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Abstract

The elliptic Ding-Iohara-Miki algebra [Sal] is an elliptic quantum group obtained from
the free field realization of the elliptic Ruijsenaars operator. In this article, we review the free
field realization of the elliptic Ruijsenaars operator, the elliptic Ding-Iohara-Miki algebra and
related topics.
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Notations. In this paper, we use the following symbols.

Z : the set of integers, Zso:={0,1,2,...}, Zso:={1,2,...},
Q : the set of rational numbers, Q(g,t) : the field of rational functions of ¢, ¢ over Q,
C : the set of complex numbers, C* :=C\ {0},

F[[z, 27 '] : the set of formal power series of z, 2~ ' over a field F.

If a sequence A = (A1, ..., An) € (Zx>0)" satisfies the condition \;>\; 1 (1<Vi<N-—1),
A is called a partition. We denote the set of partitions by P. For a partition A\, we define
0N = #{i | A # 0}, |A| = FY Ai. The symbol £() is called the length of A and ||
is called the size of A.

Let g, p € C be complex parameters satisfying |¢| < 1, |p| < 1. We define the
¢-infinite product as (z;¢)oc := [[,,5¢(1 — 2¢") (z € C) and the theta function as

O,(2) == (P; D)oo (@ P)oc Pz ';P)e  (x € C¥).

We set the double infinite product as (z; ¢, p)oc := [[,,,.n50(1 —2¢™p") (z € C) and the
elliptic gamma function as

-1
qpr ",4,P)co
Lyple) = BP0,

§1. Introduction

The aim of this article is to give a short review on the elliptic Ding-Iohara-Miki
algebra [Sal] and related materials. First we give backgrounds of this article.

Quantum algebraic aspects of quantum integrable systems have been studied in
these decades. The Ding-Iohara-Miki algebra, which is one of main features of this arti-
cle, is a quantum group which has to do with the free field realization of the Macdonald
operator. Actually, first Ding and Iohara found a class of quantum groups as gener-
alizations of the quantum affine algebra Uq(;l\g) [DI]. Then Miki [Miki] introduced a
g-deformation of the Wi, o, algebra which has a structure of Ding and Iohara’s algebra.
Further Feigin-Hashizume-Hoshino-Shiraishi-Yanagida [FHHSY] obtained a quantum
group which is essentially the same as Miki’s quantum group, and constructed the com-
mutative families containing the Macdonald operator by using the free field realization
and the trigonometric Feigin-Odesskii algebra.

By keeping the fact that the Hamiltonian of the trigonometric Ruijsenaars model
[R1] is essentially the same as the Macdonald operator in mind, we can recognize that
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the trigonometric Ruijsenaars model can be treated in terms of representations of the
Ding-Iohara-Miki algebra. The Ding-Iohara-Miki algebra has some applications to the
AGT conjecture [AFHKSY], the refined topological vertex [AFS].

On the other hand, there exists an elliptic generalization of the trigonometric Rui-
jsenaars model, so-called the elliptic Ruijsenaars model [R1]. Then by recalling the

trigonometric case, one can have a question:

How can we obtain an elliptic analog of the Ding-lohara-Miki algebra which

has connections to the elliptic Ruijsenaars model ?

One of main purposes is to give an answer to the above question.

Then we can find the fact that the free field realization of the Macdonald operator is
based on the form of the kernel function for the operator. In addition Komori-Noumi-
Shiraishi studied kernel functions for ¢-difference operators of Ruijsenaars type, and
they obtained the kernel function for the elliptic Ruijsenaars operator [KNS]. Hence it
would be a natural expect that the elliptic kernel function has important informations
for the free field realization of the elliptic Ruijsenaars operator. Actually, the elliptic
kernel function tells us what kind of boson is suitable. Consequently, starting from
the elliptic kernel function, the free field realization of the elliptic Ruijsenaars operator
was obtained, and an elliptic analog of the Ding-Iohara-Miki algebra arose. We call
the elliptic quantum group the elliptic Ding-Iohara-Miki algebra. Furthermore
it turns out that by using the free field realization and the elliptic Feigin-Odesskii
algebra [FO][FHHSY], we can construct commutative families of the elliptic Ruijsenaars
operator, i.e. a part of works due to Feigin-Hashizume-Hoshino-Shiraishi-Yanagida can
be extended to the elliptic case.

free field realization !

Elliptic Ruijsenaars operator Elliptic Ding-Iohara-Miki algebra

Telliptic deformation Telliptic deformation !

free field realization

Macdonald operator > Ding-Iohara-Miki algebra

Next let us explain the word the elliptic deformation. On the theta function ©,(x)
and the elliptic gamma function I'y ,,(z), we can easily check the followings:

O, (%) := (1;P) oo (T3 D)oo (P D) 00 —— 1 — 1z,
p—0

I, (2) = (qpz™ 15 ¢,p)so o1
P (54, P)se P20 (T3Q)oo

Thus it is natural to regard an inverse procedure of the above as the elliptic deformation.
We can find such procedure as follows. Let us rewrite 1 — z and (z;¢)! as

x™ 1 1 ™
1_x:eXp(_ZF>’ (75 9) o :eXp(Zl—q"7>'

n>0
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Furthermore we rewrite O,(x)/(p; p)oc and I'y ,(x) as

(p; p)OO n=£0 n#0

Hence we can find the following procedure:

x™ elliptic r z" Op ()
1—2= Sy D) e - )=
v P ( Z n ) deformation P ( Z 1-— pton ) (p;p)oo7

n>0 n#0
L (L) e (5 I WP
(%5 ¢) oo 750 1—¢™ n / deformation = (1—qn)(1—pn) n ap\)

The above operation is for functions, however not only for functions but also for boson
operators there exists a similar procedure of elliptic deformation. By using the pro-
cedure, we can reproduce the theta function ©,(x) and the elliptic gamma function
I'; p(z) from OPE of boson operators.

Organization of this paper.

In Section 2, we will discuss about the free field realization of the elliptic Ruijsenaars
operator and the elliptic Ding-Tohara-Miki algebra U(q, t,p) [Sal]. In Section 3, we will
construct the commutative families of the elliptic Ruijsenaars operator by using the free
field realization and the elliptic Feigin-Odesskii algebra [Sa2].

Acknowledgements. 1 would like to thank organizers of 2013 RIMS SYMPO-
SIUM ”String Theory, Integrable Systems and Representation Theory” for giving me
opportunities of my talk at the conference and this submission.

§ 2. Elliptic Ding-Iohara-Miki algebra

In this section, we introduce the elliptic Ding-Iohara-Miki algebra [Sal]. For read-
ers convenience, before starting discussions about elliptic case we give a review of the
trigonometric case [FHHSY].

§2.1. Free field realization of the Macdonald operator

In the following, let ¢, t € C* be complex parameters and we assume |q| < 1,
[t71] < 1 and ¢ # t. We denote the field of rational functions of g%, t1/4 over Q
by K := Q(q'/4,t'/*). Set the g-shift operator by T, .f(z) := f(qz). The Macdonald
operator Hy(q,t) (N€Z~g) is defined by

N
Hy(q,t) := Z H %Tq,mi.

.
i=1j%i =" J
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Then the kernel function for the Macdonald operator defined below has the follow-
ing property.

Proposition 2.1 (Kernel function for Hy(q,t) [Mac]). Define the func-
tion Iy n(q,t)(z,y) (M,N € Zso) as follows.

(tziy;; q)
Mun(a.0(@y) =[] "=,
1<i<M iYj54)c0
1<5<N

Let Hy(q,t): be the Macdonald operator which acts on functions of x1,...,xn. Then
the Macdonald operator Hy(q,t) and the kernel function Ty n(q,t)(z,y) satisfy the

following relation.

Hn(q,t)Unn (g, t) (2, y) = Hn (g, t)y NN (g, t) (2, y).

For the free field realization of the Macdonald operator, let us consider to rewrite
the kernel function Il n(g,t)(x,y) as the following form:

Man(@O@y) = ] eXp(Zi:(z: <xizj)n).

1<i<M n>0
1<j<N

Next we define the K-algebra Bg of boson to be generated by {an }nez\ {0} and the
following relation:

— glml
(2.1) [, an] = m%émﬂho (m,n € Z\ {0}).

We set the normal ordering : e : as

Ay (M < n),
DAy, =
anGm (M >n).

Let |0) be the vacuum vector which satisfies a,,|0) = 0 (n > 0). For a partition \, we
Set A 1= a—x, " Ay, and define the boson Fock space F as the left Bg-module:

F :=spang {a_»|0) |\ € P}.

Let (0| be the dual vacuum vector which satisfies the condition (0la,, = 0 (n < 0)
and define the dual boson Fock space F* as the right Bx-module:

F* .= spanK{(O\a,\])\ E'P} (G)\ =ay, "'a)\e(x))'
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For a partition A, we define symbols ny(a), z\ and z)(q,t) by

e N
) nixla 1_ i
ma(a) =8|\ =a}, o= [Ja™@na@)l (g, t) =2 [] 7—5

a>1 i=1

Let us define a bilinear form (e|e) : F* x F — K by the following condition.
<0|a>\a7u|0> = 5Au2)\(q? t)'
The answer why we need the boson (2.1) is in the following proposition.

Proposition 2.2 (Reproduction of the kernel function I,y (q,t)(x,y)).
Let us define boson operators ¢(z) : F — Fl[z,271]] and ¢*(2) : F* — F*[[z,27 Y]] as

follows.

1 — ¢ n 1 —¢n n
d)(z)::exp(zl_éna_n%), (j)*(z);:exp(zl_;nan%).

n>0 n>0

We use the symbols as ¢n(x) := H;V:1 o(x;), on(z) == vazl ¢*(xj) (N € Zso). Then
the kernel function yn(q,t)(x,y) is reproduced from the operators ¢ (x) and ¢n(y)
as follows.

(0lons ()N ()|0) = Harn (g, ) (2, y).

For boson operators which take the following forms as
X(z) = exp (Z X;anz—") exp <Z X,janz—n> € Endg (F)[[z,27Y]] (XF eK),
n<0 n>0

we use the notations (X (z))4 defined by

(X(2))s = exp ( > X,janz—n> . (X(2))- = exp ( > Xn_anz_”) .

n>0
For the free field realization of the Macdonald operator, we prepare the following

boson operators n(z), £(z).

Proposition 2.3 ([FHHSY]). Define the operator n(z) : F — F[lz,271]] as

follows.
n z7" .
n(z) :=: exp ( - Z(l —1 )anT) :
n#0
Then n(z) satisfies the following.

) (n(tz)-0(2) = 6(gz), ¢"(2)((z""))4 = ¢"(g2).

§ B (1—w/2)(1—qt tw/z) (A () : w/2
i) ) = TR IWE yw)s (fufsl < 1),
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Proposition 2.4 ([FHHSY]). Define the operator £(z) : F — Fllz,271]] as
follows.

§(2) 1=t exp (Z(l - t”)v'”anﬂ) po(y = (gt )T,

n
n#0

Then £(z) satisfies the following.

D) (£(v2)-0(2) = ¢la"2), ¢"(2)(Ety"271))s = ¢ (a " 2).

i z)E(w :(l—w/z)(l—qfltw/z). z)E(w) : w/z -1
) E@EW) = (T H T ey e (/A <),

In the following [f(2)]; denotes the constant term of f(z) in z. The operators 7(z),

&(z) reproduce the Macdonald operators in the following way.

Proposition 2.5 (Free field realization of the Macdonald operator[FHHSY)).
(1) The operator n(z) reproduces the Macdonald operator Hy(q,t) as follows.

() (2)]0) =tV {(t — 1) Hn (g, 1) + 1}on(2)]0).
(2) The operator &(z) reproduces the Macdonald operator Hy (g7, t71) as follows.
[E(2)]1on (2)|0) = t"{(t" = D) Hn (7", t7") + 11w (2)[0).
We also have the dual version of Proposition 2.5.

Proposition 2.6 (Dual version of Proposition 2.5).
(1) The operator n(z) reproduces the Macdonald operator Hy(q,t) as follows.

(Olox (2)n(2)]s = N {(t — 1) Hn (g, t) + 1H0[o (2).

(2) The operator £(z) reproduces the Macdonald operator Hy (g7, t71) as follows.

(Olon (@)[E(x)]1 = " {(t™" = DHN(¢ ', t71) + 1LH0[d) (2).

By the free field realization of the Macdonald operator, we can show the functional
equation of the kernel function Il n(g,t)(x,y).

Proposition 2.7 (Functional equation of the kernel function).  The Mac-
donald operator Hy(q,t) and the kernel function My n(q,t)(z,y) satisfy the following
functional equation.

_¢M-N

(2.2) {Hun (g, 1) — tM_NHN(q,t)y}HMN(q, t)(z,y) = 7

Marn (g, t)(z,y).

Here Hp(q,t), denotes the Macdonald operator which acts on functions of 1, ,zn.
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Proof. 'The proof of Proposition 2.7 is very simple. By the free field realization of
the Macdonald operator, we can calculate the matrix element (0|¢as(2)[n(2)]10n (y)[0)
in different two ways as

(O[¢n () [n(2)]16n (¥)[0)
=t M{(t — 1)Hun(q, )z + U Ian (g, t) (2, y)
=t NV{(t - 1)Hn(q,t)y + 1HIpn (g, t) (2, y).

Consequently we have the relation (2.2). O O

§2.2. Ding-Iohara-Miki algebra U(q,t)
The Ding-Tohara-Miki algebra U(q,t) is defined as follows.

Definition 2.8 (Ding-Iohara-Miki algebra U/(q,t) [Miki][FHHSY]).
Let f*(z) be the polynomials in 2 € C* and g(z) be the meromorphic function in
x € C* defined by

fra) =1 —qgu)1—t7'e)(1 - ¢ ), [ (2):=01-q¢ '2)(1—tx)(1—qt™ '),
@) (-1 - )1 g )

M=) G (- )1 gt )

Let C be a central, invertible element and 2% (z) := >, aFz7", % (2) := > tn>0 Przn

be currents satisfying the relations:

(2 tw)] = T(z _w:M_w T(z
P @) =0, R () = S T Wt ()

w

vt w) = o(CFHY) Tt et (), @t ) = (07 2) T et w2,
—(e/w) (/) ()t (w) = FH(2/w)a* (w)r* (2),

ot e ) = 2O 5 0yt evmu)-s (0 L)y |

We define the Ding-Iohara-Miki algebra (g, t) to be an associative K-algebra generated
by {5 ez, {¥F}£n>0, and C with the above relations.

Remark 2.9. It can be checked that the Ding-Iohara-Miki algebra has the co-
product A : U(q,t) — U(q,t) @U(q,t) defined as follows [FHHSY]:
A(CH) =0 00, AW (2) = v*(Ch) ) @ v*(CF) %),
Aat(2)) =2 (2) @ 1+ 97 (C{{)2) ® 27 (Cy2),
Az (2) =27 (Cp)2) @ U (Cll2) + 1@ 27 (2).

Here we define C(1) :=C® 1, Cp) =1 C.
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By Wick’s theorem, we have the following proposition.

Proposition 2.10 (Free field realization of U(q,t) [FHHSY]).
Set v := (qt=1)"Y/? and define operators *(z) : F — Fl[z, 2] as follows:
0T (2) = (Y 22)E(v T P2) s, 0T (2) = (v T PR)E(v P2)
Then the map
Crry, 2t (2)mn(z), o7 (2) = E(2), ¥¥(2) o 05 (2)

gives a representation of the Ding-Iohara-Miki algebra U(q,t).

8§ 2.3. Free field realization of the elliptic Ruijsenaars operator

In this subsection, we start discussions about the elliptic theory side. In the follow-
ing, for parameters ¢, t€C* assume |q|<1, [t71|<1. We regard p as a formal variable.
For a fixed N€Z~q, we define power sum polynomials by p,(x) := va Ly , pn(_) =
SN 27" (n € Zsg). For apartition A, set px(z) := [[°% pa, (), pA(®) = [T°X pa, (@)

Definition 2.11.  Define the space Ay (q,t,p) C K[z | 1<i<N]®~[[p]] (NEZ0)
by

For each d > 0 and u € P
An(g,t,p): e8P () (T)p? p ’
;)A%E:P H . ﬂ{)\EP|c§\lu7éO}<oo(c§lu€K)
0< |l <d

Definition 2.12 (Elliptic Ruijsenaars operator Hy(q,t,p) [R1]).  The ellip-
tic Ruijsenaars operator Hy(q,t,p) € Endgp(An(q,t,p)) (N € Zx) is defined by

txz/x]
~(g,t,p)
;Jl;ll O,( l‘l/il;']

The kernel function for the elliptic Ruijsenaars operator has been introduced by
Ruijsenaars [R2] and Komori-Noumi-Shiraishi [KNS].

Proposition 2.13 (Kernel function for Hy(q,t,p) [R2][KNS]).  Define the
function N (q,t,p)(x,y) (M,N € Z~o) as follows.

Fq,p(l’iyj)

1<i<M qup(txlyj)
1<5<N

N (g, t,p)(z,y) =

The symbol Hn(q,t,p). denotes the elliptic Ruijsenaars operator which acts on functions
of x1,...,xn. Then we have the following relation.

HN(q7 t7p)xHNN (Q7 tap) (%, y) = HN(Q; t7p)yHNN(Q7 t,p)(:l:, y)
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Let us consider to construct the free field realization of the elliptic Ruijsenaars
operator. Then we pay attention to the fact again that the free field realization of the
Macdonald operator is based on the kernel function for the operator. Hence also in
the elliptic case, we would expect that the kernel function for the elliptic Ruijsenaars
operator has important informations of the free field realization of the operator. Keeping
the idea in mind, we rewrite the kernel function Il n (g, ¢, p)(z,y) as the following form.

M (g, t,0)(z,y)

_ ox (gt~ p)" (1 = #") (wag;) ™"
—1§1;[M p(§<1—qn>u—pn> n ) p(
1<j<N

11—t (.fEiyj)n
Ej(l—wﬁﬂ—pﬂ n >'

n>0

To reproduce the kernel function Iy, n(q,t,p)(z,y) from OPE of boson operators,
we prepare an algebra of boson Bg((,)) to be generated by {an}nez\(o1s {@n}nez 0}
and the following relations:
(1= g™ —pl™)

e = 0l (17 gy O

(1= g™ = pml)
1 — timl

[@m,an]) =0 (m,n € Z\{0}).

[@m,an] =m

We denote the K[[p]]-subring of Bg((,)) generated by {an}nez\ {0}, {anpw}nez\{o} by

Bx(ipy-
We define the normal ordering : e : as usual:

~—

Caa s d Gman (m < n), o Aman, (m <n),
e apmy (M >n), e Unlm (M >n).

Let |0) be the vacuum vector which satisfies the condition a,,|0) = @,|0) = 0 (n > 0)
and set the boson Fock space JF as the left Byj,-module.

For each d > 0 and u € P
F = g a_xa_,|0)p? - '
ng%; A " H{AeP|cd, #0} < oo (cf, €K)

0<|pl<d

Let (0| be the dual vacuum vector satisfying the condition (0|a, = (0@, = 0
(n < 0). We define the dual boson Fock space F* as the right Bp,;-module:

For each d > 0 and p € P
F*i= ¢t (Olara,p? = ’
; A,;LZEP A . lj{)\GP|c§l\u7é0}<oo(cfl\ueK)

0<|p|<d
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For a partition A, set z)(q,t,p) € K[[p]] as follows.

L) Ai Ai
1—q")(1—p
2 (¢, t,p) := 2x H ( 1 —)(t/\i )

i=1
We define a bilinear form (e|e) : F* x F — K][[p]] by the following condition.
(Olax, @, P2 a iy @10 210) = Sx, 1 Oxapa 2a (st P)2r (g, 1 p) (gt~ H) " Pelphel,
Then we can reproduce the kernel function Iy;n (g, ¢, p)(z,y) as follows.

Proposition 2.14 (Reproduction of the kernel function Il n(q,t,p)(z,y)).
Define ¢(p; z) : F — Fllz, 27 Y] and ¢*(p; z) : F* — F*[[z,271]] as follows.

o) = e (3 A T)“"Q&(l—%ﬁ—pn)“”i)’

n>0 n
A (Z:O (( 122))72( ))a Z;n) o (nz;; (1—;;1”—29”)%%)'

We use the notations ¢ (p; ) = Hj.vzl o(p;xj), oy (p; ) == HJ L1 0*(pyx5) (N € Zso).
Then the kernel function Ilpn(q,t,p)(x,y) is reproduced from ¢ (p;x) and ¢n(p;y) as
follows.

(0l (P 2) PN (3 9)[0) = TN (g, t, ) (2, Y)-

By attempting to construct elliptic deformations of operators n(z), £(z), we can
find the following operators n(p; z) and £(p; 2).

Proposition 2.15 (Elliptic current 7(p;z) [Sal]).  Letn(p;z) : F — Fllz, 27 1]
be the boson operator defined as follows.

11—t _zZ" 1—t" z= "
n(p; z) :=: exp (— Z ; _p|n|p|n|anq> exp (— Z a > :

— plnl ™"
n#0 n;éOl p" n

Then n(p; z) satisfies the following.

i) (n(p;t2)-o(p;z) = d(p;qz),  ¢*(p;2)(n(piz~ "))+ = ¢* (i q2).

) a2l e) = GBI i) s (/] < 1),

Proposition 2.16 (Elliptic current £(p; 2) [Sal]). Let&(p;z) : F — Fllz, 271
be the boson operator defined as follows.

11—t z" 1—t" z="
Ca) e —In|lnlz |n| .
&(p; 2) : .exp(E 1—p|”‘7 p™"a, n)exp(E —plnlv an— )

n#0
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Then &(p; z) satisfies the following.

) (Epv2)—op;2) =dpiqa'2), ¢*(p2)Epity ' 27)+ = 0" (piq ' 2).
O,(w/2)0,(¢" Mtw/z)

i) &(ps2)é(pw) = 0, (¢ 1w/ )0, (fw/2) cE(pr2)é(pw) s (Jw/z] < lgt™]).

By using operators n(p; z), £(p; z) we can reproduce the elliptic Ruijsenaars operator

as follows.

Theorem 2.17 (Free field realization of elliptic Ruijsenaars operators[Sal]).
(1) The elliptic Ruijsenaars operator Hy(q,t,p) is reproduced by the operator n(p; z) as
follows.

[n(p; 2)—t =~ (n(p; 2)) = (n(p; p~"2)) + 16N (p; )|0)

—N+1 —1
_t &;jg ) H (4,1, ) (01 2)[0).

-1

(2) The elliptic Ruijsenaars operator Hyn(q™1,t7 1, p) is reproduced by the operator

&(p; z) as follows.

[€(p; 2) =t (€(p; 2)) - (€3 p™ 1 2)) + b (93 2)[0)
tNT1O,(t) 1,1
= ———5 Hn(q .t ", p)on(p;2)[0).
(7 p)3 v ozl
Theorem 2.17 is also stated as follows. First we set zero mode generators ag, )
which satisfy the relation:

[GO,Q] - 1, [Gn,ao] - [anycLO] = 07 [aan] = [aan] =0 (TL €L \ {O})

We also set the condition ag|0) = 0. We define |a) := e*?|0) (a € K[[p]]). Then we
have ag|a) = ala). We also set F,, (a € K[[p]]) by

For each d > 0 and p € P
R AT S o], P 420
50 A pep " ﬁ{)\GP|c/\u750}<oo(c/\#€K)

0<|pu|<d

Theorem 2.18 ([Sal]).  Set the operators 1(p; z), £(p; z) by

W(p;2) = ((p; 2)) = (s 2)) 4, €3 2) == (E(ps 2))— (E(3p ™ 2)) 4

Using these symbols we define operators E(p; z), F(p;z) as follows:

(2.3) E(p;z) ==n(p;2z) —n(p;2)t*,  F(p;2) = &(p; 2) — &(p; ).
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-1

Then the elliptic Ruijsenaars operators Hx(q,t,p), Hy(qt,t 1, p) are reproduced by

the operators E(p; z), F(p;z) as follows.

t_N+1@p(t_1)

(p;p)3,

tN1O,(t)
(p;p)2,

[E(p; 2)]1¢n (p; )| N) = Hy(q,t,p)on(p:z)|N),

[F(p; )16 (p; 2)IN) = Hy(q~ " t7" p)on(p;2)|N).

The dual versions of Theorem 2.17, 2.18 are also available. Set the condition as
(Olag = 0. For a € K[[p]], set (a] := (0le~*%. Then we have {a|ag = a{a|. We also set
Fo (a € K[[p]]) by

For each d > 0 and p € P
Fa = Z Z cSulala—xap? d I
P50 Apep " Ij{/\€77|c>\u7é0} < 00 (c)\ﬂ € K)

0<|pl<d

Theorem 2.19 (Dual versions of Theorem 2.17, 2.18). (1) The operators
n(p; 2), £(p; z) reproduce the elliptic Ruijsenaars operators Hy(q,t,p), Hy(q7 1t 1 p)
as follows.

(Olon (p; ) [n(p; 2)—t =N (n(p; 2)) = (n(p;p~"2)) 411

t_N+1@ t_l
_ (p,p;’; ) (4,1, ) (01675 (p: ).

(O0lgn (p; 2)[E(p; 2) =tV (E(p; 2)) = (E(pip™ " 2))+ 11

Nfl@
- #HN(Q_l»t”,p)<0l¢E(p; z).

(2) The operators E(p; z), F (p; z) reproduce the elliptic Ruijsenaars operators Hy(q,t,p),
Hy (g7t t7 1, p) as follows.

(V|6 (p: 2) [E(p: )y = (; fj;ft_ )

N—l@p
(N1ox (ps ) [F(p; 2)h = ﬁ

Hn(q,t,p){(N|on (p;2),
Hy(g 't p)(N|oy (p; ).

By using the free field realization of the elliptic Ruijsenaars operator, we obtain
the functional equation of the elliptic kernel function I ;n (g, t,p)(z,y) as follows.

Theorem 2.20 (Functional equation of the elliptic kernel function [Sa2]).
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We define Cyrn(p;x,y) as

(0[¢ns (0 2)[(n(p; 2)) — (n(p; p~ " 2)) 1 ]16n (p; 1) |0)
(g, t,p)(z,y)

[ 4z 71 6utas) 71 _6,(/y))
(2.4) - f{C omiz 11 0, (x;z) 11 O,(t12/y;)’

i=1 b j=1

Cun(p;z,y) =

where the integral contour C is chosen by
C: |zl <min{|z |7 lza 7 il - w3

For the elliptic Ruijsenaars operator and the kernel function Iy n(q,t, p)(z,y), we have

the following functional equation.

{Hn(q,t,p)s — " NV Hn(q,t,p)y Hnn (g, t,p) (2, y)

_ =t M) (pip)3
Op (1)

(2.5) > Cun (P 7, y)nmn (g, t,p) (2, ).

Here the symbol Hpr(q,t,p). denotes the elliptic Ruijsenaars operator which acts on

functions of x1,--- ,xp;.

Proof. The proof is straightforward. What we have to do is to calculate the matrix
element (0|¢%,(p; x)[n(p; 2)]16n (p; y)|0) by Theorem 2.17, 2.19 in different two ways as
follows:

(0lpns (s ) [0(p; 2)]1 08 (p3 y)|0)
_ e,

(p;p)3,
t7N+1@p(t71) _N
Therefore we obtain Theorem 2.20. [ O

Remark 2.21. 'We can check the following;:

N

p(t™ 1% O,(2/y;)
Crn (b, ) j{ 2mzH @ H t 12/y;)

j{ 1—t_wzﬁ 1 —2/y; —1
p—0 27mz 1 —x;2 jzll—tflz/yj— .

Hence by taking the limit p — 0 the formula (2.5) reduces to the equation (2.2).
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§2.4. Commutator of operators E(p;z), F(p;z)

The commutator [n(p; ), &(p; w)] is given by

[n(p; 2), £(p; w)] = (52;222((2:)1) {5(7%) ot (py v Pw) — 5(7_1%) o~ (p; 7‘1/210)}-

Since [p1(p; 2)]1 # [¢~ (p; 2)]1, we have [[n(p; 2)]1, [£(p; w)]1] # 0. On the other hand,
the operators F(p; z), F(p;z) defined in (2.3) satisfy the following.

Proposition 2.22 ([Sal]). (1) For operators E(p;z), F(p;z) we have
E(p; 2)B(p;w) = g, ( = ) E(pi w) B(p: 2)
F(p; 2)F(p;w) = gp(%)_lF(p;w)F(p; z).

(2) The commutator of operators E(p; z), F(p;z) takes the form as

26) [B(2), Flps)] = 28026 (12) " (i 20) = (02 ),

From the relation (2.6) we have [[E(p; 2)]1, [F'(p; w)]1] = 0. This corresponds to the
commutativity of the elliptic Ruijsenaars operators [Hy(q,t,p), Hy(¢~1,t71,p)] = 0.
The above proposition is needed in Section 3.

§2.5. Elliptic Ding-Iohara-Miki algebra U(q,t,p)

The elliptic Ding-Iohara-Miki algebra is an elliptic analog of the Ding-Iohara-Miki
algebra introduced by the author.

Definition 2.23 (Elliptic Ding-Iohara-Miki algebra U(q,t,p) [Sal]). Set the
K[[p]]-valued holomorphic functions f*(p;z) in € C* and the K[[p]]-valued meromor-
phic function g,(z) in x € C* as

FHp:2) = Oy ()@t )y g ), [~ (0) = Oy g™ 2)@y (1) Oy (at~2),
(e o L) Oy(a)0 (¢ )0, (g™ 1)
P ) T Oyla )0, ()8, (0t 1)’

Let 2% (p; 2), ¥*(p; 2) be currents, i.e. generating functions of generators having the

form

=Y wg(@p’ =) Y aglnl= ",

d>0 d>0nez

Z):Z@bd p _qu’bd 27" d-

d>0 d>0nez
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and C be a central, invertible element. We impose the following defining relations:

V@) )] =0, 9 2 >—%w—@;wwﬂp;z>,
o* (p; 2)a™ p<0¢%%> (P W)Y (p; 2),
0= () () = g, (O 2) o (e (s 2),
—(z/w) fi(p,w/@ ( )xi(p,w) FE (s 2/w)a™ (py w)a™ (p; 2),

520 (o= D T 50w chu-s (7 ) um o hw

We define the elliptic Ding-Tohara-Miki algebra U(q,t,p) to be an associative K[[p]]-
algebra generated by {z+ [n]}ig%, (v [n]}ié% and C' with the above relations.

Theorem 2.24 (Free field realization of U(q,t,p) [Sal]). Sety:= (gt~ 1)~ 1/?
and operators ¥ (p;2) : F — Fl[z,271]] as

P (i2) =y P2y T P2) s 0T (s2) = ey T RR)E sy P2)
Then the map
Crry, at(prz) o npsz), o (p52) = Epi2), 5 (p2) = o (p; 2)
gives a representation of the elliptic Ding-Iohara-Miki algebra U(q,t,p).

Remark 2.25. (1) By the definition, the trigonometric limit p — 0 of the elliptic
Ding-Iohara-Miki algebra U(q, t,p) is the Ding-Tohara-Miki algebra U(q,t).
(2) The elliptic Ding-Iohara-Miki algebra has a coproduct

A:U(g,t,p) = Ulg,t,p) ®U(g, 1, p)
defined by
A(CH) = CH @ CH, AWt (p2) = v (p; Cly ") @ v* (1 CF)2),
At (p;2) == a7t (pi2) © 1+ 0~ (p O 2) @ 27 (3 Cy)2),

Al (p;2) =2 (5 C2)2) @ VT (1 Cl2) + 1@ 2 (15 2).

§ 3. Relation to the elliptic Feigin-Odesskii algebra

In this section, we introduce the elliptic Feigin-Odesskii algebra [FO][FHHSY]. We
utilize the algebra for the construction of commutative families of the elliptic Ruijsenaars

operator [Sa2].
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§3.1. Elliptic Feigin-Odesskii algebra A(p)

Definition 3.1 (Star product *).  Set a meromorphic function w,(z,y) in z,
y e C* as

w(,y) = 0,(¢ 'y /2)0,(ty /)0, (¢t 1y /x)
p\L,Y) ‘= @p(y/x)?’ .

Define the star product * as

(f*g)(xl,...,xm+n)::Sym[f(:cl,...,xm)g(xm+1,...,xm+n) H wp(xa,xg)].
1<a<m
7n+1gﬁzn%+n

Proposition 3.2 ([FO][FHHSY]). Define an n-variable meromorphic function
en(q,p;x) (n € Zso) as follows.

11 Op(q7a/w)Op(q Ta/Tp)

en(q,p; ) = Op(za/xp)?

1<a<b<ln
Then we have em(q, p;®) * €n(q, p; ®)(z) = €n(q, p; ®) * €m(q, p; ®)(x) (M, 1 € Zxo).

Definition 3.3 (Elliptic Feigin-Odesskii algebra A(p) [FO][FHHSY]). For
a partition \, we set €)(q,p;x) as

ex(q,p;x) = (ex, (g, p;®) * -~ xEx,, (q, 5 @) (2).

Set Ao(p) := K][[p]], An(p) := span{ex(q,p;z) ||A\| = n} (n > 1). We define the elliptic
Feigin-Odesskii algebra as A(p) := @nzo A, (p) whose algebra structure is given by the
star product .

Proposition 3.4 ([FHHSY]).  The elliptic Feigin-Odesskii algebra (A(p), *) is

unital, associative, and commutative.

§3.2. Commutative families M(p), M'(p)

Recall that the boson operators E(p; z), F(p; z) defined by (2.3) in Section 2 satisfy

(3.1) E(ps 2)B(piw) = g, (= ) B(pi w) E(p: 2)
(3.2) F(p; 2) F(p; w) ng(g)_lF(p;w)F(p; z),

where g, (z) is defined by

(x>___()p(qx)()p(t_llo()p(q_ltx)
I =0, (¢ 1) 0, (t) O, (gt 1)
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Set a meromorphic function w (z,y) in z, y € C* as

W (2 y) = O, (qy/x)0,(t 1y /x)O,(q Mty /x)
P 0, (y/x)? |

Due to the relations (3.1), (3.2), operator-valued functions as

H Wp(%,ﬂ?j)_lE(p;xl)"'E(p;l’N),
1<i<j<N

H wzla(xivxj)ilF(p;ﬂh) - F(p;xn)

1<i<j<N

are symmetric in x1, ..., TN.

Definition 3.5 (Maps O,, O,). We define linear maps

Op: Alp) = @ Endpp(Fa) and O : Alp) = O Endi)(Fa)
aeK][[p]] a€K][[p]]
as follows.

Op(f) = [f(zla---yzn) H wp(zivzj)_lE(p; Zl)"'E(p; Zn)} (f € An(p))a

1<i<j<n 1

O, (f) = {f(zb coam) [ whziz) T E(pra) - Fps Zn):| (f € An(p)).
1<i<j<n 1
Here [f(z1,-..,2,)]1 denotes the constant term of f(z1,...,2,) in 21,..., z,. We extend

the maps linearly.

Proposition 3.6.  For any f, g € A(p), we have

Op(f *9) = Op(£)Ou(g), O, (f *g) = O,(f)O,(9).
From Proposition 3.6, we obtain the following theorem.

Theorem 3.7 (Commutative families M(p), M'(p) [Sa2]). (1) Set M(p) :=
Op(A(p)), M'(p) := O, (A(p)). Then

M(p) C EB Endgp(Fo), M'(p) C @ Endgjgp)) (Fa)-
aeK([p]] a€eK][p]]

The spaces are commutative subalgebras of boson operators.
(2) The commutative families M(p), M'(p) satisfy [M(p), M'(p)] = 0.

By the free field realization of the elliptic Ruijsenaars operator, we have the follow-

ing.
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Corollary 3.8 ([Sa2]). Elements in M(p), M'(p) act on ¢n(p;z)|N) as g-
difference operators in Endgp,) (An(q,t,p)) commuting with each other, where An(q,t,p)
is the space of functions of x1,...,xn defined in Definition 2.11. By the free field real-
ization of the elliptic Ruijsenaars operators, the commuting q-difference operators also
commute with the elliptic Ruijsenaars operators Hy(q,t,p), Hyx(q¢71,t71,p).

The elliptic Feigin-Odesskii algebra originally appeared in Feigin-Odesskii [FO]. In
this section, we have regarded the elliptic Feigin-Odesskii algebra as a machinery for
the construction of the commutative families of the elliptic Ruijsenaars operator. For
combinatorial properties of the trigonometric and the elliptic Feigin-Odesskii algebra,
see [FHHSY].

§4. Perspectives

In this article, we have seen some topics related to the elliptic Ding-Iohara-Miki
algebra. Here we give some comments about open problems which should be studied

more in a future.

8§4.1. An elliptic analog of the Macdonald symmetric functions

The trigonometric Ruijsenaars model is solvable due to the theory of the Macdonald
symmetric functions. In the elliptic case, Ruijsenaars showed Liouville integrability of
the elliptic Ruijsenaars model [R1]. Then one would have some questions:

Does there exists eigenfunctions for the elliptic Ruijsenaars operator 7 Can we

obtain an elliptic analog of the Macdonald symmetric functions ?

However this problem is very difficult because of the emergence of the elliptic functions,
thus the problem remains open since Ruijsenaars found the elliptic Ruijsenaars model.

On the other hand, there are some interesting works due to Langmann on the
elliptic Calogero-Sutherland model [L1][L2][L3]. This model is a degeneration of the
elliptic Ruijsenaars model in the limit ¢ — 1. In the papers [L1][L2][L3], Langmann
gave the free field realization of the elliptic Calogero-Sutherland Hamiltonian and the
kernel function for the operator, and researched an elliptic analog of the Jack symmetric
functions [L3]. He also showed the functional equation of the kernel function for the
elliptic Calogero-Sutherland Hamiltonian. Then it is remarkable there appears the p-

0
derivative D, := pa— (p is the elliptic parameter) in the functional equation. Further

by keeping the relation between the elliptic Calogero-Sutherland model and the elliptic
Ruijsenaars model in mind, the functional equation of the kernel function for the elliptic
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Ruijsenaars operator (2.5) in Section 2 as

{HM(Q7 tvp)m - tM_NHN(Q7 tap)y}HMN((L t,p) (.’IZ’, y)

U M-Ny(p.\3

should be recognized as a ¢g-deformation of Langmann’s functional equation. By com-
paring the above equation and Langmann’s result, it seems to be natural that the right
hand side of the above as

__ tM-—N .n)3
(1 t @p(t))(p7p)oo C'MN(p;aj,y)HMN(%t?p)(x’y)

is written in terms of the p-derivative D,. Thus it would be nice if there exists a function
fun(x) such that

frn (Dp)yrn (g, t,p) (2, y)

__ 4M—N .13
= (1 t @p(t))(p’p)‘”CMN(p;x,y)HMN(q,t,p)(x,y)-

If as such function fy;n(z) is obtained, perhaps circumstances concerning an elliptic
analog of the Macdonald symmetric functions would be more clear.

§4.2. Modular double of the Ding-Iohara-Miki algebra

As a material which is in progress, the author would like to mention the study of
the modular double of the Ding-lohara-Miki algebra.

Modular doubles arised from studies of relations between quantum groups and
modularities in mathematical physics [F][FKV]. In the theories of modular doubles, the
double sine function which is a modular analog of the g-infinite product plays important
roles. Let wy, we € C be parameters satisfying Re(w;)>0, Re(w2)>0. The double sine
function S(w1,ws;u) is defined by

elcu dk
4.1 ju) = %)
(4.) s e ( [ Gt )

The integral is well-defined in 0 < Re(u) < Re(w; +ws). If g := 25 satisfies lg| <1,
S(w1,ws;u) has the g-infinite product representation as follows.

(€*™%2 5 @)
— T s
(quTFZ oy : 'qV)OO
27 =

"1, Then we remark that the integral representation of S(wq,wy;u) (4.1)

S(wr,wo;u) =

where g:=e
is valid if the parameter g is on the unit circle |g| = 1. More on the double sine function
and some related topics, see Narukawa [Naru|, Kurokawa [K].
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Due to Bytsko-Teschner [BT], and Frenkel-Ip [FI], and Ip [Ip], modular doubles
have the following properties:

e Let g be a finite dimensional simple Lie algebra of simply-laced type over C and gr
be the real form. Then the modular double of the quantum group U, (gr) is defined
by

Ugz—1 (0r) := Uy (9R) @ U1 (gR),

where for parameters ¢ = €™ (w € C), set ¢ := e~ 2™/, Then representations of
Uy(gr) and Uz-1(gr) commute with each other.

e The universal R operator of U,z-1(gr) is written by the double sine function.

For more details including modular doubles of non-simply-laced type, see Ip [Ip]. Rela-
tions between the modular double of U,(sl2(R)) and the quantum Teichmiiller theory
are studied in Nidaiev-Teschner [NT].

Next let us consider how to construct the modular double of the Ding-Iohara-Miki
algebra. First by comparing universal R operators of U,(sl2(C)) and of the modular
double of U,(sl2(R)), the following substitution is essential:

(5 9)oo modular analog Slwr,wai ).

Second the Ding-Iohara-Miki algebra U(q,t) is discovered from the kernel function for
the Macdonald operator which has the form as

tr;y;sq
1<<N

Then we may have a question:
If we define the kernel function by using the double sine function as

S(wi,wa;u; +vj +0)
S(wr,wa; u; + vyj)

(0 €C),

(4.2) My N (w1, wa,0)(u,v) := H
1<i<M
1<j<N

what kind of quantum groups can we obtain ?

At present, by using bosons obtained from the kernel function (4.2), the author have
checked the emergence of an algebra looks like

U(e(wr /wa), e(0/w2)) @ U(e(wa/wi), e(o/w))  (e(u) := 2™ u € C)
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which has the modular double-like properties. It seems that the algebra would be
the modular double of the Ding-Iohara-Miki algebra U(q,t), however we need more
researches.
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