

HOKKAIDO UNIVERSITY

Title	Possible inhibition of Arabidopsis VIP1-mediated mechanosensory signaling by streptomycin
Author(s)	Tsugama, Daisuke; Liu, Shenkui; Fujino, Kaien; Takano, Tetsuo
Citation	Plant signaling & behavior, 13(10), e1521236 https://doi.org/10.1080/15592324.2018.1521236
Issue Date	2018-10
Doc URL	http://hdl.handle.net/2115/75477
Rights	This is an Accepted Manuscript of an article published by Taylor & Francis in Plant signaling & behavior on 20 Sep 2018, available online: https://doi.org/10.1080/15592324.2018.1521236
Туре	article (author version)
File Information	Short_commun_PSB_r1_clean_texts Strep_PSB_r1.pdf

1 Possible inhibition of Arabidopsis VIP1-mediated mechanosensory signaling by

2 streptomycin

3 Daisuke Tsugama^{12*}, Shenkui Liu³, Kaien Fujino¹ and Tetsuo Takano²

- ⁴ ¹Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University
- 5 Kita 9 Nishi 9 Kita-ku, Sapporo-shi, Hokkaido 060-8589, Japan
- 6 ²Asian Natural Environmental Science Center, The University of Tokyo
- 7 1-1-1 Midori-cho, Nishitokyo-shi, Tokyo 188-0002, Japan
- ⁸ ³State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an,
- 9 Hangzhou 311300, P.R. China

10

11 Submitted: 20 July 2018

12

- 13 Key words: Arabidopsis thaliana; bZIP transcription factor; calcium signaling; hypo-osmotic
- 14 stress; mechanical stress; root tropisms

15

16 ***Correspondence to:**

17 Daisuke Tsugama, Email: tsugama@res.agr.hokudai.ac.jp

18 Abstract

VIP1 (VIRE2-INTERACTING PROTEIN 1) and its close homologues are Arabidopsis 1920thaliana bZIP proteins regulating stress responses and root tropisms. They are present in the 21cytoplasm under steady conditions, but transiently accumulate in the nucleus when cells are exposed to mechanical stress such as hypo-osmotic stress and touch. This pattern of changes 22in subcellular localization is unique to VIP1 and its close homologues, and can be useful to 23further characterize mechanical stress signaling in plants. A recent study showed that calcium 24signaling regulates this pattern of subcellular localization. Here, we show that a possible 25calcium channel inhibitor, streptomycin, also inhibits the nuclear accumulation of VIP1. 26Candidates for the specific regulators of the mechanosensitive calcium signaling are further 2728discussed.

30	VIP1 (VIRE2-INTERACTING PROTEIN 1) and its close homologues are Arabidopsis
31	thaliana bZIP proteins. They are members of the plant bZIP protein group I, ¹ and are
32	involved in regulating responses to biotic and abiotic stresses. ²⁻¹⁵ Such stresses include
33	hypo-osmotic stress and touch. ^{6,9-11} Hypo-osmotic stress and touch are not identical, but both
34	impose mechanical stress on cells and induce partially common cellular responses. ¹⁶ When
35	either VIP1 or its close homologue bZIP29 is expressed as a repression domain-fused form in
36	Arabidopsis, touch-induced root bending is enhanced. ¹⁰⁻¹² At least six Arabidopsis group I
37	bZIP proteins (VIP1, PosF21/bZIP59, bZIP69, bZIP29, bZIP30 and bZIP52) are present in
38	the cytoplasm under steady conditions, but transiently accumulate in the nucleus when cells
39	are exposed to hypo-osmotic stress. ^{6,9,10} The transient nuclear accumulation of VIP1 can also be
40	induced by touch. ¹¹ No other plant proteins with similar subcellular localization patterns have
41	been identified thus far. The group I bZIP proteins can therefore be a clue to more deeply
42	understanding mechanical stress signaling.
43	Phosphorylation is a factor regulating the nuclear-cytoplasmic shuttling of VIP1 and
44	its close homologues. Under steady conditions, VIP1 is largely phosphorylated and bound by
45	14-3-3 proteins, which are thought to retain VIP1 in the cytoplasm. Hypo-osmotic stress
46	causes dephosphorylation of VIP1, and this dephosphorylation can be needed for the nuclear
47	accumulation of VIP1. ¹⁴ Calcium signaling has recently been found to be another factor
48	regulating the nuclear-cytoplasmic shuttling of VIP1 and its close homologues. These

49	proteins physically interact with the calmodulin calcium-binding proteins, and both the
50	nuclear accumulation and the cytoplasmic accumulation of VIP1, bZIP59 and bZIP29 are
51	inhibited by either a calcium chelator (EDTA or EGTA) or a calmodulin inhibitor
52	(chlorpromazine). ¹⁵ Calcium-dependent protein kinases and B" subunits of the protein
53	phosphatase 2A complex may regulate phosphorylation states of group I bZIP proteins in
54	calcium-dependent manners, ^{12,17} although neither of them was co-immunoprecipitated with
55	VIP1 in a previous study (i.e., they may not interact with VIP1 very strongly). ¹⁵ The same
56	study also showed that the nuclear-cytoplasmic shuttling of VIP1 is not affected either by the
57	double knockout of two calcium channels, MCA1 and MCA2, or by GdCl ₃ or LaCl ₃ , which
58	can inhibit other types of mechanosensitive calcium channels. ^{15,18,19}
59	Which factor initiates the calcium signaling that regulates functions of group I bZIP
60	proteins, then? In our recent experiments, 1 mM streptomycin, which can inhibit
61	mechanosensitive calcium channels in animals, ^{20,21} was found to inhibit the hypo-osmotic
62	stress-induced nuclear accumulation of VIP1 (Fig. 1, middle panel). This effect of
63	streptomycin was not observed when 20 mM CaCl ₂ was present (Fig. 1, right panel). Land
64	plants have no homologues of transient receptor potential (TRP) channels, ²² which are
65	putative targets of streptomycin in animals, ^{20,21} and the major target of streptomycin is
66	thought to be plastid 70S ribosome-mediated protein synthesis in plants. ²³ However, it would
67	be still possible that the streptomycin-sensitive proteins or processes are initiators of the

68	mechanosensory signaling mediated by VIP1 and its close homologues. In a similar
69	experiment, cycloheximide, which binds to 60S ribosomes and thereby inhibits cytoplasmic
70	protein synthesis, did not affect the nuclear-cytoplasmic shuttling of VIP1, raising the
71	possibility that cytoplasmic protein synthesis is not required for either the calcium signaling
72	or downstream events regulating the subcellular localization of VIP1. Two calcium
73	ionophores, ionomycin and A23187, did not affect it, either, raising the possibility that a
74	calcium gradient does not primarily control the nuclear cytoplasmic shuttling of VIP1. Effects
75	of inhibitors of calcium signaling and protein synthesis on the subcellular localization of
76	VIP1 are summarized in Table 1. These results, again, support the idea that the calcium
77	signaling regulating the subcellular localization of VIP1 and its close homologs is generated
78	by specific factors. It should be important to dissect specificity in cellular and physiological
79	functions of possible regulators of calcium signaling.
80	
81	Disclosure of interest
82	The authors report no conflict of interest
83	
84	Acknowledgments
85	This work was supported by research grants from Tokyo Institute of Technology and Kato
86	Memorial Bioscience Foundation.

 $\mathbf{5}$

88 References

00	1 Jakoby M	Waisshoar P	Dräga Lagar W	Vicanta Carbaiase	ı J, Tiedemann J, Kr	ai T
09	1. Jakoby IVI,	weisshaar D,	Diuge-Lasei w	, vicence-Carbajosa	i J, Heuchianni J, Ki	UJ I,

- 90 Parcy F; bZIP Research Group. bZIP transcription factors in Arabidopsis. Trends Plant
- 91 Sci 2002; 7:106-111.
- 92 2. Tzfira T, Vaidya M, Citovsky V. VIP1, an Arabidopsis protein that interacts with
- 93 Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity.
- 94 EMBO J 2001; 20:3596-3607.
- 95 3. Tzfira T, Vaidya M, Citovsky V. Increasing plant susceptibility to Agrobacterium infection
- 96 by overexpression of the Arabidopsis nuclear protein VIP1. Proc Natl Acad Sci U S A
- 97 2002; 99:10435-10440.
- 98 4. Djamei A, Pitzschke A, Nakagami H, Rajh I, Hirt H. Trojan horse strategy in Agrobacterium
- transformation: abusing MAPK defense signaling. Science 2007; 318:453-456.
- 100 5. Wu Y, Zhao Q, Gao L, Yu XM, Fang P, Oliver DJ, Xiang CB. Isolation and
- 101 characterization of low-sulphur-tolerant mutants of Arabidopsis. J Exp Bot 2010;
- 102 61:3407-3422.
- 103 6. Tsugama D, Liu S, Takano T. A bZIP protein, VIP1, is a regulator of osmosensory
- signaling in Arabidopsis. Plant Physiol 2012; 159:144-155.
- 105 7. Van Oosten MJ, Sharkhuu A, Batelli G, Bressan RA, Maggio A. The Arabidopsis thaliana
- 106 mutant *air1* implicates SOS3 in the regulation of anthocyanins under salt stress. Plant

- 107 Mol. Biol 2013; 83:405-415
- 108 8. Shi Y, Lee LY, Gelvin SB. Is VIP1 important for Agrobacterium-mediated transformation?
- 109 Plant J 2014; 79:848-860.
- 110 9. Tsugama D, Liu S, Takano T. Analysis of functions of VIP1 and its close homologs in
- 111 osmosensory responses of *Arabidopsis thaliana*. PLoS ONE 2014; 9:e103930
- 112 10. Tsugama D, Liu S, Takano T. The bZIP protein VIP1 is involved in touch responses in
- 113 Arabidopsis roots. Plant Physiol 2016; 171:1355-1365.
- 114 11. Tsugama D, Liu S, Takano T. VIP1 is very important/interesting protein 1 regulating
- touch responses of Arabidopsis. Plant Signal Behav 2016; 11:e1187358.
- 116 12. Van Leene J, Blomme J, Kulkarni SR, Cannoot B, De Winne N, Eeckhout D, et al.
- 117 Functional characterization of the Arabidopsis transcription factor bZIP29 reveals its role
- in leaf and root development. J Exp Bot 2016; 67:5825-5840
- 119 13. Lapham R, Lee LY, Tsugama D, Lee S, Mengiste T, Gelvin SB. VIP1 and its homologs
- are not required for Agrobacterium-mediated transformation, but play a role in Botrytis
- and salt stress responses. Front Plant Sci 2018; 9:749.
- 122 14. Takeo K, Ito T. Subcellular localization of VIP1 is regulated by phosphorylation and
- 123 14-3-3 proteins. FEBS Lett 2017; 591:1972-1981
- 124 15. Tsugama D, Liu S, Fujino K, Takano T. Calcium signalling regulates the functions of the
- bZIP protein VIP1 in touch responses in Arabidopsis thaliana. Ann Bot 2018; in press

126	16. Shih HW, Miller ND, Dai C, Spalding EP, Monshausen GB. The receptor-like kinase
127	FERONIA is required for mechanical signal transduction in Arabidopsis seedlings. Curr
128	Biol 2014; 24:1887-1892.

- 129 17. Ishida S, Yuasa T, Nakata M, Takahashi Y. A tobacco calcium-dependent protein kinase,
- 130 CDPK1, regulates the transcription factor REPRESSION OF SHOOT GROWTH in
- response to gibberellins. Plant Cell 2008; 20:3273-3288.
- 132 18. Nakagawa Y, Katagiri T, Shinozaki K, Qi Z, Tatsumi H, Furuichi T, et al. Arabidopsis
- 133 plasma membrane protein crucial for Ca^{2+} influx and touch sensing in roots. Proc Natl
- 134 Acad Sci USA 2007; 104:3639-3644.
- 135 19. Yamanaka T, Nakagawa Y, Mori K, Nakano M, Imamura T, Kataoka H, et al. MCA1 and
- 136 MCA2 that mediate Ca^{2+} uptake have distinct and overlapping roles in Arabidopsis. Plant
- 137 Physiol 2010; 152:1284-1296.
- 138 20. Brănișteanu DD, Sauciuc A, Proca B, Fuică A, Gogescu G. Mechanisms of the neuromuscular
- 139 blocking activity of the aminoglycoside antibiotic streptomycin. Rev Med Chir Soc Med Nat
- 140 Iasi 1982; 86:287-294
- 141 21. Goralczyk A, van Vijven M, Koch M, Badowski C, Yassin MS, Toh SA, Shabbir A,
- 142 Franco-Obregón A, Raghunath M. TRP channels in brown and white adipogenesis from
- 143 human progenitors: new therapeutic targets and the caveats associated with the common
- antibiotic, streptomycin. FASEB J 2017; 31:3251-3266

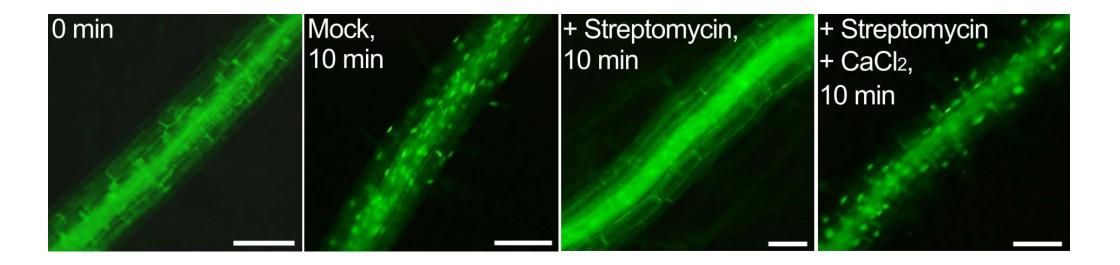

- 145 22. Wheeler GL, Brownlee C. Ca^{2+} signalling in plants and green algae--changing channels.
- 146 Trends Plant Sci 2008; 13:506-514
- 147 23. Ahlert D, Ruf S, Bock R. Plastid protein synthesis is required for plant development in
- 148 tobacco. Proc Natl Acad Sci U S A 2003; 100:15730-15735

Table 1. Summary of effects of inhibitors of calcium signaling and/or protein synthesis on thesubcellular localization of VIP1.

Chemical	Known role	Conc. used	Effects on the VIP1 subcellular localization
EDTA	Divalent cation chelator	2 mM	Inhibitory on both the nuclear accumulation and the cytoplasmic accumulation ¹⁵
EGTA	Divalent cation chelator	2 mM	Inhibitory on both the nuclear accumulation and the cytoplasmic accumulation ¹⁵
Chlorpromazine	Calmodulin inhibitor	0.5 mM	Inhibitory on both the nuclear accumulation and the cytoplasmic accumulation ¹⁵
GdC13	Inhibitor of mechanosensitive calcium channels	1 mM	Not detected ¹⁵
LaCl3	Potential replacement of calcium in the cell wall	1 mM	Not detected ¹⁵
Streptomycin	Inhibitor of 70S ribosomes and mechanosensitive calcium channel	1 mM	Inhibitory on the nuclear accumulation of VIP1 (this study)
Cycloheximide	Inhibitor of 60S ribosomes	0.5 mM	Not detected (this study)
A23187	Calcium ionophore	0.1 mM	Not detected (this study)
Ionomycin	Calcium ionophore	0.05 mM	Not detected (this study)

Figure legend

155	Figure 1. Streptomycin inhibits the hypo-osmotic stress-induced nuclear accumulation of VIP1.
156	Arabidopsis plants overexpressing GFP-tagged VIP1 ⁶ were grown for 10 days on half strength
157	MS medium containing 1 % (w/v) sucrose and 0.8 % (w/v) agar, incubated for 0 or 10 minutes in
158	a hypotonic solution (20 mM Tris-HCl, pH 7.5) containing 0 or 1 mM streptomycin and 0 or 20
159	mM CaCl ₂ , and subjected to epifluorescence microscopy to detect GFP signals. The presence of
160	streptomycin and CaCl ₂ in the solution is indicated as "+ Streptomycin" and "+ CaCl ₂ ". For each
161	treatment, more than five individual plants were observed, and representative results are
162	presented. Scale bars = 0.1 mm .
163	

