

HOKKAIDO UNIVERSITY

Title	Isolation and lipolytic activity of eurycomanone and its epoxy derivative from Eurycoma longifolia
Author(s)	Lahrita, Lucy; Hirosawa, Ryota; Kato, Eisuke; Kawabata, Jun
Citation	Bioorganic and Medicinal Chemistry, 25(17), 4829-4834 https://doi.org/10.1016/j.bmc.2017.07.032
Issue Date	2017-09-01
Doc URL	http://hdl.handle.net/2115/75320
Rights	© 2017, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Rights(URL)	http://creativecommons.org/licenses/by-nc-nd/4.0/
Туре	article (author version)
File Information	BMC_2017_989_post-print.pdf

Author's post-print manuscript of the following article

Isolation and lipolytic activity of eurycomanone and its epoxy derivative from

Eurycoma longifolia.

Lucy Lahrita, Ryota Hirosawa, Eisuke Kato, Jun Kawabata

Bioorganic & Medicinal Chemistry, 2017, 25(17), 4829-4834. https://doi.org/10.1016/j.bmc.2017.07.032

1	Isolation and lipolytic activity of eurycomanone and its epoxy derivative from
2	Eurycoma longifolia
3	
4	Lucy Lahrita, Ryota Hirosawa, Eisuke Kato*, Jun Kawabata
5	
6	Laboratory of Food Biochemistry, Division of Applied Bioscience, Graduate School of
7	Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
8	
9	*Corresponding author
10	Tel/Fax: +81 11 706 2496;
11	E-mail: eikato@chem.agr.hokudai.ac.jp
12	
13	
14	
15	
16	
17	
18	

19 ABSTRACT

20	Eurycomanone (1) and 13β ,21-epoxyeurycomanone (2) were isolated from <i>Eurycoma</i>
21	longifolia for studies of lipolytic activity. Compound 1 enhanced lipolysis in adipocytes
22	with an EC ₅₀ of 14.6 μ M, while its epoxy derivate, compound 2 , had a stronger activity
23	with an EC ₅₀ of 8.6 μ M. Based on molecular mechanistic study using several specific
24	inhibitors to lipolytic signaling pathways, it was found that PKA inhibitor totally
25	diminished the lipolytic activity of 1 and 2. Further immunoblotting analysis confirmed
26	the activation of phosphorylated PKA by both 1 and 2. With the growing need to
27	develop new anti-obesity agents, eurycomanone and its epoxy derivate can be used as
28	promising lead compounds to target lipid catabolism.
29	
30	
31	Keywords
32	3T3-L1 adipocytes; Eurycoma longifolia; lipolysis; obesity; quassinoid

1. Introduction

35	Obesity has become one of the most significant risk factors for various
36	diseases. Because of the large number of overweight patients and the rapid increase in
37	obesity in recent years, obesity has been considered to be one of the major health
38	problems worldwide. Drug development to treat obesity has been widely studied, and
39	active compounds from plants can lead to anti-obesity medications. ¹⁻³
40	For the development of new anti-obesity drugs, lipid catabolism has been
41	considered as an effective therapeutic target. ⁴ Lipolysis, a process to break down stored
42	lipids, is a critical aspect to diminish lipid amount. Hence, natural-derived compounds
43	that stimulate hydrolysis of triglyceride to glycerol and fatty acids are of great interest to
44	combat obesity.
45	In an effort to discover anti-obesity agents from medicinal plants, our research
46	group have uncovered the potential of Eurycoma longifolia Jack (family
47	Simaroubaceae) for reducing lipid accumulation. ⁵ The root of <i>E. longifolia</i> is a popular
48	source used in traditional herbal medicine in Southeast Asia. ⁶ E. longifolia is prepared
49	as water decoction or commercial extract in the form of capsules. ^{6,7} The known
50	properties of <i>E. longifolia</i> include its aphrodisiac and anti-malarial effects. ^{8,9} However,
51	the lack of information on anti-obesity study limits its use as anti-obesity agent.

52	Eurycomanone (1) is the major quassinoid in <i>E. longifolia</i> ; and it is used as a
53	marker compound in quality control of commercial products derived from this plant.
54	Several bioactivities have been reported for compound 1 including, increased
55	production of testosterone in rat testicular cells, ⁸ antiulcer activity, ¹⁰ cytotoxicity against
56	cancer cell lines, ¹¹ and antimalarial activity. ⁹
57	In this report, we describe the isolation and lipolytic activity of 1 and its
58	derivatives, 13β , 21 -epoxyeurycomanone (2) and 13β , 21 -dihydroxyeurycomanone (3).
59	We also reconfirm stereochemistry assignment of the epoxide derivate (2).
60	
61	2. Material and methods
62	2.1 General
63	Unless otherwise stated, commercially available chemicals were purchased
64	from Wako Pure Chemical Industries, Ltd. (Osaka, Japan). E. longifolia root (Batch No.
65	SL.1A.2015.PB) was supplied by Merapi Farma Herbal Co. (Yogyakarta, Indonesia).
66	Absorbance was measured using a Synergy TM MX microplate reader (BioTek
67	Instruments, Inc., Winooski, VT, USA). A Bruker AMX 500 instrument (Bruker
68	BioSpin K.K., Bruker Instruments, Billerica, MA, USA) was used to obtain NMR

70	ppm, ¹³ C 135.91 ppm). Mass spectra were obtained using a LCT-Premier mass
71	spectrometer (Waters Corp., Milford, MA, USA). For the LC-MS analysis, Waters
72	Acquity UPLC system (Waters Corp., Milford, MA, USA) was combined with LCT-
73	Premier mass spectrometer (Waters Corp., Milford, MA, USA). The EZR was used for
74	the statistical tests. ²²
75	
76	2.2 Isolation of quassionoids
77	Powdered root of <i>E. longifolia</i> (200 g) was extracted with 50% (v/v) aq.
78	methanol for 24 h to obtain 6.84 g extract. The extract was suspended in water and
79	partitioned with ethyl acetate and then with 1-butanol to obtain a water-soluble fraction
80	(4.10 g), a 1-butanol-soluble fraction (1.17 g), and an ethyl acetate-soluble fraction
81	(1.17 g). The 1-butanol-soluble fraction was adsorbed onto DIAION HP-20 (q40 mm \times
82	240 mm, Mitsubishi Chemical Co., Tokyo, Japan), washed with water, and eluted with
83	50% aq. methanol. The 50% (v/v) aq. methanol-eluted fraction (580 mg) was then
84	separated using Cosmosil® 75C18-OPN (Nakalai Tesque Inc., Kyoto, Japan) column
85	chromatography ($\varphi 20 \text{ mm} \times 120 \text{ mm}$) by stepwise elution with water, 10% aq.
86	methanol, 20% aq. methanol, 30% aq. methanol, 50% aq. methanol, 70% aq. methanol,
87	and methanol. The active fraction eluted with 10% aq. methanol (130 mg) was further

purified by Toyopearl HW-40F (Tosoh Co., Tokyo, Japan) column chromatography (o 88 $15 \text{ mm} \times 160 \text{ mm}$) with water as the eluent. The active fraction was finally purified by 89 HPLC using an InertSustain C18 column ($\varphi 20 \times 250$ mm; GL Science Co., Tokyo, 90 Japan) with 20% ag. methanol as an eluent to obtain eurycomanone (1, 16.3 mg),^{12,13} 13 91 β ,21-epoxyeurycomanone (2, 4.8 mg),^{12,14} and 13 β ,21-dihydroxyeurycomanone (3, 3.6 92 mg).^{9,13} The water-soluble fraction (4.10 g) was similarly separated to obtain additional 93 1 (68.2 mg), 2 (14.0 mg), and 3 (8.6 mg). Each compound was identified by comparing 94 its ¹H, ¹³C-NMR and optical rotation with the reported values. 95

96

97 2.2.1 Eurycomanone (1)

¹H-NMR (500 MHz, pyridine-*d*₅, rt): 1.63 (3H, s), 1.80 (3H, br s), 2.03 (1H, 98 ddd, J = 2.4, 13.3, 14.4 Hz), 2.33 (1H, td, J = 2.4, 14.4 Hz), 3.26 (1H, br d, J = 12.699 Hz), 3.82 (1H, s), 4.02 (1H, d, *J* = 8.8 Hz), 4.53 (1H, s), 4.55 (1H, d, *J* = 8.8 Hz), 4.81 100 101 (1H, s), 5.26 (1H, t, J = 2.4 Hz), 5.66 (1H, d, J = 1.5 Hz), 5.67 (1H, s), 6.12 (1H, d, J = 1.5 Hz), 5.67 (1H, s), 6.12 (1H, d, J = 1.5 Hz), 5.67 (1H, s), 6.12 (1H, d, J = 1.5 Hz), 5.67 (1H, s), 6.12 (1H, d, J = 1.5 Hz), 5.67 (1H, s), 6.12 (1H, d, J = 1.5 Hz), 5.67 (1H, s), 6.12 (1H, d, J = 1.5 Hz), 5.67 (1H, s), 6.12 (1H, d, J = 1.5 Hz), 5.67 (1H, s), 6.12 (1H, d, J = 1.5 Hz), 5.67 (1H, s), 6.12 (1H, d, J = 1.5 Hz), 5.67 (1H, s), 6.12 (1H, d, J = 1.5 Hz), 5.67 (1H, s), 6.12 (1H, d, J = 1.5 Hz), 5.67 (1H, s), 6.12 (1H, d, J = 1.5 Hz), 5.67 (1H, s), 6.12 (1H, d, J = 1.5 Hz), 5.67 (1H, s), 6.12 (1H, d, J = 1.5 Hz), 7.12 (1H, d, J = 1.5 Hz), 8.12 (1H, d, J =1.5 Hz), 6.16 (1H, q, J = 1.3 Hz), 7.79 (1H, br s, OH), 7.85 (1H, s, OH), 8.03 (1H, br s, 102 OH), 9.63 (1H, br s, OH), 9.78 (1H, br s, OH) ppm; ¹³C-NMR (125 MHz, pyridine-d₅, 103 104 rt): 10.77, 22.79, 26.07, 42.58, 46.30, 48.10, 52.98, 68.05, 72.17, 76.24, 79.77, 81.36, 84.89, 109.95, 119.76, 126.44, 148.36, 162.94, 174.25, 197.85 ppm; HR-ESI-MS 105

106 (positive): $[M+Na]^+$, found m/z = 431.1322, $C_{20}H_{24}O_9Na$, requires m/z 431.1318; $[\alpha]_D^{24}$ 107 +32.1° (c = 1.0, pyridine).

- 109 2.2.2 13β ,21-epoxyeurycomanone (2)
- ¹H-NMR (500 MHz, pyridine-*d*₅, rt): 1.64 (3H, s), 1.80 (3H, br s), 2.04 (1H,
- 111 ddd, J = 2.7, 13.2, 14.4 Hz), 2.33 (1H, td, J = 2.7, 2.7, 14.8 Hz), 3.05 (1H, d, J = 5.3
- 112 Hz), 3.27 (1H, br d, *J* = 13.2 Hz), 3.817 (1H, d, *J* = 5.3 Hz), 3.822 (1H, s), 4.04 (1H, s),
- 113 4.07 (1H, d, J = 9.0 Hz), 4.56 (1H, s), 4.89 (1H, d, J = 9.0 Hz), 5.20 (1H, t, J = 2.7 Hz),
- 114 5.84 (1H, s), 6.17 (1H, q, J = 1.3 Hz), 6.93 (1H, br s, OH), 7.90 (1H, s, OH), 8.19 (1H,
- ¹¹⁵ br s, OH), 9.67 (1H, br s, OH), 9.87 (1H, br s, OH) ppm; ¹³C-NMR (125 MHz, pyridine-
- 116 *d*₅, rt): 10.85, 22.80, 25.84, 42.56, 46.23, 46.89, 48.73, 53.93, 59.64, 67.24, 71.86,
- 117 75.86, 75.96, 82.08, 84.84, 110.03, 126.50, 162.84, 174.21, 197.86 ppm; HR-ESI-MS
- 118 (positive): $[M+Na]^+$, found m/z = 447.1287, $C_{20}H_{24}O_{10}Na$, requires m/z 447.1267; $[\alpha]_D^{24}$
- 119 $+34.2^{\circ}$ (*c* = 1.0, pyridine).
- 120
- 121 2.2.3 13 β ,21-dihydroxyeurycomanone (**3**)
- ¹H-NMR (500 MHz, pyridine-d₅, rt): 1.66 (3H, s), 1.78 (3H, s), 2.08 (1H, ddd,
 J = 2.4, 13.2, 14.0 Hz), 2.28 (1H, td, J = 2.4, 14.0 Hz), 3.20 (1H, br d, J = 13.2 Hz),

124	3.61 (1H, s), 3.98 (1H, d	<i>J</i> = 8.7 Hz), 4.47	(1H, s), 4.60 (1H,	d, $J = 3.3$ Hz), 4.65 (1H,
-----	---------------------------	--------------------------	--------------------	-----------------------------

- 125 d, J = 11.7 Hz), 5.04 (1H, d, J = 11.7 Hz), 5.13 (1H, t, J = 2.4 Hz), 5.23 (1H, d, J = 8.7
- 126 Hz), 5.39 (1H, br s, OH), 5.59 (1H, s), 6.14 (1H, q, *J* = 1.3 Hz), 6.23 (1H, br s, OH),
- 127 6.60 (1H, br s, OH), 7.59 (1H, s, OH), 7.95 (1H, d, *J* = 3.3 Hz), 8.39 (1H, br s, OH),
- 128 9.39 (1H, br s, OH), 9.67 (1H, br s, OH) ppm; ¹³C-NMR (125 MHz, pyridine-*d*₅, rt):
- 129 11.38, 22.75, 26.11, 42.65, 45.93, 47.82, 53.89, 67.15, 68.02, 70.98, 75.25, 78.34,
- 130 78.68, 80.12, 85.08, 110.37, 126.53, 162.84, 173.90, 197.95 ppm; HR-ESI-MS
- 131 (positive): $[M+Na]^+$, found m/z = 465.1390, $C_{20}H_{26}O_{11}Na$, requires m/z 465.1373; $[\alpha]_D^{24}$
- 132 $+17.5^{\circ}$ (*c* = 1.0, pyridine).
- 133
- 134 2.2.4 Acetylation of 13β ,21-epoxyeurycomanone (2)

135	Compound 2 (3.6 mg) was dissolved in pyridine (0.3 mL) and then acetic
136	anhydride (0.15 mL) was added. The mixture was stirred for 1 h at room temperature
137	under nitrogen, and then diluted with water and extracted with ethyl acetate. The
138	organic layer was dried over sodium sulfate, evaporated, and then the residue was
139	separated by preparative TLC (hexane/acetone = $1/1$) to obtain the di-acetylated
140	derivative 4 (4.4 mg, quant.). The positions of acetyl groups were confirmed by
141	chemical shift changes and the HMBC spectra.

142	¹ H-NMR (500 MHz, pyridine- <i>d</i> ₅ , rt): 1.70 (3H, s), 1.86 (3H, s), 2.06 (3H, s), 2.03-2.09
143	(1H, m), 2.26 (3H, s), 2.35 (1H, br d, <i>J</i> = 14.8 Hz), 2.94 (1H, d, <i>J</i> = 5.0 Hz), 3.32 (1H,
144	br d, <i>J</i> = 12.9 Hz), 3.49 (1H, d, <i>J</i> = 5.0 Hz), 3.66 (1H, s), 3.93 (1H, s), 4.07 (1H, d, <i>J</i> =
145	9.1 Hz), 4.84 (1H, d, <i>J</i> = 9.1 Hz), 5.17 (1H, br s), 5.96 (1H, s), 6.20 (1H, br s), 6.88 (1H,
146	s), 7.73 (1H, br s, OH), 7.79 (1H, br s, OH) ppm; ¹³ C-NMR (125 MHz, pyridine- <i>d</i> ₅ , rt):
147	11.39, 20.86, 21.44, 22.86, 25.37, 42.92, 44.97, 45.84, 47.70, 54.34, 59.25, 66.76,
148	72.56, 75.29, 76.39, 81.74, 85.29, 110.55, 127.15, 162.27, 168.56, 169.87, 170.42,
149	192.60 ppm; HR-ESI-MS (positive): $[M+Na]^+$, found $m/z = 531.1495$, $C_{24}H_{28}O_{12}Na$,
150	requires m/z 531.1478; $[\alpha]_D^{25}$ +14.3° ($c = 0.314$, pyridine).
151	

2.3 Biology 152

2.3.1 Cell culture 153

Murine 3T3-L1 pre-adipocyte (JCRB9014) cells were obtained from the 154 Japanese Collection of Research Bioresources Cell Bank (Osaka, Japan). The cells were 155 cultured at 37 °C, 10% CO₂ atmosphere in DMEM supplemented with 10% FBS (10% 156 FBS/DMEM) and antibiotics (100 units/mL penicillin, 100 µg/mL streptomycin, and 50 157 µg/mL gentamicin). Adipocyte differentiation was induced a day after reaching 158 confluence (day 0) by changing the medium to 10% FBS/DMEM supplemented with 159

160	0.5 mM IBMX, 0.25 μM DEX, and 5 $\mu g/mL$ insulin (differentiation medium). Two
161	days after induction (day 2), the medium was changed to 10% FBS/DMEM
162	supplemented with 10 μ g/mL insulin to enhance differentiation, and the cells were
163	cultured for another 2 days. The cells (day 4) were further cultured in 10% FBS/DMEM
164	supplemented with 10 $\mu g/mL$ insulin for 2 days and then in 10% FBS/DMEM for 2
165	more days. These cells (day 8) were used in the glycerol release enhancement assay.
166	
167	2.3.2 Glycerol release enhancement activity
168	The isolated compounds (1, 2 and 3) were dissolved in dimethyl sulfoxide and
169	diluted in medium immediately before use. On day 8 of the cell culture, the medium
170	was changed to sample-containing medium (phenol-red-free DMEM) and incubated for
171	24 h. When the inhibitors are included in the experiment, the cells were incubated with
172	the respective inhibitor prior to the sample addition for an hour, and then incubated with
173	both the sample and the inhibitor for 24 hr. On the day of the glycerol release
174	enhancement assay, the medium was recovered and mixed with a free glycerol reagent
175	(F6428; Sigma-Aldrich Co., St Louis, MO, USA). The mixture was incubated at 37 °C
176	for 5 min and its absorbance at 540 nm was measured to quantify the amount of the
177	released glycerol. The absorbance relative to that of the control was calculated.

178	Isoproterenol hydrochloride 1 μ M (Sigma-Aldrich Co., St Louis, MO, USA) was used
179	as positive control.
180	
181	2.3.3 Lipid accumulation and cytotoxicity assays
182	Both lipid accumulation assay using Oil Red O staining and cytotoxicity test
183	using Cell Counting Kit-8 reagent (Dojindo Lab., Kumamoto, Japan) were described
184	previously. ⁵
185	
186	2.3.4 Protein extraction
187	The 3T3-L1 adipocytes were cultured in 24-well plates and treated according to
188	glycerol release enhancement activity protocol described in sub-section 4.3.2. On day 9,
189	the cells were washed twice with ice-cold phosphate buffered saline and lysed in ice-
190	cold lysis buffer (50 mM Tris/HCl, pH 7.5, 150 mM NaCl, 200 mM EDTA, 4 mM NaF,
191	1 mM Na ₃ VO ₄ , 1 mM PMSF, 2.5 mM sodium pyrophosphate, protease inhibitors
192	cocktail (cOmplete, Mini; Roche), and 1.5% Triton X-100) on ice. The cell homogenate
193	was centrifuged at 14,000 × g for 10 min at 4°C. After the supernatant was collected,
194	the protein concentration was then measured using a Bio-Rad protein assay dye reagent
195	with bovine serum albumin as the standard.

196 2.3.5 Protein immunoblotting

197	Extracted proteins were denatured by heating at 95°C for 5 min in a Laemmli
198	sample buffer supplemented with 0.05 M DTT. The prepared protein samples (5 μ g for
199	total protein and 10 μ g for phosphorylated protein detection) were loaded and separated
200	using 12.5% (w/v) polyacrylamide gel. Separated proteins were electro-transferred onto
201	nitrocellulose membranes with a Transblot SD Cell at 15 V for 15 min. The membrane
202	was then blocked with 5% (w/v) bovine serum albumin in TBS-T (TBS containing
203	0.1% Tween-20) for 1 h at room temperature. Antibodies used for the immunoblot were
204	rabbit PKA C-α antibody (#4782), phospho-PKA C (Thr197) antibody (#4781), ERK
205	1/2 antibody (#4695), phospho-ERK 1/2 (Thr202/Tyr204) antibody (#4370), β -actin
206	antibody (#4967), and anti-rabbit IgG HRP-linked antibody (#7074), purchased from
207	Cell Signaling Technology, Inc. (Danvers, USA). The membrane was subsequently
208	incubated overnight at 4°C in appropriate primary antibodies (1:1000). After washing,
209	the membrane was incubated in HRP-conjugated secondary antibody (1:2000) for 1 h at
210	room temperature. The antigen-antibody complexes were then visualized using an
211	ImmunoStar LD (Wako Pure Chemical Industries, Osaka, Japan). The luminescence
212	intensity was quantified using ImageJ.

3. Results and discussion

215 3.1 Chemistry

216	Powdered root of <i>E. longifolia</i> was extracted with 50% (v/v) aq. methanol. The
217	extract was dried and partitioned with water, 1-butanol, and ethyl acetate. The 1-butanol
218	layer was adsorbed to DIAION HP-20 and eluted with 50% (v/v) aq. methanol. The
219	obtained 50% aq. methanol eluate was separated by Cosmosil $75C_{18}$ -OPN and then
220	Toyopearl HW-40F column chromatography to obtain its active fraction. This fraction
221	was finally purified by preparative HPLC with an InertSustain C18 column to isolate
222	compounds 1–3.
223	The structures of the isolated compounds were determined based on NMR and
224	MS spectra. Compound 1 was determined as eurycomanone according to its ¹ H-NMR
225	spectra. ^{10,12} The results of an HRMS analysis ($[M+Na]^+$, found m/z 431.1322,
226	$C_{20}H_{24}O_9Na$ requires 431.1318) and optical rotation ([α] _D ²⁴ +32.1°) supported this
227	determination. The obtained data of compound 3 were compared with those reported
228	earlier for several other plant quassinoids, and this compound was identified as 13β,21-
229	dihydroxyeurycomanone (3). ^{9,12}
230	Although compound 2 was also determined to be a quassinoid, 13,21-
231	epoxyeurycomanone, the stereochemistry of the epoxide in one reference was reported

232	as beta, ¹⁰ while in another reference it was identified as alpha. ¹³ However, both of the
233	reported NMR spectra and optical rotations were the same as those obtained for
234	compound 2 here, indicating that one of the previous stereochemistry assignments is
235	incorrect. Therefore, through this study, we re-examined and clarified the
236	stereochemistry of the epoxide.
237	Measurement of the NOESY spectra of this compound showed a correlation
238	between H-12 and H _a -21, which was considered as an evidence of the α -epoxide in the
239	previous study. ¹³ However, the distance between those two hydrogen atoms was similar
240	between the α and β -epoxide structure models (see Supporting information).
241	Therefore, the observed NOESY correlation was considered insufficient evidence to
242	determine its stereochemistry. To examine and verify its stereochemistry, compound 2
243	was then acetylated to obtain di-O-acetyl product 4 and the NOESY experiment was
244	performed using 4. In compound 4, a NOESY correlation was observed between H_b -21
245	and AcO-15. Thus, the stereochemistry of the epoxide was confirmed to be beta, which
246	is a biosynthetically reasonable configuration if the epoxide 2 is hydrolyzed to produce
247	its dihydroxy derivative 3 in planta. In light of this finding, we need to consider that
248	previous studies on the use, detection, and isolation of 13α ,21-epoxyeurycomanone
249	from <i>E. longifolia</i> probably refer to the β -epoxide. ^{14,15}

and reduced the lipid accumulation without cytotoxic effects (Fig. 2). The EC_{50} value

for the glycerol release enhancement was 14.6 μ M for **1**, while **2** had a lower EC₅₀ (8.6 µM). The stronger bioactive effects of **2** indicates the importance of the epoxide group in exerting its bioactivity. In contrast, the hydrolyzed derivative **3** did not show any biological activity in either of the two assays (Fig. 2A and 2B), even at the highest concentration tested (100 μ M).

265 Figure 2. Lipid accumulation reduction effect (A), glycerol release enhancement activity

266 (B), and cell viability (C) of compounds 1–3. (A) Compound 1 showed significant

267 difference above 25 μ M (p<0.01). Compound **2** showed significant difference above

268 6.25 μ M (*p*<0.05) and above 12.5 μ M (*p*<0.01). (B) Compounds 1 and 2 showed

significant difference above 6.25 μ M. Isoproterenol (1 μ M) was used as positive control

270 (322 \pm 1%). Data are expressed as mean \pm SEM (*n*=6). Dunnett's test was used.

272	There are two possible reasons for the total absence of bioactivity in 3 . First,
273	the presence of two hydroxyl groups might have strongly interfered with the interaction
274	between the compound and the target. However, this explanation is unlikely to happen
275	for the following reason. Although various derivatives of eurycomanones have been
276	isolated from plants using various methods, $6,9,12-13,15-18$ here we identified 1–3 by using
277	activity-guided fractionation. If steric hindrance or ionic repulsion were the reason for
278	the lack of bioactivity of 3 , then other related compounds, for example 13 β -methyl,21-
279	dihydroeurycomanone, would have been obtained as bioactive compounds during the
280	isolation process.
281	The second possibility is that the epoxide group is the essential moiety for the
282	bioactivity. This would suggest that eurycomanone (1) is oxidized in the cells to form
283	its bioactive epoxide (2). However, there was no evidence for supporting this
284	hypothesis. Therefore, subsequent research on structure-activity relationship (SAR) of
285	these quassinoids is required to determine whether the epoxide group is the essential
286	part of the bioactivity.
287	
288	3.3 Mechanistic study

289 After evaluating their biological activities in reducing lipid accumulation and

302 89, 20 μM), (B) inhibitor of ERK (PD 98059, 50 μM), or (C) inhibitor of β3-adrenergic 303 receptor (propranolol 1 μM) and then treated with **1** and **2** (25 μM). Data are expressed 304 as mean \pm SEM (*n*=6). ***p*<0.01 *vs*. control without inhibitor (Dunnett's test); ##*p*<0.01 305 (t-test); NS: No significance.

307

Figure 4. Analysis of PKA activation after treatment of **1** and **2**. 3T3-L1 adipocytes

309 were pre-treated with or without inhibitor of PKA (H-89, 20 μ M) and then treated with

```
310 1 or 2 (12.5 \muM). Cells were lysed, and subjected to SDS-PAGE followed by western
```

blotting. Data are expressed as mean \pm SEM (*n*=4). A representative immunoblot is

Figure 5. Isolated compounds 1 and 2 exert lipolytic activity through PKA activation

4. Conclusion

327		We have successfully identified both eurycomanone (1) and 13β ,21-
328	epoxyeu	arycomanone (2) from <i>E. longifolia</i> root as the active compounds responsible for
329	the enha	incement of lipolysis through the activation of PKA. Eurycomanone (1) has
330	EC ₅₀ of	14.6 μ M, and its epoxy derivate (2) has a stronger lipolytic activity (EC ₅₀ = 8.6
331	μM). Ησ	owever, the other isolated compound, 13β ,21-dihydroxyeurycomanone (3), the
332	dihydro	xy derivate, did not exert lipolytic activity. These findings suggest that
333	structure	e-activity relationship (SAR) study need to be conducted. It is expected that the
334	results o	of SAR can lead to a potent anti-obesity agent.
335		
336	Abbrev	iations Used
337	Ac	acetyl
338	βAR	beta adrenergic receptor
339	DEX	dexamethasone
340	DMEM	Dulbecco's Modified Eagle's medium
341	EC ₅₀	half maximal effective concentration
342	ERK	extracellular signal-regulated kinase
343	ESI	electrospray ionization

344 FBS fetal bovine serum

- 345 HMBC heteronuclear multiple bond correlation
- 346 NOESY nuclear Overhauser effect spectroscopy
- 347 HPLC high performance liquid chromatography
- 348 HRMS high resolution mass spectrometry
- 349 IBMX 3-isobutyl-1-methylxanthine
- 350 NMR nuclear magnetic resonance
- 351 PBS phosphate buffered saline
- 352 PKA protein kinase A
- 353 TBS Tris buffered saline
- 354 TLC thin layer chromatography

355

356 Supplementary Material

357 NMR spectra of the isolated compounds, and pictures of three-dimensional

358 models of compounds **2** and **4**.

- 360
- 361

References

363	1.	Sergent T, Vanderstraeten J, Winand J, Beguin P, Schneider YJ. Phenolic
364		compounds and plant extracts as potential natural anti-obesity substances. Food
365		<i>Chem.</i> 2012; <i>135</i> (1): 68–73.
366	2.	MacDaniels J, Schwartz T. Effectiveness, tolerability and practical application of
367		the newer generation anti-obesity medications. Drugs Context 2016; 5: 212291.
368	3.	Zhang WL, Zhu L, Jiang JG. Active ingredients from natural botanicals in the
369		treatment of obesity. Obes. Rev. 2014; 15 (12): 957-967.
370	4.	Yun JW. Possible anti-obesity therapeutics from nature – A review. <i>Phytochem</i> .
371		2010; 71: 1625–1641.
372	5.	Lahrita L, Kato E, Kawabata J. Uncovering potential of Indonesian medicinal
373		plants on glucose uptake enhancement and lipid suppression in 3T3-L1
374		adipocytes. J. Ethnopharmacol. 2015; 168: 229-236.
375	6.	Rehman S, Choe K, Yoo H. Review on a Traditional Herbal Medicine, Eurycoma
376		longifolia Jack (Tongkat Ali): Its Traditional Uses, Chemistry, Evidence-Based
377		Pharmacology and Toxicology. <i>Molecules</i> 2016; 21 (3): 331.
378	7.	Bhat R, Karim AA. Tongkat Ali (Eurycoma longifolia Jack): A review on its
379		ethnobotany and pharmacological importance. Fitoterapia 2010; 81 (7): 669-

380 679.

381	8.	Low BS, Choi SB, Abdul Wahab H, Kumar Das P, Chan KL. Eurycomanone, the
382		major quassionoid in Eurycoma longifolia root extract increases spermatogenesis
383		by inhibiting the activity of phosphodiesterase and aromatase in steroidogenesis.
384		J. Ethnopharmacol. 2013; 149 (1): 201–207.
385	9.	Kuo PC, Damu AG, Lee KH, Wu TS. Cytotoxic and antimalarial constituents
386		from the roots of Eurycoma longifolia. Bioorg. Med. Chem. 2004; 12 (3): 537-
387		544.
388	10.	Tada H, Yasuda F, Otani K, Doteuchi M, Ishihara Y, Shiro M. New antiulcer
389		quassinoids from Eurycoma longifolia. Eur. J. Med. Chem. 1991; 26 (3): 345-
390		349.
391	11.	Hajjouli S, Chateauvieux S, Teiten MH, Orlikova B, Schumacher M, Dicato M,
392		Choo CY, Diederich M. Eurycomanone and Eurycomanol from Eurycoma
393		longifolia Jack as regulators of signaling pathways involved in proliferation, cell
394		death and inflammation. <i>Molecules</i> 2014; 19 (9): 14649–14666.
395	12.	Morita H, Kishi E, Takeya K, Itokawa H, Tanaka O. New quassinoids from the
396		roots of Eurycoma longifolia. Chem. Lett. 1990; 5: 749–752.
397	13.	Morita H, Kishi E, Takeya K, Itokawa H, Iitaka Y. Highly oxygenated

398		quassinoids from Eurycoma longifolia. Phytochemistry 1993; 33 (3): 691-696.
399	14.	Ikram NKK, Durrant JD, Muchtaridi M, Zalaludin AS, Purwitasari N, Mohamed
400		N, Rahim ASA, Lam CK, Normi YM, Rahman NA. A virtual screening approach
401		for identifying plants with anti H5N1 neuraminidase activity. J. Chem. Inf.
402		Model. 2015; 55 (2): 308–316.
403	15.	Han YM, Jang M, Kim IS, Kim SH, Yoo HH. Simultaneous quantitation of six
404		major quassinoids in Tongkat Ali dietary supplements by liquid chromatography
405		with tandem mass spectrometry. J. Sep. Sci. 2015; 38 (13): 2260–2266.
406	16.	Chan KL, Lee SP, Sam TW, Tan SC, Noguchi H, Sankawa U. 13β,18-
407		dihydroeurycomanol, a quassinoid from Eurycoma longifolia. Phytochemistry
408		1991; <i>30</i> (9): 3138–3141.
409	17.	Meng D, Li X, Han L, Zhang L, An W, Li X. Four new quassinoids from the
410		roots of Eurycoma longifolia Jack. Fitoterapia 2014; 92: 105-110.
411	18.	Park S, Nhiem NX, Kiem PV, Minh CV, Tai BH, Kim N, Yoo HH, Song JH, Ko
412		HJ, Kim SH. Five new quassinoids and cytotoxic constituents from the roots of
413		Eurycoma longifolia. Bioorg. Med. Chem. Lett. 2014; 24 (16): 3835-3840.
414	19.	Greenberg AS, Shen WJ, Muliro K, Patel S, Souza SC, Roth RA, Kraemer FB.
415		Stimulation of lipolysis and hormone-sensitive lipase via the extracellular signal-

416		regulated kinase pathway. J. Biol. Chem. 2001; 276 (48): 45456-45461.
417	20.	Liu LR, Lin SP, Chen CC, Chen YJ, Tai CC, Chang SC, Juang RH, Tseng YW,
418		Liu BH, Mersmann HJ, Shen TL, Ding ST. Serum amyloid A induces lipolysis
419		by downregulating perilipin through ERK1/2 and PKA signaling pathways.
420		Obesity 2011;19 (12): 2301–2309.
421	21.	Mori S, Takizawa M, Satou M, Sakasai M, Kusuoku H, Nojiri H, Yoshizuka N,
422		Hotta M, Kitahara T, Hase T, Takema Y, Saito M, Yada T. Enhancement of
423		lipolytic responsiveness of adipocytes by novel plant extract in rat. Exp. Biol.
424		Med. 2009; 234 (12): 1445–1449.
425	22.	Kanda Y. Investigation of the freely available easy-to-use software "EZR" for

426 medical statistics. *Bone Marrow Transplant*. 2013; 48 (3): 452–458.

Supplementary Information

Isolation and lipolytic activity of eurycomanone and its epoxy derivative from Eurycoma longifolia

Lucy Lahrita, Ryota Hirosawa, Eisuke Kato,* Jun Kawabata

Laboratory of Food Biochemistry, Division of Applied Bioscience, Graduate School of Agriculture,

Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-8589, Japan

*Corresponding author

Tel/Fax: +81 11 706 2496;

E-mail address: <u>eikato@chem.agr.hokudai.ac.jp</u>

NMR spectrum of the compounds	2
eurycomanone (1)	2
13β,21-epoxyeurycomanone (2)	3
13β,21-dihydroxyeurycomanone (3)	4
di-O-acetyl-13β,21-epoxyeurycomanone (4)	5
Structure models	7

NMR spectrum of the compounds eurycomanone (1)

Acquis	ition Time (sec)	3.1719		Comment	Hirosawa B [.]	-2-2-5-5 E	urycomanor	ne				
Date		08 Sep 2015 09:10:40					Date Stamp			08 Sep 2015 09:10:40		
File Na	ame	D:¥康康康	腺腺	¥Eurycomanone¥Euryco	oma longifolia¥eu	rycomanon	e_pyr¥1¥PD	ATA¥1¥1r				
Frequency (MHz)		500.13		Nucleus	1H	1H Numb		lumber of Transients		144		
Origin		spect		Original Points Count	32768	Own	er		nmr			
Points	Count	32768		Pulse Sequence	zg30	Rec	eiver Gain		322.50			
SW(cy	clical) (Hz)	10330.58		Solvent	Pyr	Spee	ctrum Offse	et (Hz)	4014.6	343		
Spectr	чит Туре	STANDARI)	Sweep Width (Hz)	10330.26	Tem	perature (d	egree C)	25.500			
	eurycomanone	_® v 6rticars 1	caleF	Factor =			5.035					1.625
0.8												
0.7												و
0.0												-1.79
d Inte 0.5												
9.0.4						67	909	**				
Б И 0.3			52		5 126	-5.6 5.660 .657	4.52	3.82				
0.2			8.73	49 7 38 .220	6.166 6.16	2	4.54	4.032	73 48	50 28 20	15 228	
0.1		9.632		8.031 7.8 7.787 7.55				Ĭ.	3.2	2.3	2.05	k.
		1.8		2.7	1.9	1.9 1.0	1.12.0	1.01.0	0.9		1.0 1.13	3.2 3.3
	10	ç)	8 7	6 Chemical Sh	nift (ppm)	5	4		3	2	

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

Supplementary Figure 1. ¹H and ¹³C-NMR spectrum of eurycomanone (1)

13β ,21-epoxyeurycomanone (2)

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

Supplementary Figure 2. ¹H and ¹³C-NMR spectrum of 13β ,21-epoxyeurycomanone (2)

13β,21-dihydroxyeurycomanone (**3**)

A station The d) 0.1710	0	n.uouiu		0.11.1	IF			
Acquisition Time (sec,	/ 3.1/19 05.0-+.0015.10	Comment		3 dinydroxyeurycomanone	pyr-do				
	05 Uct 2015 10	J:42:24			Date Stamp 05 Oct 2015 10:42:24				
	U:#JBBBB/月周周	記録¥Eurycomanone¥E	urycoma	iongitoliaŧalhydroxy eu	rycomanone + pyridine_dihyd	roxy¥II¥PDAIA¥I¥Ir			
Prequency (MHZ)	500.13	Nucleus	Count	10	Number of Transients	10			
Deinte Count	spect	Original Points	Count	32/08	Owner Bessiver Coin	nmr 191.00			
Points Gount	32/08 10220 E9	Puise Sequence	e	zgou Dum	Receiver Gain	2445.0021			
Sw(cyclical) (HZ)		Solvent	'u_)	Pyr 10220.26	Spectrum Offset (HZ)	3443.3021			
Spectrum Type	STANDARD	Sweep wiath (ΠZ/	10330.20	Temperature (degree C)	20.300			
dihydroxyeur	ycowengeeleveal	ersetor =				355			
	1 🔍	2	20			1.6			
	- -		2.2						
_	α	D C							
-									
-						e			
						18:			
<u></u> ≩ ^{0.75}						· · ·			
sue									
nte		~							
		286							
<u>.</u> 0.50		-7.1							
hal					τ <u></u> 6 σ				
					.96 .46				
Z				928	N 4 4 W				
0.25				7 24 13 13	93 976 976				
0.23		4 54 47			15 3.0 3.0 3.0 3.0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	232 232 232 232 232 232 232 232 232 232			
-	74	39. 7.9		5.5	2	3.1			
-	9.9	8 4		θe					
-			1						
0	1.9	08 09	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	90810100709	1111201009 10	10 09103230			
	1.0		Ĺ						
	0	•	7	6	E A	····			
1	0 9	ð		bomical Shift (nom)	5 4	5 2			
			U U	mernical Shift (ppm)					

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

Supplementary Figure 3. ¹H and ¹³C-NMR spectrum of 13β ,21-dihydroxyeurycomanone (3)

di-*O*-acetyl-13β,21-epoxyeurycomanone (4)

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

Supplementary Figure 4. ¹H and ¹³C-NMR spectrum of 1,15-di-*O*-acetyl-13β,21-epoxyeurycomanone (4)

This report was	created by	ACD/NMR	Processor	Academic	Edition.	For more	information go t	0
www.acdlabs.com/nmrproc/								

Acquisition Time (sec)	(0.2048, 0.0512)	Comment	5 mm TXI 1H/D-13C/15N Z-GRD Z8161/37
Date	12 Jan 2016 12:21:44		
File Name	D:¥原期類		
Frequency (MHz)	(500.13, 500.13)	Nucleus	(1H, 1H)
Number of Transients	12	Origin	spect
Original Points Count	(1024, 256)	Owner	nmr
Points Count	(2048, 1024)	Pulse Sequence	noesygpph
Solvent	Pyr	Spectrum Type	NOESY
Sweep Width (Hz)	(4997.56, 4996.44)	Temperature (degree C)	426.400
Title	28-06-2 puriding-d5 Phylor AMX-500/CC-MS & NMP Lab Egg Amig Halloide Univ		

Supplementary Figure 5. NOESY spectrum of 1,15-di-O-acetyl- $13\beta,21$ -epoxyeurycomanone (4)

Structure models

Supplementary Figure 6. 3D structure model of the 13,21-epoxyeurycomanone. Left: β -epoxide; Right: α -epoxide. The model was created using ChemBio3D Ultra 14.0. The yellow atoms are H-12 and H_a-21. The calculated distance of H-12 and H_a-21 is 2.35 Å for β -epoxide and 2.57 Å for α -epoxide.

Supplementary Figure 7.

3D structure model of the 1,15-di-O-acetyl-13,21-epoxyeurycomanone.

Left: β -epoxide; Right: α -epoxide. The model was created using ChemBio3D Ultra 14.0. The yellow atoms are H-12 and H_a-21. The calculated distance of H-12 and H_a-21 is 4.69 Å for β -epoxide and 3.14 Å for α -epoxide.