
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for  |c|  =3 (thus  |b|  =0 ), and

(4.13)  \Vert(\partial Z^{b}u^{i})(\partial Z^{c}u^{j})\partial^{2}Z^{d}u^{k}
\Vert_{L^{2}}

 \leq C\langle t\rangle^{-1}\Vert\langle c_{i}t-r\rangle^{1/2}\partial Z^{b}
u^{i}\Vert_{L^{1}(B_{i,k})}\Vert\partial Z^{c}u^{j}\Vert_{L^{4}}\Vert\langle 
c_{k}t-r\rangle^{1/2}\partial\partial_{x}Z^{d}u^{k}\Vert_{L^{4}(B_{i,k})}
 +C\langle t\rangle^{-1}\Vert r^{1/2}\partial Z^{b}u^{i}\Vert_{L^{1}(B_{i,k}')}
\Vert r^{1/2}\partial Z^{c}u^{j}\Vert_{L_{r}^{1}L_{\omega}^{2}(B_{i,k}')}
\Vert\partial\partial_{x}Z^{d}u^{k}\Vert_{L_{r}^{2}L_{\omega}^{1}}
 \leq C\langle t\rangle^{-1}N_{4}^{3}(u(t))

for  |c|  \leq 2 . (Recall that we are assuming  d_{4}=0,  |d|  \leq  1. )
Next, suppose  d_{4}  =  0 and  |d|  =  2 . Then, we know  |b|  =  0,  |c|  =  1 (because  0

 |b|  \leq  |c| and  |b|+|c|+|d|  =3 ), and easily obtain by (3.18)

(4.14)  \Vert(\partial Z^{b}u^{i})(\partial Z^{c}u^{j})\partial^{2}Z^{d}u^{k}
\Vert_{L^{2}}

 \leq C\langle t\rangle^{-1}\Vert\partial u^{i}\Vert_{L^{1}}\Vert\partial Z^{c}
u^{j}\Vert_{L^{1}}\Vert\langle c_{k}t-r\rangle\partial\partial_{x}Z^{d}u^{k}
\Vert_{L^{2}(B_{k})}
 +C\langle t\rangle^{-1}\Vert r^{1/2}\partial u^{i}\Vert_{L^{1}(B_{k}')}\Vert r^
{1/2}\partial Z^{c}u^{j}\Vert_{L^{1}(B_{k}')}\Vert\partial\partial_{x}Z^{d}u^{k}
\Vert_{L^{2}}
 \leq C\langle t\rangle^{-1}N_{4}^{3}(u(t)) .

(The definition of  B_{i} is given in the proof of Lemma 3.3.)
Turn our attention to the case of  d_{4}  =  1 . We know  b_{4}  =  c_{4}  =0 and  |c|  \leq  2 . We

discuss the two cases  |d|  =1 and  |d|  =2 , separately. If  |d|  =1 , then we get

(4.15)  \Vert(\partial Z^{b}u^{i})(\partial Z^{c}u^{j})\partial^{2}Z^{d}u^{k}
\Vert_{L^{2}}

 \leq C\langle t\rangle^{-1}\Vert\langle c_{i}t-r\rangle^{1/2}\partial Z^{b}
u^{i}\Vert_{L^{1}(B_{i,j})}\Vert\langle c_{j}t-r\rangle^{1/2}\partial Z^{c}u^{j}
\Vert_{L^{4}(B_{i,j})}\Vert\partial\partial_{x}Z^{d}u^{k}\Vert_{L^{4}}
 + c\langle t\rangle^{-1}\Vert r^{1/2}\partial Z^{b}u^{i}\Vert_{L^{1}(B_{i,j}')}
\Vert r^{1/2}\partial Z^{c}u^{j}\Vert_{L_{r}^{1}L_{\omega}^{2}(B_{i,j}')}
\Vert\partial\partial_{x}Z^{d}u^{k}\Vert_{L_{r}^{2}L_{\omega}^{1}}
 \leq c\langle t\rangle^{-1}N_{4}^{3}(u(t)) .

If  |d|  =2 , then we know  |b|  =0,  |c|  =1 and thus easily obtain

(4.16)  \Vert(\partial Z^{b}u^{i})(\partial Z^{c}u^{j})\partial^{2}Z^{d}u^{k}
\Vert_{L^{2}}
 \leq   c\langle t\rangle^{-1}\Vert  \langle Cit —   r\rangle^{1/2}\partial u^{i}\Vert_{L^{1}}(B_{i,j})\Vert  \langle Cj  t —  r\rangle^{1/2}\partial Z^{c}u^{j}\Vert_{L^{1}}(B_{i,j})
\Vert\partial\partial_{x}Z^{d}u^{k}\Vert_{L}2
 + c\langle t\rangle^{-1}\Vert r^{1/2}\partial u^{i}\Vert_{L^{1}(B_{i,j}')}\Vert
r^{1/2}\partial Z^{c}u^{j}\Vert_{L^{1}(B_{i,j}')}\Vert\partial\partial_{x}Z^{d}
u^{k}\Vert_{L^{2}}
 \leq c\langle t\rangle^{-1}N_{4}^{3}(u(t)) .

We have finished bounding the right‐hand side of (4.8). Taking account of the equiva‐
lence between  E_{4}(u(t)) and  \tilde{E}_{4}(u(t)) (see (4.5)), we get from  (4.9)-(4.16)

(4.17)  \tilde{E}_{4}'(u(t)) \leq C\langle t\rangle^{-1}N_{4}^{2}(u(t))\tilde{E}_{4}
(u(t))

as far as  N_{4}(u(t)) is small enough.
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We turn our attention to the case  n  =  3 . In the same way as we got (4.8), we
obtain by (4.3)

(4.18)  \tilde{E}_{4}'(u(t))   \leq C\sum\Vert(\partial Z^{b}u^{i})\partial\partial_{x}Z^{c}u^{j}\Vert_{L^{2}
}N_{4}(u)+C\sum\Vert(\partial Z^{b}u^{i})\partial Z^{c}u^{j}\Vert_{L^{2}}N_{4}
(u) ,

where in the right‐hand side, the sum is taken over all  i,  j  =  1 , :::,  N and  b,  c with

 |b|+|c|  \leq 3 (  |c|\leq 2 for the first term),  b_{7}+c_{7}  \leq  1 . As in the case of  n=2 , it suffices
to treat the terms with  |b|+|c|  =3 and  b_{7}+c_{7}=1.

Let us first treat the second term on the right‐hand side above. We may suppose

 |b|  \leq  |c| (thus  |b|  \leq  1 ) without loss of generality. When  c_{7}=0 , we know  b_{7}=1,  |c|  \leq 2

and thus obtain by (2.10), (2.11) and the Sobolev embedding on  S^{2}

(4.19)  \Vert(\partial Z^{b}u^{i})\partial Z^{c}u^{j}\Vert_{L^{2}} \leq C\langle 
t\rangle^{-1}\Vert\partial Z^{b}u^{i}\Vert_{L^{3}}\Vert\langle c_{j}t-
r\rangle\partial Z^{c}u^{j}\Vert_{L^{6}(B_{j})}

 +C\langle t\rangle^{-1}\Vert r\partial Z^{b}u^{i}\Vert_{L_{r}^{1}L_{\omega}^{2+
}(B_{j})}\Vert\partial Z^{c}u^{j}\Vert_{L_{r}^{2}L_{\omega}^{1-}}
 \leq C\langle t\rangle^{-1}N_{4}^{2}(u(t)) .

When  c_{7}=1 , we know  b_{7}=0 and thus obtain by (2.13), (2.14)

(4.20)  \Vert(\partial Z^{b}u^{i})\partial Z^{c}u^{j}\Vert_{L^{2}}

 \leq C\langle t\rangle^{-1}(\Vert\langle c_{i}t-r\rangle\partial Z^{b}u^{i}
\Vert_{L^{1}(B_{i})}+\Vert r\partial Z^{b}u^{i}\Vert_{L^{1}(B\'{i})})
\Vert\partial Z^{c}u^{j}\Vert_{L^{2}}
 \leq c\langle t\rangle^{-1}N_{4}^{2}(u(t)) .

Next, let us turn to the estimate of the first term on the right‐hand side of (4.18).
Again, we discuss the two cases  c_{7}=0 and  c_{7}=1 , separately.

Suppose c7  =  0 . We handle the two cases  |c|  \leq  1 and  |c|  =  2 , separately. When
 c_{7}=0 and  |c|  \leq  1 , we know  b_{7}=1 and thus obtain

(4.21)  \Vert(\partial Z^{b}u^{i})\partial\partial_{x}Z^{c}u^{j}\Vert_{L^{2}}

 \leq C\langle t\rangle^{-1}\Vert\partial Z^{b}u^{i}\Vert_{L^{2}}(\Vert\langle 
c_{j}t-r\rangle\partial\partial_{x}u^{j}\Vert_{L^{1}(B_{j})}+\Vert 
r\partial\partial_{x}u^{j}\Vert_{L^{1}(B_{j}')})
 \leq C\langle t\rangle^{-1}N_{4}^{2}(u(t))

for  |b|  =3 (thus  |c|  =0 ), and

(4.22)  \Vert(\partial Z^{b}u^{i})\partial\partial_{x}Z^{c}u^{j}\Vert_{L^{2}} \leq 
C\langle t\rangle^{-1}\Vert\partial Z^{b}u^{i}\Vert_{L^{3}}\Vert\langle c_{j}t-r
\rangle\partial\partial_{x}Z^{c}u^{j}\Vert_{L^{6}(B_{j})}

 +C\langle t\rangle^{-1}\Vert r\partial Z^{b}u^{i}\Vert_{L_{r}^{1}L_{\omega}^{2+
}(B_{j})}\Vert\partial\partial_{x}Z^{c}u^{j}\Vert_{L_{r}^{2}L_{\omega}^{1-}}
 \leq C\langle t\rangle^{-1}N_{4}^{2}(u(t))

for  |b|  \leq  2 . When c7  =  0 and  |c|  =  2 , we know  b7=  1,  |b|  \leq  1 and thus easily get by
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(3.18)

(4.23)  \Vert(\partial Z^{b}u^{i})\partial\partial_{x}Z^{c}u^{j}\Vert_{L^{2}} \leq 
C\langle t\rangle^{-1}\Vert\partial Z^{b}u^{i}\Vert_{L^{1}}\Vert\langle c_{j}t-r
\rangle\partial\partial_{x}Z^{c}u^{j}\Vert_{L^{2}(B_{j})}
 +C\langle t\rangle^{-1}\Vert r\partial Z^{b}u^{i}\Vert_{L^{1}(B'.)}
\Vert\partial\partial_{x}Z^{c}u^{j}\Vert_{L^{2}}
 \leq C\langle t\rangle^{-1}N_{4}^{2}(u(t)) .

Finally, suppose  c_{7}=1 . We know  b_{7}=0 and  |b|  \leq 2 . Let us discuss the two cases

 |c|  =1 and  |c|  =2 , separately. If  |c|  =1 , then

(4.24)  \Vert(\partial Z^{b}u^{i})\partial\partial_{x}Z^{c}u^{j}\Vert_{L^{2}} \leq 
C\langle t\rangle^{-1}\Vert\langle c_{i}t-r\rangle\partial Z^{b}u^{i}
\Vert_{L^{6}(B_{i})}\Vert\partial\partial_{x}Su^{j}\Vert_{L^{3}}

 +C\langle t\rangle^{-1}\Vert r\partial Z^{b}u^{i}\Vert_{L_{r}^{1}L_{\omega}^{2+
}(B_{i})}\Vert\partial\partial_{x}Su^{j}\Vert_{L_{r}^{2}L_{\omega}^{1-}}
 \leq C\langle t\rangle^{-1}N_{4}^{2}(u(t)) .

If  |c|  =2 , then we know  |b|  \leq  1 (and  b_{7}=0 ) and thus easily get

(4.25)  \Vert(\partial Z^{b}u^{i})\partial\partial_{x}Z^{c}u^{j}\Vert_{L^{2}}
 \leq  c\langle t\rangle^{-1}  (\Vert  \langle Cit —  r\rangle\partial Z^{b}u^{i}\Vert_{L^{1}}(B_{i})  +  \Vert r\partial Z^{b}u^{i}\Vert_{L^{1}}(B_{i}'))\Vert\partial\partial_{x}Z^{c}
u^{j}\Vert_{L}2
 \leq c\langle t\rangle^{-1}N_{4}^{2}(u(t)) .

We have finished the required estimates of the two terms on the right‐hand side  0

(4.18). Combining  (4.19)-(4.25) and recalling (4.5), we get

(4.26)  \tilde{E}_{4}'(u(t)) \leq C\langle t\rangle^{-1}N_{4}(u(t))\tilde{E}_{4}(u(t))

as far as  N_{4}(u(t)) is small enough.
We are in a position to complete the proof of Theorem 1.1. We prove Theorem 1.1

for the solutions to (1.7), because the proof for those to (1.8) is similar. Let  T_{*} be the
supremum of the set of all  T>0 such that this solution to (1.7) is defined in  (0, T)\cross \mathbb{R}^{3}
and small so that

(4.27)   \sup_{0<t<} N_{4}(u(t)) \leq 2\epsilon,
where  \epsilon  :=N_{4}(u(0)) . By definition, we know  T_{*}  \leq T^{*}

If we assume

(4.28)  \epsilon\log(1+T_{*}) <B

for the constant  B defined via  \exp\{C_{1}B\}  =  7/6 (see (4.29) below for the constant
 C_{1}  >0) , then we will get a contradiction. Indeed, we get by (4.26)

(4.29)  \tilde{E}_{4}'(u(t)) \leq 2\epsilon C_{1}(1+t)^{-1}\tilde{E}_{4}(u(t)) , 0<t<T_
{*}
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for a suitable constant  C_{1}  >  0 . This together with (4.5),  (4.27)-(4.28) immediately
yields

(4.30)  N_{4}(u(t)) \leq \frac{7}{4}\epsilon<2\epsilon, 0<t<T_{*}.
We note that, thanks to the fact that  u(t, x) is smooth and compactly supported for

fixed times, we easily see that

(4.31)  N_{4}(u(t)) \in C([0, T^{*})) .

(It is this simple proof of (4.31) that needs the smoothness of the solution and the
compactness of the support for fixed times.) Recall  T_{*}  \leq T^{*} by definition. If  T_{*}  <T^{*},

then in view of (4.31) the bound (4.30) obviously contradicts the definition of  T_{*} . We
thus see  T_{*}  =T^{*} . Recall that the system (1.7) is invariant under the translation of the
time variable, and that the length of the interval of existence of  C^{\infty} ‐solutions to (1.7)
with data  (\varphi, \psi) given at  t=t_{0} depends only on the  H^{3}‐norm of  (\nabla\varphi, \psi) but it does

not on  t_{0} . Thanks to the bound  N_{4}(u(t))  \leq 7\epsilon/4(0<t<T^{*}) , we can therefore extend

this solution  u(t, x) to a larger strip, say,  (0, T^{*}+T')  \cross \mathbb{R}^{3} (for some  T'>0 ) with

  \sup_{0<t<T^{*}+T'}N_{4}(u(t))<1
by solving (1.7) subject to the compactly supported  C^{\infty} ‐data  (u(T^{*}-\delta, x), \partial_{t}u(T^{*}-\delta, x))
given at  t  =  T^{*}  -\delta . (Here, by  \delta  >  0 , we mean a sufficiently small positive number.)
This, however, contradicts the definition of  T^{*} . We thus see that (4.28) is false and
there holds

(4.32)  \epsilon\log(1+T_{*}) \geq B,

by which we have finished the proof of Theorem 1.1 for the solutions to (1.7).

§5. Proof of Theorem 1.2

The proof of Theorem 1.2 requires only obvious modifications of that of Theorem

1.1. We may therefore leave the details to the reader.
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