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On Non-eliminability of the Cut Rule
and the Roles of Associativity and
Distributivity in Non-commutative

Substructural Logics

Takeshi Ueno, Koji Nakaogawa, and Osamu Watari

Abstract. We introduce a sequent calculus FL’, which has at most one
formula on the right side of sequent, and which excludes three structural
inference rules, ie. contraction, weakening and exchange. Our formula-
tions of the inference rules of FL’ are based on the results and considera-
tions carried out in our previous papers on how to formulate Gentzen-
style natural deduction for non-commutative substructural logics.

Our present formulation FL’ of sequent system for non-commutative
substructural logic, which has no structural rules, has the same proof
strength as the ordinary and standard sequent calculus FL (Full Lambek),
which is often called Full Lambek calculus, i.e., the basic sequent calculus
for all other substructural logics. For the standard FL (Full Lambek), we
use Ono’s formulation.

Although our FL’ and the standard formulation FL (Full Lambek) are
equivalent, there is a subtle difference in the left rule of implication. In
the standard formulation, two parameters I'; and I'» (resp.), each of which
is just an finite sequence of arbitrary formulas, appear on the left and
right side (resp.) of a formula appearing on the left side of the sequent on
the upper left side the left rule D (which corresponds to D’ in FL). On
the other hand, there is no such parameter on the left side of the sequent

on the upper left side in the left rule for D’ of our system FL. In our sys-
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tem FL’, I, is always empty, and only I, is allowed to occur in the left
rule for D’ (similar differences occur in the multiplicative conjunction, ad-
ditive conjunction and additive disjunction). This subtle difference be-
tween our system FL’ and the standard system FL (Full Lambek) matters
deeply, for we are led to a construction of proof-figures in FL’, which
show how the associativity of multiplicative conjunction and the distribu-
tivity of multiplicative conjunction over additive disjunction are involved
in the eliminations of the cut rule in those proofs. We clarify and specify
how associativity and distributivity are related to the non-eliminability of

an application of the cut rule in those proof-figures of FL'.

1 Introduction

The situation surrounding the syntactic aspects of non-commutative
substructural logics does not seem to be fully clarified. In particular, the
process of eliminating applications of the cut rule in a given proof-figure
of intuitionistic sequent system for FL’, (defined below) , where FL stands
for “Full Lambek” and is the most basic system for substructural logics,
sometimes succeeds and terminates, and some other times, does not suc-
ceed and does not terminate to produce a proof-figure which contains no
applications of the cut rule. Indeed, it depends on the subtlety of where
one is allowed to place parameters (side formulas) in some of the infer-
ence rules of FL’.

In the present paper, we introduce a system of inference rules of in-
tuitionistic (“left heavy”) sequent calculus for substructural logic, FL’,
which lacks all structural inference rules, namely, exchange, weakening,
and contraction rules. Furthermore, the parameters in its inference rules

are placed in such a way that their positions reflect the “natural order” of

._6'_.



non-cancelled hypothesis in the (Gentzen-style) natural deduction for non-
commutative substructural logic. Using our system FL’, we will show
how the associative law for multiplicative conjunction and the distribu-
tive law of multiplicative conjunction over additive disjunction are entan-
gled in the elimination process of applications of the cut rule. Analysis
the relevancy of these two rules as to the cut elimination process has be-
come possible to us, for we fixed the positions of parameters in the infer-
ence rules of FL’ according to our analysis of normalization procedures in
Gentzen-style natural deduction for non-commutative substructural logic.
(This paper does not assume the knowledge of our previous papers on

Gentzen-style natural deductions for substructural logics.)

2 Language L and its Formulas

Our language L has propositional constant symbols A, B, C;~. As for
logical connectives, it has the implication symbols D, D’, the negation
symbols =, =/, the multiplicative conjunction symbol* the additive con-
junction symbol A, the additive disjunction symbolV. In L, there are con-
stant symbols t to denote the unit element for the multiplicative conjunc-
tion, f to denote the unit element for the multiplicative disjunction which
is not introduced in this paper, T to denote the unit element for the addi-
tive conjunction, and L to denote the unit element for the additive dis-
junction.

The formulas of L are defined inductively as a finite sequence of

these symbols together with parenthesizes.



3 Sequent Calculus FL’ (our formulation)

The sequent of the language L have the following form

r—4a.

The left hand side of a sequent may be empty. The right hand side
of a sequent is either empty or consists of a single formula. To specify
the element of I' and 4 we write

Y0, »Ym—-1 = 0.

When both sides of a sequent are empty, we write

Next, we introduce the sequent calculus FL’ as follows. We say that
(ri—X, I'—X,, ~ I'h—X, /[—X) is an instance of a certain inference
rule if it has the form indicated by the corresponding figure. If (I'i—X,
=Xz, ~, I',—X, /I'=X) is an instance of an inference rule a, we call I';
—X; the i-th upper sequent of a, and I'—X the lower sequent of a.
(The origin of FL goes back to a classical paper written by J. Lambek in
1950’s.

Our presentation of FL’ is based on Ono [4].), but ours is different from his
in important places.

In our FL’, the positions of parameters in its inference rules are de-
termined according to the un-cancelled hypothesis of Gentzen-style natu-
ral deduction for non-commutative substructural logic. The reader should
take note that the positions of parameters in inferences rules of our FL’

are different from those of Ono’s.



— Axioms and rule for logical constants:

A— A
— t
I — T

I —C
t, ' - C

— Structural inference rule :

Fl_’A FQ,A,F3—>C

1, —-C
I? =
I —f

fw

F27F17F3 - C

—Logical inference rule:

I'—A B/ I,—C

LASB T oo © ki

INn—-A B, I»—C

AS B oC & )
%ﬁé (- left)
}A—%“: (= left)

fi%,?%% (+ left)
Z% (A1 left)
Af;% (Mg left)

AI'-C B,I' -C
AvVvB,I' - C

(V left)

(cut)

A I’ - B

T+ A5 B
IA— B

' -A>'B
AT —

I —- -A
I'A—

I - A

Inn—A I,— B
I,In, - AxB

(D right)
(D' right)
(— right)

(=" right)

(* right)

I'—-A I'-> B

FARE hHgm)

Ir— A
I' - AVB
I' - B
I' - AVB

(V1 right)

(Vg right)



4 Sequent Calculus FL (Ono’s formulation)

The reader should be warned that the D of FL’ corresponds with DO’
of Ono’s, and D’ of FL’ corresponds with D of Ono’s. — of FL’ corre-
sponds with = of Ono’s, and = of FL’ corresponds with = of Ono's.

— Axioms and rules for logical constants:

A— A
— t f —
I'— T I,1, I, ->C
Iy Iy~ € . L — ¢
bl —e Y
— Structural inference rules:
Fl—VA FQ,A,F3—>C( t)
F21F17F3_)C A
—Logical inference rules:
Fl—'A FQ,B,F3—>C A,F—)B ’ .
_— h
I I,L,A> B I; —C EVEDN A
In—-A Iy, B I3 —-C I''A— B (> right)
oA Bl s = Fesd 38 ¥ °0
F—>A . A7F_) b
T ﬂ/‘4 it (ﬂ left) T = ﬂ_/A (_‘ I'lght)
Ir—- A I''A— .
vl = [ i)
In,A,B, I, - C In—-A Ib,—B .
B AsEl S0 o NS AnE ey
FI,A,FQ_’C
TAAE. G — & 7o) F—ad I =+B o dom)
I' - AANB
I} I
135005 30 i ek

IN,ANB, I, — C
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I'— A

Fi A Ib =i I 8.0 -0 _— 5 Ay p (Viright)
Fl,AVB,F2—>C

Fe=s B ioht

FSAyE Waue)

5 Equivalence of FL and FL’

Theorem 1 (Equivalence of FL and FL’).

Let ¢ be a formula of the language L. Let I’ be a list of formulas of L.
Then, the sequent I — ¢ is provable in FL if and only if the sequent I — ¢
is provable in FL'.

Proof. First, we prove that if sequent I'— ¢ is provable with proof IT in
FL, then sequent I'— ¢ is provable with a proof X in FL’. To prove this
direction, we use induction on the number #(II') of the applications of in-
ference rules in the proof IT.

If 8(IT) is zero, I'— ¢ must be an axiom of FL.

The axiom I'=T, I', L, I'> = C of FL is provable in FL’. This is
shown by the following proof figure of FL’.

] — a1 Gy — Q2 .
a1,02 — Q] * Q2 (* I‘lght) C-C

1, Iy - a1 xay DC ay, Q9,01 *ag O C
al»QQ,Lvl—‘Q - C

(D left)

(cut)

The following proof figure shows that the axiom (rule) tw of FL is

provable in FL’.

ay,ag, [y — C

S e (D left)

1 2,142 . ) a1 Gy = Qs y

Iy > arxa DC (tD right) Qap, 0 — Q1 * Qg (x right) C—-C (> left)

t, [ - ayxay DC L al,ag,al*azDC ¢
(cut)

ap,a,t, Iy — C
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Now, we assume the theorem for #(I1) < n, and prove it for 8(I1) = xn.

Our proof is divided into cases, depending on which inference rule is
used as the “bottom” inference rule in I7.

Without loss of generality, we assume that Iy consits of just @i, and

az.

Case 1 The bottom inference rule in IT is (¥left)

a1,a2,A,B,FQ - C
i.e. al,ag,A*B,FQ - C

(* left)

Then we can construct a proof of @, @2, A* B, I'»—C in FL’ as fol-
lows :

al‘ag,A,B,Fz — C

(D left)
AB, Iy, - C ——
AalB* ;jﬁa 7 *2012 5¢ (O right) a;iajl—» (;21 *a(:2 GHgst) g
. L (% left) ! (D left)

AxB, Iy - ayxay DC ay,ap, a1 % ag O C

a1, a0, Ax B, Iy — C (oxt)

or

ay—a; C—C
VAB, I — C )
:1;0;2, A, B:If -5 (> left) a,a1 DC - C
1*xa, A, B, I} .
AB I - ayxaz2 D C ((Dlnff;lt)
*
AxB, I3 - ayxaz DC <
a2, Ax B, —» C

(O left)

————— (D right)
a; —waz a; DC ale(D left) ap — a Cﬂc(*left)

az,ay Da; DC - a; DC aj,a1 DC — C
ay,az,a2 Da; DC - C

(cut)

(cut)

Case 2 The bottom inference rule in I7 is (V left)

a13a27A’I-‘2_)C F13B7F2_)C
ie. ay, a0, AV B, I5 — C

(V left)



Then we can construct a proof of @i, @2, AVB, I'>—C in FL’ as fol-

lows:
ayr.a2, A, I, = C (+ Ieft) ay,a2.B, I — C (x left)
— L (xle ———— (xle
oy xaz, AT, = C , ayxaz, B, I — C . R s S
e e (D Tight) == (] Fighty S . 39 = Gl y
A s o1xa; DC B, It — arxa; DC ai, a2 — Q) *az C—C
(V left) (D left)
AVB, I3 a1 a2 DC al.uz,al*azjc( £
cut
a2, Ax B, I, —- C
or
aj — ay C —-C
- . . — D et
aj.ag Ay —C aj.ag.B. My — C 1.0, DC — C
— == (D right) ————= (> right) ———————— (D righy)
a3.A. Ty —a; DC ag.B. Iy — a] D C ag —az a; >C —a; DC a; wa; €C—=C
e s (" TRPRES (D right) (D left) (» left)
AT; ~a35a;0C B.I3 —az>a; 5C a3.015a; 5C — a3 DC a1, 5C = C
AVB. I — a3 Da; DC C aj,ag.az Da; DC — C en

(cut)
aj.a2.AV B, I; = C

The other inference rules are handled in a similar way.
The other direction is clear since each axiom and inference rule of

our FL’ is a particular case of those of Ono’s FL.

6 Cut, Parameter in inference rules, associativity and distributivity

In this section, we present some examples of proof-figures of FL’
which show how associative law and distributive law are involved with
the cut-elimination process, and show how difficult it is to eliminate the

applications of the cut rule in these proof-figure.

Associativity: Ax (B*xC) — (AxB)xC

First of all, we present the following proof figure in FL’, which con-

tains an application of the cut rule.

A—-A B—o B

40 sder el e w
A.B,C —(AxB)*C (» right)
B.C—»AD(A*B)*C(ZIS:;R) AmA AD(AxB) e CoADAB)C
BxC - AD(A*B)*C A/ AD(A*B)xC - AD (AxB)xC

AB+C = (AxB)+C (i

Ax(BxC) - (AxB)xC

(* left)
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This application of the cut rule becomes eliminable in FL as the next

proof figure shows:

A—>A BB
AB— AxB G — &

A,B,C —-(AxB)xC
A B+xC —(AxB)xC
Ax(BxC) —(A*B)xC

(* right)

Associativity : (A*xB)«C — A% (B*C)

This direction of associativity can be proved in both FL’ and FL, as

the next proof figure shows :

B—B C—-C

AsA “HO—BRE T OE)
i lef
A,B,C = A+ (B+C) (*1?:))
A+B.C S Ax(BrC) *1€
( left)

(AxB)*xC — Ax(BxC)

Distributivity: Ax(BVC) - (AxB)V (A* ()

In FL’, we need an application of the cut rule to prove this direction

of distributivity, as the following proof figure shows:

A~ A B—B A—-A C—cC

« righ A=l C2C
A B Aep 0 risnt) 4.0 — AsG  \FHER)
—_— _ (V right) —  (V right)
A, B —~(A«B)V(A=C) A,C -(A«B)V(A=C)
(D right) (D right)
B~ AD((AsB)V(A«C)) C ~AD((A+B)V(A=C) o A=A (AeBIVAO) =(ABVA-O)
V left right
BVC — AD (A= B)V(A+C)) (e A.A3((AtB)v(A-C))A(A-Byv(A-C)i )5
3
A,BVC —~(A+»B)V(A«C) left) -
A BVO) —(A-Byvia-g) "l

This application of the cut rule becomes eliminable in FL as the next

proof figure shows:
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A—- A B-—> B A—- A C—-C

4B A+B (*rii}/m). ht) A,C - AxC (*rifbt)i )
ABS(A+B)V(AxC) - "8 A CS(AxB)V(A+0) (Vr,ght
ABVC S (AxB)VAO) o right)
Ax(BVC) > (A+B)V(AxC) © °
Distributivity: (A« B)V (AxC) — Ax (BV C)
This direction of distributivity is provable in both FL’ and FL.
Ao A Bancéf:;gg}}:tt)) Ao A CHBvcgfr“i‘gg}it))
AB— Ax(BVO) o) A,C > Ax(BVC) (e Loft)
*
AnB = da(Evoy e A+C > Ax(BVO) ¢
(V left)

(AxB)V(A*C) — A (BVC)

The above proofs indicate the way how associativity and distributiv-
ity matter for the non-eliminability of applications of the cut rule in a
given proof of non-commutative substructural logic. Indeed, the above
proof figures, showing how associativity and distributivity are related to
the cut rule, are obtained through the analysis of the (unsuccessful) reduc-
tion process for a non-normalizable proof in Gentzen style natural deduc-
tion for non-commutative substructural logic. In other words, the role of
associativity and distributivity (in the process of “reduction”) becomes
clearer in the places where cut elimination fails.

It is an open problem whether cut elimination holds for FL’ if we add

associativity and distributivity to FL’.
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