e
ol

x‘

\%f} HOKKAIDO UNIVERSITY
¥

Motion and Morphology of Triple Junction in Peritectic Reaction Analyzed by Quantitative Phase-field Model

Title
Author(s) Ohno, Munekazu; Matsuura, Kiyotaka

Citation IS1J I_ntemational, 50(12), 1879-1885

https://doi.org/10.2355/isijinternational.50.1879

Issue Date 2010-12-15

Doc URL http://hdl.handle.net/2115/75419

Rights goobooboooboo
Type article

File Information

ISIJ Int. 50(12)_ 1879-1885 (2010).pdf

®

Instructions for use

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP



https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

ISIJ International, Vol. 50 (2010), No. 12, pp. 1879-1885

Motion and Morphology of Triple Junction in Peritectic Reaction
Analyzed by Quantitative Phase-field Model

Munekazu OHNO and Kiyotaka MATSUURA

Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo,

Hokkaido 060-8628 Japan.

(Received on April 20, 2010; accepted on June 18, 2010)

Motion and morphology of triple junction during peritectic reaction process is analyzed for a model alloy
system based on a quantitative-phase-field simulation for two-phase solidification involving diffusion in the
solid. It is demonstrated that the dominative process controlling the motion of the reaction front gradually
changes from the solid-solid transformation to the secondary solid solidification as the moving velocity of
solid—solid interface decreases. On the other hand, the local shape of the triple junction is mainly deter-
mined by the balance between the interfacial energies regardless of the difference in the moving velocity of

solid-solid interface.

KEY WORDS: peritectic reaction; phase-field simulation; triple junction; solidification; phase transformation;

solid diffusion.

1. Introduction

Peritectic solidification is one of the most commonly ob-
served phenomena in practical alloy systems. The peritectic
process is considered to proceed in two stages.'” The first
stage is “peritectic reaction” in which all three phases, lig-
uid (L), primary solid (8) and secondary solid (y) are in
contact with each other and the ¥ phase grows along the
0-L interfacial boundary, finally leaving a layer of y phase
between L and & phases. The second stage is “peritectic
transformation” in which the transformations of & to ¥ and
L to y take place by the motions of y—d and y-L interfaces.

The peritectic reaction is characterized by the motion of
triple junction between L/y/0 phases. Hillert proposed a
geometrical shape for the peritectic reaction,” which is
schematically illustrated in Fig. 1. He assumed that the con-
tact angles between interfaces at the triple junction obey the
thermodynamic equilibrium relation described by the
Young’s law. When the solid diffusion is negligible, the po-
sition of y—9 interface is always located behind the triple
junction. The combination of these conditions results in the
geometrical shape shown in Fig. 1. In addition, Fredriksson
and Nylén proposed that the shape shown in Fig. 1 can be
realized by the diffusion process, since the solute atom re-
jected by the ¥ solidification will diffuse through the liquid
to & phase, contributing the melting of the § phase® as in-
dicated by the bold arrows in Fig. 1. It is to be noted in Fig.
1 that the front edge of growing y phase corresponds not to
the triple junction but to y—L interface. Then, the peritectic
reaction proceeds only by the ¥ solidification. Based on this
assumption, Fredriksson and Nylén applied the theoretical
model developed by Bosze and Trivedi for describing the
growth process of single phase in a matrix® to the analysis
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on the peritectic reaction process.” This model, which is
called FN model hereafter, has been widely used for the
analyses on the peritectic reaction process in several alloy
systems.*'? It should be pointed out that the comparison
between experimentally observed reaction rate and the FN
model demonstrated that the reaction rate described by the
FN model is fairly lower than the experimentally observed
rate in several alloy systems.®”!'? It is noticed that the va-
lidity of the Hillert’s assumption for the shape illustrated in
Fig. 1 has not been well substantiated yet and the morphol-
ogy of phases near the triple junction remains to be scruti-
nized in the cases of the different cooling conditions and
different values of physical parameters.

Phase-field model has been developed as one of the pow-
erful computational tools to describe the microstructural
evolution process in phase transformation phenomena.''™'®
Of particular importance in this study is the recent develop-
ment of the model based on thin-interface limit.!”'¥ This

initial position of 8-L interface

1
melting of § phase |
\ \

diffusion of
\ solute atom

Fig. 1. Schematic illustration of peritectic reaction process pro-

posed in Refs. 3,4).
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model is called the quantitative phase-field model in the
light of the fact that it enables a quantitatively accurate sim-
ulation of microstructural process under a given set of
physical parameters. The key to the quantitative phase-field
modeling for an alloy system is the introduction of addi-
tional solute current termed the antitrapping current into
the diffusion equation,' owing to which anomalous inter-
face effects involved in the conventional model can be ap-
propriately removed. While the originally developed anti-
trapping current scheme was applicable only to the single
phase solidification in a binary alloy without the solid diffu-
sion, this scheme was extended to the single phase solidifi-
cation in multi-component alloys without the solid diffu-
sion'” and the single phase solidification in binary alloys
with arbitrary value of the solid diffusivity.”” Moreover, it
was extended to the case of two-phase solidification in bi-
nary alloy.?" The analysis on the peritectic reaction process
requires the model for two-phase solidification. However,
the available quantitative phase-field model in Ref. 21) is
applicable only to the system in which the diffusion in solid
is negligible and all the interfacial energies take the same
value. The peritectic reaction generally involves the migra-
tion of solid—solid interface controlled by the solid diffu-
sion and the interfacial energies are different for different
interfaces in reality.

For the analysis on the peritectic reaction, the present au-
thors recently developed a quantitative phase-field model
for two-phase solidification process involving the solid dif-
fusion in a binary alloy system with unequal interfacial en-
ergies.?? It was demonstrated that this model yields the
unique outcome with a finite value of the interface thick-
ness. Hence, one can carry out a quantitatively accurate
simulation as long as reliable values are available for the
physical input parameters. Utilizing this model, then, the
authors analyzed the peritectic reaction in carbon steel. It
was demonstrated that the geometrical shape shown in Fig.
1 is not realized in the carbon steel and, therefore, the FN
model is not validated.*®

The geometrical shape near the triple junction and thus
the peritectic reaction rate should depend on the diffusion
processes in three phases. However, there is no detailed
knowledge available regarding the dependencies of the
shape of the triple junction and the reaction rate on the
physical quantities such as the partition coefficient and dif-
fusion coefficient. In particular, it has not been demon-
strated by the experimental and theoretical works that the
shape shown in Fig. 1 can be realized only by the solute dif-
fusion process. In this study, these points are addressed by
means of the quantitative phase-field simulation. Focusing
on a model alloy system, we investigate the dependencies
of the shape of the triple junction and the reaction rate on
the partition coefficient and solid diffusivities. It will be
seen that the dominative process controlling the motion of
the reaction front gradually changes from the solid—solid
transformation to the secondary solid solidification by de-
creasing the moving velocity of solid—solid interface. On
the other hand, the local shape of the triple junction is
mainly determined by the balance between the interfacial
energies regardless of the difference in the moving velocity
of the solid—solid interface.

© 2010 ISIJ

2. Phase-field Model

The multi-phase-field models were developed to describe
multi-phase solidification processes such as eutectic and
peritectic reaction processes.'*'® However, the conven-
tional models generally involve the problems associated
with several anomalous interface effects and the unex-
pected stabilization of an extra phase inside the interface,?"
thereby yielding the quantitatively inaccurate outcome. The
quantitative phase-field model was developed for the two-
phase solidification process in binary alloy system without
the solid diffusion and with equal interfacial energies.?" We
recently extended that model to the case of arbitrary values
of the solid diffusivities and interfacial energies,”” which
can be utilized to accurately describe the peritectic reaction
process. In this section, we briefly explain about only the
essential formulas of the quantitative phase-field model de-
veloped in Ref. 22).

During the peritectic reaction in a binary alloy system,
there exist three phases, L, 6 and y phases. The existence
of these phases is described by phase field, p,, with i=L, &
and 7y, each of which represents the probability of finding
the corresponding phase. These phase fields should satisfy
the following normalization condition,

The summation is carried out over i=L, ¢ and y. In addi-
tion to p;, for convenience, we use the notation p; and p, to
distinguish the different phases. Following Kim, Kim,
Suzuki’s (KKS) model,'” the solute concentration, ¢, is de-
scribed by mixture rule, c=2. ¢,p,, with the concentration in
i phase, c;. Then, the time evolution of phase field, p,, is de-
scribed by the following equation,?”

1 ap;
M({p;}) o

1
:Z mk[z gzvzpk —20(p:Hp,(1—p)A—2p;)
k

_ da({p;}) w9,
. [;p,-(l p,)] ;apk (f; ~Hee;

M({p;}) is a mobility given as M({p;})=2(X"M;p,p)
e p,pj)_1 where Y. denotes the summation over (i,/)=
(6,L),(7,L),(y,6) and M;; is the mobility for i interface
as explicitly described later. m, is a constant given as
m,=—2/3 with k=i and m,=1/3 with k#i. € is the gradient
energy coefficient and it is noted that this coefficient is not
dependent on the type of interface in the present model.
o({p;}) determines the contribution of double well poten-
tial and it is given as,??

o({p:})

* —1 *
-~ (2219?19,2-) (22 w,plp;+ wm(p,-pjpk)”)

where the exponent 7 is larger than 1 and @ indicates the
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potential height for i—j interface and w,; controls the po-
tential height for mixture state of three phases. In Eq. (2),
g, is the interpolating function defined as g/({p =
(P2 {15(1=p)[1+p,— ()1 +p,Op—5)}2" [ is the
free energy density for bulk j phase and . is the chemlcal
potential. Note that in the derivation of Eq. (2), the condi-
tion for equal chemical potential, u =df/dc,=df/dc,=
df,/dc,, is introduced as is done in the KKS model. 5 1) The
last term in the parenthesis of Eq. (2) corresponds to the
thermodynamic driving force. This term can be approxi-
mated within the dilute solid solution limit as
Si—uce~v, 2 RT(—c] +c .—¢;) where 1) is the molar vol-
ume and R is the gas constant and ¢ ,e is the equilibrium
concentration in j phase in equilibrium with k& phase. In this
expression, k phase corresponds to a reference phase which
was chosen to be liquid phase in our numerical computa-
tion. ¢; , is given as ¢f ,=0. Then, for example, the thermo-
dynamic driving force for i—; interface is described as

fj_fi_luc(cj_ci):_vr;l'RT(l_kij)(ci{e _Ci)

This expression is equivalent to the corresponding term in
the single phase solidification model.>”)

The time evolution of concentration field, ¢, is described
by the following diffusion equation,*”

oc {ZD[JVC

— =V
ot
* &
+2 Z(n,.-nj)a,.j/i(cj
V@i

.(5)

where n, is given by n,=—Vp/|Vp/. a; is defined as,

! (D, kD)l—l 1—k, D (6)
a; 2\2 7 "D Zt/ .

where k;; is the partition coefficient given as k;=c;/c; and y;
is a parameter controlling convergence behavior of the out-
put with respect to the computational grid size. The second
term in the parenthesis of Eq. (5) indicates the antitrapping
current term which is required to eliminate the anomalous
interface effects.

In the present model, the steady state profile of p, for a
planar i—j interface is described as

1 — tanh

1
Pi= ]
2 N2

where W, =¢/®;'"”. 1t is noted that ¥, corresponds to the
measure of the z —j interface thickness. Also, the i—; interfa-
cial energy, 0, is represented by o,;=&(®, )2(3-212).
Hence, when o; and W, are given, o and € are uniquely
determined. Withln the thln interface 11m1t also, the follow-
ing relation should be satisfied at the condition for vanish-
ing linear kinetic coefficient,
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M. = E%(l —ku)(ci. —c/
g 4 wiijvm i Jjse ie
1 D B
X - — ) i I B R (8)
where @,=0.6276--- and 7, ; is the transition temperature

between i and j phases at c=0.

In the present model, the solid diffusion is explicitly
taken into account, which is of critical importance in ana-
lyzing the peritectic reaction process, and the inequality of
interfacial energies can be dealt with. It should be noticed
that the present model is free from the problem associated
with the unexpected formation of extra phase inside the in-
terface as discussed in Ref. 22). The formation of the extra
phase can be successfully suppressed by the introduction of
additional potential for mixture state of three phases in Eq.
(3). The contribution of this additional potential is con-
trolled by the values of » and w,; that turn out to be the pa-
rameters controlling the convergence behavior of the out-
come with respect to the interface thickness.’? The most
important fact is that the present model is exactly reduced
to the available thin-interface limit model for the single
phase solidification developed in Ref. 20).

3. Computational Details

We solved the time evolution Egs. (2) and (5) based on
the standard second-order finite difference formula with the
squire grid spacing, Ax. In all the calculations, the interface
thicknesses were set to be W,;=2.0XAx, W =0,sW,5/ 05
and W,=0,W,s5/0,. Also we employed n=1.4 and
O;=05+ 0, 0,5 in Eq. (3) and ;=0 in Egs. (6) and
(8) with which the present model yields well convergence
behavior of the outcome with respect to W, .Y The degree
of undercooling from the peritectic temperature, A7, was
set to be AT=10K in all the calculations.

The values of all the input parameters are summarized in
Table 1. It is noted that these parameters correspond to
those for the Fe—C system. In the present study, our focus is
placed on the dependencies of the peritectic reaction and
transformation processes on the values of the partition co-
efficient and solid diffusivities. The partition coefficient,
k,, was fixed to be k,;=0.334 and the relation, ks
ky/ks, 1s held. The partition coefficient k,; was varied
from 1.34 to 6.68, which leads to the variation of kg5 from

Table 1. Values of physical parameters used in the present
study.

Quantity Symbol Value used
Molar volume Vi 7.7%10° m*/mol
Melting temperature of pure bee-Fe sl 1811 K
Melting temperature of pure fcc-Fe Tt 1801 K
8/y transition temperature of pure Fe Tonys 1399 K
Liquidus slope of 8 phase ms 1828 K/mol fraction
Liquidus slope of y phase my 1399 K/mol fraction
Interfacial energy of 8-L boundary OsL, 0.204 J/m®
Interfacial energy of y-L boundary Oy 0.319 J/m’
Interfacial energy of y-8 boundary Oy 0.370 J/m®

© 2010 ISIJ



ISIJ International, Vol. 50 (2010), No. 12

1540 . L L
l ---- ky5:6.68
15204" " L k=187
(I —
é 0 ' k~,a 1.34
ER \
g o~ -
5 VS holding temperature
g 14804 : o \‘
g-‘ 1 ‘\
2 14604 | | \
[ \
1440 i LY
0.00 0.01 0.02 0.03

mole fraction of carbon

Fig. 2. Phase diagram calculated by using the physical parame-
ters listed in Table 1 and the different values of k5.

0.25 to 0.05. It is noted that the value of kg is not relevant
to the motion of y—L and y—§ interfaces, while the different
value of k5 will yield appreciable difference in the motion
of y—§ interface. Figure 2 shows the phase diagram in this
binary system calculated using the parameters listed in
Table 1 and the different values of k. The diffusion coeffi-
cient in liquid phase, D,, was fixed to be D =
2.0X 10" m?%s. The diffusion coefficients, Dg and Dy, were
given as Ds=q;5.D; and D,=q, D} with Dj=4.0x10""
and D;=6.0x10"""ms for convenience. The constants, g5
and ¢,, were varied from 1.0 to 1.0X107.

We first carried out the one-dimensional simulation for
the isothermal peritectic transformation. The system ini-
tially consists of the liquid phase with ¢{ ,=2.90X107* and
8 phase with ¢5,=5.19X107° and y phase with ¢ =
1.02X107? between the liquid and & phases. The initial
thickness of y phase is 2.5X10"’m. The computational
grid size, Ax, is Ax=5.0X10"3m. The total length of the
system is 60 um which is large enough to avoid the effect
of the system size on the motions of the interfaces. The
zero flux boundary conditions for p, and ¢ were employed at
both edges of the system. After the concentration profile
was relaxed by holing at a given temperature for a certain
period, the moving distances of y—d and y-L planar inter-
faces were calculated. From this one-dimensional analysis,
the moving velocities of y—& and y-L planar interfaces can
be calculated and these results are utilized in the discussion
for the peritectic reaction process.

For the analysis on isothermal peritectic reaction process,
we used the two-dimensional system in which there are &
phase with c';, and liquid phase with ¢ , and the 6-L inter-
face forms along y direction at the origin of x axis. Also, a
semicircular ¥ phase with a radius r, exists and the center
of this circle is located at the origins of x and y axes. Then,
the y phase grows along the §—L interface (y direction) and
the velocity of the front edge of growing y phase, viz., the
peritectic reaction rate was calculated. In all the two-dimen-
sional simulations, we employed r,=20X 107%m, Ax=
1.0X10"¥*m and Ar=1.0X10"""s. We employed the zero
flux boundary conditions for p, and ¢ along all the bound-
aries of the system. The system size was characterized by
the total lengths of x and y axes, W, and W,. As pointed out
in Ref. 22), the steady state velocity of the peritectic reac-
tion is sensitive to system size. It is necessary for the analy-
sis on the steady state behavior to employ a system size

© 2010 ISIJ

which is sufficiently large to avoid such a size effect. Our
preliminary calculations showed that it is computationally
demanding to employ sufficiently large system in some
cases. In this study, we used ;=4 um and W,=3 um in all
the calculations. Hence, some results especially in the case
of low solid diffusivity do not precisely represent the steady
state behavior of the reaction. However, it does not essen-
tially alter our discussion.

4. Results and Discussion

4.1. Dependency on Partition Coefficient between ¥
and 6 Phases

Figure 3(a) shows the concentration profiles obtained by
one-dimensional simulation for isothermal peritectic trans-
formation. The values of g5 and g, were set to be g;=¢,=
1.0 and the partition coefficient was k,s=1.87. These values
are quite close to those at A7T=10K in the Fe-C system.
The origin of the spatial axis corresponds to the initial posi-
tion of y-L interface. The y—L and y—0 interfaces move to
the left-hand and right-hand sides, respectively. As men-
tioned in the previous section, the moving distances of the
interfaces were calculated after the system was relaxed for a
certain period and therefore, the thickness of ¥ phase at 1=
0.0 is larger than the initial thickness, 2.5X10™"m in Fig.
3(a). The moving distance of i-j interface, x;, is plotted
with respect to the square root of time in Fig. 3(b). It is im-
portant to note that the y—§ interface migrates at a velocity
much higher than the y-L interface, which is because the
concentration difference at y—0 interface is much smaller
than that at y—L interface. In Fig. 3(b), the increase in the
moving distance of each interface obeys the parabolic
growth law described by x,=a,"* with the parabolic rate
constant, a;. The one-dimensional calculations were per-
formed with the different values of k5 and the calculated
value of a; is shown in Fig. 4. The rate constant a,; takes
almost the constant value, while a5 substantially decreases
with the increase in kg, finally being less than a,; at k=
6.68. This is ascribable to the fact that the increase in k4
yields the increase in the concentration difference at y—0
interface, while the value of k5 is irrelevant to the concen-
tration difference at y—L interface. The increased concen-
tration difference at the y—J interface requires a larger
amount of solute to diffuse for d-to-y transformation at the
interface, leading to a shorter migration distance of the y—d
interface.

Shown in Fig. 5 is the peritectic reaction rate, viz., the
velocity of the front edge of growing ¥ phase along the 6-L
interface calculated with different values of k5 in the two-
dimensional system. The values of g5 and g, were set to be
q5=q,=1.0. It is seen that the peritectic reaction rate signif-
icantly decreases with the increase in k5 As discussed
above, the variation in ks leads to the difference in the
moving velocity of only y—0 interface. Therefore, the
decrement of the reaction rate essentially originates from
slowing of the y—¢ interfacial migration due to the large
concentration difference at y—§ interface.

Figure 6 shows the morphology of phases near the triple
junction during the peritectic reaction calculated with the
different values of k5. These lines represent level 0.5 con-
tour lines of phase fields. The origin of x axis corresponds
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Morphology of phases near triple junction calculated with (a) k,s=1.67, (b) k,5=3.34 and (c) k,5=6.68. In each

figure, the solid, dashed and dotted lines represent level 0.5 contour lines of phase fields at ¢, £, and f;, respec-
tively. £,=0.6X107*%, £,=1.2X107%, ,=1.5X107*s in Fig. 6(a) and £,=1.2X107%, £,=2.4X107%, £,=3.0X107*s

in Figs. 6(b) and 6(c).

to the initial position of 6—L interface. The deviation of the
triple junction position from the origin, x=0, indicates that
the melting of & phase occurs due to the enrichment of
solute element in the liquid near the solidification front of ¥
phase. The melting of d phase takes place in all the cases,
while the morphology of phases near the triple junction is
appreciably dependent on the value of k. Figure 6(a)
shows that at k,5=1.67, the moving velocity of y-0 inter-
face is much faster than that of y—L interface, as already
shown in Fig. 4. In Fig. 6(a), the position of triple junction
defined by p; =ps=p,=1/3 is slightly behind the front edge
of y-6 interface at each time period, although the differ-

ence between their positions may not be distinctly seen in
the drawings. In other words, the front edge of growing y
phase always corresponds to y—¢ interface and the reaction
proceeds by 6—7 solid transformation at the reaction front.
On the other hand, at k,;=6.68 (Fig. 6(c)), the migration of
y—0 interface is quite slow and the front edge of growing y
phase corresponds to the y—L interface. These results indi-
cate that the dominative process controlling the motion of
the reaction front changes from d—7 solid transformation
to ¥ solidification as the value of &, increases or the mov-
ing velocity of y—9 interface decreases.

From a closer look at Fig. 6, it is realized that the local

© 2010 ISIJ
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shape of the triple junction appears almost identical regard-
less of the different values of k,5. When the contact angle
between i—j and i—k interfaces at the triple junction is de-
noted as 6,, the equilibrium contact angles are calculated to
be 6,=92.9°, 6,=121.6° and 6,=146.0° based on the
Young’s law with the values of interfacial energies listed in
Table 1. It was demonstrated in our previous report®® that
the present model reproduces these contact angles within
the accuracy of less than 1° at A7=0.25 K. The precise de-
termination of the contract angles in Fig. 6 is not possible,
because each interface near the triple junction deviates
from flat shape. Yet, the local shapes of the triple junction
do not significantly differ from the equilibrium shapes in
each case. Hence, it can be mentioned that the morphology
of phases very close to the triple junction is mainly deter-
mined by the balance between the interfacial energies even
though the moving velocities of the interfaces are different.

4.2. Dependency on Solid Diffusivities

We performed the one-dimensional simulations for
isothermal peritectic transformation to investigate the de-
pendence of the moving velocity of the interface on the dif-
fusion coefficients. In all the calculations, we employed
k,s=1.87. As mentioned, the solid diffusivities, Ds and D,,
are given as D5=q5_D(_§ and Dyzqg_D;,, respectively, with
D=4.0X10"" and D,=6.0X10""m?s. We carried out
three types of calculations. The first type is the calculations
for a fixed value of ¢,=1.0 and different values of ¢5=1.0,
1.0x107", 1.0X1072 and the second type is those for a
fixed value of g;=1.0 and the different values of ¢,=1.0,
1.0X107" and 1.0X10~% Furthermore, we performed the
calculations for ¢;=¢,=1.0, 1.0X 107!, 1.0X107% and
1.0x1073. The calculated parabolic rate constant is shown
in Fig. 7 where the vertical dotted line was drawn from
each data point to the x—y plane for visual aid. It is seen that
the rate constant of y—L planar interface is almost irrelevant
to the value of solid diffusivities. On the other hand, the rate
constant of y—& interface appreciably decreases with the
decreases in g, and g,. In particular, the motion of y-9 in-
terface is sensitive to the value of Dy, compared with D,.
As can be grasped from Fig. 3(a), a relatively large concen-
tration gradient exists in the ¥ phase compared with that in
the J phase and, hence, the motion of each interface is not
considerably affected by the value of D,. Most importantly,
the parabolic rate constant for the y—0 interface takes al-
most null value when gs=¢,=1.0X107>. Hence, in this
case, the y—0 interface does not migrate and the peritectic
transformation proceeds entirely by the ¥ solidification.

The dependence of the peritectic reaction rate on the
solid diffusivities is shown in Fig. 8. The decrement of
solid diffusivities leads to the reduction of the reaction rate.
The influence of Dy is more prominent compared with the
case of D, as is consistent with the results of planar inter-
face shown in Fig. 7. This is because the large concentra-
tion gradient exists in the ¥ phase and the diffusion process
in the ¥ phase easily takes place even with low value of D,
As discussed above, the y—0 planar interface does not mi-
grate at qg=qy=l.0><10_3 and, in this case, the peritectic
reaction rate should be determined only by the ¥ solidifica-
tion. This is, in fact, evident in the morphology of phases
near the triple junction as discussed below.

© 2010 ISIJ
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Figure 9 demonstrates the morphology of phases near
the triple junction calculated for the different values of g
and g,. It is noticed that the melting of 0 phase takes place
in all the cases, as can be realized from the deviation of the
position of triple junction from x=0. The morphology of
the phases is quite different depending on the solid diffusiv-
ities. In the case of g5=¢,=1.0 (Fig. 9(a)), the front edge of
growing ¥ phase corresponds to the triple junction. This is
also the case for ¢;=1.0 and ¢,=1.0X 1072 (Fig. 9(c)).
However, when the diffusion coefficient in & phase is re-
duced, the morphology of phases drastically changes as
shown in Figs. 9(b) and 9(d). In these cases, the y—9 inter-
facial velocity is quite small (Fig. 7) and the front edge of
growing Y phase corresponds not to the triple junction but
to the y—L interface. Then, the growth of y phase at the re-
action front takes place mainly by the ¥ solidification.

In Fig. 9, the local shape of the triple junction does not
significantly differ from the equilibrium contact angle de-
scribed by the Young’s law in all the cases. Hence, it is
again shown that the morphology of phases very close to
the triple junction is mainly determined by the balance be-
tween the interfacial energies even though the moving ve-
locities of the interfaces are quite different.

It should be pointed out in Figs. 9(b) and 9(d) that the
triple junction gradually moves to the left-hand side with
the time and the amount of melting 6 phase ahead of grow-
ing ¥ phase increases. This indicates that the results shown
in Figs. 9(b) and 9(d) do not reach the steady state. When
the reaction proceeds mainly by the ¥ solidification and the
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Fig. 9. Morphology of phases near triple junction calculated for

(@) g5=1.0 and ¢,= 1.0, (b) g5=1.0X 107% and 4,=1.0 (c)
¢5=1.0 and ¢,=1.0x107* and (d) g5=¢,=1.0X107. In
each figure, the solid, dashed and dotted lines represent
level 0.5 contour lines of phase fields at #,, ¢, and £;, re-
spectively. £,=0.4X107%,,=0.8X107%, ,=1.0X10"*s in
Fig. 9(a), £,=0.3X107%, £,=0.8X107*, £,=1.2X107*s in
Fig. 9(c) and £,=1.2X107% £,=2.4X107*%, £,=3.0X107"s
in Figs. 9(b) and 9(d).

reaction rate is low, the & phase far from the reaction front
melts due to the long diffusion length in the liquid associ-
ated with vy solidification. Therefore, the results for the low
solid diffusivity in & phase were prone to be affected by the
system size. It was quite difficult to completely eliminate
the effect of the system size in these cases even with the
moving frame calculation. Since the results shown in Figs.
9(b) and 9(d) sufficiently represent the essential feature for
our discussion, we do not further attempt to calculate the
steady state in these cases.

As is seen in Figs. 6(b) and 6(c) and Figs. 9(b) and 9(d),
when the moving velocity of §—y interface is quite small,
the melting of & phase substantially occurs and the growth
of ¥ phase proceeds mainly by the ¥ solidification. In an ex-
treme case, it may be allowed to assume that the peritectic
reaction proceeds only by the ¥ solidification. However, this
assumption is not validated in some systems such as the
Fe—C system.”” The present analysis showed that when the
partition coefficient between the primary solid (&) and sec-
ondary solid () phases is not so large and/or the diffusion
coefficient in the primary solid () phase is not significantly
smaller than that in the liquid phase, the contribution of
solid diffusion in the peritectic reaction process is not negli-

gible. Hence, the analysis on the peritectic reaction process
essentially requires the effect of solid diffusion to be explic-
itly considered.

5. Conclusion

The motion and morphology of the peritectic triple junc-
tion were investigated for a model alloy system with the
different solid diffusivities and partition coefficient by
means of the quantitative phase-field simulation. It was
demonstrated that the dominative process controlling the
motion of the reaction front changes from the solid—solid
transformation to the secondary solid solidification as the
moving velocity of solid—solid interface decreases. On the
other hand, the morphology of phases very close to the
triple junction is mainly determined by the balance between
the interfacial energies even though the moving velocities
of the interfaces are quite different. When the migration of
solid—solid interface is negligibly slow, the peritectic reac-
tion proceeds only by the ¥ solidification and the classical
theoretical model used by Fredriksson and Nylén may be
validated. However, the analysis on the peritectic reaction
process essentially requires the effect of solid diffusion to
be explicitly considered.
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