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A new geometric construction of a family of Galois
representations associated to modular forms:

research announcement
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Tomoki MIHARA*

Abstract

This is a research announcement of the results in [Mih15 . For an odd prime  p dividing
an integer  N  \geq  5 , we define an inverse system of sheaves of torsion  \mathbb{Z}_{p} ‐modules on a modular
curve of level  \Gamma_{1}(N) . The representation of  Ga1(\overline{\mathbb{Q}}/\mathbb{Q}) associated to any cuspidal eigenform is
obtained as a twist of a quotient of its cohomology. We construct a family of representations
of  Ga1(\overline{\mathbb{Q}}/\mathbb{Q}) associated to cuspidal eigenforms of finite bounded slope as a quotient of a twist
of a scalar extension of its cohomology.
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§1. Introduction

This article is a research announcement of the results of the paper [Mih15]. Let
p be an odd prime number, and N  \geq 5 an integer divisible by p. We fix a  \mathbb{Q}‐algebra

isomorphism  \overline{\mathbb{Q}}_{p}\cong \mathbb{C} . We give a new geometric construction of a  p‐adic family of Galois

representations associated to a family of normalised cuspidal eigenforms of level  \Gamma_{1} (N)
of finite bounded slope. We give a sketch of the construction.

Let  S_{N} denote the set of normalised cuspidal eigenforms of weight  \geq 2 and level

 \Gamma_{1}(N) ,  S_{k,N}  \subset  S_{N} the subset of eigenforms of weight  k  \geq  2,  Y_{1}(N)' the moduli space

over  \mathbb{Q} of pairs  (E, \beta) of an elliptic curve  E and a surjective morphism  \beta :  E[N]  arrow \mathbb{Z}/N\mathbb{Z}
of group schemes,  \pi_{N}' :  E_{1}(N)'arrow Y_{1}(N)' the universal elliptic curve, and  F_{k}' the smooth
 p‐adic sheaf  Sym^{k-2}(R^{1}(\pi_{N}')_{*}(\underline{\mathbb{Z}}_{p})_{E_{1}(N)'}) on  Y_{1}(N)_{\'{e} t}' . As an analogous result by P.

Deligne on the geometric construction of the 2‐dimensional Galois representation  V_{f}
over  \mathbb{Q}_{p}(f)  :=  \mathbb{Q}_{p}(a_{n}(f) | n \in \mathbb{N})  \subset  \overline{\mathbb{Q}}_{p} associated to any  f  \in  S_{k,N} in [De169], B. H.
Gross gave another geometric construction of  V_{f} as a twist of a quotient of  \mathbb{Q}_{p}\otimes_{\mathbb{Z}_{p}}

  H_{\'{e} t}^{1}(Y_{1}(N)\frac{/}{\mathbb{Q}}, F_{k}')  =   H_{\'{e} t}^{1}(Y_{1}(N)\frac{/}{\mathbb{Q}}, Sym^{k-2}(R^{1}(\pi_{N}')_{*}
(\underline{\mathbb{Q}}_{p})_{E_{1}(N)'})) in [Gro90] Proposition
11.4. We note that B. H. Gross assumed  k  =  2 in [Gro90] Proposition 11.4, but the
assumption is easily removed (cf. [Mih15]).

In order to construct a family of Galois representations interpolating  (V_{f})_{f\in S_{N}},
we “interpolate”  (F_{k}')_{k\geq 2} first. We put the quotation marks “ ” because the rank

function  \mathbb{N}\cap  [2, \infty )  arrow  \mathbb{N},  k  \mapsto rank  \mathbb{Z}_{p}(F_{k}')  =  k-  1 is not constant on  k  \geq  2 , and
hence  (F_{k}')_{k\geq 2} is not interpolated in the naive sense. For this purpose, we introduce a

notion of a profinite smooth  \mathbb{Z}_{p} ‐sheaf (Definition 2.4), which is a generalisation of that
of a smooth  p‐adic sheaf. In particular, every smooth  p‐adic sheaf can be naturally

regarded as a profinite smooth  \mathbb{Z}_{p} ‐sheaf. We explain how the “interpolation” precisely

goes using profinite smooth  \mathbb{Z}_{p} ‐sheaves. There is a functorial correspondence from

a finitely generated torsion  \mathbb{Z}_{p} ‐module  M endowed with a continuous action  \rho of a

subgroup  G\hat{\Gamma}_{\epsilon}(N)  \subset GL_{2}(\hat{\mathbb{Z}}) (Example 2.5) to a locally constant étale sheaf  \underline{(M,\rho)}_{Y_{1}(N)},
of torsion  \mathbb{Z}_{p} ‐modules on  Y_{1}(N)' . We extend it to a functorial correspondence from a

profinite  \mathbb{Z}_{p}[G\hat{\Gamma}_{\epsilon}(N)] ‐module (Definition 2.2) to a profinite smooth  \mathbb{Z}_{p} ‐sheaf on  Y_{1}(N)'
One of the most important fact is that the  \mathbb{Z}_{p} ‐module  L_{k}'  :=Sym^{k-2}(\mathbb{Z}_{p}^{2}) endowed with

the natural continuous action of  G\hat{\Gamma}_{\epsilon}(N) corresponds to  F_{k}' for any  k  \geq  2 . Therefore

it suffices to “interpolate”  (L_{k}')_{k\geq 2} by a profinite  \mathbb{Z}_{p}[G\hat{\Gamma}_{\epsilon}(N)] ‐module. In order to

equip the cohomology of the corresponding profinite smooth  \mathbb{Z}_{p} ‐sheaf with an action

of Hecke operators, we need to “interpolate”  (L_{k}')_{k\geq 2} together with continuous actions
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of a certain multiplicative submonoid  \Pi_{0}(p)  \subset  M_{2}(\mathbb{Z}_{p}) (Definition 3.1) containing the
image of  G\hat{\Gamma}_{\epsilon}(N) . For each  k\geq 2 , we construct a continuous action  \rho_{k-2} of  \Pi_{0}(p) on  \mathbb{Z}_{p}^{\mathbb{N}}
for which  \mathbb{Z}_{p}^{\mathbb{N}} admits a continuous surjective  \mathbb{Z}_{p} ‐linear  \Pi_{0}(p) ‐equivariant homomorphism

onto a lattice  L_{k} of  \mathbb{Q}_{p}\otimes_{\mathbb{Z}_{p}}L_{k}'  \cong Sym^{k-2}(\mathbb{Q}_{p}^{2}) and whose matrix presentation is given in

an analytic way on  k (Proposition 3.8). Interpolating  (\rho_{k-2})_{k\geq 2} , we obtain a continuous
action  \rho_{-2} of  \Pi_{0}(p) on the topological  \Lambda_{0} ‐module  \Lambda_{0}^{\mathbb{N}} (Proposition 3.10), where  \Lambda_{0}

denotes the topological  \mathbb{Z}_{p} ‐algebra of rigid analytic functions on the weight space  W  :=

 Hom(\mathbb{Z}_{p}^{\cross}, \mathbb{Z}_{p}^{\cross}) . We verify that  V_{f} is obtained as a twist of a quotient of the cohomology

of the profinite smooth  \mathbb{Z}_{p} ‐sheaf  F associated to  (\Lambda_{0}^{\mathbb{N}}, \rho_{-2}) for any  f\in S_{N} (Proposition
3.13). We denote by  \mathbb{H}(N) a natural torsionfree quotient of the cohomology of  F,

and regard it as a profinite module over the profinite  \Lambda_{0} ‐algebra  \Lambda_{0}\mathbb{T}_{N} topologically

generated by Hecke operators. We then show that a suitable quotient  \mathbb{H}(N)^{<s} of a scalar

extension of  \mathbb{H}(N) for a fixed upper bound  s of slopes (cf. [Col97] §0 and [CM98] §6.2)
is a finitely generated module over a profinite  \Lambda_{0} ‐algebra  \Lambda_{0}\mathbb{T}_{N}^{<s} topologically generated

by Hecke operators restricted to the subspace of modular forms of slope  <  s , and  V_{f}
is obtained as a twist of a quotient of  \mathbb{Q}_{p}\otimes_{\mathbb{Z}_{p}}\mathbb{H}(N)^{<s} for any  f  \in  S_{N} of slope  <  s

(Theorem 3.15). Finally, for a compact  \Lambda_{0} ‐algebra  \Lambda_{1} with suitable conditions called
a  \Lambda ‐adic domain (Definition 3.16), we introduce a set  \Omega(\Lambda_{1})_{\mathbb{N}\cap[2,\infty)} of “characters on
 \Lambda_{1} of weight  \geq  2 and define a continuous Galois representation  V_{f} over  \Lambda_{1} as the

quotient of a twist of  \mathbb{H}(N)^{<s} by a normalised cuspidal  \Lambda_{1} ‐adic eigenform  f (Definition
3.19). Then we state the following main theorem:

Theorem 3.21 ([Mih15]). Suppose  p^{s}  | N. For any normalised  \Lambda_{1} ‐adic cuspida
eigenform  f of level  \Gamma_{1}(N) of slope  <  s , Frac  (\Lambda_{1})  \otimes_{\Lambda_{1}}  V_{f} is a 2‐dimensional rep‐

resentation of  Ga1(\overline{\mathbb{Q}}/\mathbb{Q}) over Frac  (\Lambda_{1}) . Furthermore, there is a finite subset  \Sigma_{s}  \subset

 \Omega(\Lambda_{1})_{\mathbb{N}\cap[2,\infty)} satisfying the following for any normalised  \Lambda_{1} ‐adic cuspidal eigenform  f

of level  \Gamma_{1}(N) , character  \chi , and slope  <s :

(i) For any  \varphi  \in  \Omega(\Lambda_{1})_{\mathbb{N}\cap[2,\infty)}\backslash \Sigma_{s} , the specialisation  f_{\varphi} of  f at  \varphi is a normalised
cuspidal eigenform of weight  wt(\varphi) , level  \Gamma_{1}(N) , character  \varphi\circ\chi , and slope  <s.

(ii) For any  \varphi\in\Omega(\Lambda_{1})_{\mathbb{N}\cap[2,\infty)}\backslash \Sigma_{s} , the specialisation  \overline{\mathbb{Q}}_{p}(\varphi)\otimes_{\Lambda_{1}}V_{f} of  V_{f} at  \varphi is isomor‐

phic to  \overline{\mathbb{Q}}_{p}\otimes_{\mathbb{Q}_{p}(f} )  V_{f_{\varphi}} , where  \overline{\mathbb{Q}}_{p}(\varphi) denotes  \overline{\mathbb{Q}}_{p} regarded as a  \Lambda_{1} ‐algebra through
 \varphi.

(iii) The  C(\Omega(\Lambda_{1})_{\mathbb{N}\cap[2,\infty)}\backslash \Sigma_{s}, 
\overline{\mathbb{Q}}_{p})[Ga1(\overline{\mathbb{Q}}/\mathbb{Q})] ‐module  C(\Omega(\Lambda_{1})_{\mathbb{N}\cap[2,\infty)}\backslash \Sigma_{S}, 
\overline{\mathbb{Q}}_{p})\otimes_{\Lambda_{1}}V_{f} is
free of rank 2 as a  C  (\Omega(\Lambda_{1})_{\mathbb{N}\cap[2,\infty)}\backslash \Sigma_{s}, \overline
{\mathbb{Q}}_{p}) ‐module.

We note that for any  f  \in  S_{N} , there are a  \Lambda‐adic domain  \Lambda_{1} and a normalised

cuspidal  \Lambda_{1} ‐adic eigenform which admits a specialisation to  f (Remark 3.20). Therefore
Theorem 3.21 yields  p‐adic families interpolating  (V_{f})_{f\in S_{N}}.
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We recall preceding studies on a family of Galois representations associated to

modular forms. H. Hida constructed and studied a  p‐adic family of ordinary modular

forms called a Hida family in [Hid86‐1] and [Hid86‐2. Two constructions of a family
of Galois representations associated to a Hida family are known in the case where the

modular forms are ordinary. One was given in a geometric way by H. Hida as the inverse

limit of the Tate modules of the Jacobian varieties of the compactifications  X_{1} (Npr)
of the modular curves  Y_{1}(Np^{r}) with  r  \in  \mathbb{N} in [Hid86‐2] Theorem 2.1. The works
of H. Hida yielded many fundamental frameworks in the study of a family of Galois

representations such as Hida theory. The other one was given by A. Wiles by gluing

pseudo‐representations associated to  (V_{f})_{f\in S_{N}} in [Wil88] Theorem 2.2.1. This work
contributed to his subsequent studies on the Galois representation associated to a Hilbert

cusp form, which formed the kernel of the modular theoretic approach to Iwasawa main

conjecture for a totally real field in [Wi190]. R. Coleman constructed in [Col97] Corollary
B5.7.1 a  p‐adic family, which is called a Coleman family, of modular forms of weights
 \geq  2 and level  \Gamma_{1}(N_{0}p) for an integer  N_{0}  \geq  4 coprime to  p . It interpolates modular

forms of finite slopes, while a Hida family interpolates modular forms of slope  0 . R.

Coleman and B. Mazur defined a rigid analytic curve  C_{p} called the eigencurve of tame

level 1 in [CM98] §6.1 Definition 1 by using the universal deformation ring parametrising
pseudo‐representations, and partially generalised the construction of a Coleman family

to modular forms of tame level 1, i.e. levels in  \{\Gamma_{1}(p^{r}) | r \in \mathbb{N}\} , in [CM98] Theorem
6.2.1 so that the eigencurve parametrises Coleman families. As is mentioned in [CM98]
pp. 4‐5, a family of Galois representations over the complement of a discrete subset  0

 C_{p} can be constructed by gluing pseudo‐representations.

We remark the relation between our construction and the eigencurve. As we men‐

tioned above, the eigencurve in [CM98] parametrises a family of modular forms  0

weights  \geq  2 and levels in  \{\Gamma_{1}(p^{r}) r \in \mathbb{N}\} , while we can deal only with a family  0

modular forms of weights  \geq 2 and level  \Gamma_{1}(N) in our construction. Therefore the eigen‐

curve is not applicable to our construction. On the other hand, M. Emerton referred in

[Eme] Theorem 2.23 to a construction of another eigencurve parametrising a family  0

modular forms of level  \Gamma_{1}(N) , which is applicable to our construction. Namely, it yields

an example of a normalised cuspidal  \Lambda_{1} ‐adic eigenform for the compact  \Lambda‐algebra  \Lambda_{1}

associated to an open disc on the eigencurve (Example 3.20). In addition, our construc‐
tion is partially related to one of the open questions in [CM98], which asked whether
the family of Galois representations associated to a Coleman family is obtained as the

Pontryagin dual of the direct limit of étale cohomologies of a tower of modular curves

of levels  \Gamma_{1} (Npr) with  r  \in N. Although we do not answer this question literally, our
result gives a realisation of the family of Galois representations as the étale cohomology
of a modular curve.
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We emphasise that even if we restrict it to the case where modular forms are ordi‐

nary, our construction differs from the constructions by H. Hida and A. Wiles recalled

above. To begin with, we compare our construction with that by H. Hida. For this

sake, we interpret his construction in terms of the cohomology of a profinite smooth

 \mathbb{Z}_{p} ‐sheaf  T_{\infty} on  Y_{1}(N) . For each  r  \in  \mathbb{N} , the Tate module of the Jacobian variety  0

 X_{1} (Npr) is naturally isomorphic to the dual of  H_{\'{e} t}^{1}(X_{1}(Np^{r})_{\overline{\mathbb{Q}}}, (\underline{\mathbb{Z}}_
{p})_{X_{1}(Np^{r})}) . There is
a natural injective homomorphism from the inverse limit of the Tate modules of the

Jacobian varieties of  X_{1} (Npr) to the inverse limit of  (H_{\'{e} t}^{1}(Y_{1}(Np^{r})_{\overline{\mathbb{Q}}}, \underline{\mathbb{Z}}_
{p}(1)))_{r\in \mathbb{N}} by the
trace maps, which can be interpreted as the cohomology of a profinite smooth  \mathbb{Z}_{p} ‐shea
 T_{\infty} on  Y_{1}(N) by Shapiro’s lemma. The construction of  T_{\infty} is valid for  Y_{1}(N)' , and

we denote by  T_{\infty}' the resulting profinite smooth  \mathbb{Z}_{p} ‐sheaf. The cohomology of  T_{\infty} is

naturally isomorphic to a twist of the cohomology of  T_{\infty}' . It is an interesting question

whether  T_{\infty}' is related to our profinite smooth  \mathbb{Z}_{p} ‐sheaf  F , e.g. whether there is a natural

epimorphism  Farrow T_{\infty}' , but we have no idea for it. Next, we compare our construction

with that by A. Wiles. We realised a family of Galois representations as a quotient  0

a twist of a cohomology, while A. Wiles did not in the construction given by gluing
pseudo‐representations. As is mentioned above, it is still an open question whether

there is an appropriate way to interpret the construction of a  p‐adic family of Galois

representations associated to modular forms using pseudo‐representations in terms  0

cohomologies. Therefore our construction is quite different from that by A. Wiles.

We explain the contents of this article. First, §2 consists of two subsections. We

introduce notions of a profinite module and of a profinite smooth  \mathbb{Z}_{p} ‐sheaf in §2.1 and

§2.2 respectively. As a profinite extension of the correspondence between representations

and local systems, we give a method of constructing a profinite smooth  \mathbb{Z}_{p} ‐sheaf from

a profinite module. Next, §3 consists of four subsections. We construct a continuous

action  \rho_{\kappa-2} of  \Pi_{0}(p) on  \mathbb{Z}_{p}^{\mathbb{N}} analytically parametrised by  \kappa  \in  W for which  \mathbb{Z}_{p}^{\mathbb{N}} admits

a continuous surjective  \mathbb{Z}_{p} ‐linear  \Pi_{0}(p) ‐equivariant homomorphism onto a lattice  0

 Sym^{k-2}(\mathbb{Q}_{p}^{2}) in the case  \kappa  =  k for an integer  k  \geq  2 in §3.1. We construct a huge

profinite  \mathbb{Z}_{p}[\Pi_{0}(p)] ‐module  (\Lambda_{0}^{\mathbb{N}}, \rho_{-2}) interpolating  (\mathbb{Z}_{p}^{\mathbb{N}}, \rho_{\kappa-2})_{\kappa\in W} in §3.2. As a natural

torsionfree quotient of the cohomology of the profinite smooth  \mathbb{Z}_{p} ‐sheaf  F associated

to  (\Lambda_{0}^{\mathbb{N}}, \rho_{-2}) , we define a profinite  \Lambda_{0}\mathbb{T}_{N}[Ga1(\overline{\mathbb{Q}}/\mathbb{Q})] ‐module  \mathbb{H}(N) in §3.3. In §3.4, for

a fixed upper bound  s  \in  \mathbb{N}\backslash \{0\} of slopes, we construct a profinite  \Lambda_{0}\mathbb{T}_{N}^{<s}[Ga1(\overline{\mathbb{Q}}/\mathbb{Q})]-
module  \mathbb{H}(N)^{<s} by using  \mathbb{H}(N) . We state its finiteness as a  \Lambda_{0}\mathbb{T}_{N}^{<s} ‐module in Theorem
3.15. We introduce the notions of a  \Lambda‐adic domain and a modular form over a  \Lambda-

adic domain in Definition 3.16 and Definition 3.19 respectively. As a main result, we

construct a  p‐adic family of Galois representations associated to modular forms of slope
 <s over a  \Lambda‐adic domain in Theorem 3.21.



128 Tomoki Mihara

§2. Representations and Local Systems

In this section, let  R denote a topological ring, and  G a topological monoid. We

mainly consider the case where  R is  \mathbb{Z}_{p} or the Iwasawa algebras in §3. We introduce

notions of a profinite  R[G] ‐module and of a profinite smooth  R‐sheaf on a Noetherian

scheme. We give a method of constructing a profinite smooth  R‐sheaf on  Y_{1}(N)' from

a profinite  R[G] ‐module in the case where  G is a certain subgroup  G\hat{\Gamma}_{\epsilon}(N)  \subset GL_{2}(\hat{\mathbb{Z}}) .

§2.1. Profinite Modules

A topological  R ‐module is a left  R‐module  M endowed with a topology for which
the addition  M\cross Marrow M and the scalar multiplication  R\cross Marrow M are continuous.

Example 2.1. Let  M be a left  R‐module. Then  M admits a natural topology

called the canonical topology, which is the strongest topology for which  M forms a

topological  R‐module. If  M is a finitely generated free  R‐module, then the natural
 R‐linear isomorphism  R^{S}arrow M is a homeomorphism with respect to the direct product

topology on  R^{S} and the canonical topology on  M for any  R‐linear basis  S\subset M.

A topological  R‐module is said to be a discrete  R ‐module if its underlying topology

is the discrete topology, is said to be a finite  R ‐module if it is a discrete  R‐module

whose underlying set is a finite set, and is said to be a profinite  R ‐module if it is

homeomorphically isomorphic to the inverse limit of finite  R‐modules. For a topo‐

logical  R‐module  M , we denote by  O_{M} the set of open  R‐submodules of  M . For

any profinite  R‐module  M,  O_{M} forms a fundamental system of neighbourhoods  0

 0  \in  M . Suppose that  R is commutative. For profinite  R‐modules  M_{0} and  M_{1} , we set

  M_{0}\otimes_{R}M_{1}\wedge  := \lim arrow(L_{0},L_{1})\in O_{M_{0}}\cross O_{M_{1}}(M_{0}/L_{0})\otimes_{R}(M_{1}
/L_{1}) , and endow it with the inverse

limit topology of the discrete topologies. Then   M_{0}\otimes_{R}M_{1}\wedge forms a profinite  R‐module.

We call   M_{0}\otimes_{R}M_{1}\wedge the completed tensor product of  M_{0} and  M_{1} . We remark that the

completed tensor product preserves the surjectivity.

In continuation, suppose that  R is commutative. A topological  R ‐algebra is a topo‐

logical ring  A endowed with a continuous ring homomorphism  Rarrow A whose image lies

in the centre. Every topological  R‐algebra is a topological  R‐module with respect to the

natural scalar multiplication. A topological  R‐algebra is said to be a discrete  R ‐algebr

if its underlying topology is the discrete topology, is said to be a nite  R ‐algebra if it is

a discrete  R‐algebra whose underlying set is a finite set, and is said to be a profinite R‐

algebra if it is homeomorphically isomorphic to the inverse limit of finite  R‐algebras. The

underlying topological  R‐module of a finite  R‐algebra is a finite  R‐module, and hence the

underlying topological  R‐module of a profinite  R‐algebra is a profinite  R‐module. The

completed tensor product of the underlying profinite  R‐modules of profinite  R‐algebras

naturally forms a profinite  R‐algebra.
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Definition 2.2. A topological  R[G] ‐module is a pair  (M, \rho) of a topological R‐

module  M and a continuous  R‐linear action  \rho :  G\cross Marrow M . A topological  R[G] ‐module

is said to be a discrete  R[G] ‐module if its underlying topology is the discrete topology, is

said to be a nite  R[G] ‐module if it is a discrete  R[G] ‐module whose underlying set is a

finite set, and is said to be a pro nite  R[G] ‐module if it is homeomorphically isomorphic
to the inverse limit of finite  R[G] ‐modules.

The underlying topological  R‐module of a finite  R[G] ‐module is a finite  R‐module,

and hence the underlying topological  R‐module of a profinite  R[G] ‐module is a profinite
 R‐module.

Example 2.3. We endow  M_{2}(R) with the canonical topology (Example 2.1) as
an  R‐module. Then  M_{2}(R) forms a topological monoid with respect to the multiplica‐

tion, and  R^{2} is a topological  R[M_{2}(R)] ‐module with respect to the canonical topology

as an  R‐module and the natural action  \rho_{R^{2}} :  M_{2}(R)\cross R^{2}arrow R^{2} . For each  n\in \mathbb{N} , we de‐

note by Sy  m^{}  (R^{2}, \rho_{R^{2}})  = (Symn(R2), Sym  (\rho_{R^{2}}) ) the topological  R[M_{2}(R)] ‐module
obtained as the n‐th symmetric tensor product of  (R^{2}, \rho_{R^{2}}) over  R endowed with

the canonical topology as an  R‐module. We identify Sy  m^{}  (R^{2}) with the  R‐module

 \oplus_{i=0}^{n}RT_{1}^{i}T_{2}^{n-i}  \subset R[T_{1}, T_{2}] of homogeneous polynomials of degree  n , by putting

 T_{1}^{i}T_{2}^{n-i} := (\begin{array}{l}
1
0
\end{array}) (\begin{array}{l}
0
1
\end{array}) \in Sym^{n}(R^{2})
for each  (n, i)  \in \mathbb{N}\cross \mathbb{N} with  i\leq n.

For a topological  R[G] ‐module  (M, \rho) , we denote by  O_{(M,\rho)} the set of open  R[G]-
submodules of  (M, \rho) . For any profinite  R[G] ‐module  (M, \rho) ,  O_{(M,\rho)} forms a fundamen‐

tal system of neighbourhoods of   0\in  M , and hence is cofinal in  O_{M} . Let  (M_{0}, \rho_{0}) and

 (M_{1}, \rho_{1}) be profinite  R[G] ‐modules. Then the continuous actions  \rho_{0} and  \rho_{1} induce a con‐

tinuous action  \rho_{0}\otimes\rho_{1}:\wedge   G\cross  (M_{0}^{\wedge}\otimes_{R}M_{1})  arrow M_{0}\otimes_{R}M_{1}\wedge , for which  (M_{0}, \rho_{0})\otimes_{R}(M_{1}, \rho_{1})\wedge  :=

 (M_{0}^{\wedge\wedge}\otimes_{R}M_{1}, \rho_{0}\otimes\rho_{1}) forms a profinite  R[G] ‐module. When  (M_{0}, \rho_{0}) is the underlying

topological  R[G] ‐module of a commutative profinite  R‐algebra  A endowed with the triv‐

ial action of  G , then we regard   A\otimes_{R}(M_{1}, \rho_{1})\wedge as a profinite  A[G] ‐module with respect
to the natural continuous action of  A.

§2.2. Profinite Smooth Sheaves

Continuing from §2.1, let  R denote a commutative topological ring. Suppose that
 R itself is a profinite  R‐algebra so that  R/I forms a finite  R‐algebra for any  I\in O_{R}.

Definition 2.4. Let  S be a Noetherian scheme. A nite smooth  R ‐sheaf on

is a sheaf on Sét of  R‐modules which is representable by a finite étale  S‐scheme and
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is annihilated by an  I  \in  O_{R} . A profinite smooth  R ‐sheaf on  S is an inverse system
 F  =  (F_{H})_{H\in \mathbb{H}} of finite smooth  R‐sheaves on  S indexed by a directed set H. For a

profinite smooth  R‐sheaf  F=(F_{H})_{H\in \mathbb{H}} on  S , we set

  \mathbb{H}_{\'{e} t}^{*}(S, F) := \lim_{arrow,H\in \mathbb{H}}H_{\'{e} t}^{*}
(S, F_{H}) ,

and endow it with the inverse limit topology of the discrete topologies. We call it the

cohomology of  F.

We note that the notion of a profinite sheaf in [Woj12] 14.6 Definition 18 coincides
with that of a profinite smooth  \mathbb{Z}_{\ell} ‐sheaf. We explain a method of constructing a profinite

smooth  R‐sheaf. A similar construction of a profinite smooth  \mathbb{Z}_{p} ‐sheaf (resp. a smooth
sheaf) is given in [Oht93] 2.3 (resp. [HT01] III 2). To begin with, suppose that  G is a
discrete finite group. Let  Y_{1} be a Noetherian scheme with a  G‐torsor  Y  arrow  Y_{1} , where
 G acts on  Y from the right. Let  (M, \rho) be a finite  R[G] ‐module. We construct a finite
smooth  R‐sheaf  (M, \rho)_{Y_{1}} on  Y_{1} associated to  (M, \rho) . For a scheme  X and a set  I,

we denote by  X  \cross I the disjoint union of copies of  X indexed by  I . We consider the

right action of  G on  M given by setting mg  :=  \rho(g^{-1}, m) for each  (m, g)  \in  M  \cross  G.

We endow  Y  \cross  M with the right diagonal action of  G over  Y_{1} . We define  (M, \rho)_{Y_{1}}
as the sheaf on (Y1)ét represented by  (Y \cross M)/G , which is a finite smooth  R‐shea
with respect to the natural structure given in the following way: Since  Y  arrow  Y_{1} is a
 G‐torsor, we have a natural isomorphism   Y\cross  Garrow Y\cross Y_{1}  Y,  (y, g)  \mapsto (  y, yg) over  Y_{1},

and it induces an isomorphism  (Y \cross M)  \cross Y_{1}  (Y \cross M)  \cong  Y  \cross  (G\cross M \cross M) over  Y_{1},

which is  (G\cross G) ‐equivariant with respect to the right action of   G\cross  G on the source

given in a natural way and on the target defined by setting  (y, (g, m_{1}, m_{2}))(g_{1}, g_{2})  :=

 (ygi,  (g_{1}^{-1}gg_{2}, m_{1}g_{1}, m_{2}g_{2})) for  ((y, (g, m_{1}, m2)), (g_{1}, g_{2}))  \in  (Y\cross(G\cross M\cross M))\cross(G\cross G) .
We obtain

 (M, \rho)_{Y_{1}} \cross Y_{1} (M, \rho)_{Y_{1}}\cong((Y\cross M) \cross Y_{1} 
(Y\cross M))/(G\cross G)

 \cong (Y\cross (G\cross M\cross M))/(G\cross G) .

The map  G\cross M\cross Marrow M,  (g, m_{1}, m_{2})\mapsto m_{1}+\rho(g, m_{2}) defines a morphism  (Y\cross M)\cross Y_{1}
 (Y\cross M)  \cong Y\cross(G\cross M\cross M)arrow Y\cross M , which is  (G\cross G) ‐equivariant with respect to the

right action of  G\cross G on the target given by the first projection  G\cross Garrow G . It induces an

addition  (M, \rho)_{Y_{1}}\cross Y_{1}(M, \rho)_{Y_{1}}  arrow  (M, \rho)_{Y_{1}} . The map  M\cross Rarrow M,  (m, r)\mapsto rm defines

a  G‐equivariant morphism   Y\cross  (M\cross R)  arrow Y\cross M , and induces a scalar multiplication

 (M, \rho)_{Y_{1}}  \cross Rarrow  (M, \rho)_{Y_{1}} compatible with the addition.

Now suppose that  G is a profinite group. Let  \mathbb{H} be a fundamental system  0

neighbourhoods of  1  \in  G consisting of open normal subgroups of  G . Let  (Y_{H})_{H\in \mathbb{H}}
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be an inverse system of Noetherian schemes endowed with right actions of  G such

that  H acts trivially on  Y_{H} and  Y_{H} forms  a  (G/H) ‐torsor over  Y_{1}  :=  Y_{G} for any
 H  \in H. Let  (M, \rho) be a profinite  R[G] ‐module. For each  L  \in  O_{(M,\rho)} , we denote by
 H_{L}  \subset  G the open normal subgroup  \{g \in G | \rho(g, m) -m \in L, \forall_{m} \in M\} . For each
 L  \in  O_{(M,\rho)} and  H  \in  \mathbb{H} with  H  \subset  H_{L} , we have a finite smooth  R‐sheaf  ((M, \rho)/L)_{Y_{1}}
on  Y_{1} given by the  (G/H) ‐torsor  Y_{H}arrow Y_{1} , which is independent of the choice of  H up

to natural isomorphism because  Y_{H'}  arrow  Y_{H} is an  (H/H') ‐torsor for any  H'  \in  \mathbb{H} with
 H'  \subset  H . For each  (L_{0}, L_{1})  \in  O_{(M,\rho)}  \cross  O_{(M,\rho)} with  L_{0}  \subset  L_{1} , the canonical projection

 (M, \rho)/L_{0}arrow  (M, \rho)/L_{1} induces a morphism  ((M, \rho)/L_{0})_{Y_{1}}  arrow((M, \rho)/L_{1})_{Y_{1}} of sheaves

on  Y_{1} , for which  (M, \rho)_{Y_{1}}  :=  (((M, \rho)/L)_{Y_{1}})_{L\in O_{M,\rho}} forms a profinite smooth  R‐shea
on  Y_{1}.

Example 2.5. We give an explicit example of data  (G, \mathbb{H}, (Y_{H})_{H\in \mathbb{H}}) . Let  N\geq 5

be an integer. As in §1, we denote by  Y_{1}(N)' the moduli space over  \mathbb{Q} of a pair  (E, \beta)0
an elliptic curve  E and a surjective morphism  E[N]  arrow \mathbb{Z}/N\mathbb{Z} of finite group schemes.
We consider the case

 G=G\hat{\Gamma}_{\epsilon}(N) := (\begin{array}{ll}
\hat{\mathbb{Z}}   \hat{\mathbb{Z}}
N\hat{\mathbb{Z}}   N\hat{\mathbb{Z}}1+
\end{array}) \cap GL_{2}(\hat{\mathbb{Z}}) .

Let   M\geq  1 be an integer with  N|  M . We put

 H_{M}=G\hat{\Gamma}(M) := (\begin{array}{ll}
M\hat{\mathbb{Z}}1+   M\hat{\mathbb{Z}}
M\hat{\mathbb{Z}}   M\hat{\mathbb{Z}}1+
\end{array}) \cap GL_{2}(\hat{\mathbb{Z}}) .

We denote by  P_{M}(X_{M})  \in  \mathbb{Z}[X_{M}] the M‐th cyclotomic polynomial, and by  Y(M) the

moduli space over  \mathbb{Q}[X_{M}]/(P_{M}(X_{M})) of pairs  (E, (\alpha_{1}, \alpha_{2})) of an elliptic curve  E and
 a  (\mathbb{Z}/M\mathbb{Z}) ‐linear basis  (\alpha_{1}, \alpha_{2}) of the finite group scheme  E[M] with  \langle\alpha_{1},  \alpha_{2}\rangle_{E}=X_{M},
where  \langle\cdot,  \rangle_{E} :  E[M]\cross E[M]  arrow \mathbb{G}_{m}[M] denotes the Weil pairing. For a scheme  S over  \mathbb{Q},

an elliptic curve  E over  S , and  a(\mathbb{Z}/N\mathbb{Z})_{S} ‐linear basis  (\alpha_{1}, \alpha_{2}) of  E[N] , we consider the

surjective morphism  \beta_{\alpha_{1},\alpha_{2}} :  E[N]  arrow  (\mathbb{Z}/N\mathbb{Z})_{S},  c_{1}\alpha_{1}+c_{2}\alpha_{2}\mapsto c_{2} of group schemes over
 S . Put  M=mN . The correspondence  (E, (\alpha_{1}, \alpha_{2})) ∽  (E, \beta_{m\alpha_{1},m\alpha_{2}}) gives a morphism

 Y(M)arrow Y_{1}(N)' over  \mathbb{Q} , which forms  a(G/H_{M}) ‐torsor with respect to the natural right

action of  GL_{2}(\mathbb{Z}/M\mathbb{Z}) on  Y(M) . We obtain an inverse system  (Y(mN))_{m\geq 1} of schemes

over  Y_{1}(N)' . Put  \mathbb{H}  :=\{H_{mN} | m\geq 1\} . For each  H\in \mathbb{H} , taking a unique   m\geq  1 with

 H_{mN}  =H , we put  Y_{H}  :=Y(mN) . The inverse system  (Y_{H})_{H\in \mathbb{H}} satisfies the required
conditions.

For a prime number  p dividing  N , the profinite smooth  \mathbb{Z}_{p} ‐sheaf on  Y_{1}(N)' associ‐

ated to the profinite  \mathbb{Z}_{p}[G\hat{\Gamma}_{\epsilon}(N)] ‐module  L_{k}'  :=Sym^{k-2}(\mathbb{Z}_{p}^{2}, \rho_{\mathbb{Z}_{p}^{2}}) represents the smooth

 \mathbb{Z}_{p} ‐sheaf  F_{k}'  :=Sym^{k-2}(R^{1}(\pi_{N}')_{*}(\underline{\mathbb{Z}}_{p})_{E_{1}(N)'}) appeared in §1 for any integer  k\geq 2.
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§3. Interpolation of Sheaves and Cohomologies

In the following, let  p denote an odd prime number dividing an integer  N  \geq  5.

We interpolate the smooth  \mathbb{Z}_{p} ‐sheaves  (F_{k}')_{k\geq 2} “analytically” parametrised by weights
 k\geq 2 . For this sake, we construct a profinite  \mathbb{Z}_{p}[G\hat{\Gamma}_{\epsilon}(N)] ‐module interpolating  (L_{k}')_{k\geq 2},
which corresponds to a profinite smooth  \mathbb{Z}_{p} ‐sheaf whose cohomology admits certain

specialisation maps to  ( H_{\'{e} t}^{1}(Y_{1}(N)\frac{/}{\mathbb{Q}}, F_{k}'))_{k\geq 2}.

§3.1. Infinite Dimensional Extension of  Sym^{k-2}

Definition 3.1. Let  \Pi_{0}(p) denote the multiplicative submonoid

 (\begin{array}{ll}
\mathbb{Z}_{p}   \mathbb{Z}_{p}
p\mathbb{Z}_{p}   \mathbb{Z}_{p}^{\cross}
\end{array}) \subset M_{2}(\mathbb{Z}_{p})
equipped with the continuous monoid homomorphism  G\hat{\Gamma}_{\epsilon}(N)arrow\Pi_{0}(p) induced by the

canonical projection  M_{2}(\hat{\mathbb{Z}})  arrow M_{2}(\mathbb{Z}_{p}) .

We use not only  G\hat{\Gamma}_{\epsilon}(N) but also  \Pi_{0}(p) because actions of matrices such as

 (\begin{array}{l}
p0
01
\end{array})  \in  \Pi_{0}(p) are necessary to define actions of Hecke operators on the cohomolo‐

gies of the profinite smooth  \mathbb{Z}_{p} ‐sheaves associated to profinite  \mathbb{Z}_{p}[G\hat{\Gamma}_{\epsilon}(N)] ‐modules.

Let  k  \geq  2 . Since  L_{k}' does not satisfy good congruence relations, we take another
lattice  L_{k} of  \mathbb{Q}_{p}\otimes_{\mathbb{Z}_{p}}L_{k}'\cong Sym^{k-2}(\mathbb{Q}_{p}^{2}) .

Lemma 3.2. The  \mathbb{Z}_{p} ‐submodule  Sym_{0}^{k-2}(\mathbb{Z}_{p}^{2})  \subset Sym^{k-2}(\mathbb{Z}_{p}^{2}) generated by

 e_{k,i} :=  (k   -2i)T_{1}^{i}T_{2}^{k-2-i} \bigoplus_{i=0}^{k-2}\mathbb{Z}_{p}
T_{1}^{i}T_{2}^{k-2-i}
(Example 2.3) with  i\in \mathbb{N}\cap[0, k-2] is stable under the action  \rho_{k-2} of  M_{2} (Zp).

We denote by  L_{k} the profinite  \mathbb{Z}_{p}[\Pi_{0}(p)] ‐module  Sym_{0}^{k-2}(\mathbb{Z}_{p}^{2}) on which  \Pi_{0}(p) acts

by the restriction of  \rho_{k-2} . The following lemma ensures that the new lattice above

works well when one considers an interpolation along weights:

Lemma 3.3. For any  r  \geq  1 and  k_{1}  \geq  k_{0}  \geq  2 with  k_{1}  -k_{0}  \in p^{r-1}(p-1)\mathbb{Z} , the

natural projectio

 L_{k_{1}}/p^{r} arrow L_{k_{0}}/p^{r}, \sum_{i=0}^{k_{1}-2}\overline{\alpha}
_{i}e_{k_{1},i}\mapsto\sum_{i=0}^{k_{0}-2}\overline{\alpha}_{i}e_{k_{0},i}
is a surjective  (\mathbb{Z}/p^{r}\mathbb{Z}) ‐linear  \Pi_{0}(p) ‐equivariant homomorphism.
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We remark that the natural projection in Lemma 3.3 is an analogue of the  M_{2}(\mathbb{Z}_{p})-
equivariant projections  Sym^{k_{1}-2}(\mathbb{Z}_{p}^{2})/p^{r}  arrow  (Sym^{0}(\mathbb{Z}_{p}^{2})/p^{r})(k_{1} -2)  \cong  (\mathbb{Z}/p^{r}\mathbb{Z})(k_{1} -2)
introduced right after [Hid86‐2] Lemma 4.3 and  Sym^{k_{1}-2}(\mathbb{Z}_{p}^{2})/parrow Sym^{0}(\mathbb{Z}_{p}^{2})/p\cong 
\mathbb{Z}/p\mathbb{Z}
for  k_{1}  \geq 2 introduced in the proof of [Hid93] 7.2 Theorem 2.

We denote by  W the Abelian group of weights, i.e. continuous group endomor‐

phisms of  \mathbb{Z}_{p}^{\cross} . For each  (\kappa, u)  \in  W  \cross  \mathbb{Z}_{p}^{\cross} , we put  u^{\kappa}  :=  \kappa(u) . We regard  \mathbb{Z} as a

subgroup of  W through the pairing  \mathbb{Z}  \cross  \mathbb{Z}_{p}^{\cross}  arrow  \mathbb{Z}_{p}^{\cross},  (k, u)  \mapsto  u^{k} . We call  W the

weight space, and will use it as the parametre space of the interpolation. The reduction

 \mathbb{Z}_{p}^{\cross}  arrow \mathbb{F}_{p}^{\cross} induces a natural identification  \mathbb{Z}_{p}^{\cross}  \cong \mathbb{F}_{p}^{\cross}  \cross  (1+p\mathbb{Z}_{p}) through a unique Te‐

ichmUller lifting  [\cdot] :  \mathbb{F}_{p}^{\cross}  \mapsto  \mathbb{Z}_{p}^{\cross} . For each  \kappa  \in  W , we identify  \kappa|_{\mathbb{F}_{p}^{\cross}} with an element  0

 \mathbb{Z}/(p-1)\mathbb{Z} through the pairing  (\mathbb{Z}/(p-1)\mathbb{Z})  \cross \mathbb{F}_{p}^{\cross}  arrow \mathbb{Z}_{p}^{\cross},  (k, u)  \mapsto  [u^{k}] , and  \kappa|_{1+p\mathbb{Z}_{p}}
with an element of  \mathbb{Z}_{p} through the pairing  \mathbb{Z}_{p}  \cross  (1+p\mathbb{Z}_{p})  arrow  \mathbb{Z}_{p}^{\cross},  (k, u)  \mapsto  u^{k} . We
obtain a natural identification

 p-1

 W\cong(\mathbb{Z}/(p-1)\mathbb{Z}) \cross \mathbb{Z}_{p}\cong(\mathbb{Z}/(p-1)
\mathbb{Z}) \cross_{\zeta=0}(\zeta+p\mathbb{Z}_{p})
 \cong ((\mathbb{Z}/(p-1)\mathbb{Z}) \cross (\mathbb{N}\cap[0,p-1])) \cross 
p\mathbb{Z}_{p}\cong(p\mathbb{Z}_{p})^{\sqcup p(p-1)}

of sets, through which we endow  W with the disjoint union topology of copies of  p\mathbb{Z}_{p}.

We construct a system  (\rho_{\kappa})_{\kappa\in W} of continuous actions of  \Pi_{0}(p) on  \mathbb{Z}_{p}^{\mathbb{N}} such that

 (\mathbb{Z}_{p}^{\mathbb{N}}, \rho_{\kappa}) is a profinite  \mathbb{Z}_{p}[\Pi_{0}(p)] ‐module for any  \kappa  \in  W , the matrix coefficients of  \rho_{\kappa}

form “rigid analytic functions” on  \kappa  \in  W  \cong  (p\mathbb{Z}_{p})^{\sqcup p(p-1)} , and  L_{k} is obtained as a

quotient of  (\mathbb{Z}_{p}^{\mathbb{N}}, \rho_{k}) for any  k  \geq  2 . Here a “rigid analytic function” on  W means a

function lying in the ring  \Lambda_{0} which we will introduce later in Definition 3.9.

Definition 3.4. Let  \kappa\in W . For each  r\in \mathbb{N} , let  \kappa^{(r)} denote the smallest integer
with  \kappa^{(r)}  \geq  0 and  \kappa-\kappa^{(r)}  \in  p^{r}  (p- 1)W . We define a continuous action  \rho_{\kappa} on  \mathbb{Z}_{p}^{\mathbb{N}}
through the homeomorphic  \mathbb{Z}_{p} ‐linear isomorphism

  \mathbb{Z}_{p}^{\mathbb{N}}arrow\lim_{r\in \mathbb{N}}arrowarrow\lim_{m\in 
\mathbb{N}}(L_{\kappa^{(r)}+2+p^{r}(p-1)m}/p^{r+1})

 ( \alpha_{i})_{i\in \mathbb{N}}\mapsto ((\sum_{i=0}^{\kappa^{(r)}+2+p^{r}(p-1)m
-2}\overline{\alpha}_{i}e_{\kappa^{(r)}+2+p^{r}(p-1)m,i})_{m\in \mathbb{N}})
_{r\in \mathbb{N}}
of topological  \mathbb{Z}_{p} ‐modules so that  (\mathbb{Z}_{p}^{\mathbb{N}}, \rho_{\kappa}) is a profinite  \mathbb{Z}_{p}[\Pi_{0}(p)] ‐module, where the

transition maps ofthe double inverse system  ((L_{\kappa^{(r)}+2+p^{r}(p-1)m}/p^{r+1})_{m\in \mathbb{N}})_{r\in \mathbb{N}} are given

by the natural projections in Lemma 3.3 and the canonical projections.

The action  \rho_{\kappa} of  \Pi_{0}(p) on  \mathbb{Z}_{p}^{\mathbb{N}} defined above is given by the matrix presentation

whose entries are explicitly described as “rigid analytic functions” on  \kappa\in W as follows:
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Theorem 3.5. Let  \kappa\in W . For any  (A, \alpha, i)  \in\Pi_{0}(p)\cross \mathbb{Z}_{p}^{\mathbb{N}}\cross \mathbb{N} with  A=  (\begin{array}{l}
ba
cd
\end{array})
and  \alpha=(\alpha_{j})_{j=0}^{\infty} , the infinite su

 \rho_{\kappa}(A, \alpha)_{i}  := \sum_{j=0}^{\infty}\alpha_{j}\sum_{h=0}^{\min\{i,j\}}  (\begin{array}{l}
i
h
\end{array})  ( \prod_{m=i}^{i+j-h-1}(\kappa|_{1+p\mathbb{Z}_{p}}-m))  a^{h}b^{i-h} \frac{c^{j-h}}{(-h)!}d^{\kappa-i-j+h}
converges in  \mathbb{Z}_{p} , and the equality  \rho_{\kappa}(A, \alpha)=(\rho_{\kappa}(A, \alpha)_{i})_{i\in \mathbb{N}} holds.

Remark 3.6. Let  k  \geq  2 be an integer. R. Pollack and G. Stevens defined a

continuous right action of the topological monoid

 \Sigma_{0}(p) := (\begin{array}{ll}
\mathbb{Z}_{p}^{\cross}   \mathbb{Z}_{p}
p\mathbb{Z}_{p}   \mathbb{Z}_{p}
\end{array}) \cap GL_{2}(\mathbb{Q}_{p})
corresponding to the weight  k on the topological  \mathbb{Z}_{p} ‐algebra  \mathbb{D}(\mathbb{Z}_{p}) of  \mathbb{Q}_{p} ‐valued distri‐

butions on  \mathbb{Z}_{p} in [PS11] §3.3, and proved that the closed  \mathbb{Z}_{p} ‐subalgebra  \mathbb{D}^{0}(\mathbb{Z}_{p})  \subset \mathbb{D}(\mathbb{Z}_{p})
of distributions with integral moments is stable under the right action of  \Sigma_{0}(p) in

[PSII] Proposition 7.1. Moreover, it is easy to show that the closed  \mathbb{Z}_{p} ‐submodule
 \mathbb{D}_{k}^{\dagger}(\mathbb{Z}_{p})  \subset  \mathbb{D}^{0}(\mathbb{Z}_{p}) , which is canonically isomorphic to  \mathbb{Z}_{p}^{\mathbb{N}} , of distributions  m on  \mathbb{Z}_{p}

with  m(z^{i})  \in  (k   -2i)  \mathbb{Z}_{p} for any  i  \in  \mathbb{N} is stable under the right action of  \Sigma_{0}(p) .

The induced right action of  \Sigma_{0}(p) on  \mathbb{Z}_{p}^{\mathbb{N}} is related to the action  \rho_{k-2} of  \Pi_{0}(p) on

 \mathbb{Z}_{p}^{\mathbb{N}} as follows. The map  \Pi_{0}(p)\cap GL_{2}(\mathbb{Q}_{p})  arrow  \Sigma_{0}(p)^{op},  A  \mapsto  \det(A)A^{-1} is a homeo‐

morphic monoid isomorphism. Therefore we obtain a continuous left action  \rho_{k-2}'  0

 \Pi_{0}(p)\cap GL_{2}(\mathbb{Q}_{p}) of weight   k\geq  2 on  \mathbb{Z}_{p}^{\mathbb{N}} . For any   k\geq  2 , the restriction of  \rho_{k-2} to the
submonoid  \Pi_{0}(p)\cap GL_{2}(\mathbb{Q}_{p})  \subset  \Pi_{0}(p) coincides with  \rho_{k-2}' . Thus the construction  0

 (\mathbb{Z}_{p}^{\mathbb{N}}, \rho_{\kappa-2})_{\kappa\in W} is a generalisation of that of  (\mathbb{Z}_{p}^{\mathbb{N}}, \rho_{k-2}')_{k\geq 2} in the sense that the former

one deals with possibly non‐integer weights and  \Pi_{0}(p) while the latter one deals with

integer weights  \geq 2 and  \Pi_{0}(p)\cap GL_{2}(\mathbb{Q}_{p}) .

Remark 3.7. Another similar way to construct an infinite dimensional represen‐

tation using the symmetric product is studied in [Yam07] §1.2 for Hilbert modular forms,
but the direction of the extension is different from ours.

The following specialisation property immediately follows from Lemma 3.3 and
Definition 3.4:

Proposition 3.8. For any  k\geq 2 , the natural pro
 \cdot

ectio

 \varpi_{k} :  (\mathbb{Z}_{p}^{\mathbb{N}}, \rho_{k-2})  arrow L_{k},  ( \alpha_{i})_{i=0}^{\infty}\mapsto\sum_{i=0}^{k-2}\alpha_{i}e_{k,i}
is a continuous surjective  \mathbb{Z}_{p} ‐linear  \Pi_{0}(p) ‐equivariant homomorphism.
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Let  k  \geq  2 . Taking the continuous dual in an analogous way to the Schneider‐

Teitelbaum theory on representations of a profinite group ([ST02] Theorem 2.3), we
obtain an exact sequence

 0arrow Sym^{k-2}(\mathbb{Q}_{p}^{2}, \rho_{\mathbb{Q}_{p}^{2}})arrow(\mathbb{Z}
_{p}^{\mathbb{N}}, \rho_{k-2})^{\vee}arrow(ker(\varpi_{k-2}), \rho_{k-2}
|_{ker(\varpi_{k-2})})^{\vee}arrow 0
of unitary Banach  \mathbb{Q}_{p} ‐linear representations, and  (ker(\varpi_{k-2}), \rho_{k-2}|_{ker(\varpi)}k-2)^{\vee} is an infi‐

nite dimensional irreducible unitary Banach  \mathbb{Q}_{p} ‐linear representation. Thus  (\mathbb{Z}_{p}^{\mathbb{N}}, \rho_{k-2})
is the continuous dual of an extension of an infinite dimensional irreducible unitary

Banach  \mathbb{Q}_{p} ‐linear representation by  Sym^{k-2}(\mathbb{Q}_{p}^{2}, \rho_{\mathbb{Q}_{p}^{2}}) .

§3.2. Analytic Continuation over the Weight Space

Gluing  (\mathbb{Z}_{p}, \rho_{\kappa-2})_{\kappa\in W} along weights  \kappa , we construct a profinite  \mathbb{Z}_{p}[\Pi_{0}(p)] ‐module

interpolating  (L_{k})_{k\geq 2} . For topological spaces  U and  V , we denote by  C(U, V) the set

of continuous maps  Uarrow V.

Definition 3.9. We denote by  \Lambda_{0}  \subset  C(W, \mathbb{Z}_{p}) the  \mathbb{Z}_{p} ‐subalgebra of  \mathbb{Z}_{p} ‐valued

functions on  W  \cong  (p\mathbb{Z}_{p})^{\sqcup p(p-1)} whose restrictions to the copies of  p\mathbb{Z}_{p} admit Taylor

expansions with coefficients in  \mathbb{Z}_{p} . We identify  \Lambda_{0} with  \mathbb{Z}_{p}[[X]]^{p(p-1)} , and endow it with

the direct product topology of copies of  \mathbb{Z}_{p}[[X]] . Here  \mathbb{Z}_{p}[[X]]   \cong\lim_{arrow r\in \mathbb{N}}\mathbb{Z}_{p}[X]/(p, X)^{r}
is regarded as a profinite  \mathbb{Z}_{p} ‐algebra with respect to the inverse limit topology of the

discrete topologies.

The continuous function  z :  W  arrow  \mathbb{Z}_{p},  \kappa  \mapsto  \kappa|_{1+p\mathbb{Z}_{p}} is contained in  \Lambda_{0} . Since

 \mathbb{N}\cap  [2, \infty) is dense in  W , the evaluation map  \Lambda_{0}  \mapsto   \prod_{k=2}^{\infty}\mathbb{Z}_{p},  f  \mapsto  (f(k))_{k=2}^{\infty} is a

homeomorphic  \mathbb{Z}_{p} ‐algebra isomorphism onto the closed image. For each  u  \in  \mathbb{Z}_{p}^{\cross} , we

denote by  u^{z} :  W  arrow  \mathbb{Z}_{p} the continuous function defined by  u^{z}(\kappa)  :=  u^{\kappa} , which lies in

 \Lambda_{0}^{\cross} . By the universality of the Iwasawa algebra, the continuous group homomorphism

 1+N\mathbb{Z}_{p}  \mapsto  \Lambda_{0}^{\cross},  \gamma  \mapsto  \gamma^{z} induces a homeomorphic  \mathbb{Z}_{p} ‐algebra isomorphism  \mathbb{Z}_{p}[[1+
NZp]]  \mapsto\Lambda_{0} onto the closed image.

We can define a continuous action  \rho.-2 of  \Pi_{0}(p) on  \Lambda_{0}^{\mathbb{N}} replacing  \kappa|_{1+p\mathbb{Z}_{p}} and
 d^{\kappa-i-j+h} in the explicit formula of  \rho_{\kappa} in Theorem 3.5 by  z-2 and  d^{z-2-i-j+h}  :=

 d^{-2-i-j+h}d^{z} respectively as follows:

Proposition 3.10. For any  (A, f, i)  \in  \Pi_{0}(p)  \cross  \Lambda_{0}^{\mathbb{N}}  \cross  \mathbb{N} with  A  =  (\begin{array}{l}
ba
cd
\end{array}) and

 f=(f_{j})_{j=0}^{\infty} , the infinite sum

 \rho_{-2}(A, f)_{i}  := \sum_{j=0}^{\infty}f_{j}\sum_{h=0}^{\min\{i,j\}}  (\begin{array}{l}
i
h
\end{array})  ( \prod_{m=i}^{i+j-h-1}(z-2-m))  a^{h}b^{i-h} \frac{c^{j-h}}{(-h)!}d^{z-2-i-j+h}
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converges in  \Lambda_{0} , and the map

 \rho_{-2}:\Pi_{0}(p) \cross\Lambda_{0}^{\mathbb{N}}arrow\Lambda_{0}^{\mathbb{N}
}, (A, f)\mapsto(\rho_{-2}(A, f)_{i})_{i\in \mathbb{N}}

makes  \Lambda_{0}^{\mathbb{N}} a profinite  \Lambda_{0}[\Pi_{0}(p)] ‐module.

The profinite  \Lambda_{0}[\Pi_{0}(p)] ‐module  (\Lambda_{0}^{\mathbb{N}}, \rho_{-2}) interpolates not only  (\mathbb{Z}_{p}^{\mathbb{N}}, \rho_{k-2})_{k\geq 2} but

also  (L_{k})_{k\geq 2} , i.e. the following holds:

Theorem 3.11. The specialisation map

 e_{k} :  (\Lambda_{0}^{\mathbb{N}}, \rho_{-2})  arrow L_{k},  (f_{i})_{i=0}^{\infty} \mapsto\sum_{i=0}^{k-2}f_{i}(k)e_{k,i},
is a quotient map for any  k\geq 2 , and the evaluation map

 ( \Lambda_{0}^{\mathbb{N}}, \rho_{-2}) arrow\prod_{k=2}^{\infty}L_{k}, f\mapsto
(e_{k}(f))_{k=2}^{\infty},
is a homeomorphic  \Lambda_{0} ‐linear  \Pi_{0}(p) ‐equivariant isomorphism onto the closed image.

Here a map  f :  Xarrow Y between topological spaces is said to be a quotient map if  f

induces a homeomorphism between  Y and the quotient space of  X by the equivalence

relation given by the subset  \{(x, x') \in X\cross X | f(x)=f(x')\}.

§3.3. Galois Representation over the Universal Hecke Algebra

For a finitely generated  \mathbb{Z}_{p} ‐module  M , let  M_{free} denote the quotient of  M by the

 \mathbb{Z}_{p} ‐submodule consisting of torsion elements. As in §1, we denote by  S_{N} the set  0

normalised cuspidal eigenforms of weight  \geq  2 and level  \Gamma_{1}(N) , and by  V_{f} the Galois

representation associated to  f\in S_{N} (cf. [De169]). We define a profinite  \Lambda_{0}[Ga1(\overline{\mathbb{Q}}/\mathbb{Q})]-
module  \mathbb{H}(N) such that  V_{f} is obtained from  \mathbb{H}(N) for any  f\in S_{N}.

Definition 3.12. We put  F  :=  (\Lambda_{0}^{\mathbb{N}}, \rho_{-2})_{Y_{1}(N)'} and  F_{k}  :=  (L_{k}, \rho_{\mathbb{Z}_{p}^{2}})_{Y_{1}(N)'} for

each  k  \geq  2 . We endow   \mathbb{H}_{\'{e} t}^{1}(Y_{1}(N)\frac{/}{\mathbb{Q}}, F_{k})_{free} with the  p‐adic topology, which coincides

with the canonical topology and the quotient topology of   \mathbb{H}_{\'{e} t}^{1}(Y_{1}(N)\frac{/}{\mathbb{Q}}, F_{k}) for each

 k\geq 2 . We denote by  \mathbb{H}(N) the image of the continuous  \Lambda_{0} ‐linear  Ga1(\overline{\mathbb{Q}}/\mathbb{Q}) ‐equivariant

homomorphism   \mathbb{H}_{\'{e} t}^{1}(Y_{1}(N)\frac{/}{\mathbb{Q}}, F)arrow\prod_{k=2}
^{\infty}\mathbb{H}_{\'{e} t}^{1}(Y_{1}(N)\frac{/}{\mathbb{Q}}, F_{k})_{free} induced by the specialisa‐

tion maps  e_{k} in Theorem 3.11. We endow  \mathbb{H}(N) with the relative topology of the target,

and regard it as a profinite  \Lambda_{0}[Ga1(\overline{\mathbb{Q}}/\mathbb{Q})] ‐module.

We note that the topology of  \mathbb{H}(N) coincides with the quotient topology of the

source. The definition above is inspired by the theory on direct integration of uni‐

tary representations over C. One of my main ideas in interpolation is to find good
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submodules in the direct product of   \mathbb{H}_{\'{e} t}^{1}(Y_{1}(N)\frac{/}{\mathbb{Q}}, F_{k})_{free}  \subset   \mathbb{Q}_{p}\otimes_{\mathbb{Z}_{p}}\mathbb{H}_{\'{e} t}^{1}(Y_{1}(N)
\frac{/}{\mathbb{Q}}, F_{k})  \cong

  H_{\'{e} t}^{1}(Y_{1}(N)\frac{/}{\mathbb{Q}}, Sym^{k-2}R^{1}(\pi_{N}')_{*}
(\underline{\mathbb{Q}}_{p})_{E_{1}(N)'}) with  k  \geq  2 . The following implies that  V_{f} is

obtained as a twist of a quotient of  \mathbb{Q}_{p}\otimes_{\mathbb{Z}_{p}}\mathbb{H}(N) for any  f\in S_{N} , because  V_{f} is isomor‐

phic to a twist of the quotient of   H_{\'{e} t}^{1}(Y_{1}(N)\frac{/}{\mathbb{Q}}, Sym^{k-2}R^{1}(\pi_{N}')_{*}
(\underline{\mathbb{Q}}_{p})_{E_{1}(N)'}) (cf. [Gro90]
Proposition 11.4):

Proposition 3.13 ([Mih15]). The specialisation map

  sp_{k}:\mathbb{H}(N)arrow \mathbb{H}_{\'{e} t}^{1}(Y_{1}(N)\frac{/}{\mathbb{Q}
}, F_{k})_{free}
given by the canonical projection is surjective for any  k\geq 2.

Outline of the proof. By the definition of  sp_{k} , it suffices to show the surjectivity  0

the map  \mathbb{H}_{\'{e} t}^{1} (ek):   \mathbb{H}_{\'{e} t}^{1}(Y_{1}(N)\frac{/}{\mathbb{Q}}, F)arrow \mathbb{H}
_{\'{e} t}^{1}(Y_{1}(N)\frac{/}{\mathbb{Q}}, F_{k}) induced by  e_{k} . We have a natural
equivalence   H_{\'{e} t}^{1}(Y_{1}(N)\frac{/}{\mathbb{Q}}, \underline{(M,\rho)}_{Y_{1}(N)'}
)  \cong H^{1}(\Gamma_{1}(N), (M, \rho)) between functors from the

category of finite  \mathbb{Z}_{p}[G\hat{\Gamma}_{\epsilon}(N)] ‐modules  (M, \rho) . It is given through the fixed embedding
 \overline{\mathbb{Q}}\mapsto  \mathbb{C} and the interpretation of   H_{\'{e} t}^{1}(Y_{1}(N)\frac{/}{\mathbb{Q}}, \underline{(M,\rho)}_{Y_{1}(N)'}
) (resp.  H^{1}(\Gamma_{1}(N),  (M, \rho)) )
as the set of isomorphism classes of  (M, \rho)_{Y_{1}(N)'} ‐torsors (resp.  (M, \rho) ‐torsors) in the
category of étale sheaves over  Y_{1}(N) \frac{/}{\mathbb{Q}} (resp. in the category of  \Gamma_{1}(N) ‐sets . We denote
by  \mathbb{H}^{1}(\Gamma_{1}(N), (\Lambda_{0}^{\mathbb{N}}, \rho_{-2})) and  \mathbb{H}^{1}(\Gamma_{1}(N), L_{k}) the inverse limits of the group cohomology

corresponding to   \mathbb{H}_{\'{e} t}^{1}(Y_{1}(N)\frac{/}{\mathbb{Q}}, F) and   \mathbb{H}_{\'{e} t}^{1}(Y_{1}(N)\frac{/}{\mathbb{Q}}, F_{k}) respectively. Owing to the first

countability of  \Lambda_{0}^{\mathbb{N}} and  L_{k} , we have natural isomorphisms  H^{1}(\Gamma_{1}(N), (\Lambda_{0}^{\mathbb{N}}, \rho_{-2}))  arrow

 \mathbb{H}^{1}(\Gamma_{1}(N), (\Lambda_{0}^{\mathbb{N}}, \rho_{-2})) and  H^{1}(\Gamma_{1}(N), L_{k})  arrow  \mathbb{H}^{1}(\Gamma_{1}(N), L_{k}) . Moreover,  \mathbb{H}_{\'{e} t}^{1}(e_{k}) cor‐

responds to  H^{1} (ek):  H^{1}(\Gamma_{1}(N), (\Lambda_{0}^{\mathbb{N}}, \rho_{-2}))  arrow  H^{1}(\Gamma_{1}(N), L_{k}) , which is surjective by
Proposition 3.8. We note that the cohomological dimension of  \Gamma_{1}(N) with respect to

the coefficient ring  \Lambda_{0} is 1, because  \Gamma_{1}(N) is isomorphic to the fundamental group  0

 H/\Gamma_{1}(N) . Indeed, the fundamental group of a connected non‐compact surface is a free

group of finite rank, and the cohomological dimension of a free group is 1.  \square 

Henceforth, we fix an algebraic closure  \overline{\mathbb{Q}}_{p} of  \mathbb{Q}_{p} and identify it with C. For each
 k  \geq  2 , we denote by  M_{k}(\Gamma_{1}(N), \overline{\mathbb{Q}}_{p}) the  \overline{\mathbb{Q}}_{p} ‐vector space of modular forms over  \overline{\mathbb{Q}}_{p}  0

weight  k and level  \Gamma_{1}(N) , by  T_{k,N}  \subset End_{\overline{\mathbb{Q}}_{p}}(M_{k}(\Gamma_{1}(N), 
\overline{\mathbb{Q}}_{p})) the  \mathbb{Z}_{p} ‐algebra generated

by Hecke operators, and by  T_{\leq k,N}  \subset  End_{\overline{\mathbb{Q}}_{p}}(\oplus_{k_{0}=2}^{k}M_{k_{0}}(\Gamma_{1}(N), 
\overline{\mathbb{Q}}_{p})) the  \mathbb{Z}_{p} ‐algebra

generated by the endomorphisms given by the diagonal action of Hecke operators. Here
a Hecke operator means one of the endomorphism  T_{\ell} for a prime number  \ell and  S_{n} for an
 n\in \mathbb{N} with  (n, N)=1 . We define the universal Hecke algebra  \mathbb{T}_{N} as   \lim_{arrow k\geq 2}T_{\leq k,N} and

endow it with the inverse limit topology of the  p‐adic topologies. Then  \mathbb{T}_{N} is a profinite

 \mathbb{Z}_{p}[[1 +N\mathbb{Z}_{p}]] ‐algebra with respect to the structure morphism  \mathbb{Z}_{p}[[1 +N\mathbb{Z}_{p}]]  arrow  \mathbb{T}

associated to the continuous group homomorphism  1+N\mathbb{Z}_{p}  arrow  \mathbb{T}_{N}^{\cross} sending  1+N to

 S_{1+N} by the universality of the Iwasawa algebra. We put  \Lambda_{0}\mathbb{T}_{N}  :=\Lambda_{0}\otimes_{\mathbb{Z}_{p}[[1+N\mathbb{Z}_{p}]]}\mathbb{T}_{N}\wedge.
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Theorem 3.14 ([Mih15]). The action of Hecke operators on  \mathbb{H}(N) induces
continuous  \Lambda_{0} ‐linear  Ga1(\overline{\mathbb{Q}}/\mathbb{Q}) ‐equivariant faithful action  \mathbb{T}_{N}  \cross  \mathbb{H}(N)  arrow  \mathbb{H}(N) , fo

which  \mathbb{H}(N) forms a profinite  \Lambda_{0}\mathbb{T}_{N}[Ga1(\overline{\mathbb{Q}}/\mathbb{Q})] ‐module.

Outline of the proof. The continuous action of  \Pi_{0}(p) on  \Lambda_{0}^{\mathbb{N}} induces an action  0

Hecke operators on  \mathbb{H}(N) compatible with the specialisation maps. It gives an action

of the dense  \Lambda_{0} ‐subalgebra of  \Lambda_{0}\mathbb{T}_{N} generated by Hecke operators, which is continuous

with respect to the relative topology. The compactness of  \mathbb{H}(N) implies that the action
extends to  \Lambda_{0}\mathbb{T}_{N}.  \square 

§3.4.  p‐adic Family of Finite Slope

The profinite  \Lambda_{0}\mathbb{T}_{N}[Ga1(\overline{\mathbb{Q}}/\mathbb{Q})] ‐module  \mathbb{H}(N) does not seem to be finitely gener‐

ated as a  \Lambda_{0}\mathbb{T}_{N} ‐module, and we do not know whether the specialisation maps  \mathbb{H}(N)arrow

  \mathbb{H}_{\'{e} t}^{1}(Y_{1}(N)\frac{/}{\mathbb{Q}}, F_{k})_{free} with  k  \geq  2 can be obtained as the quotients by the correspond‐

ing ideals of  \Lambda_{0}\mathbb{T}_{N} or not. In order to deal with the specialisation in such a mod‐

ule theoretic way, we cut  \mathbb{H}(N) by a fixed bound  s of slopes. Let  s  \in  \mathbb{N}\backslash \{0\} and
 k  \geq  2 . An  F  \in  M_{k}(\Gamma_{1}(N), \overline{\mathbb{Q}}_{p}) is said to be of slope  <  s if every eigenvalue  0

 T_{p} acting on  \mathbb{Q}_{p}\otimes_{\mathbb{Z}_{p}}  T_{k},{}_{N}F is of norm  >  |p|^{s} . We denote by  M_{k}(\Gamma_{1}(N), \overline{\mathbb{Q}}_{p})^{<s}  \subset

 M_{k}(\Gamma_{1}(N), \overline{\mathbb{Q}}_{p}) the  T_{k,N} ‐stable  \overline{\mathbb{Q}}_{p} ‐vector subspace consisting of modular forms  0

slope  <  s , by  T_{p}^{-1}  \in  End_{\overline{\mathbb{Q}}_{p}}(M_{k}(\Gamma_{1}(N), \overline{\mathbb{Q}}_{p})
^{<s}) the inverse of the restriction of  T_{p},

by  T_{k}^{<s}  \subset  End_{\overline{\mathbb{Q}}_{p}}(M_{k}(\Gamma_{1}(N), \overline{\mathbb{Q}}_{p})
^{<s}) the  \mathbb{Z}_{p} ‐subalgebra generated by Heck operators

and  p^{s}T_{p}^{-1} , and by  T_{\leq k}^{<s},  \subset End_{\overline{\mathbb{Q}}_{p}}(\oplus_{k_{0}=2}^{k}M_{k_{0}}
(\Gamma_{1}(N), \overline{\mathbb{Q}}_{p})^{<s}) the  \mathbb{Z}_{p} ‐subalgebra gen‐

erated by endomorphisms given by the diagonal action of Hecke operators and  p^{s}T_{p}^{-1}.
We set  \mathbb{T}_{N}^{<s}  :=   \lim_{arrow k\geq 2}T_{\leq k,N}^{<s} . Then  \mathbb{T}_{N}^{<s} is a profinite  \mathbb{Z}_{p}[[1 +N\mathbb{Z}_{p}]] ‐algebra. We

put  \Lambda_{0}\mathbb{T}_{N}^{<s}  :=  \Lambda_{0}\otimes_{\mathbb{Z}_{p}[[1+N\mathbb{Z}_{p}]]}\mathbb{T}_{N}^{<s}
\wedge , and regard it as a profinite  \Lambda_{0}\mathbb{T}_{N} ‐algebra. We set

  \mathbb{H}_{\'{e} t}^{1}(Y_{1}(N)\frac{/}{\mathbb{Q}}, F_{k})^{<s}  :=  ( T_{k,N}^{<s} \otimes_{T_{k,N}} \mathbb{H}_{\'{e} t}^{1}(Y_{1}(N)\frac{/}
{\mathbb{Q}}, F_{k})_{free})_{free} . We denote by  \mathbb{H}(N)^{<s}
the image of the natural continuous  \Lambda_{0}\mathbb{T}_{N}^{<s} ‐linear  Ga1(\overline{\mathbb{Q}}/\mathbb{Q}) ‐equivariant homomor‐

phism  \Lambda_{0}\mathbb{T}_{N}^{<s_{\Lambda_{0}\mathbb{T}_{N}}^{\wedge}}\mathbb{H}
(N)  arrow   \prod_{k=2}^{\infty}\mathbb{H}_{\'{e} t}^{1}(Y_{1}(N)\frac{/}{\mathbb{Q}}, 
F_{k})^{<s} , and regard it as a profinite

 \Lambda_{0}\mathbb{T}_{N}^{<s}[Ga1(\overline{\mathbb{Q}}/\mathbb{Q})] ‐module. The following theorem ensures that  \mathbb{Q}_{p}  \otimes_{\mathbb{Z}_{p}}  \mathbb{H}(N)^{<s} in‐

terpolates  V_{f} for any  f\in S_{N} of slope  <s :

Theorem 3.15 ([Mih15]). If  p^{s}  N , then  \mathbb{H}(N)^{<s} is nitely generated as
 \Lambda_{0}\mathbb{T}_{N}^{<s} ‐module, and the canonical projections

  sp_{k}^{<s}:\mathbb{H}(N)^{<s}arrow \mathbb{H}_{\'{e} t}^{1}(Y_{1}(N)\frac{/}{
\mathbb{Q}}, F_{k})^{<s}, \overline{e}_{k}:\Lambda_{0}\mathbb{T}_{N}^{<s}arrow 
\mathbb{T}_{k}^{<s}
induce a homeomorphic  T_{k,N}^{<s} ‐linear  Ga1(\overline{\mathbb{Q}}/\mathbb{Q}) ‐equivariant isomorphis

  \mathbb{H}(N)^{<s}/ker(\overline{e}_{k})arrow \mathbb{H}_{\'{e} t}^{1}(Y_{1}
(N)\frac{/}{\mathbb{Q}}, F_{k})^{<s}
with respect to the quotient topology of the source for any  k\geq 2.
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Outline of the proof. Since  \Gamma_{1}(N) is a finitely generated free group, there is

a  \Lambda_{0} ‐linear isomorphism  Z^{1}(\Gamma_{1}(N), (\Lambda_{0}^{\mathbb{N}}, \rho.-2))  \cong  (\Lambda_{0}^{\mathbb{N}})^{d} depending on a choice of a

group isomorphism between  \Gamma_{1}(N) and the free group of rank  d  \in N. Then the

image of the composite of the zero‐extension  (\Lambda_{0}^{s})^{d}  \mapsto  (\Lambda_{0}^{\mathbb{N}})^{d} , the canonical projec‐

tion  (\Lambda_{0}^{\mathbb{N}})^{d}\cong Z^{1}(\Gamma_{1}(N), (\Lambda_{0}
^{\mathbb{N}}, \rho.-2))  arrow H^{1}(\Gamma_{1}(N), (\Lambda_{0}^{\mathbb{N}}, \rho.-2)) , the natural isomorphism

 H^{1}(\Gamma_{1}(N), (\Lambda_{0}^{\mathbb{N}}, \rho.-2))  \cong   \mathbb{H}_{\'{e} t}^{1}(Y_{1}(N)\frac{/}{\mathbb{Q}}, F) , and the natural map   \mathbb{H}_{\'{e} t}^{1}(Y_{1}(N)\frac{/}{\mathbb{Q}}, F)  arrow

 \mathbb{H}(N)arrow \mathbb{H}(N)^{<s} generates  \mathbb{H}(N)^{<s} as a  \Lambda_{0}\mathbb{T}_{N}^{<s} ‐module by a careful calculation of the

 p‐adic valuations of the matrix coefficient of  T_{p} on   \mathbb{H}_{\'{e} t}^{1}(Y_{1}(N)\frac{/}{\mathbb{Q}}, F_{k})  \cong H^{1}(\Gamma_{1}(N), L_{k}) .

The second assertion follows from a similar explicit computation.  \square 

In order to cut  \mathbb{H}(N)^{<s} by “a family of eigenforms of slope  <  s ” in a module

theoretic way, we formulate a family of modular forms as a formal power series over a

topological  \Lambda_{0} ‐algebra  \Lambda_{1} called a  \Lambda‐adic domain.

Let  \Lambda_{1} be a topological  \Lambda_{0} ‐algebra. A continuous  \mathbb{Z}_{p} ‐algebra homomorphism  \Lambda_{1}  arrow

 \overline{\mathbb{Z}}_{p} is said to be a character of weight  k\in \mathbb{Z}_{p} if its restriction on  1+N\mathbb{Z}_{p}\cong\{[\gamma]  |  \gamma\in

 1+N\mathbb{Z}_{p}\}\subset \mathbb{Z}_{p}[[1+N\mathbb{Z}_{p}]] coincides with the group homomorphism  1+N\mathbb{Z}_{p}arrow\overline{\mathbb{Z}}_{p}^{\cross},  \gamma\mapsto

 \gamma^{k} . We denote by  \Omega(\Lambda_{1}) the Hausdorff space of continuous  \mathbb{Z}_{p} ‐algebra homomorphisms
 \Lambda_{1}  arrow\overline{\mathbb{Z}}_{p} , and by  \Omega(\Lambda_{1})_{S}  \subset  \Omega(\Lambda_{1}) the subspace consisting of characters of weights in
 S for each  S\subset \mathbb{Z}_{p} . For each  \varphi\in\Omega(\Lambda_{1})_{\mathbb{Z}_{p}} , we denote by  wt(\varphi)  \in \mathbb{Z}_{p} the weight of  \varphi.

Definition 3.16 ([Mih15]). A compact topological  \Lambda_{0} ‐algebra  \Lambda_{1} is said to be
a  \Lambda ‐adic domain if it satisfies the following conditions:

(i) The set  \{k\in \mathbb{N}\cap[2, \infty) | \Omega(\Lambda_{1})_{\{k\}} \neq\emptyset\} is an infinite set.

(ii) For any infinite subset  \Sigma\subset\Omega(\Lambda_{1})_{\mathbb{N}\cap[2,\infty)} , the equalityn  \in\Sigma ker(\varphi)=\{0\} holds.

The following justifies the terminology  \backslash \backslash a\Lambda‐adic domain” :

Proposition 3.17 ([Mih15]). Every  \Lambda ‐adic domain is a commutative profinite
 \Lambda_{0} ‐algebra whose underlying ring is an integral domain.

Remark 3.18. Since  \Lambda_{0} is topologically of finite type as a topological  \mathbb{Z}_{p} ‐algebra,

it yields a  \mathbb{Q}_{p} ‐analytic space  W^{an} in the sense of Berkovich, whose  \mathbb{Q}_{p} ‐rational points

are naturally identified with  W . Every  \Lambda‐adic domain finitely generated as a module

over the  \Lambda_{0} ‐algebra associated to an open ball in  W^{an} is topologically of finite type as

a topological  \mathbb{Z}_{p} ‐algebra, and hence yields a  \mathbb{Q}_{p} ‐analytic space over  W^{an} . Every closed

good  \mathbb{Q}_{p} ‐analytic space étale over  W^{an} admits an open covering by  \mathbb{Q}_{p} ‐analytic spaces

associated to such  \Lambda‐adic domains ([Mih15]). For more details about terminology on
rigid analytic spaces such as a closed  \mathbb{Q}_{p} ‐analytic space, a good  \mathbb{Q}_{p} ‐analytic space, and

an étale morphism between  \mathbb{Q}_{p} ‐analytic spaces, see [Ber90] 3.1.2, [Ber93] 1.2.15, and
[Ber93] Definition 3.3.4 respectively.
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Let  \Lambda_{1} be a  \Lambda‐adic domain, and  \chi :  (\mathbb{Z}/N\mathbb{Z})^{\cross}  arrow  \Lambda_{1}^{\cross} a group homomorphism.

We denote by  \Lambda_{1}(\chi) the profinite  \Lambda_{1}[Ga1(\overline{\mathbb{Q}}/\mathbb{Q})] ‐module  \Lambda_{1} on which  Ga1(\overline{\mathbb{Q}}/\mathbb{Q}) acts

through the character obtained as the composite of the restriction map  Ga1(\overline{\mathbb{Q}}/\mathbb{Q})  arrow

 Ga1(\mathbb{Q}(\zeta_{N})/\mathbb{Q}) , the natural isomorphism  Ga1(\mathbb{Q}(\zeta_{N})/\mathbb{Q})\cong  (\mathbb{Z}/N\mathbb{Z})^{\cross} , and  \chi.

Definition 3.19. A  \Lambda_{1} ‐adic form of level  \Gamma_{1}(N) , character  \chi , and slope  [< s]
is an  f  \in  \Lambda_{1}[[q]] such that  f_{\varphi}  .:=   \sum_{h=0}^{\infty}\varphi(a_{h}(f))q^{h}  \in  \overline{\mathbb{Q}}_{p}[[q]] is a modular form  0

weight wt (  \varphi ) , level  \Gamma_{1}(N) , character  \varphi\circ\chi , and slope  <  s for all but finitely many
 \varphi\in  \Omega(\Lambda_{1})_{\mathbb{N}\cap[2,\infty)} . We denote by  M(\Gamma_{1}(N), \chi, \Lambda_{1})^{[<s]} the  \Lambda_{1} ‐module of  \Lambda_{1} ‐adic forms

of level  \Gamma_{1}(N) , character  \chi , and slope  [< s] . A normalised  \Lambda_{1} ‐adic cuspidal eigenfor

of level  \Gamma_{1}(N) , character  \chi , and slope  <s is an  f\in M(\Gamma_{1}(N), \chi, \Lambda_{1})^{[<s]} with  a_{p}(f)\neq 0
and  p^{s}a_{p}(f)^{-1}  \in  \Lambda_{1} as an element of Frac  (\Lambda_{1}) such that  f is a normalised cuspidal

eigenform for all but finitely many  \varphi\in\Omega(\Lambda_{1})_{\mathbb{N}\cap[2,\infty)}.

We show in [Mih15] that  M(\Gamma_{1}(N), \chi, \Lambda_{1})^{[<s]} is generically finitely generated in
a similar way to the proof of [Hid93] §7.3 Theorem 1 by [Col97] Theorem  B  3.5 and
[Wan98] Theorem 2.5.

Example 3.20. The eigencurve given by M. Emerton in [Eme] Theorem 2.23
is equipped with a family of eigenforms of level  \Gamma_{1}(N) and finite slopes. Let  C denote

the cuspidal locus of the eigencurve. The normalisation of the canonical reduced closed

analytic subvariety of  C is a closed good  \mathbb{Q}_{p} ‐analytic space, and hence admits an open

covering by  \mathbb{Q}_{p} ‐analytic spaces associated to  \Lambda‐adic domains by Remark 3.18. Let   f\in
 S_{N} be an eigenform of character  \chi_{f} :  (\mathbb{Z}/N\mathbb{Z})^{\cross}  arrow\overline{\mathbb{Q}}_{p}^{\cross} and slope  <  s , and  x_{f}  \in  C(\overline{\mathbb{Q}}_{p})
the point corresponding to  f . Pulling back the family of eigenforms to a sufficiently

small open neighbourhood of  x_{f} given as the  \mathbb{Q}_{p} ‐analytic space associated to a  \Lambda‐adic

domain  \Lambda_{1} , we obtain a group homomorphism  \chi :  (\mathbb{Z}/N\mathbb{Z})^{\cross}  arrow\Lambda_{1}^{\cross} whose specialisation

at  x_{f} coincides with  \chi_{f} and a normalised cuspidal  \Lambda_{1} ‐adic eigenform of level  \Gamma_{1}(N) ,

character  \chi , and slope  <  s whose specialisation at  x_{f} coincides with  f , because the

slope of eigenforms is locally constant on the eigencurve.

We denote by  \Lambda_{1}\mathbb{T}_{N,\chi}^{<s} “the  \Lambda_{1} ‐algebra topologically generated by Hecke operators

and  p^{s}T_{p}^{-1} restricted to  M(\Gamma_{1}(N), \chi, \Lambda_{1})^{[<s]} ” . For each normalised  \Lambda_{1} ‐adic cuspidal

eigenform  f of level  \Gamma_{1}(N) , character  \chi , and slope  <  s , we denote by  V_{f} the quo‐

tient of  (<s\wedge\wedge(\chi) by the continuous  \Lambda_{1} ‐algebra homomorphism

 \Lambda_{1}\mathbb{T}_{N,\chi}^{<s}  arrow  \Lambda_{1} associated to  f . Then  V_{f} naturally forms a profinite  \Lambda_{1}[Ga1(\overline{\mathbb{Q}}/\mathbb{Q})]-
module, and hence the action  Ga1(\overline{\mathbb{Q}}/\mathbb{Q})  \cross V_{f}  arrow V_{f} is continuous.

Theorem 3.21 ([Mih15]). Suppose  p^{s}  | N. For any normalised  \Lambda_{1} ‐adic cusp‐
idal eigenform  f of level  \Gamma_{1}(N) and slope  <  s , Frac  (\Lambda_{1})  \otimes_{\Lambda_{1}}  V_{f} is  a 2‐dimensiona

representation of  Ga1(\overline{\mathbb{Q}}/\mathbb{Q}) over Frac  (\Lambda_{1}) . Furthermore, there is a finite subset  \Sigma_{s}  \subset
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 \Omega(\Lambda_{1})_{\mathbb{N}\cap[2,\infty)} satisfying the following for any normalised  \Lambda_{1} ‐adic cuspidal eigenform  f

of level  \Gamma_{1}(N) , character  \chi , and slope  <s :

(i) For any  \varphi  \in  \Omega(\Lambda_{1})_{\mathbb{N}\cap[2,\infty)}\backslash \Sigma_{s},  f_{\varphi} is a normalised cuspidal eigenform of weight
 wt(\varphi) , level  \Gamma_{1}(N) , character  \varphi 0\chi , and slope  <s.

(ii) For any  \varphi\in\Omega(\Lambda_{1})_{\mathbb{N}\cap[2,\infty)}\backslash \Sigma_{s},  \overline{\mathbb{Q}}_{p}(\varphi)\otimes_{\Lambda_{1}}V_{f} is isomorphic to  \overline{\mathbb{Q}}_{p}\otimes_{\mathbb{Q}_{p}(f_{\varphi})}V_{f_{\varphi}} , where

 \overline{\mathbb{Q}}_{p}(\varphi) denotes  \overline{\mathbb{Q}}_{p} regarded as a  \Lambda_{1} ‐algebra through  \varphi.

(iii) The  C(\Omega(\Lambda_{1})_{\mathbb{N}\cap[2,\infty)}\backslash \Sigma_{s}, 
\overline{\mathbb{Q}}_{p})[Ga1(\overline{\mathbb{Q}}/\mathbb{Q})] ‐module  C(\Omega(\Lambda_{1})_{\mathbb{N}\cap[2,\infty)}\backslash \Sigma_{S}, 
\overline{\mathbb{Q}}_{p})\otimes_{\Lambda_{1}}V_{f} is
free of rank 2 as a  C  (\Omega(\Lambda_{1})_{\mathbb{N}\cap[2,\infty)}\backslash \Sigma_{s}, \overline
{\mathbb{Q}}_{p}) ‐module.

Outline of the proof. The generic finiteness of  M(\Gamma_{1}(N), \chi, \Lambda_{1})^{<s} ensures the

finiteness of the set of normalised  \Lambda_{1} ‐adic cuspidal eigenforms of level  \Gamma_{1}(N) , char‐

acter  \chi , and slope  <  s . Therefore it suffices to verify the existence of  \Sigma_{s} satisfying

(x) for any single   x\in {  i , ii, iii} and any single normalised  \Lambda_{1} ‐adic cuspidal eigenform  f

of level  \Gamma_{1}(N) , character  \chi , and slope  <  s . The assertion (i) follows from the defini‐
tion of a  \Lambda_{1} ‐adic form. The assertion (ii) follows from the latter assertion of Theorem
3.15. The specialisations of  \mathbb{Q}_{p}\otimes_{\mathbb{Z}_{p}}V_{f} at  \varphi are of 2‐dimension for all but finitely many

 \varphi\in\Omega(\Lambda_{1})_{\mathbb{N}\cap[2,\infty)} by the assertion (ii), and it ensures that there is a  D\in\Lambda_{1}\backslash \{0\} such
that  (\mathbb{Q}_{p}\otimes_{\mathbb{Z}_{p}}\Lambda_{1})[D^{-1}]\otimes_{\Lambda_{1}
}V_{f} is a free  (\mathbb{Q}_{p}\otimes_{\mathbb{Z}_{p}}\Lambda_{1})[D^{-1}] ‐module of rank 2. Therefore

Frac  (\Lambda_{1})\otimes_{\Lambda_{1}}  V_{f} is of dimension 2, and the assertion (iii) follows from the fact that
every  D  \in  \Lambda_{1}\backslash \{0\} has at most finitely many zeros on  \Omega(\Lambda_{1})_{\mathbb{N}\cap[2,\infty)} by the definition
of a  \Lambda‐adic domain.  \square 
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