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Predicting Oil Palm Leaf Nutrient Contents in Kalimantan, Indonesia 23 

by Measuring Reflectance with a Spectroradiometer 24 

Abstract 25 

Leaf nutrients are needed for oil palm growth and production, and the nutrient 26 

contents of oil palm leaves can be determined by the chemical analyses of the 27 

number 9 and 17 leaves for young and adult palms, respectively. However, the 28 

accurate selection of the proper leaf for sampling is problematic. Remote sensing 29 

techniques based on the reflectance values of leaves may easily monitor leaf 30 

nutrients in oil palm plantations. We studied leaf nutrient contents using spectral 31 

reflectance data to determine suitable wavelengths for predicting the contents of 32 

the most important leaf nutrients: nitrogen, phosphorus, potassium, calcium, 33 

magnesium, boron, copper, and zinc. The samples were taken from one oil palm 34 

plantation in Pundu, Central Kalimantan, Indonesia. The proposed vegetative 35 

indices, several common vegetative indices, and a stepwise regression that 36 

continued with a principal component regression were used to build models for 37 

predicting leaf nutrient contents. The proposed vegetative indices performed 38 

better than the common vegetative indices. For each of the leaf nutrients, models 39 

that included all of the significant variables from the stepwise regression and 40 

continued with principal component regression from the ultraviolet A and green 41 

to far red wavelength groups had better performance levels than models that 42 

included individually selected variables selected from each wavelength group. 43 

For total leaf nutrient content predictions, variables from the green wavelength 44 

group were always selected and contributed more to the models than any other 45 

group. Thus, our proposed vegetative indices and multivariate model may be used 46 

to predict leaf nutrient contents in oil palm plantations. 47 

Keywords: macronutrient, micronutrient, oil palm, spectral, reflectance, 48 

spectroradiometer 49 

1. Introduction 50 

Oil palm (Elaeis guineensis Jacq) is an economically important crop in Indonesia and 51 

Malaysia (World Growth 2011; Basiron 2007), which are now the largest exporters of 52 

vegetable oil in the world (OECD/Food and Agriculture Organization of the United 53 



Nations 2015). Fertilizer is an important factor affecting oil palm production and 54 

represents 40%–50% of the total field upkeep costs (Ng 2002). Fertilizer requirements 55 

in oil palm plantations were determined by leaf nutrient contents analysis, as is typical 56 

for many other crops (Pritts and Heidenreich 2012; Memon, Memon, and Hassan 2005). 57 

To determine leaf nutrient contents, leaf samples are annually collected for analysis 58 

(Chapman and Gray 1949; Fairhurst and Mutert 1999). Leaf samples are taken 59 

periodically from leaf number 17 for adult palms and leaf number 9 for young palms. 60 

Commonly, the sampled leaves are grouped in leaf sampling units (LSUs) that consist 61 

of 30–40 selected palms each. One LSU is assigned for every 30–40 ha (Foster and 62 

Choong 1976; Uexkull, Fairhurst, and von Uexkull 1991). A common problem is the 63 

accuracy of determining the leaf for sampling. To identify leaf number 17, workers 64 

must first identify leaf number 1, the youngest fully-expanded leaf, and then count 65 

backwards. However, there can be some ambiguity in determining the youngest fully-66 

expanded leaf. Therefore, an improved technique is needed that can be used to quickly 67 

monitor leaf nutrients in oil palm plantations. Remote sensing techniques based on the 68 

reflectance values of leaves have the potential to meet this demand.  69 

Remote sensing techniques based on reflectance values have been used for the 70 

detection and prediction of plant nutrient states. Albayrak (2008) measured reflectance 71 

levels for determining nitrogen (N), phosphorus (P), potassium (K), acid detergent fibre, 72 

and neutral detergent fibre contents in a sainfoin pasture and found a strong relationship 73 

between plant nutrient content and canopy reflectance, with coefficient of determination 74 

(R2) values in the 0.68–0.93 range. Cohen et al. (2010) estimated leaf N levels in potato 75 

using spectral data and simulated bands from the VENµS satellite that indicated N 76 

fertilizer treatment levels, obtaining an R2 value of 0.95, an 80.5% overall accuracy and 77 

a kappa coefficient () value of 74%. Özyigit and Bilgen (2013) showed significant 78 



relationships between spectral reflectance and the leaf nutrient contents of N, P, and K 79 

in rangeland plants with R2 values of 0.85, 0.43, and 0.84, respectively. Menesatti et al. 80 

(2010) estimated the plant nutritional status using a visible to near infra-red (NIR) 81 

spectrophotometric analysis of orange leaves and obtained high R2 values of 0.91, 0.43, 82 

0.99, 0.95, 0.94, 0.92, 0.93, and 0.89 for N, P, K, calcium (Ca), magnesium (Mg), iron 83 

(Fe), manganese (Mn), and zinc (Zn), respectively. 84 

Using NIR reflectance spectroscopy, Rothman et al. (2009) showed that 85 

wavelengths in the 1100–2498 nm range had strong correlations with the nutritional 86 

values of foods eaten by mountain gorillas, with R2 values of 0.73–0.99. Başayiğit, 87 

Dedeoğlu, and Akgül (2015) showed that wavelengths of 540–560 nm (green visible) 88 

and 990–1010 nm (NIR) were correlated with active Fe levels in apple, cherry, and 89 

peach, with coefficients of the accuracy of 76.70%, 75.28%, and 78.69%, respectively. 90 

The coefficient of accuracy is a statistical parameter for methods comparisons (Lin and 91 

Torbeck 1998). Stein et al. (2014) predicted macronutrient contents from loblolly pine 92 

reflectance. They found that the important wavelengths in the partial least squares 93 

regression reflectance model for leaf N status were visible, red edge, and NIR regions, 94 

while the visible and red-edge regions were the important wavelengths for determining 95 

leaf P, K, and Mg. Min and Lee (2005) identified wavelengths of 448, 669, 719, 1,377, 96 

1,773, and 2,231 nm as significant for N detection in citrus. Özyigit and Bilgen (2013) 97 

found that wavelengths of 609, 647, 651, 654, 669, 675, 676, 680, 721, 727, and 760 nm 98 

were suitable for estimating the N levels in rangeland plants; those of 675 and 680 nm 99 

were suitable for estimating P levels; and those of 410, 411, 417, 422, 460, 463, 468, 100 

646, 651, 658, 669, 670, 674, 676, and 682 nm were suitable for estimating K levels. 101 

Thus, reflectance values from spectrometry data at different suitable wavelengths can be 102 

used to determine leaf nutrient contents in different plants. However, oil palm nutrient 103 



contents studies using remote sensing techniques have been limited. We believed that 104 

oil palm leaf nutrient contents could also be predicted using these techniques. Fertilizer 105 

recommendations can also be derived from leaf spectral measurements. Cilia et al. 106 

(2014) produce a pixel-based variable-rate N fertilization map from hyperspectral 107 

sensors in maize. Amaral, Trevisan, and Molin (2017) proposed variable-rate N 108 

fertilization in sugarcane based on readings from the crop canopy reflectance sensor 109 

Crop Circle ACS-430 (Holland Scientific Inc. Lincoln, NE, USA). 110 

Therefore, the objective of this study was to determine suitable reflectance 111 

wavelengths to predict leaf nutrient contents, especially those of N, P, K, Ca, Mg, boron 112 

(B), copper (Cu), and Zn. In oil palm trees, N, P, K, Ca, and Mg are major nutrients that 113 

are required for annual vegetative dry matter production and fresh fruit-bunch 114 

production. In addition, the micronutrients B, Cu, and Zn are required by mature oil 115 

palms (Ng 2002). Ng (2002) found that sulfur (S), as major nutrient, and Mn and Fe are 116 

also required for oil palm growth; but establishing their levels is not necessary for 117 

determining fertilizer requirements. The S levels in common fertilizers (ammonium 118 

sulfate, superphosphate, and kieserite) are sufficient for oil palm growth and production. 119 

Oil palm in Indonesia are mostly grown in soil with low pH values (Nelson et al. 2002), 120 

which means that the amounts of available Mn and Fe were high. Therefore, Mn and Fe 121 

were omitted when determining the fertilizer requirements for oil palm.  122 

2. Materials and Methods 123 

Oil palm leaf reflectance data were collected, and leaf nutrient analyses were performed. 124 

Predicting leaf nutrient contents in oil palm using reflectance data will increase the 125 

efficiency of management practices in oil palm plantations. In particular, monitoring 126 

leaf nutrient states will help determine fertilizer requirements, decreasing costs and 127 

environmental contamination. 128 



2.1. Study site and leaf sampling methods 129 

The study was conducted in one oil palm plantation belonging to a company in Pundu, 130 

East Kotawaringin District, Central Kalimantan, Indonesia (Fig. 1 a, b). Leaf samples 131 

were collected during 14–15 March 2015 from three different age groups of oil palms: 132 

5, 12, and 17 years old. Symptoms of K and Mg deficiencies in oil palms appear in 133 

older leaves, N deficiency symptoms occur in younger and older leaves, and 134 

micronutrient deficiencies commonly appear in younger leaves (Corley and Tinker 135 

2003; Von Uexkull and Fairhurst 1999). Therefore, leaf samples were taken from leaf 136 

number 9 (young), 17 (middle), 25 (old), and 33 (older) in every age group (Fig. 2). A 137 

total of 42 leaf samples was collected for leaf nutrient analyses.  138 

Fig. 1. Study site was on Kalimantan Island (a); map of the study site’s area (b). 139 

 140 

 141 

Fig. 2. Leaf sampling: leaf numbers 9, 17, 25, and 33 (a); leaf collection in the field (b); 142 

spectral leaf measurement (c); and cleaning oil palm leaflets before leaf analysis (d). 143 

2.2. Oil palm leaf nutrient analyses 144 

The leaf nutrient analyses were performed at the Leaf Laboratory of the Indonesian Oil 145 

Palm Research Institute in Medan, North Sumatra, Indonesia. Before leaf samples were 146 

processed in the laboratory for analysis, they were cleaned or wiped using Aquadest 147 

(distilled water) to remove dust. Leaf samples were analysed for N, P, K, Ca, Mg, B, 148 

Cu, and Zn. The N content was measured by the Kjeldahl method. K, Ca, Mg, Cu, and 149 

Zn were measured by atomic absorption spectrometry. P and B were measured by 150 

inductively coupled plasma atomic emission spectrometry and direct current plasma 151 

emission spectrometry. All procedures in the analyses were adopted from Kalra (1998) 152 

and Sulaeman, Suparto, and Eviati (2005). 153 



2.3. Reflectance measurements of oil palm leaves 154 

The reflectance of oil palm leaves was measured using a portable spectroradiometer 155 

[FieldSpec3; Analytical Spectral Devices (ASD), Inc., Boulder, CO, USA] with a plant 156 

probe having a wavelength range of 350–2500 nm. In total, 42 leaf samples from three 157 

groups of oil palms of different ages were collected. The reflectance measurements 158 

were applied to leaflets that were taken from three sections of every leaf (bottom, 159 

middle, and upper) and each leaf included three leaflets. Thus, there were 378 leaflets 160 

for leaf reflectance measurement. The reflectance was measured on the surface of the 161 

leaflets at 10 positions per leaflet, resulting in 3780 reflectance data measurements. The 162 

measurements were periodically calibrated with a white reference panel or white 163 

reference standard. The spectral resolution output data from the ASD operating system 164 

was 1 nm along the whole spectrum. The digital number values from the measurement 165 

were converted to spectral reflectance values using ViewSpecPro version 6.2.0 from 166 

ASD. We calculated the mean values of the 42 leaf samples’ reflectance from the 90 167 

reflectance measurements taken per sample. The mean values of the reflectance 168 

measurements with 1-nm resolution were labelled as dataset 1. Data selected every 3 nm 169 

for wavelengths in the range of 350–1000 nm and every 10 nm for wavelengths of 170 

1001–2500 nm were labelled as dataset 2 (Hatchell 1999). Therefore, there were 42 data 171 

points of observation (leaf nutrient analysis), with 2151 spectral measurements as 172 

variables for dataset 1 and 367 spectral measurements as variables for dataset 2. 173 

Figure 3 shows the mean reflectance values of oil palm leaves from dataset 2 174 

with standard deviations. This reflectance pattern is a common vegetative spectral 175 

pattern (Hoffer 1984). The oil palm reflectance was low in the visible wavelengths and 176 

high in the NIR wavelengths. It started to decrease at approximately 1150 nm and 177 

sharply decreased at approximately 1300 nm (Fig. 3). Low reflectance in visible 178 



wavelengths is to the result of chlorophyll absorption, and the low reflectance values at 179 

approximately 1450 and 1900 nm are the result of water absorption (Hoffer 1984). 180 

Fig. 3. Mean reflectance values of oil palm leaves with standard deviations calculated 181 

from spectral measurements. 182 

2.3. Data analyses 183 

The wavelengths were divided into nine groups (Table 1) as described by Hatchell 184 

(1999). The analyses in this study were carried out using R software (RStudio 2015) as 185 

described below. 186 

Table 1. Wavelength ranges 187 

2.3.1. Variable screening to construct normalised differences and simple ratio 188 

models  189 

Dataset 1 was used for variable screening to construct normalised differences (NDs) and 190 

simple ratio (SR) formulae. The script from Sonobe and Wang (2016) was adopted and 191 

used in this study to investigate the 2,151 variables that could be used to predict leaf 192 

nutrient contents based on R2 values. The R2 values calculated from predicted values of 193 

the ND and SR formulae were compared with leaf nutrient analyses (reference values). 194 

Thus, we identified different suitable variables for each type of nutrient content in the 195 

leaves.  196 

2.3.2. Vegetative indices 197 

Vegetative indices have been used for estimating and monitoring leaf nutrient contents 198 

in plants, including studies in a sainfoin pasture by Albayrak (2008), in potato by Cohen 199 

et al. (2010), Munoz-Huerta et al. (2013), in wheat by Mahajan et al. (2014), and in 200 

loblolly pine by Stein et al. (2014). The vegetative indices used in this study are shown 201 



in Table 2. The vegetative indices calculated from dataset 1 were used as variables for 202 

correlation analyses against the reference values. The goodness-of-fit parameter was R2. 203 

Table 2. Vegetative indices used in this study 204 

 205 

2.3.3. Variables selected using a stepwise regression and the generalized linear 206 

model (GLM) formulae 207 

Stepwise methods with the GLM formula were applied to dataset 2 to determine the 208 

variables suitable for predicting leaf nutrient contents. The stepwise method has been 209 

commonly used in research for selecting variables suitable for predicting or simulating 210 

leaf nutrient contents in several plants (Starks et al. 2006; Albayrak 2008; Joffre et al. 211 

1992; Başayiğit, Dedeoğlu, and Akgül 2015; Serusi et al. 2010; Min and Lee 2005; 212 

Basayigit and Senol 2009; Özyigit and Bilgen 2013). In this study, stepwise processing 213 

was performed with the MASS package in RStudio software (Ripley et al. 2015) using 214 

the GLM formula (RStudio 2015). The parameters set for the GLM formula were 215 

Gaussian for family. The stepwise processing was based on Akaike’s Information 216 

Criterion (AIC) value with forward and backward directions. The stepwise processing 217 

was applied to the nine wavelength ranges, and all variables selected as output from 218 

stepwise processing were tested for significant covariates. Therefore, the final variables 219 

selected were all significant at p = 0.05 for inclusion in the model to predict leaf nutrient 220 

contents (Bursac et al. 2008). The function of automated model selection based on the 221 

p-value was adopted from Meys (2013). The parameters of goodness-of-fit were the 222 

adjusted coefficient of determination (R2
a) and R2 between the reference and predicted 223 

values from the output of the model predicting the nutrient contents. Root mean squared 224 

error (RMSE) was also used to evaluate the model by summarizing the differences 225 

between the actual (observed) and predicted values. 226 



Principal component regression (PCR) was applied to the model that was 227 

produced from the stepwise processes. PCR is a method that addresses multicollinearity, 228 

according to Fekedulegn et al. (2002) and Alibuhtto and Peiris (2015), and is based on 229 

principal component analysis. Variables in the stepwise model were transformed to 230 

uncorrelated variables called principal components of the correlation matrix. Then some 231 

of the principal components were eliminated to effect a reduction in variance, which 232 

was performed using ordinary least squares estimation (Fekedulegn et al. 2002; Graham 233 

2009). We used the “analogue package” to perform PCR that included scaling data and 234 

cross validation. The PCR performances were R2, maximum bias of the model residuals, 235 

and RMSE. The regression coefficients for the PCR were used to build the final 236 

predictive model of leaf nutrient contents (Simpson and Oksanen 2016). 237 

3. Results  238 

3.1. Leaf nutrient analysis 239 

Leaf nutrients had low to high variability in the order P, N, K, Ca, Zn, Mg, B, and Cu 240 

according to the leaf nutrient content analysis (Table 3). The leaf nutrient contents 241 

found in this study were highly variable. This may have resulted from the different ages 242 

of samples leaves: young (leaf number 9), middle (number 17), old (number 25), and 243 

older (number 33). Leaf age is one factor that affects leaf nutrient concentrations 244 

(Fairhurst and Mutert 1999). The variability of the leaf nutrient contents in this study 245 

was important for determining the correlations with leaf reflectance spectra (Starks et 246 

al. 2006).  247 

Table 3. Summary of the leaf nutrient contents analysis  248 



3.2. ND and SR formulae 249 

The selected variables from the leaf reflectance spectra used to build the ND and SR 250 

formulae for predicting leaf nutrient contents are shown in Table 4. Both ND and SR 251 

formulae used the same selected variables (Table 4). N had the highest R2 value (0.53), 252 

and B had the lowest value (0.33). Like the results of Mukaka (2012), the r values in the 253 

0.70–0.90 range achieved for both ND and SR in the current study showed that spectral 254 

numbers X1423 and X1877 were highly positively correlated with the N leaf nutrient 255 

analysis (reference value) and that X1164 and X1238 were highly positively correlated 256 

with the Ca leaf nutrient analysis. The ND and SR equations for N and Ca leaf nutrient 257 

contents are as follows: 258 

N-ND(X1423_X1877) =   ,     (1) 259 

N-SR(X1423_X1877) =  ,      (2) 260 

Ca-ND(X1164_X1238) =  , and     (3) 261 

Ca-SR(X1164_X1238) =  .      (4) 262 

P, K, Mg, B, Cu, and Zn had moderately positive correlations with ND and SR 263 

formulae, and the variables selected are provided in Table 4. The formats of the 264 

equations for P, K, Mg, B, Cu, and Zn of ND were the same as those of equations (1) 265 

and (3), and the formats of the equations for SR were the same as those of equations (2) 266 

and (4). Different spectra were selected for the different variables: NIR 1 (G8) was used 267 

for determining P and Ca; NIR 1 (G8) and NIR 2 (G9) were used for N and B; 268 

shortwave (SW)-NIR (G7) was used for Mg and Cu; green (G3) and red (G5) were used 269 

for K; and far-red (G6) and SW-NIR (G7) were used for Zn. 270 

Table 4. Normalised difference (ND) and simple ratio (SR) models for dataset 1. 271 



 272 

The wavelengths selected from the ND and SR models, including those for 273 

predicting N, P, Ca, B, and Cu contents, were in the 1005–1877 nm range (NIR or 274 

SWIR to SWIR2 or NIR2). This is in accordance with the results of Pimstein et al. 275 

(2011), indicating that N and K had correlations with the visible and SWIR 276 

wavelengths. They proposed a new ND equation for N, with wavelength numbers X870 277 

and X1450 for Equation 1 and X1645 and X1715 for Equation 2, that produced better 278 

results than those of the common vegetative indices. Mahajan et al. (2014) proposed 279 

new a vegetative index for predicting the P content using wavelength numbers X1080 280 

and X1460. The wavelength number selected for the ND and SR models to predict N 281 

and P contents was selected from the NIR region, which is in accordance with the 282 

results of Pimstein et al. (2011); they found interactions for both N and P with 283 

wavelengths in the NIR region. Ca in oil palm leaves is correlated with the leaf lignin 284 

content (Nur Sabrina, Sariah, and Zaharah 2012). In Yao et al. (2010), the wavelength 285 

numbers X1164 and X1238 in the ND and SR formulae used to predict Ca content in 286 

leaves were correlated with those in the NIR to determine the lignin content in Acacia 287 

trees. In oil palms, B functions in the translocation of N and P, and in pollen viability. 288 

The Cu in oil palms is needed for N metabolism and pollen viability (Tengoua et al. 289 

2015). Therefore, the variables selected for predicting B and Cu by ND and SR were 290 

similar to those selected for N and P.  291 

The different wavelength numbers selected from ND and SR for K, Mg, and Zn 292 

were in the X530–X773 range. In oil palm, K is important for proper stomatal 293 

functioning in leaves, the transport of assimilates from photosynthesis, enzyme 294 

activation, and oil synthesis. Mg is a constituent of chlorophyll and is essential for 295 

efficient photosynthesis (Rankie and Fairhurst 1999), while Zn has important roles in 296 

catalysing enzyme activity, especially in oil synthesis (Ng 2002). In addition, deficiency 297 



symptoms for K, Mg, and Zn in the field can be seen in middle to older leaves. Indeed, 298 

the wavelength numbers selected were close to NIR, especially for Mg and Zn, while 299 

for K they were in the green and red spectra. For K, the wavelength number X530 was 300 

close to the peak of the green region, and X707 occurred where reflectance started to 301 

increase, close to NIR. In addition, for Mg and Zn, the selected wavelength numbers 302 

were close to the peak of reflectance in the NIR region. Therefore, X1423 and X1877, 303 

X1215 and X1317, X530 and X707, X1164 and X1238, X753 and X773, X1005 and 304 

X1033, and X744 and X764 can be used for predicting leaf nutrient content of N, P, K, 305 

Ca, Mg, B, Cu, and Zn, respectively, although the correlation coefficients (r) were low 306 

to moderate by ND and SR formulae. 307 

3.3. Vegetative indices  308 

The relationships of vegetative indices with leaf nutrient contents are shown in Table 5, 309 

with R2 in the 0–0.37 range, with the highest R2 value occurring for the modified 310 

chlorophyll absorption reflectance index 1(MCARI1) in predicting the Ca leaf contents. 311 

The ND used spectral numbers 870 and 1450 (termed N870_1450) and predicted the N, 312 

P, and K contents with R2 = 0.347, 0.209, and 0.347, respectively. The green normalised 313 

difference vegetation index predicted the B and Zn contents with R2 = 0.296 and 0.086, 314 

respectively. MCARI1 predicted the Ca contents with R2 = 0.373, while MCARI 315 

predicted Mg contents with R2 = 0.293, and the transformed chlorophyll absorption 316 

reflectance index predicted the Cu content with R2 = 0.244.  317 

Table 5. Relationships (R2 values) between vegetative indices and leaf nutrient contents. 318 

 319 

The results were in accordance with those of Pimstein et al. (2011) and Mahajan 320 

et al. (2014), especially for the R2 of vegetative indices used for predicting leaf nutrient 321 



contents. The ND and SR results (Table 4) in this study had greater R2 values than did 322 

the common vegetative indices (Table 5). Different plant types respond differently to 323 

the vegetative indices applied to predict leaf nutrient contents. Furthermore, leaf 324 

reflectance is affected by leaf structure, leaf conditions, moisture, maturity, and culture 325 

practices (Hoffer 1971; Hoffer 1984). 326 

3.4. Multivariate analysis 327 

The multivariate analysis used a stepwise regression with the GLM formula, and 328 

improved R2 and R2
a
 for common vegetative indices and for the proposed ND and SR. 329 

No variables were selected from wavelengths in G2 and G7–G9 when applying the 330 

stepwise regression (Table 6). In the stepwise regression, variables were added or 331 

deleted from the model one at a time until the stop criterion (in this case the AIC value) 332 

was reached. Wavelength numbers in G2 and G7–G9 were not selected for constructing 333 

the leaf nutrient contents prediction model. The stepwise regression was ceased if the 334 

AIC value was very low in the initial analysis. We also applied stepwise regressions to 335 

all of the selected variables of wavelengths in G1 and G3–G6; this group is referred to 336 

as group C (Table 6). 337 

The partial least squares regression (PLSR) model can also be used as a 338 

powerful multivariate analysis for leaf nutrient prediction (Li et al. 2016; Capolupo et 339 

al. 2015; Cohen et al. 2010; Stein et al. 2014; Abdel-Rahman et al. 2017; Galvez-Sola 340 

et al. 2015; Serusi et al. 2010). For comparison, the PLSR model was applied in this 341 

study using the backward selection of predictors, leave-one-out cross-validation and the 342 

orthogonal scores algorithm method. The model was selected based on two approaches. 343 

One was based on significance, and the other was based on combining significance with 344 

the variable importance in the projection approach. The results of the PLSR method are 345 

shown in Table 7. All of the wavelength groups had positive responses, but the number 346 



of variables selected was greater and the R2 value lower than with the GLM method, in 347 

general. 348 



Table 6. Results of a multivariate analysis using the GLM method 349 

 350 

 351 

 352 

 353 

 354 

 355 

Table 7. Results of a multivariate analysis using PLSR 356 

 357 

 358 

 359 

 360 

 361 

 362 

 363 

 364 

Table 8. Results of a multivariate analysis using PCR 365 

 366 
 367 

 368 



For the two multivariate results, we considered the results from the stepwise 

variables selection and then we applied a PCR to build the final model. The PCR 

calculated principal components of a linear combination of the original variables but not 

for a feature selection method. The results of the multivariate analysis using PCR are 

shown in Table 8. In general, the R2 for all model predictions of leaf nutrient contents 

were higher than the multivariate analysis using a stepwise GLM and PLSR. All of the 

leaf nutrient contents model predictions have R2 values in the 0.86-0.94 range for the 

macro nutrients (N, P, K, Ca, and Mg) and in the 0.77-0.084 range for micro-nutrients 

B, Cu, and Zn. The RMSE values were less than zero for P, Mg, Ca, N, and K and in the 

1 to 3.6 range for Cu, Zn, and B. 

The correlation between the N content in leaves and the leaf nutrient analysis 

(reference value) from the PCR had R2 values in the 0.55-0.94 range, with the greatest 

R2 values occurring in G3 (green). The P content correlation with the leaf nutrient 

analysis (reference value) had R2 values in the 0.49–0.0.90 range, with the greatest R2 

values occurring in G5 (red). For K, Ca, Mg, B, Cu, and Zn, the R2 values were in the 

0.61–0.85, 0.69–0.86, 0.36–0.91, 0.61–0.84, 0.59–0.84, and 0.36–0.77 ranges, 

respectively. The greatest R2 values occurred in G3 (green) for K, Ca, Mg, B, and Cu 

and in G5 (red) for B and Zn. 

The PCR was applied to all variables selected from G1 and G3–G6 to produce a 

new model of the correlation between leaf nutrient contents and leaf reflectance. The R2 

values were more strongly correlated in each wavelength group. The R2 values for N, P, 

K, Ca, Mg, B, Cu, and Zn were 0.997, 0.92, 0.97, 0.96, 0.99, 0.97, 0.86, and 0.92, 

respectively. Separating all of the selected variables in the model from G1 and G3–G6 

showed that wavelengths in G3 (green) contributed the most to the model. The relative 

contributions of each wavelength group are shown in Table 9. Plant photosynthesis is 



strongly affected by the chlorophyll content. Gitelson et al. (1996) found that the green 

group had the maximum sensitivity for a wide range of chlorophyll concentrations and 

proposed that the green normalised difference vegetative index had a wider dynamic 

range than the normalised difference vegetative index.  

Table 9. Variable separation based on wavelength groups in group C 

 

The final equations from the models constructed from the PCR and based on the 

greatest R2 value from G1–G9 (model 1: N1, P1, K1, Ca1, Mg1, B1a, B1b, Cu1, and 

Zn1) and from group C (model 2: N2, P2, K2, Ca2, Mg2, B2, Cu2, and Zn2) are shown 

in Table 10. Model 2 had an improved RMSE, which was less than that for model 1. 

Predictions of the B and Zn contents had RMSE values > 1; they were 2.47, 2.45, 1.01, 

2.49, and 1.58 for B1a, B1b, B2, Zn1, and Zn2, respectively. The RMSEs were 0.004–

0.95 for the contents of all other leaf nutrients. An RMSE value close to zero is one 

indicator of the good predictive value of a model. These results are consistent with those 

of Albayrak (2008), which showed that spectral reflectance in the visible to NIR range 

could be used for leaf nutrient predictions in a sainfoin pasture. Min and Lee (2005) 

found high r between absorbance levels at each wavelength number and the leaf N 

concentration of citrus for wavelength numbers in the X553–X707 range. Stein et al. 

(2014) showed that N, P, K, Ca, and Mg contents in the leaves of loblolly pine are 

correlated with the visible spectrum (500–600 nm) and at approximately 700 nm. 

Table 10. Final model of variables selected by PCR to predict leaf nutrient contents 

 

4. Discussion 

In this study, the oil palm leaf nutrient contents, especially N, P, K, Ca, Mg, and B, 

were similar to those of oil palm found growing under several conditions in Malaysia, 



Gujarat, Ghana, and Colombia. Differences in irrigation conditions, terrains, and 

planting materials in Malaysia resulted in N, P, K, Ca, Mg, and B leaf contents in the 

ranges of 2.49-2.81, 0.159-0.180, 0.96-1.15, 0.68-1.02, 0.19-0.26, and 13.7-15.8, 

respectively (Lee et al. 2011). Oil palm in low and high yield conditions in the Surat 

District of Gujarat had N, P, K, Ca, Mg, and B leaf contents in ranges of 2.45-2.75, 

0.16-0.17, 0.59-0.72, 0.66-0.59, and B 20.7-20.8 , respectively (Behera et al. 2016). Oil 

palm growing in different soil in Ghana that received fertilizer had N, P, K, Ca, and MG 

leaf contents in the range of 2.25-2,91, 0.133-0.15, 75-1.09, 0.67-0.97, and 0.31-0.36, 

respectively (Vossen 1970). In Colombia, oil palm from Malaysia planted in Colombia 

had N, P, K, Ca, Mg, and B leaf contents in the range of 2.12-2.73, 2.43-2.73, 0.72-

1.07, 0.69-0.88, 0.23-0.3, and 15-22.6, respectively (Navia, Restrepo, and Romero 

2014). Fertilizer requirements could be determined based on the leaf nutrient contents, 

soil analysis, or a combination of soil and leaf analyses. 

In this study, the variables selected in the ND and SR equations were in 

accordance with the results of previous research (Mahajan et al. 2014; Pimstein et al. 

2011; Yao et al. 2010). The ND and SR equations predicted the leaf nutrient contents 

better than existing vegetative indices. Validation is an important step before any model 

can be applied to the field. For the proposed ND and SR equations, the appropriate 

method for calibrating and determining the wavelength number that matched the 

proposed models’ selected wavelength number used both hyperspectral and 

multispectral imagery as data. The multivariate analysis using PCR to two variables 

from ND and SR equations found that the R2 values were 0.65, 0.66, 0.61, 0.69, 0.64, 

0.61, 0.70, and 0.56 for N, P, K, Ca, Mg, B, Cu, and Zn, respectively. We have applied 

the PCR to all variables (16 variables) from ND and SR equations, and the R2 values 

were 0.89, 0.82, 0.82, 0.82, 0.87, 0.83. 0.90, and 0.76 for N, P, K, Ca, Mg, B, Cu, and 



Zn, respectively. The complete results of the PCR using variables from ND and SR 

equations are shown in Table 11.  Therefore, the variables from ND and SR can be used 

for leaf nutrition content predictions with a multivariate analysis. 

Table 11. Results of PCR analysis to predict leaf nutrient contents using variables from 

ND and SR equations 

 

The multivariate analysis using the GLM method and continued with the PCR of 

dataset 2 showed that wavelengths in G3 (green) were the most important in this study. 

Variables selected from G3 had strong effects in all of the proposed models for 

predicting leaf N, P, K, Ca, Mg, B, Cu, and Zn contents. A limitation of the model 

constructed using the multivariate analysis in this study was that many variables were 

selected to create the model. The number of variables selected from the GLM method 

could be reduced by applying an automated model selection based on p = 0.01 for 

inclusion in the model and then applied with the PCR to build a model for predicting 

leaf nutrient contents. Generally, a multivariate model has a better predictive power 

compared with a simple regression. Here, the model involving variables from visible 

wavelengths (G1 and G3–G6) performed well.  

The results of the present study are in accordance with previous results showing 

that visible wavelengths contribute highly to predicting leaf nutrient contents (Özyigit 

and Bilgen 2013; Stein et al. 2014; Min and Lee 2005; Albayrak 2008) because of the 

different spectral resolutions in the spectroradiometer and hyperspectral image data, the 

next challenge will be to implement the proposed multivariate model using 

hyperspectral imagery. 

Another challenge in developing new techniques to improve agricultural 

management, especially for predicting leaf nutrient contents in oil palm plantations, is 



adapting robust models and methods to the specific characteristics of the plantations. In 

Indonesia, oil palm plantations are commonly very large, with a single estate covering 

2000–3000 ha. Leaf nutrient monitoring to determine fertilizer needs in oil palm 

plantations is based on the leaf nutrient contents of LSU’s that may each represent 30 

ha. Furthermore, the characteristics of the leaf samples taken from the 30 selected trees 

in each LSU depend on the homogeneity of oil palm conditions (tree age, vigour, soil 

nutrient status, and land topography). Thus, the proposed model provides a preliminary 

version of the kind of robust model and method that will be needed for validation using 

data collected under different conditions including soil type, topography, territory 

(area), and climate, and to precisely calculate leaf nutrient contents based on spectral 

values from remote sensing.  

5. Conclusions  

The ND and SR models using wavelength numbers X1423 and X1877 had strong 

positive correlations with the N leaf nutrient analysis (R2 = 0.53), while X1164 and 

X1238 had strong positive correlations with the Ca leaf nutrient analysis (R2 = 0.50). 

The P, K, Mg, B, Cu, and Zn analyses had moderately positive correlations, with R2 

values in the 0.33–0.49 range. Several vegetative indices commonly used for predicting 

leaf nutrient contents had lower R2 values than the proposed ND and SR models in this 

study. A multivariate analysis with PCR using two variables each ND and SR equations 

showed R2 values in the 0.56-0.70 range and using sixteen variables from all variables 

of ND and SR equations have R2 in the 0.76-0.90 range. A multivariate analysis using a 

stepwise regression with the GLM formula that continued with PCR resulted in greater 

R2 values than those for the proposed ND and SR models, as well as several existing 

vegetative indices. Wavelengths in the G2 (blue), G7 (SW-NIR), G8 (SWIR1), and G9 

(SWIR2) did not contribute to the final models for predicting leaf nutrient contents. For 



all leaf nutrient elements, models that involved variables selected from G1 and G3–G6 

had better performances than those that involved variables selected from each group of 

wavelengths individually. Variables from G3 (green) were always selected and 

contributed the most to constructing the final models. Variables from G4 (yellow) were 

the second most important group selected for constructing the models. The wavelengths 

in the proposed vegetative indices and the multivariate model proposed should be 

studied further using hyperspectral sensors or remote sensing satellites. 
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Table 1. Wavelength ranges 

Group Symbol Wavelengths (nm) 

Ultra Violet A G1 350–400 

Blue (B) G2 401–525 

Green (G) G3 526–605 

Yellow (Y) G4 606–655 

Red (R) G5 656–725 

Far Red (Re) G6 726–750 

Shortwave NIR (SW-NIR) G7 751–1100 

SWIR 1/NIR 1 G8 1101–1800 

SWIR 2/NIR 2 G9 1801–2500 

 

  



Table 2. Vegetative indices used in this study 

Vegetation index Formula a Reference 
Normalised difference 
vegetation index (NDVI) 

(RNIR − Rred)/(RNIR + Rred) Rouse et al. (1974) 

Green normalised difference 
vegetation index (GNDVI) 

(R800–900 − R540–560)/(R800–900 + R540–560) Gitelson, Kaufman, and 
Merzlyak (1996) 

Simple ratio (SR) R800–900/R650–700 Birth, Gerald S.; McVey 
(1968) 

Modified chlorophyll 
absorption reflectance index 
(MCARI) 

[(R700 − R670) − 0.2(R700 − R550)] × (R700/R670) Daughtry (2000) 

Transformed chlorophyll 
absorption reflectance index 
(TCARI)  

3[(R700 − R670) − 0.2(R700 − R550)] × (R700/R670) Haboudane et al. (2002) 

MCARI1 1.2[2.5(R800 − R670) − 1.3(R800 − R550)] Haboudane et al. (2004) 
MCARI2 1.2[2.5(R800 − R670) − 1.3(R800 − R550)]/[((2 × 

R800 + 1)2 − (6 × R800 − 5(R650)0.5))0.5 − 0.5] 
Haboudane et al. (2004) 

N870_1450 (R870 − R1450)/(R870 + R1450) Pimstein et al. (2011) 
N1645_1715 (R1645 − R1715)/(R1645 + R1715) Pimstein et al. (2011) 
P1080_1460 (R1080 − R1460)/(R1080 + R1460) Mahajan et al. (2014) 

a The letter “R” followed by a three or four-digit number indicates the wavelength of the respective 

reflectance value. 

  



Table 3. Summary of the leaf nutrient contents analysis  

Nutrient Min Max Mean SD CV (%) 
N (%) 1.80 3.22 2.51 0.31 12.36 
P (%) 0.16 0.20 0.17 0.01 6.63 
K (%) 0.86 1.49 1.04 0.17 16.29 
Ca (%) 0.42 0.93 0.67 0.12 18.11 
Mg (%) 0.16 0.39 0.23 0.06 28.22 
B (ppm) 7.52 25.82 16.10 4.60 28.58 
Cu (ppm) 1.52 9.43 5.29 1.77 33.40 
Zn (ppm) 7.98 26.97 14.17 3.98 28.05 

Abbreviations: Min, minimum; Max, maximum; SD, standard deviation; CV, the coefficient of variation. 

  



Table 4. Normalised difference (ND) and simple ratio (SR) models for dataset 1. 

Leaf nutrients Model Variables a R2 b 
N SR X1423, X1877 0.53 
 ND X1423, X1877 0.53 
P SR X1215, X1317 0.45 
 ND X1215, X1317 0.45 
K SR X530, X707 0.38 
 ND X530, X707 0.38 
Ca SR X1164, X1238 0.50 
 ND X1164, X1238 0.50 
Mg SR X753, X773 0.43 
 ND X753, X773 0.43 
B SR X1439, X1883 0.33 
 ND X1439, X1883 0.33 
Cu SR X1005, X1033 0.49 
 ND X1005, X1033 0.49 
Zn SR X744, X764 0.34 
 ND X744, X764 0.34 

a Variables selected; the letter “X” followed by a three or four-digit number indicates the wavelength of 

the respective reflectance value. 
b R2 = coefficient of determination. 

  



Table 5. Relationships (R2 values) between vegetative indices and leaf nutrient contents. 

Vegetation 
indice 

Leaf nutrient contents 

N P K Ca Mg B Cu Zn 

NDVI 0.20 0.12 0.15 0.33 0.00 0.21 0.26 0.05 
GNDVI 0.14 0.10 0.15 0.27 0.01 0.30 0.19 0.09 
SR 0.20 0.07 0.07 0.32 0.00 0.16 0.31 0.07 
MCARI 0.05 0.00 0.01 0.14 0.293 0.01 0.24 0.07 
TCARI 0.05 0.00 0.01 0.14 0.291 0.02 0.24 0.07 
MCARI1 0.27 0.13 0.12 0.37 0.01 0.15 0.34 0.02 
MCARI2 0.27 0.10 0.08 0.36 0.01 0.13 0.36 0.04 
N870_1450 0.35 0.21 0.35 0.25 0.02 0.02 0.10 0.03 
N1645_1715 0.01 0.04 0.01 0.00 0.04 0.00 0.07 0.01 
P1080_1460 0.31 0.18 0.31 0.22 0.03 0.02 0.08 0.02 

Bold text indicates the greatest R2 value in each column.  

  



Table 6. Results of a multivariate analysis using the GLM method. 

G 
N P K Ca Mg B Cu Zn 

NV R2 R2
a
 NV R2 R2

a
 NV R2 R2

a
 NV R2 R2

a
 NV R2 R2

a
 NV R2 R2

a
 NV R2 R2

a
 NV R2 R2

a
 

G1 2 0.31 0.27 3 0.24 0.18 6 0.42 0.32 6 0.57 0.50 4 0.28 0.21 4 0.43 0.36 5 0.48 0.40 2 0.13 0.09 

G2 - - - - - - - - - - - - - - - - - - - - - - - - 

G3 13 0.88 0.82 11 0.78 0.70 7 0.72 0.67 10 0.74 0.66 9 0.83 0.78 8 0.71 0.63 11 0.70 0.59 6 0.43 0.33 

G4 6 0.68 0.63 5 0.67 0.62 3 0.46 0.42 7 0.56 0.47 5 0.73 0.69 5 0.51 0.44 2 0.41 0.38 5 0.49 0.42 

G5 7 0.72 0.66 10 0.80 0.74 9 0.65 0.55 8 0.65 0.57 7 0.80 0.76 11 0.71 0.60 8 0.55 0.44 9 0.60 0.49 

G6 3 0.32 0.27 4 0.29 0.22 4 0.38 0.31 5 0.48 0.41 5 0.63 0.57 4 0.37 0.30 3 0.35 0.30 2 0.33 0.29 

G7 - - - - - - - - - - - - - - - - - - - - - - - - 

G8 - - - - - - - - - - - - - - - - - - - - - - - - 

G9 - - - - - - - - - - - - - - - - - - - - - - - - 

C* 22 0.99 0.99 13 0.85 0.78 17 0.93 0.89 20 0.92 0.84 23 0.97 0.94 17 0.95 0.92 11 0.74 0.64 13 0.84 0.76 

GLM = generalized linear model; NV = number of variables selected; R2 = coefficient of determination from a linear relationship; R2
a
 = adjusted R2. Highlighted data 

indicate the results of the greatest R2
a and R2 values for G1–G9.  

* Stepwise regression applied to all selected variables of wavelengths in G1–G9. 

  



Table 7. Multivariate analysis using PLSR. 

G 
N P K Ca Mg B Cu Zn 

NV R2 R2
CV NV R2 R2

CV NV R2 R2
CV NV R2 R2

CV NV R2 R2
CV NV R2 R2

CV NV R2 R2
CV NV R2 R2

CV 

G1 2 0.16 0.06 13 0.22 0 15 0.18 0 11 0.56 0.43 15 0.20 0 3 0.21 0.14 3 0.35 0.28 13 0.17 0 

G2 16 0.47 0.36 12 0.80 0.68 42 0.31 0.05 22 0.59 0.47 33 0.06 0 37 0.12 0.01 7 0.41 0.31 37 0.05 0 

G3 10 0.58 0.41 27 0.26 0.16 27 0.34 0.25 6 0.55 0.45 27 0.74 0.44 11 0.71 0.55 27 0.43 0.35 3 0.084 0 

G4 7 0.67 0.55 14 0.64 0.44 16 0.42 0.33 16 0.49 0.42 9 0.60 0.42 9 0.62 0.44 3 0.41 0.36 16 0.12 0 

G5 24 0.26 0.14 5 0.53 0.38 9 0.43 0.31 7 0.39 0.30 12 0.76 0.64 5 0.38 0.27 21 0.34 0.24 9 0.30 0.13 

G6 6 0.34 0.25 8 0.27 0.1 4 0.14 0.01 7 0.35 0.26 6 0.46 0.36 8 0.26 0.08 7 0.32 0.21 8 0.45 0.24 

G7 5 0.53 0.45 12 0.51 0.41 5 0.59 0.43 74 0.42 0.36 23 0.63 0.48 93 0.10 0 9 0.65 0.55 6 0.34 0.21 

G8 10 0.45 0.35 10 0.58 0.41 8 0.32 0.11 6 0.49 0.40 56 0.12 0 11 0.67 0.57 17 0.73 0.62 56 0.07 0 

G9 27 0.85 0.77 9 0.72 0.63 32 0.51 0.29 70 0.52 0.27 70 0.47 0.23 12 0.59 0.44 18 0.68 0.57 56 0.06 0 

C* 63 0.76 0.61 7 0.58 0.43 25 0.39 0.23 18 062 0.48 45 0.51 0.40 133 0.29 0.03 27 0.79 0.70 115 0.41 0.10 

PLSR = partial least squares regression; NV = number of variables selected; R2 = coefficient of determination of calculation; R2
CV= R2 of leave-one-out cross-

validation. Highlighted data are the results of the greatest R2 and R2 values of leave-one-out cross-validation for G1–G9. 

* Stepwise regression applied to all selected variables of wavelengths in G1–G9. 

 

 

 

 

 

 



Table 8. Multivariate analysis using PCR. 

 N    P    K    Ca    Mg    B    Cu    Zn   
G R2 MB RMSE R2 MB RMSE R2 MB RMSE R2 MB RMSE R2 MB RMSE R2 MB RMSE R2 MB RMSE R2 MB RMSE 

G1 0.55 0.69 0.26 0.49 0.02 0.01 0.65 0.28 0.13 0.76 0.15 0.08 0.36 0.13 0.06 0.65 7.07 3.44 0.69 3.71 1.26 0.3 12.3 3.66 
G2 - - - - - - - - - - - - - - - - - - - - - - - - 

G3 0.94 0.16 0.11 0.88 0.01 0.01 0.85 0.23 0.09 0.86 -0.07 0.06 0.91 0.03 0.03 0.84 - 2.47 0.84 1.56 0.95 0.6 8.29 2.97 

G4 0.82 -0.27 0.17 0.82 0.01 0.01 0.68 0.24 0.12 0.75 -0.13 0.08 0.86 0.07 0.03 0.72 6.39 3.18 0.64 3.06 1.34 0.7 8.26 2.81 

G5 0.85 -0.23 0.16 0.90 0.00 0.01 0.81 0.17 0.10 0.81 -0.11 0.07 0.89 0.04 0.03 0.84 3.77 2.45 0.74 2.94 1.17 0.7 7.78 2.49 

G6 0.57 -0.67 0.25 0.54 0.02 0.01 0.61 0.26 0.13 0.69 0.15 0.09 0.79 0.07 0.04 0.61 - 3.61 0.59 2.93 1.41 0.5 9.13 3.22 

G7 - - - - - - - - - - - - - - - - - - - - - - - - 

G8 - - - - - - - - - - - - - - - - - - - - - - - - 

G9 - - - - - - - - - - - - - - - - - - - - - - - - 

C* 0.99 0.02 0.02 0.92 0.01 0.00 0.97 -0.05 0.04 0.96 -0.03 0.04 0.99 0.01 0.01 0.97 0.94 1.01 0.86 1.40 0.89 0.9 2.72 1.58 

PCR = principal component regression; MB = maximum bias of the model residuals; R2 = coefficient of determination of calculation; Highlighted data are the results of 

the greatest R2 for all variables selected in G1–G9; RMSE = Root mean squared error. 

* Group of all selected variables of wavelengths in G1–G9. 

 

 

 

 

 



Table 9. Variable separation based on wavelength groups in group C. 1 

Nutrient 
Number of 
variables 

Number of variables selected from wavelength group 
R2  MB  RMSE  

 G1 G3 G4 G5 G6 

N 22 6 12 4 - - 0.997 0.02 0.02 
P 13 - 7 - 6 - 0.92 0.01 0.004 
K 17 2 9 2 - 4 0.97 -0.05 0.04 
Ca 20 - 10 3 6 1 0.96 -0.03 0.04 
Mg 23 - 12 3 5 3 0.99 0.01 0.01 
B 17 5 7 4 - 1 0.97 0.94 1.01 
Cu 11 - 7 2 2 - 0.86 1.40 0.89 
Zn 13 - 5 5 - 3 0.92 2.72 1.58 

R2 = coefficient of determination; MB = maximum bias of the model residuals; RMSE = root mean square 2 

error. 3 

  4 



Table 10. Final model of variables selected by PCR to predict leaf nutrient contents. 5 

Model a Equation b R2 RMSE 

N1 467.26X527-684.82X533+3383.43 X554-3716.2X557-1448.32 X563+3663.97X566-1504.24X569 
-2331.04X572+4116.12X575-1758.35X581-3567.07X596+4866.74X602-1480.22X605 

0.94 0.11 

N2 17.77X350-48.81X356+66.53X359-49.29X362-23.21X371+29.58X386-
140.99X5331092.57X560-1734.08X563+1220.42X566+2687.89X572-
5640.11X575+4687.8X581-6064.36X584+3474.07X587-864.06X593+3647.23X596-
1482.66X602-4400.71X614+6228.86X620-6652.4X638+3951.21X641 

0.997 0.02 

P1 61.442X659-164.28X665+173.01X674-140.27X683+62.41X686+110.94X695-
209.82X698+119.5X701-14.03X710+1.63X722 

0.90 0.01 

P2 33.92X527-36.77X530+82.72X560-85.66X563+32.01X575-
115.32X584+82.28X587+148.20X662-166.33X665+29.98X674-30.55X698+30.46X701-
4.60X710 

0.92 0.004 

K1 -227.96 X545+2961.11 X560-2211.65 X563-1826.20 X566+1625.65 X572-1581.21 
X584+1269.91 X587 

0.85 0.09 

K2 -18.62 X353+23.08 X356+490.53 X542-821.79 X545+2794.28 X560-1411.02 X563-2414.27 
X566+1564.46 X572-1706.45 X584+1686.52 X587-829.77 X602+992.97 X608-337.00 X629-
1668.25 X737+3210.41 X740-2952.70 X746+1405.87 X749 

0.97 0.04 

Ca1 -740.54 X545+1449.71 X548-1749.59 X557+692.92X563+1325.2X566-2672.93 X572+2078.8 
X575-455.39 X590-987.01X599 +1059.25 X602 

0.86 0.06 

Ca2 181.69 X527-487.65 X536+1083.14 X548-1781.10 X557+834.17 X563+1390.81 X566-3256.21 
X572+2143.30 X575-975.56 X599+986.45 X602-736.40 X638+1398.38 X644-840.93 
X647+867.32 X671-1454.06 X674+620.45 X677+635.77 X713-2213.57 X719+1733.62 X722-
130.24 X737 

0.96 0.04 

Mg1 -313.49 X545+706.57 X548-283.18 X551-639.89 X554+876.32 X557-442.20 X563+224.29 
X590+303.02 X602-431.43 X605 

0.91 0.03 

Mg2 -362.16 X545+520.12X548-216.32 X551+471.20 X557-462.81 X563-497.47 X569+821.73 X575-
300.62 X578+336.62 X596-772.09 X590+1184.26 X602-727.48 X605+201.40 X620-408.32 
X644+592.45 X650-507.81 X656+225.97 X677-111.48 X683+56.64 X704-429.07 X722+774.28 
X728-436.19 X734+46.93 X749 

0.99 0.01 

B1a 13993.71 X527-24088.92 X530+23742.10 X536-18657.09 X539+15175.42 X551-33592.47 
X563+28364.63 X569-4906.56 X593 

0.84 2.47 

B1b 22895.74 X659-94173.64 X665+84370.24 X668-16611.98 X677+32892.43 X695-40800.64 
X698+16039.03 X707+46137.37 X716-137101.43 X719+123958.43 X722-37785.88 X725 

0.84 2.45 

B2 589.16 X377+1538.81 X383-3068.97 X386-1877.26 X395+3340.11 X398+19929.74 X536+-
38269.38 X539+48398.6 X551 -53011.6 X563+21088.2 X572+32501.8 X599-32303.4 
X602+32411.2 X620-41840.0 X623 +58478.1 X638-47856.9 X641-99 X749 

0.97 1.01 

Cu1 -6023.45 X530+8493.37 X533-9279.56 X542+8900.35 X548-11739.27 X572+16234.38 X578-
17964.27 X584+28034.34 X590-22428.39 X593+19608.02 X599-13923.31 X602 

0.84 0.95 

Cu2 -6609.20 X530+6941.42 X533-1141.54 X551+13489.36 X590-17502.34 X593+19399.09 X599-
15227.43 X602-11751.35 X632+12344.1 X635-532.28 X722 +570.72 X725 

0.86 1.40 

Zn1 -30405.63 X668+74156.81 X674-76207.32 X680+65150.69 X686-37410.03 X689+41547.49 
X704-46237.16 X707+25245.86 X719-15708.24 X722 

0.77 2.49 

Zn2 -14322.23 X530+20355.71 X533+50406.23 X563-47384.64 X557-71712.84 X602 +40321.98 
X608+97905.02 X614 -47719.94 X617 -79472.88 X629+51667.07 X635-6885.324 
X728+8627.049 X731-1711.676 X749 

0.92 1.58 

R2 = coefficient of determination; RMSE = root mean square error. 6 
a The equations from the models built using the stepwise regression and based on the greatest R2 from 7 

wavelength groups: N1, P1, K1, Ca1, Mg1, B1, Cu1, and Zn1. The equations using variables 8 
selected from each wavelength groups in model 2 are as follows: N2, P2, K2, Ca2, Mg2, B2, Cu2, 9 
and Zn2. Leaf nutrients: N, nitrogen; P, phosphorus; K, potassium; C, calcium; Mg, magnesium; B, 10 
boron; Cu, copper; and Zn, zinc. 11 

b The letter “X” followed by a three-digit number indicates the wavelength of the respective reflectance 12 
value. 13 
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Table 11. Results of PCR analysis to predict leaf nutrient contents using variables from ND and 20 

SR equations. 21 

Leaf nutrient   Variables of ND and SR  All variables of ND and SR 
 R2   MB   RMSE  R2   MB   RMSE  

 N  0.65 0.46 0.23 0.89 0.23 0.14 
 P  0.66 0.02 0.01 0.82 0.01 0.01 
 K  0.61 0.23 0.13 0.82 0.15 0.10 
 Ca  0.69 0.22 0.09 0.82 0.13 0.07 
 Mg  0.64 0.09 0.05 0.87 0.06 0.03 
 B  0.61 6.66 3.62 0.83 -5.05 2.51 
 Cu  0.70 2.46 1.24 0.90 2.18 0.77 
 Zn  0.56 9.19 3.26 0.76 5.24 2.55 

R2 = coefficient of determination; MB = maximum bias of the model residuals; RMSE = root mean square 22 

error; ND = normalised different; SR = simple ratio. 23 
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 48 

Fig. 1. Study site was on Kalimantan Island (a); map of the study site’s area (b). 49 
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 51 

Fig. 2. Leaf sampling: leaf numbers 9, 17, 25, and 33 (a); leaf collection in the field (b); 52 

spectral leaf measurement (c); and cleaning oil palm leaflets before leaf analysis (d). 53 
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 55 

Fig. 3. Mean reflectance values of oil palm leaves with standard deviations calculated 56 

from spectral measurements. 57 
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