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Abstract 27 

Purpose: To assess the influence of a seated, standing, and forward standing cycling 28 

sprint position on aerodynamic drag CdA and the reproducibility of a field test of CdA 29 

calculated in these different positions. Methods: Eleven recreational male road cyclists rode 30 

250 m in two directions at around 25, 32, and 40 km·h-1 and in each of the three positions, 31 

resulting in a total of 18 efforts per participant. Riding velocity, power output, wind direction 32 

and velocity, road gradient, temperature, relative humidity, and barometric pressure were 33 

measured and used to calculate CdA use regression analysis. Results: A main effect of position 34 

showed that the average CdA of the two days was lower for the forward standing position (0.295 35 

± 0.059), compared with both the seated (0.363 ± 0.071; p = 0.018) and standing positions 36 

(0.372 ± 0.077; p = 0.037). Seated and standing positions did not differ from each other. While 37 

no significant difference was observed in CdA between the two test days, a poor between day 38 

reliability was observed. Conclusion: A novel forward standing cycling sprint position resulted 39 

in a 23 and 26% reduction in CdA compared with a seated and standing position. This decrease 40 

in CdA could potentially result in an important increase in cycling sprint velocity of 3.9-4.9 41 

km·h-1, although these results should be interpreted with caution since poor reliability of CdA 42 

was observed between days. 43 

 44 

Keywords CdA, aerodynamics, cyclist, sprinting, between day reliability. 45 

 46 

Introduction 47 

The outcome of road cycling races is often decided by a sprint. Indeed, over half of the 48 

mass start stages during the three grand tours (i.e. Giro d’Italia, Tour de France, and Vuelta a 49 

España) as well as several of the recent World Championships, were decided in either a head-50 

to-head, small group, or mass sprint finish. To date, road cycling sprints have not been 51 

extensively examined.1-5 It appears that to be competitive in a sprint, male cyclists are required 52 

to produce high peak power outputs (e.g. 13.9-20.0 W·kg-1;4 989-1443 W1,4) over durations of 53 

approximately 9 to 17 s.1,4 However, studies have also shown that peak power output is not the 54 

only important factor to success.2 Indeed, a cyclist’s velocity is likely to be a much more 55 

important factor in the outcome of road cycling sprints. Cycling velocity is the result of power 56 

output, aerodynamic drag (CdA), road characteristics, and environmental variables.6 Therefore, 57 

CdA plays an important role in cycling, but is often overlooked, particularly within the sprint.  58 

Depending on the equipment and position of a cyclist on the bicycle, aerodynamic 59 

resistance represents approximately 95% of the total resistive forces experienced when cycling 60 

at 65 km·h-1.7 Additionally, the external power required to overcome aerodynamic resistance is 61 

a third polynomial of the velocity,8 making it necessary to increase power output by 2% to 62 

increase a cycling velocity by 1% only, when riding at 65 km·h-1.6 Reducing CdA is therefore 63 

extremely important to road cycling performance, and even more in sprint performance since 64 

sprinting is likely to be the fastest activity in road cycling (with the exclusion of some 65 

descending). Given that the outcomes of road cycling sprints are often decided by very small 66 

margins, aerodynamics are meaningful to overall sprint performances.  67 

CdA can be determined using a wind tunnel or mathematical modelling.6 However, 68 

wind tunnel testing is relatively expensive and facilities somewhat scarce. The research in CdA 69 

within road sprint cycling is limited with the majority of the literature focusing on time trials 70 

and endurance cycling.8-12 In some of the very few studies to examine CdA in sprinters, it was 71 

found that a seated position was more aerodynamic than a standing position. In particular, 72 

Martin and colleagues6 reported CdA values based on cycling position of three track sprinters. 73 

Sprinting while seated resulted in a CdA of 0.245 m2, while a standing position resulted in a 74 

CdA of 0.304 m2. In a different study, Martin and colleagues1 modelled the difference in CdA 75 

between one seated (0.288 m2) and one standing sprint (0.360 m2). However, comparing 76 
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different positions was not the focus of these studies.1,6 From data published on aerodynamics 77 

in cycling, it is known that lowering the torso8-11 and head9,12 significantly reduced 78 

aerodynamics. Therefore, in this study a novel cycling sprint position was assessed during 79 

which participants adopted a low and forward torso and head position (forward standing 80 

position). The aim of this study was to assess the influence of a seated, standing, and forward 81 

standing position on CdA and the reproducibility of a field test to calculate CdA in these 82 

different positions. 83 

 84 

Methods 85 

Participants 86 

Eleven recreational male road cyclists (age, 37.1 ± 6.1 y; height, 178.7 ± 6.6 cm; weight, 87 

78.9 ± 9.9 kg) volunteered to participate. The participants rode 5.2 ± 1.0 times and for 10.7 ± 88 

4.0 hours per week and were classifiable as performance level 3 or higher, as per de Pauw and 89 

colleagues.13 The participants completed a familiarization session and two identical 90 

aerodynamic field tests14 separated by at least two days and a maximum of seven days. Prior to 91 

data collection, the subjects provided written informed consent in accordance with the Edith 92 

Cowan University Human Research Ethics Committee and the principals outlined in the 93 

Declaration of Helsinki. All participants were asked to avoid strenuous exercise and refrained 94 

from the consumption of caffeine 24 hours prior to testing.  95 

 96 

Experimental design 97 

The familiarization session started with a 10-minute warm-up at a freely chosen low-98 

intensity. Three minutes following the warm-up participants performed one of the 250 m test 99 

sections of the aerodynamic field test (described below) in three different positions (i.e. seated, 100 

standing, and forward standing; Figure 1). During the familiarization session, participants were 101 

assessed by a single investigator using video footage (described below) to determine whether 102 

they were capable to maintain each position. When a participant was not able to ride in each 103 

position he was excluded from the study. In total two participants were excluded from the study. 104 

One of the participants was not able to hold the standing and forward standing positions longer 105 

than 5 s. The video analysis did not reveal a noticeable difference between the standing and the 106 

forward standing position in the other participant. 107 

During the two aerodynamic field tests participants performed the protocol described 108 

by Martin and colleagues14 in three different positions three minutes after a 10-minute warm-109 

up. Specifically, both aerodynamic testing sessions were identical and involved participants to 110 

ride 250 m in two directions at 24 to 26, 31 to 33, and 39 to 41 km·h-1 and in each of the three 111 

positions, resulting in a total of 18 efforts per participant. All efforts were conducted in a 112 

randomized and counter-balanced order. Participants were asked to reach constant velocity 113 

before entering the 250 m test section and to maintain constant velocity and selected position 114 

within the 250 m test section. A 100 m section of road was provided at the start and end of the 115 

250 m test section to allow the participants to accelerate and decelerate. The participants were 116 

required to maintain the required velocity throughout the 250 m test section which they could 117 

view on a Garmin Edge 820 head unit (Garmin, Schaffhausen, Switzerland) attached to the 118 

handle bars during the seated and standing position, and the front fork during the forward 119 

standing position. A recovery period of 4 min was given between each effort. 120 

Participants completed the familiarization session and two aerodynamic field tests on a 121 

road bicycle, with the seat height and saddle setback adjusted to replicate the participant’s own 122 

bicycle. The participants wore their own helmet during the field tests. The bicycle was equipped 123 

with a Verve Cycling InfoCrank power meter (Verve Cycling, Perth, Australia) containing four 124 

strain gauges per crank arm.15 All tests were completed on a quiet, straight, and flat road. A 125 

high definition camera (Sony, Tokyo, Japan) was placed on the side of the road at the middle 126 
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of the 250 m test section to film the participant’s sagittal plane at 25 Hz. A screenshot was taken 127 

when the cyclists was in the middle of the video footage and exported to Adobe Illustrator 128 

(Adobe Systems, San Jose, USA) afterwards. In this software, the front wheel was standardized 129 

at 200 pt; then, the distances between the participant’s chest and the bottom of the front wheel 130 

(vertical) and between the participant’s shoulder and the front wheel hub (horizontal) were 131 

determined (Figure 2). A negative number for the horizontal distance meant the shoulder was 132 

positioned in front of the frontal hub. This data was used to ascertain if the participants were 133 

adopting the desired position. The distance of the 250 m test section was measured with the 134 

Garmin head unit paired with the SRM speed sensor (Schoberer Rad Messtechnik, Jülich, 135 

Germany). The SRM speed sensor was used to measure cycling velocity at the beginning 136 

(initial) and end (final) of the 250 m test section. The average power output was measured by 137 

the Verve Cycling InfoCrank power meter. The gradient of the 250 m test section was measured 138 

with the Garmin head unit. Cycling velocity, average power output, and road gradient were 139 

recorded by the Garmin head unit at 1 Hz.  Absolute wind velocity and direction were measured 140 

two times during every effort using a wireless weather station (Davis Instruments Corporation, 141 

Hayward, USA). The turning plane of the anemometer cups was located at approximately the 142 

same height as the participant’s torso while positioned on the bicycle. A compass (Suunto, 143 

Vantaa, Finland) was used to indicate north on the weather station and to asses riding direction. 144 

Wind velocity parallel with the road was calculated using equation 1:14 145 

𝑉𝑎 =  𝑉𝑊 ∙ [𝐶𝑂𝑆(𝐷𝑊 − 𝐷𝐵)]         (Equation 1) 146 

in which 𝑉𝑎 is wind velocity relative to the participant’s riding direction in m·s-1; 𝑉𝑊 is absolute 147 

wind velocity in m·s-1; 𝐷𝑊 is wind direction in ; and 𝐷𝐵 is riding direction in . Finally, 148 

measurements of temperature, relative humidity, and barometric pressure were recorded four 149 

times during the session with the weather station (Davis Instruments Corporation, Hayward, 150 

USA). The average of these four measurement was used to calculate air density using equation 151 

2:16  152 

𝜌 =  
𝑃𝑏∙𝑀𝑎

𝑅∙𝑇∙𝑍
∙ (1 + (𝜖 − 1)

𝑒′

𝑃𝑏
)        (Equation 2) 153 

in which 𝜌 is air density; 𝑃𝑏 is barometric pressure in Pa; 𝑀𝑎 is the apparent molecular weight 154 

of dry air; 𝑅 is the universal gas constant; 𝑇 is the temperature in degrees Kelvin; 𝑍 is the 155 

compressibility factor; 𝜖 is the ratio of the apparent molecular weight of dry air and the apparent 156 

molecular weight of vapor water; and 𝑒′ is the effective vapor pressure. 157 

Based upon calculations of Martin and colleagues17 one CdA value per position was 158 

calculated from six trials (i.e. two directions at 24 to 26, 31 to 33, and 39 to 41 km·h-1). Briefly, 159 

a regression analysis was performed using the mathematical model in equation 3: 160 

𝑃 ∙ 𝐸 −  
∆𝑃𝐸

∆𝑡
−  

∆𝐾𝐸

∆𝑡
= 𝐶𝑑𝐴 ∙ (

1

2
𝜌𝑉𝑎

2𝑉𝑔) +  𝜇 ∙ (𝑉𝑔𝐹𝑁)     (Equation 3) 161 

in which 𝑃 is average power output in Watts; 𝐸 is efficiency of the drive system (assumed to 162 

be 97.7%14); 𝑃𝐸 is potential energy; 𝐾𝐸 is kinetic energy; 𝐶𝑑𝐴 is aerodynamic drag; 𝜌 is air 163 

density; 𝑉𝑔 is the ground velocity of the participants in m·s-1; 𝜇 is a global coefficient of friction 164 

(i.e. 0.006 for rough road17); and 𝐹𝑁 is the normal force exerted by the bicycle tires on the 165 

rolling surface (essentially weight of the bicycle and participant). 166 

 167 

Statistical analysis 168 

The vertical and horizontal distances found in the screenshots were analyzed using a 169 

two-way ANOVA to identify differences between the standing and forward standing position 170 

per day. Two-tailed paired sample t-tests were used to compare environmental data (i.e. air 171 

density and wind velocity parallel to the riding direction) and cycling velocity variability (i.e. 172 

average standard deviation per day) between days.  173 

CdA was compared between positions (i.e. seated, standing, and forward standing); and 174 

between days using a two-way analysis of variance (ANOVA). Furthermore, partial eta squared 175 
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was calculated. When a main effect of position was found, pairwise comparisons using 176 

Bonferroni’s corrections were performed. When an interaction effect of position and day was 177 

found an additional ANOVA was performed to identify differences in position for each day. 178 

The level of significance was set at p ≤ 0.05 for all tests. All statistical analyses were completed 179 

using SPSS (IMB SPSS Inc. Statistics, Chicago, USA). 180 

The intra-day reliability was tested using the mean Coefficient of Variation (CV) and 181 

the Intra-class Correlation Coefficient (ICC) for each position derived from log-transformed 182 

data.18 A CV lower than 3.5% was regarded as high test-retest reliability.19,20  183 

 184 

Results 185 

Results of the video analysis showed a mean ± standard deviation for vertical and 186 

horizontal distances (average of days) of 360.6 ± 13.1 and 26.2 ± 6.4 pt, and 311.6 ± 14.06 and 187 

-2.7 ± 11.1 pt for standing and forward standing, respectively. The video analysis showed 188 

significant differences between the standing and forward standing position in both the vertical 189 

and the horizontal direction (F(1,10) = 107.631; p = 0.001, and F(1,10) = 109.106; p = 0.001, 190 

respectively). No differences were found between days in both the vertical as the horizontal 191 

direction (F(1,10) = 0.083; p = 0.779, and F(1,10) = 0.775; p = 0.399, respectively). No 192 

differences in air density (t(10) = 0.295; p = 0.774); wind velocity parallel to the riding direction 193 

(t(10) = -0.040; p = 0.969); and cycling velocity variability (t(32) = -0.939; p = 0.355; two-194 

tailed) were found between days (Table 1).  195 

A significant main effect was observed for position on CdA (F(2,20) = 9.234; p = 0.007; 196 

Partial η2 = 0.480) (Figure 3). No main effect of day and interaction effect between position 197 

and day on CdA was observed (F(1,10) = 3.939; p = 0.075; Partial η2 = 0.283). Pairwise 198 

comparisons revealed a lower CdA (average of days) for the forward standing position (0.295 199 

± 0.059), compared with both the seated (0.363 ± 0.071; p = 0.018) and standing positions 200 

(0.372 ± 0.077; p = 0.037). No differences in CdA were found between the seated and standing 201 

positions (p = 1.00). A lower CdA was observed for the forward standing position compared 202 

with the standing positions on day 1 (p = 0.05), but not on day 2 (p = 0.649 and p = 0.073, 203 

respectively). CdA was lower for the forward standing position when compared with the seated 204 

position on day 2 (0.034), but not on day 1 (p = 0.051). Furthermore, no differences in CdA 205 

were observed between the seated and standing positions on both days (p = 1.00 and p = 1.00, 206 

respectively).  207 

CV for the seated, standing, and forward standing positions were 16.0, 9.1, and 15.6%, 208 

respectively. Large to very large ICC were found for the CdA between days in the seated (r = 209 

0.530), standing (r = 0.840), and forward standing positions (r = 0.600).  210 

 211 

Discussion 212 

The aim of this study was to assess the influence of a seated, standing, and forward 213 

standing position on CdA and the reproducibility of a field test to calculate CdA in these 214 

different positions. This research demonstrated that a forward standing position resulted in a 215 

significantly lower CdA than a seated or standing position. No difference in CdA was observed 216 

between a seated and standing position. While no significant difference was observed in CdA 217 

between the two test days, a poor between day reliability was observed.  218 

While several studies have examined CdA in road cycling,8-12 very few have focused on 219 

sprinting.1,6 To the best of our knowledge, this is the first study assessing CdA of a novel 220 

forward standing position. It was found that this position has a 23 and 26% lower CdA 221 

compared with a seated and standing position, respectively. Applying a mathematical model to 222 

our results and previously reported data, such as average power output during road cycling 223 

sprints (865-1140 W1,4); a cumulative weight of the bicycle and cyclist of 80 kg; road gradient 224 

of 0%; wind velocity parallel to the cyclist of 0 m·s-1;  and the average air density found in this 225 
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study (𝜌 = 1.175), an 23-26% improvement in CdA would result in an increase of cycling 226 

velocity of approximately 3.9-4.9 km·h-1.17 This could be a decisive improvement in velocity 227 

given that road cycling races can be decided by very small margins. It is likely that the forward 228 

standing position improved CdA due to the lower torso and head position. These changes in 229 

body position were likely to affect both the frontal area (Ap, in m2) and the drag coefficient (Cd, 230 

dimensionless). From data published on aerodynamics in cycling other than sprinting, it is 231 

known that lowering the torso8-11 and head9,12 significantly reduced CdA8-10,12  or Ap.
11 Cd is 232 

dominated by the turbulence associated with the cyclist’s position, shape, size, and surface 233 

roughness; as Ap changes, the flow over the cyclist will also change. In other words, decreasing 234 

Ap (due to changes in cycling position) does not directly result in a lower CdA. A weak 235 

correlation exists between measured Cd and Ap, in which Ap only accounted for approximately 236 

50% of the variation in CdA between different cycling positions.21  237 

In the present study, no significant difference in CdA between the seated and standing 238 

position was found. The slightly lower but non-significant group mean difference in CdA 239 

between the seated and standing position in this study (~2.5%), is lower than the differences 240 

found in other studies: 25%1 and 24%.6 Explanations for such discrepancies between studies 241 

could be due to differences in the characteristics of the cyclists. In the current study the average 242 

height and weight of the participants were 178.7 ± 6.6 cm and 78.9 ± 9.9 kg, respectively. 243 

Furthermore, the participants in the current study were all amateur male road cyclists. In the 244 

study of Martin and colleagues6 three world-class track sprint cyclists were tested (1 male sprint 245 

specialist: 1.83 m, 96 kg; 1 male kilometer time trial specialist: 1.82 m, 87 kg; and 1 female 246 

500 m specialist: 1.65 m, 68 kg). Differences between studies might also have arisen from the 247 

test location and environmental conditions (outdoor vs. indoors6), and sample sizes in the 248 

current study (11 vs. 11 and 3,6 respectively). However, in this study all trials for all three 249 

positions were performed in a randomized and counter-balanced order on a single day and 250 

therefore it is unlikely that environmental conditions were responsible for the low difference 251 

observed between the seated and the standing position. While no difference in CdA between 252 

the seated and the standing positions was observed, it has been previously shown that cyclists 253 

are able to generate greater power output in the standing position compared with the seated 254 

position.22,23 The combination of a similar CdA and the possibility to generate greater power 255 

output during a standing sprint will result in a higher cycling velocity compared to a seated 256 

sprint. To date, it is unknown if cyclists can produce a similar or different power output in the 257 

forward standing position compared to other more traditional positions and may be the subject 258 

of future studies. Indeed, while this position was more aerodynamic it is plausible that changes 259 

in body position may influence the movement kinetics compromising or increasing effective 260 

pedal forces. 261 

The second aim of this study was to assess the reproducibility of a field test to calculate 262 

CdA in the seated, standing, and forward standing positions. This study showed poor reliability 263 

to measure CdA in these positions. Such variability between days can be due to technological, 264 

methodological, or biological variability.24 The technological variability within this study may 265 

have arisen from the equipment used (i.e. weather station, scale, stadiometer, power meter, 266 

speed sensor, and head unit). According to the manufacturer’s guideline the weather station’s 267 

accuracy was 1 hPa, 3%, 0.5C, 3, and 1 m·s-1 for measuring barometric pressure, relative 268 

humidity, temperature, wind direction, and wind velocity, respectively. The Verve Cycling 269 

InfoCrank power meter showed similar mean deviation (trueness) to a mathematical model of 270 

treadmill cycling and coefficient of variation (precision), compared with the golden standard: 271 

the SRM power meter (i.e. Trueness = -1.7 ± 1.1 vs. -0.5 ± 2.4%; Precision = 0.6 ± 0.4 vs. 0.8 272 

± 0.4%, respectively).15 These small measurement errors might have resulted in the variability 273 

found in this study. Further, methodological variability in this study could have arisen from the 274 

environmental conditions and mathematical modelling. Within this study tests were conducted 275 
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outdoors whereas previous studies utilizing this model to calculate CdA have used the 276 

mathematic model and field test in velodromes.6 Regardless, no differences in environmental 277 

conditions between the two days were observed in this study. Furthermore, the mathematical 278 

model and field test have previously been validated.6 In this study the greatest biological 279 

variability would likely have been the ability of the participant to either maintain the required 280 

position or an even velocity over the entire 250 m test section. While both cycling velocity 281 

variability and the analysis of the screenshots from the videos did not show a difference between 282 

the two days, it is plausible that minor fluctuations in velocity and position occurred which 283 

might have influenced the outcomes of this study. In addition, a single camera next to the 250 284 

m test section might not have been sufficient to identify these small fluctuations. Regardless of 285 

this, this study was still able to identify differences between the forward standing and both the 286 

seated and standing positions, highlighting the large effect that the forward standing position 287 

has on CdA. In order to reduce biological variability only well-trained cyclists were recruited 288 

in this study. Furthermore, to ensure that the participants were able to maintain the required 289 

position over the test section the participants performed one week of training and one 290 

familiarization session. In the current study two participants were not able to maintain the 291 

requested positions and were excluded from this study after the familiarization session. It is 292 

plausible that this familiarization was not sufficient,25-27 and more practice is needed before 293 

adopting the forward standing position for performance. Future research should examine the 294 

influence of training on the consistency of adopting such abnormal sprint positions. Other 295 

factors which might have led to these exclusions are anthropometric characteristics, poor 296 

balance and coordination, or poor cycling handling skills. However, the anthropometric 297 

characteristics of the participants in the current study suggests that cyclists within a wide range 298 

in height and weight are able to adopt and may benefit from the forward standing position. 299 

Further research is needed to identify the effect of additional familiarization or training sessions, 300 

differences in anthropometric characteristics, balance and coordination, and cycling handling 301 

skills on the reliability of this field test to identify CdA in different positions.  302 

 303 

Practical applications 304 

Lowering the torso and head during a road cycling sprint results in a decrease in CdA 305 

by 23 and 26% when compared with traditional seated and standing positions. This decrease in 306 

CdA could result in an increase of cycling sprint velocity by approximately 3.9-4.9km·h-1. 307 

Caution should be taken when testing the CdA of sprint positions in a field test. Future research 308 

should compare the power production between different positions (i.e. seated, standing, and 309 

forward standing). 310 

 311 

Conclusion 312 

A novel forward standing cycling sprint position resulted in a 23 and 26% reduction in 313 

CdA compared with a seated and standing position. This decrease in CdA could result in an 314 

increase of approximately 3.9-4.9 km·h-1 in cycling sprint velocity. However, these results 315 

should be interpreted with caution since poor reliability of CdA was observed between days. 316 

Further research is required to determine factors influencing the poor reliability observed. It is 317 

plausible that more than one week of training and a single familiarization session is required to 318 

ensure reliability of CdA in these sprint positions.  319 
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Figure and tables  394 

 395 

 396 
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A B C 

Figure 1 The three sprinting positions: A) seated, B) standing, and C) forward standing. 
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 398 

 399 
Figure 2 Video analysis overview. 1 – Vertical, 2 – Horizontal, A – Shoulder point, B – Chest 400 

point, C – Front wheel hub, D – Bottom of the front wheel, E – Calibration distance (i.e. 200 401 

pt). 402 

 403 
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 404 
Figure 3 CdA per sprinting position for day 1 and 2. 405 

* = P ≤ 0.05; Forward standing day 1 vs. Standing day 1. 406 

† = P < 0.05; Forward standing day 2 vs. Seated day 1. 407 

# = P < 0.05; Forward standing vs. Seated and Standing (main effect). 408 

 409 

 410 

Table 1 Mean ± SD of variables used for CdA calculations. 

  Seated Standing Forward standing 

𝜌 Day 1 1.176 ± 0.022 1.176 ± 0.022 1.176 ± 0.022 

 Day 2 1.174 ± 0.017 1.174 ± 0.017 1.174 ± 0.017 

           

𝑉𝑎  Day 1 0.21 ± 0.51 -1.79 ± 0.44 -0.01 ± 0.65 

(m·s-1) Day 2 -0.23 ± 0.50 -0.14 ± 0.50 -0.07 ± 0.56 

           

𝑉𝑔 variability  Day 1 0.47 ± 0.06 0.60 ± 0.08 0.69 ± 0.17 

(km·h-1) Day 2 0.46 ± 0.10 0.65 ± 0.14 0.71 ± 0.20 

𝑉𝑔 = the ground velocity variability of the participants; 𝜌 = air density; 𝑉𝑎 = wind velocity 

relative to the participant’s riding direction. 
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