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Abstract 

The wettability of rocks under reservoir conditions is important to ensure and secure long 

term underground storage of carbon dioxide. The composition of those rocks vary significantly 

and are influenced by the fact that quartz is the second most abundant mineral in the earth's 

continental crust. Thus, the CO2 wettability of quartz dominates the overall CO2 trapping 

performance of storage and cap rocks. If depleted oil or gas reservoirs are used for storage of 

CO2 quartz surfaces of rocks in reservoirs which have been previously exposed to 

hydrocarbons might be covered with chemisorpt hydrocarbon molecules. The CO2 wettability 

of these chemically modified quartz is studied in this work with molecular dynamics. 

To model quartz surfaces with chemisorpt hydrocarbons both CLAYFF and DREIDING force 

fields are coupled at atomic site charge level using the density functional theory and the Bader 

charge analysis. Augmented with modified charges of the OC bond, CLAYFF and the DREIDING 

force fields are applied to solve the practical problem of calculating the contact angle of a 

water droplet on alkylated quartz surfaces in a CO2 environment. A systematic computational 

study of wettability of fully hydroxylated and alkylated (001) -quartz surface in carbon 

dioxide atmosphere with respect to surface concentration of pentyl groups is performed. 

Alkylated quartz surfaces have been shown to be extremely hydrophobic even when the 

surface density of hydroxyl groups is close to the highest naturally observed. The study also 

verifies that a comprehensive description of wettability of alkylated quartz surface requires 

three parameters: the theoretical contact angle, the apparent contact angle and the hidden 

contact angle. These contact angles are determined at the tip level of pentyl groups and the 

level of the quartz surface. The hidden contact angle is calculated as the angle of a water 

"skirt", which is formed between the level of the quartz surface and the tip level of pentyl 

groups. 

Additionally, the concept and the method of how to determine computational contact angles 

of a liquid droplet resting on a solid surface from individual snapshots of molecular dynamics 

simulations have been formulated, implemented and analysed in this work. Spherical 

coordinates to circumscribe a sphere around given configuration of water molecules form the 

basis of the method, which is thus natural and consistent with the droplet's geometric 

computational framework.  
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Figure 74. Water iso-density chart for quartz surface (surface 10) with concentration of pentyl 

groups 2.893 C5H11 per square nm. The iso-density data points are shown with blue dots, fitted 

circle is shown with blue line, the tip level of the pentyl groups is shown with the dashed line.
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Figure 75. Water iso-density chart for quartz surface (surface 11) with concentration of pentyl 

groups 3.182 C5H11 per square nm. The iso-density data points are shown with blue dots, fitted 

circle is shown with blue line, the tip level of the pentyl groups is shown with the dashed line.
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Figure 76. Simulation snapshot of the quartz surface with pentyl concentration 0.289 groups 

per square nm (surface 1). View along x axis: top left; view along y axis: top right; view along 

z axis: bottom left; isometric view: bottom right. The sphere fitted to the iso-density chart is 

illustrated in light purple color. The surface is illustrated with square in light yellow color. 

Water molecules and pentyl groups are shown in VDW representation, white balls - hydrogen 

atoms, red balls - oxygen atoms, light blue balls - carbon atoms. ......................................... 151 

Figure 77. Simulation snapshot of the quartz surface with pentyl concentration 0.579 groups 

per square nm (surface 2). View along x axis: top left; view along y axis: top right; view along 

z axis: bottom left; isometric view: bottom right. The sphere fitted to the iso-density chart is 

illustrated in light purple color. The surface is illustrated with square in light yellow color. 

Water molecules and pentyl groups are shown in VDW representation, white balls - hydrogen 

atoms, red balls - oxygen atoms, light blue balls - carbon atoms. ......................................... 152 

Figure 78. Simulation snapshot of the quartz surface with pentyl concentration 0.868 groups 

per square nm (surface 3). View along x axis: top left; view along y axis: top right; view along 

z axis: bottom left; isometric view: bottom right. The sphere fitted to the iso-density chart is 

illustrated in light purple color. The surface is illustrated with square in light yellow color. 

Water molecules and pentyl groups are shown in VDW representation, white balls - hydrogen 

atoms, red balls - oxygen atoms, light blue balls - carbon atoms. ......................................... 153 

Figure 79. Simulation snapshot of the quartz surface with pentyl concentration 1.157 groups 

per square nm (surface 4). View along x axis: top left; view along y axis: top right; view along 
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z axis: bottom left; isometric view: bottom right. The sphere fitted to the iso-density chart is 

illustrated in light purple color. The surface is illustrated with square in light yellow color. 

Water molecules and pentyl groups are shown in VDW representation, white balls - hydrogen 

atoms, red balls - oxygen atoms, light blue balls - carbon atoms. ......................................... 154 

Figure 80. Simulation snapshot of the quartz surface with pentyl concentration 1.447 groups 

per square nm (surface 5). View along x axis: top left; view along y axis: top right; view along 

z axis: bottom left; isometric view: bottom right. The sphere fitted to the iso-density chart is 

illustrated in light purple color. The surface is illustrated with square in light yellow color. 

Water molecules and pentyl groups are shown in VDW representation, white balls - hydrogen 

atoms, red balls - oxygen atoms, light blue balls - carbon atoms. ......................................... 155 

Figure 81. Simulation snapshot of the quartz surface with pentyl concentration 1.736 groups 

per square nm (surface 6). View along x axis: top left; view along y axis: top right; view along 

z axis: bottom left; isometric view: bottom right. The sphere fitted to the iso-density chart is 

illustrated in light purple color. The surface is illustrated with square in light yellow color. 

Water molecules and pentyl groups are shown in VDW representation, white balls - hydrogen 

atoms, red balls - oxygen atoms, light blue balls - carbon atoms. ......................................... 156 

Figure 82. Simulation snapshot of the quartz surface with pentyl concentration 2.025 groups 

per square nm (surface 7). View along x axis: top left; view along y axis: top right; view along 

z axis: bottom left; isometric view: bottom right. The sphere fitted to the iso-density chart is 

illustrated in light purple color. The surface is illustrated with square in light yellow color. 

Water molecules and pentyl groups are shown in VDW representation, white balls - hydrogen 

atoms, red balls - oxygen atoms, light blue balls - carbon atoms. ......................................... 157 

Figure 83. Simulation snapshot of the quartz surface with pentyl concentration 2.314 groups 

per square nm (surface 8). View along x axis: top left; view along y axis: top right; view along 

z axis: bottom left; isometric view: bottom right. The sphere fitted to the iso-density chart is 

illustrated in light purple color. The surface is illustrated with square in light yellow color. 

Water molecules and pentyl groups are shown in VDW representation, white balls - hydrogen 

atoms, red balls - oxygen atoms, light blue balls - carbon atoms. ......................................... 158 

Figure 84. Simulation snapshot of the quartz surface with pentyl concentration 2.604 groups 

per square nm (surface 9). View along x axis: top left; view along y axis: top right; view along 
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z axis: bottom left; isometric view: bottom right. The sphere fitted to the iso-density chart is 

illustrated in light purple color. The surface is illustrated with square in light yellow color. 

Water molecules and pentyl groups are shown in VDW representation, white balls - hydrogen 

atoms, red balls - oxygen atoms, light blue balls - carbon atoms. ......................................... 159 

Figure 85. Simulation snapshot of the quartz surface with pentyl concentration 2.893 groups 

per square nm (surface 10). View along x axis: top left; view along y axis: top right; view along 

z axis: bottom left; isometric view: bottom right. The sphere fitted to the iso-density chart is 

illustrated in light purple color. The surface is illustrated with square in light yellow color. 

Water molecules and pentyl groups are shown in VDW representation, white balls - hydrogen 

atoms, red balls - oxygen atoms, light blue balls - carbon atoms. ......................................... 160 

Figure 86. Simulation snapshot of the quartz surface with pentyl concentration 3.182 groups 

per square nm (surface 11). View along x axis: top left; view along y axis: top right; view along 

z axis: bottom left; isometric view: bottom right. The sphere fitted to the iso-density chart is 

illustrated in light purple color. The surface is illustrated with square in light yellow color. 

Water molecules and pentyl groups are shown in VDW representation, white balls - hydrogen 

atoms, red balls - oxygen atoms, light blue balls - carbon atoms. ......................................... 161 

Figure 87. Side views of a water droplet on the quartz surface with removed pentyl groups for 

pentyl concentration 0.289 groups per square nm (surface 1). View along x axis: left; view 

along y axis: right. The sphere fitted to the iso-density chart is illustrated in light purple color. 

The surface position is indicated by the lowest laying water molecules. Water molecules are 

shown in VDW representation, white balls - hydrogen atoms, red balls - oxygen atoms. .... 162 

Figure 88. Side views of a water droplet on the quartz surface with removed pentyl groups for 

pentyl concentration 0.579 groups per square nm (surface 2). View along x axis: left; view 

along y axis: right. The sphere fitted to the iso-density chart is illustrated in light purple color. 

The surface position is indicated by the lowest laying water molecules. Water molecules are 

shown in VDW representation, white balls - hydrogen atoms, red balls - oxygen atoms. .... 162 

Figure 89. Side views of a water droplet on the quartz surface with removed pentyl groups for 

pentyl concentration 0.868 groups per square nm (surface 3). View along x axis: left; view 

along y axis: right. The sphere fitted to the iso-density chart is illustrated in light purple color. 
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The surface position is indicated by the lowest laying water molecules. Water molecules are 

shown in VDW representation, white balls - hydrogen atoms, red balls - oxygen atoms. .... 163 

Figure 91. Side views of a water droplet on the quartz surface with removed pentyl groups for 

pentyl concentration 1.447 groups per square nm (surface 5). View along x axis: left; view 

along y axis: right. The sphere fitted to the iso-density chart is illustrated in light purple color. 

The surface position is indicated by the lowest laying water molecules. Water molecules are 

shown in VDW representation, white balls - hydrogen atoms, red balls - oxygen atoms. .... 164 

Figure 92. Side views of a water droplet on the quartz surface with removed pentyl groups for 

pentyl concentration 1.736 groups per square nm (surface 6). View along x axis: left; view 
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The surface position is indicated by the lowest laying water molecules. Water molecules are 

shown in VDW representation, white balls - hydrogen atoms, red balls - oxygen atoms. .... 164 

Figure 93. Side views of a water droplet on the quartz surface with removed pentyl groups for 

pentyl concentration 2.025 groups per square nm (surface 7). View along x axis: left; view 
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The surface position is indicated by the lowest laying water molecules. Water molecules are 
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Figure 94. Side views of a water droplet on the quartz surface with removed pentyl groups for 

pentyl concentration 2.314 groups per square nm (surface 8). View along x axis: left; view 
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Figure 95. Side views of a water droplet on the quartz surface with removed pentyl groups for 

pentyl concentration 2.604 groups per square nm (surface 9). View along x axis: left; view 
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pentyl concentration 2.893 groups per square nm (surface 10). View along x axis: left; view 
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1. Introduction 

1.1. Scope and objective 

Carbon geo-sequestration is a viable mitigation strategy to tackle consequences of excessive 

anthropogenic emissions of carbon dioxide (IPCC, 2005). The strategy, among other options, 

relies on depleted oil or gas reservoirs as possible storage formations. After being exposed to 

hydrocarbons, cap rocks of these formations may undergo chemical transformations, which 

change their wettability (Ali et al., 2019) and thus capacity, reliability and security of the 

structural and residual trapping (Stefan Iglauer, Pentland, & Busch, 2014). The aim of this work 

is to understand influence of these chemical transformations on the wettability of quartz 

surfaces in presence of carbon dioxide and to quantify this influence. 

1.2. Methods, procedures and process 

To study the effects of chemisorpt hydrocarbons on the wettability of the hydroxylated quartz 

a range of methods of computational chemistry, materials science and solid state physics is 

used. Known and reliable force fields (Cygan, Liang, & Kalinichev, 2004; Mayo, Olafson, & 

Goddard, 1990; van Beest, Kramer, & van Santen, 1990) are adapted to the new chemical 

environments using the density functional theory (Hohenberg & Kohn, 1964; Kohn & Sham, 

1965). Investigation on how the surface density of alkyl groups affects quartz's wettability in 

carbon dioxide atmosphere is then performed using classical molecular dynamics (Gonzalez, 

2011). A possibility to use spheroidal geometric constructions to calculate the contact angle 

using individual snapshots of molecular dynamics simulations is studied with the most stable 

surface of the pristine quartz. 

1.3. Results, observations and conclusions 

Insights gained at the molecular level indicate that the wettability of alkylated quartz is a 

complex phenomenon complete characterisation of which requires a number of parameters. 

Reported contact angles obtained at different surface levels are compared with the contact 

angle that is most likely to be measured in an experiment. Quantitative confirmation of the 

hydrophobicity of the hydroxylated and alkylated quartz is obtained. 

1.4. Novel and additive information 

This research contributes to the scientific and engineering community in two ways. Firstly, 

there is a fundamental contribution in the form of modified and adapted for the modelling of 
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the alkylated quartz force fields. Secondly, there is a practical contribution in the form of a 

deeper understanding of the wetting processes of chemically modified with hydrocarbons 

quartz surfaces. Reported quantification of the wettability of the latter surfaces with respect 

to the concentration of alkyl groups is of particular importance for the engineering 

applications and development of effective carbon geo-sequestration projects. 

1.5. Thesis organization 

The dissertation is organized as follows. In chapter two author presents an overview of 

information in existing literature on the subject of climate change, carbon capture and storage 

technology, parameters affecting applicability and efficiency of the technology, specifically the 

contact angle in quartz-water-carbon dioxide systems. The chapter ends with a summary of 

identified knowledge gaps. In chapter three an overview of existing computational methods 

utilized to eliminate the knowledge gaps is given. The following chapters are organized as self-

sufficient and potentially publishable summaries of research results obtained as independent 

and yet connected to each other parts of this project. In chapter four a possibility of using 

spheroidal geometric constructions for calculation of the contact angle is explored. The most 

stable pristine quartz surface is used as a proving ground for proposed in the chapter method. 

In chapter five an oxygen-carbon bond connecting quartz crystal to alkyl rest is modelled using 

the density functional theory. Charges on both atoms of the bond are estimated using the 

Bader charge analysis. In chapter six a systematic study of wettability of hydroxylated and 

alkylated quartz with respect to the surface pentyl density is performed. From chapter four 

through chapter six, the narrative thus naturally proceeds from development of a method to 

calculate the contact angle of a spherical droplet (chapter four), to a solution of encountered 

scientific problem of adapting known force fields to chemical environments of studied 

alkylated quartz surfaces (chapter five), and finally to application of modified contact angle 

calculation method and modified force fields to systematic study of wettability of alkylated 

quartz (chapter six). The work is concluded in chapter seven. 

1.6. Publications 

A. Abramov, S. Iglauer, "Analysis of individual molecular dynamics snapshots simulating 

wetting of surfaces using spheroidal geometric constructions", accepted for publication in The 

Journal of Chemical Physics. 
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A. Abramov, S. Iglauer, "Application of the CLAYFF and the DREIDING force fields for modelling 

of alkylated quartz surfaces", Langmuir, DOI: 10.1021/acs.langmuir.9b00527, URL: 

https://pubs.acs.org/doi/10.1021/acs.langmuir.9b00527. 

A. Abramov, A. Keshavarz, S. Iglauer, "Wettability of fully hydroxylated and alkylated (001) 

alpha-quartz surface in carbon dioxide atmosphere", Journal of Physical Chemistry C, DOI: 

10.1021/acs.jpcc.9b00263, URL: https://pubs.acs.org/doi/10.1021/acs.jpcc.9b00263. 
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2. Literature review 

2.1. Global warming 

2.1.1. Overview 

Operating for over than 30 years (since 1988) an intergovernmental scientific body - The 

Intergovernmental Panel on Climate Change (IPCC) unambiguously links human industrial 

activity (Figure 1) and changes in the climate and ecosystems observed globally (Figure 2, 

Figure 3). The IPCC uses recorded from 1850 instrumental measurements and data derived 

from paleoclimate archives to set a long-term context (IPCC, 2013). As Figure 1 shows 

industrial activity of the civilization manifests itself in exponentially growing emissions of 

carbon dioxide, which reach 10 GtC per annum. Action of natural CO2 sinks significantly 

mitigated the impact, but from 1800 measured atmospheric growth rate of CO2 have been 

steadily increasing and reached more than 3 GtC per annum, Figure 1. These anthropogenic 

emissions result in 25% increase in CO2 concentration over a period of 50 years, from 1960 to 

2010, Figure 2. Increased carbon dioxide concentrations are consistently observed in the 

Northern and Southern Hemispheres. Higher content of the acid gas in the atmosphere also 

leads to increased ocean acidity; reduced pH levels have been recorded for several decades in 

a row (IPCC, 2013), Figure 2. 

Numerous indicators demonstrate that Earth's climate is changing (warming), and from 1950 

trends of the change are steady and the rate is alarming, Figure 3: land surface temperature 

increased by 1C, sea surface temperature increased by 0.3C, marine air temperature 

increased by 0.4C, sea level increase by more than 100 mm, summer arctic sea-ice extent 

decreased by 5106 km2. Increasing trends are also demonstrated by tropospheric 

temperature, ocean heat content and specific humidity; decreasing trends are observed for 

Northern Hemisphere snow cover and glacier mass balance, see Figure 3. Thus, collected and 

analysed by the intergovernmental body paleoclimate data shows clear connection between 

CO2 concentration and global temperature. With more than 40% CO2 concentration increase 

since preindustrial times, atmospheric CO2 content became higher than it has ever been over 

the past 800 000 years (more than 410 ppm in 2018 (scripps.ucsd.edu)). Every of the past 

three decades had been warmer than the previous decades since 1950, with the first decade 

of the twenty first century been the warmest of all (IPCC, 2013). 
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Figure 1. Emissions of carbon dioxide due to industrial and agricultural activities (1 Petagram of carbon = 1 PgC 
= 1015 grams of carbon = 1 Gigatonne of carbon = 1 GtC). Image source: (IPCC, 2013). 
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Figure 2. Atmospheric CO2 concentration, CO2 partial pressure (pCO2, left axis) and pH of oceanic surface. MLO: 
Mauna Loa Observatory, Hawaii; SPO: South Pole; HOT: Hawaii Ocean Time-Series station. Image source: (IPCC, 

2013). 

This warming is explained by increased heat uptake from the sun by the climate system. The 

difference between absorbed and reflected energy, i.e. the radiative forcing, has been 

increasing with increase in CO2 concentration due to anthropogenic industrial activity. In fact, 

the increase in the atmospheric concentration of CO2 since 1750 is the largest contributor to 

the total radiative forcing. As a result of warming caused by anthropogenic radiative forcing 

ice sheets and glaciers are losing mass. Arctic sea ice area has been declining since 1980, as 

well as the Greenland ice sheet. With smaller snow and ice area more of sun's heat is absorbed 

by the land and oceans, which creates an alarming positive feedback influencing the climate 

system. 

Existing climate system trends, see Figure 3, led the IPCC to the following conclusions (IPCC, 

2013): (i) warming in the climate system is undeniable; (ii) human influence on the climate 

system is clear; (iii) continued greenhouse gases emission causes further climate change and 

long term negative consequences. Limiting the climate change requires significant and 

permanent reduction of greenhouse gases emission. 
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Figure 3. Climate change indicators. Image source: (IPCC, 2013). 

Greenhouse gases emission causes the primary effect of the climate change - the warming. 

There are number of secondary effects among which are the following, see Figure 2 and Figure 

3: rise of sea levels, increase in oceans acidity, change of weather and precipitation patterns, 

spread of tropical diseases, to list some. Mentioned global processes are intrinsically negative, 

although some local effects may be considered as to say "positive", such as appearance of 

new sea routes and accessibility of otherwise ice covered areas, warmer winters and reduced 

energy consumption for heating. The net worldwide outcome of these developments is 

believed to be extremely negative and catastrophic. 

In October 2018 the IPCC issued a special report "Global warming of 1.5C" (IPCC, 2018), 

where the authors argue that increase in global temperature above 1.5C, which is estimated 
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to happen around 2030 if current trends of CO2 emission are preserved, could render the 

planet unsuitable for living in long term due to irreversible changes, such as the loss of 

ecosystems. A Greenpeace representative summarized the report in three words written in 

capital letters: "ACT NOW, IDIOTS" (www.bbc.com). 

2.1.2. Response strategies 

Apart from a passive strategy of doing nothing regarding the climate change it is possible to 

single out several active strategies which can be used on their own or in combination (IPCC, 

2014): (i) adaptation; (ii) mitigation and (iii) climate engineering. 

As the word "adaptation" suggests the corresponding strategy implies changing the living 

environment so it better fits warmer conditions. These changes may include usage of heat 

resistant and less water demanding plants, flood protective structures, higher foundations 

and street levels, light coloured roofs, weather control techniques, to name a few. 

The mitigation strategies can be developed on premises that emission of greenhouse gases 

originates from energy production satisfying certain energy consumption, improvements can 

be implemented on both sides. Limiting energy consumption measures include altering 

behaviour, lifestyle and diet of the population (mode and demand for mobility, households' 

energy use, choice of longer-lasting products, reduction in food wastes), as well as energy 

conservation and energy efficiency. According to the IPCC these are the key mitigation 

strategies on the energy demand side to limit CO2 concentration to about 450 ppm by 2100 

(IPCC, 2014). On the energy supply side reducing the carbon intensity (decarbonizing) of 

electricity generation is crucial to achieve cost-effective mitigation of negative consequences 

of the climate change. This can be accomplished by switching the energy production to 

renewable sources and specifically to nuclear energy, which share of world electricity 

generation has been in decline since 1993 (IPCC, 2014). If such switch in energy production is 

not feasible in certain locations, then large CO2 emitters can be equipped with carbon capture 

and storage facilities which remove carbon dioxide from the exhaust fumes. In addition to 

these measures natural or artificial reservoirs absorbing carbon dioxide, or carbon sinks, can 

be preserved, enhanced or created. Oceans (at the expense of acidification) and forests are 

among the largest carbon sinks. 
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Special case of a mitigation strategy is the climate engineering or geoengineering. The strategy 

is largely represented by two subcategories: solar radiation management and removal of CO2 

from the atmosphere. The former method aims to reflect part of incoming sun light back to 

space. The letter method is analogous to the carbon capture and storage although it deals 

with very low CO2 concentrations due to which it is much less efficient. 

2.2. Carbon capture and storage 

2.2.1. Overview 

Carbon dioxide Capture and Storage (CCS) technology can reduce CO2 emissions of fossil fuel 

power plants, where the gas is captured, transported to a place of storage and isolated from 

the atmosphere deep underground (Bachu, 2003; GCCSI, 2018; IPCC, 2005). The technology is 

appealing as it can be used on already operating power stations, as well as on prospective 

ones. The capturing is the most efficient when it is done at the emission source where three 

different types of capture systems may be applied: (i) post-combustion; (ii) pre-combustion 

and (iii) oxyfuel combustion (IPCC, 2005). In the first system CO2 removed after combustion of 

organic or fossil fuels. In the second system carbon based fuel is partially oxidised to form 

hydrogen and carbon monoxide, which then reacts with water to form CO2 and hydrogen. CO2 

is next removed to leave hydrogen for further processing or combustion. In the oxyfuel (or 

oxy-firing) combustion fuel is burnt in pure oxygen which produces only CO2 and water. The 

first two systems are used by the industry for purposes different from the CCS, the third 

system is in demonstration stage. 

To separate CO2 from fume gases absorption, adsorption or membrane technologies can be 

applied. Out of three methods absorption via amine scrubbing is the most mature and widely 

used by the industry technology, for example, in natural gas processing. After separation CO2 

is transported in supercritical state using existing or specially constructed pipeline networks 

to a place of storage where it is then injected into a geological formation at depth below 800 

m (IPCC, 2005). This formation may be an oil reservoir where CO2 is used for the enhanced oil 

recovery or it may be specially dedicated for CO2 storage formation, see Figure 4. 
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Figure 4. Schematic illustration of carbon dioxide capture and storage technology. Geological storage 
formations may vary and can be selected from specially dedicated for storage formations, depleted oil or gas 

reservoirs, deep aquifers, coal beds or salt caverns. 

The storage formation must be determined carefully (Bachu, 2003) so that acting trapping 

mechanisms prevent CO2 from leaking back to the surface because of its buoyancy. Four 

trapping mechanisms have been identified and are being actively studied: (i) structural 

trapping; (ii) residual trapping; (iii) solubility (or dissolution) trapping and (iv) mineral trapping 

(Stefan Iglauer et al., 2014). 

The structural trapping is well understood mechanism preventing upward hydrocarbon 

migration. Over geological timescale oil, gas or both accumulate and separate from water 

beneath impenetrable cap rocks. As with hydrocarbons these natural seals stop low density 

supercritical CO2 from moving toward the surface retaining it underground. It should be noted 

that actual seal configuration does not have to be dome like, overlaying along geological faults 

seal formations can play similar role. 
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In the residual trapping micrometre sized bubbles of CO2 disconnected from the main body of 

the gas are immobilised in the pore space of the storage formation. CO2 mobility is halted by 

the capillary forces which balance or exceed the buoyancy forces. 

In the solubility or dissolution trapping some portion of CO2 dissolves into water present in 

the pore space of surrounding rocks. This causes increase in water density and its 

corresponding downward motion. 

The mineral trapping refers to formation of minerals which are produced as a result of 

chemical reactions between CO2, water, ions present in water and rocks of the storage 

reservoir. Reacted CO2 becomes permanently captured in the solid phase. 

Among the major difficulties reducing confidence in the carbon capture and storage 

technology is limited ability to robustly predict storage security of the first two trapping 

processes. 

2.2.2. Carbon geo-sequestration projects 

The Global CCS Institute (GCCSI) headquartered in Melbourne, Australia 

(www.globalccsinstitute.com), in its CO2RE database identifies 23 large-scale CCS projects 

already operating or under construction, with additional 28 pilot and demonstration projects 

conceived or functioning (GCCSI, 2018). These facilities capture 43 Million Tonnes Per Annum 

(MTPA) of CO2. 

The current level of development in CCS technology was reached in more than 45 years. 

Enhanced oil recovery (EOR) pioneered practical implementations of CCS in 1972 with Val 

Verde EOR facility in the Sharon Ridge oilfield in Texas. Governmental regulations introduced 

in Norway in 1991 motivated Statoil to start the Sleipner CO2 storage facility in 1996, which 

became the first in the world project where CO2 was injected into a dedicated geological 

formation. Injection of CO2 on the Snohvit gas field, which started in 2008, was required by a 

license condition also imposed by the Norwegian State. In Weyburn and Midale oil fields in 

Canada CO2 have been injected for EOR from 2000 and 2005, respectively. The In Salah CO2 

storage facility in Algeria injected carbon dioxide into the Krechba formation, a depleted gas 

reservoir, from 2004 to 2010. Over the next five years geochemical, geophysical and 

production techniques were applied to observe the CO2 storage process. Obtained data was 

then used to improve modern monitoring, modelling and verification methodologies. 
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The second decade of the twenty-first century was the most fruitful in terms of CCS 

applications in diverse industrial areas and reached sequestration capacity. The technology is 

now in use in coal-fired power plants, iron and steel factories, chemical and hydrogen 

production plants. 

The first large-scale carbon capture facility in power generation was commenced in 2014 with 

reconstructed Unit 3 of Boundary Dam Power Station in Saskatchewan province in western 

Canada (1 MTPA). The first commercial application of CCS in the oil sands industry was also 

achieved in Canada by Shell in cooperation with the Canadian Federal Government and the 

Provincial Government of Alberta in 2015 in the Quest facility (1 MTPA). 

After 2009 six large-scale CO2 sequestration facilities began operation in the US. Launched in 

2017 the Illinois industrial CCS facility uses dedicated storage (1 MTPA), other five capture and 

storage units operate in EOR mode: Century natural gas processing plant (8.4 MTPA), Air 

Products hydrogen production steam methane reformer (1 MTPA), Coffeyville gasification 

plant producing fertilisers (1 MTPA), Lost Cabin natural gas processing plant (0.9 MTPA), Petra 

Nova coal-fired power plant with carbon capture (1.4 MTPA). 

In Brazil Petrobras started operating CCS facilities in Santos Basin in 2015. In 2017 ten floating 

production storage and offloading units at the Lula, Sapinhoa and Lapa fields were injecting 

CO2 for EOR (2.5 MTPA). 

In Saudi Arabia the Uthmaniyah facility was functioning since 2015. CO2 from a natural gas 

processing plant is used for EOR on the largest in the world Ghawar field (0.8 MTPA). 

The first large-scale CCS facility in the iron and steel industry started operation in 2016 in the 

United Arab Emirates. The Emirates Steel Industries factory in Mussafah captures and 

transports CO2 to Abu Dhabi National Oil Company for EOR (0.8 MTPA). 

The EOR project in Jilin oilfield in China was in development since 1990. This first large-scale 

CCS facility operating in China entered Phase III in 2018 (0.6 MTPA). 

The Gorgon liquefied natural gas project in Australia involving the development of the Greater 

Gorgon gas fields, in some of which the natural gas contains high concentrations of CO2, is 

expected to capture and reinject up to 4 MTPA of CO2 upon completion. 
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2.3. Wettability and carbon dioxide storage capacity of rocks 

Reliability and long term security of the structural and the residual trapping mechanisms are 

strongly influenced by the wettability of storage formations in CO2 atmosphere and related 

capillary effects. The wettability or wetting may intuitively be understood as an ability of a 

liquid to spread over a solid surface. The degree of spreading is determined by a balance 

between adhesive and cohesive forces. The macroscopic phenomenon of wetting essentially 

originates from intermolecular interactions occurring when the liquid and the solid are 

brought in contact with each other. It is implied that apart from contacting liquid and solid a 

third party is in play - the gas in which wetting is observed. In such a setup wettability of the 

solid may be understood as its preference to be in contact with or to be wet by either of two 

fluids the liquid or the gas. 

Wettability can quantitatively be characterised by the contact angle given by the Young 

equation, which expresses thermodynamic equilibrium between three phases - the solid 

phase, the liquid phase and the gas phase (Atkins & De Paula, 2006): 

𝑐𝑜𝑠𝜃 =
𝛾ௌ௅ − 𝛾ௌீ

𝛾௅ீ
, 

where  is the contact angle,  is the interfacial tension and S, L and G stand for the solid, the 

liquid and the gas, respectively, see Figure 5 and Figure 6. 

 

Figure 5. A liquid droplet on a solid surface and variables used in the Young equation. 

The contact angle can take values between 0 and 180 degrees. The value 90 degrees separates 

wetting (less than 90 degrees) and non-wetting (more than 90 degrees) regimes. Complete 

Solid

LiquidGas
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surface wetting is identified by the zero contact angle and completely non-wetting state is 

characterised by the contact angle 180 degrees. 

The contact angle is related to the capillary pressure, which is the pressure difference across 

the interface which separates two fluids (Stefan Iglauer et al., 2014): 

𝑃௖ = ∆𝑃 = 𝑃௡௪ − 𝑃௪, 

where Pnw and Pw are pressures of the non-wetting (carbon dioxide) and wetting (water) 

phases. 

If a formation pore is modelled as a capillary tube, then it can be shown that the contact angle 

is connected to the capillary pressure through the Young-Laplace equation (Dake, 1978): 

∆𝑃 = 2𝛾𝐶, 

where  is the interfacial tension of the fluid pair, C is the mean curvature of the interface. 

 

Figure 6. Capillary rise of a liquid illustrating parameters used in the Young-Laplace equation. 
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For a capillary tube shown in Figure 6: 

𝑃௖ = 2𝛾/𝑅, 

𝑅 = 𝑟௖/𝑐𝑜𝑠𝜃, 

𝑃௖ = 2𝛾𝑐𝑜𝑠𝜃/𝑟௖ , 

where R is the principle radius of curvature, and rc is the radius of the capillary tube (or pore 

radius). 

 

Figure 7. Schematic illustration of CO2 structural trapping. 

Capillary pressure which prevents non-wetting phase (carbon dioxide in the context of carbon 

capture and storage) from entering the pores is counterbalanced by the buoyancy of the non-

wetting phase: 

𝑃௕ = ∆𝜌𝑔ℎ, 

where  is the density difference between CO2 and water, g is acceleration due to gravity, h 

is the height of the CO2 plume, see Figure 7. 

Equating Pc and Pb an estimation of the CO2 storage capacity is obtained (Stefan Iglauer et al., 

2014): 

ℎ =
2𝛾𝑐𝑜𝑠𝜃

∆𝜌𝑔𝑟௖
. 

There are four variables in obtained equation: water-CO2 interfacial tension, the contact 

angle, the density difference between CO2 and water, and the radius of the capillary tube (the 

Cap rock

CO2+residual H2O
H2O+residual CO2

Pc

Pb
h
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pore radius). The latter one is the most difficult to estimate due to complex pore morphology 

of real rocks. Because of the same reason it is also less representative of real pore 

environments. On the other hand, the first two variables have extensively been studied in 

experimental and theoretical works. The third variable, the density difference, predominantly 

depends on properties of CO2 which in turn strongly depend on pressure and temperature 

conditions. 

2.4. Properties of carbon dioxide in geological conditions 

At standard conditions of pressure and temperature CO2 is a stable gas with the density 

1.976 kg/m3 (IPCC, 2005). Physical state of carbon dioxide varies with temperature and 

pressure according to its phase diagram, Figure 8 (www.chemicalogic.com). Three phases 

solid, liquid and gas coexist at -56.5C and 5.18 bar. CO2 becomes supercritical at 31.1C and 

73.9 bar. It is important to note that at supercritical conditions CO2 fills available volume as a 

gas, but can have densities comparable with densities of its liquid state from 150 to more than 

800 kg/m3, depending on pressure and temperature, see Figure 9 (Bachu, 2003; IPCC, 2005). 

 

Figure 8. Phase diagram of carbon dioxide. Image source: ChemicaLogic Corporation, Copyright (c) 1999 
ChemicaLogic Corporation, USA. All rights reserved. 
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Density of carbon dioxide is crucial for the storage efficiency and safety. Larger densities 

increase amount of stored CO2 in terms of its mass and decrease its upward acting buoyancy 

force. As Figure 9 illustrates CO2 density strongly linked to pressure and temperature and thus 

to depth at which it is stored. The greater the depth the greater the pressure and the greater 

the temperature, but their effect on CO2 density is opposite. In the beginning CO2 density 

increases rapidly with pressure, then temperature counteracts pressure which stabilises the 

density. Considering interplay of pressure and temperature with depth it was show that there 

exist an optimal depth range from 800 to 1000 m for "cold" geological basins and from 1500 

to 2000 m for "warm" geological basins, where CO2 density reaches plateau and almost ceases 

increasing or even decreases (Bachu, 2003). Expected storage pressure and temperature 

conditions and physical state of CO2 at optimal depths can be determined from the hydrostatic 

and the geothermal gradients. 

Variations of pressure P and temperature T with depth are given by formulae: 

𝑃 = 𝜌௪𝑔𝑧, 

𝑇 = 𝑇௦ + 𝐺𝑧, 

where ρw is water density, g is the acceleration due to gravity, z is the depth, Ts is the surface 

temperature, G is the geothermal gradient. 

Eliminating the depth, the pressure and the temperature can be combined in one equation 

and superimposed onto CO2 phase diagram (Bachu, 2003): 

𝑃 =
𝜌௪𝑔

𝐺
(𝑇 − 𝑇௦). 
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Figure 9. CO2 density as a function of temperature and pressure. Image source: (Bachu, 2003; IPCC, 2005). 

Overlay of geological conditions and physical states of CO2 in coordinates pressure versus 

temperature is depicted in Figure 10. The "cold" and the "warm" basin conditions shown in 

Figure 10 are defined by the surface temperatures -2 and 30C, respectively, and by the 

geothermal gradients 20 and 60C/km, respectively (Bachu, 2003). The CO2 saturation line is 

constructed with the Span and Wagner equation of state (Span & Wagner, 1996) using a web 

based tool (www.energy.psu.edu). The diagram in Figure 10 illustrates that if stored at the 

optimal depths, CO2 could be either in supercritical or liquid states with pressures ranging 

from 7.85 to 19.62 MPa and temperatures covering interval from 14 to 150C. In "cold" basins 

as depth increases from 800 to 1000 m CO2 density decreases from 874 kg/m3 (at 14C and 

7.85 MPa) to 868.2 kg/m3 (at 18C and 9.81 MPa), respectively. In "warm" basins as depth 

increases from 1500 to 2000 m CO2 density increases from 273.5 kg/m3 (at 120C and 

14.7 MPa) to 320 kg/m3 (at 150C and 19.62 MPa), respectively. 

Figure 10 also depicts one (out of many) possible "critical path", the path in the pressure-

temperature space which crosses the critical point when CO2 moves upwards from the storage 

formation. Apart from this unique route characteristic phase transformations in warmer 
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conditions are from the supercritical state to the gas state and in the colder conditions from 

the liquid state to the gas state (with uptake of the latent heat). In colder conditions more 

general metamorphoses from the supercritical to the liquid and then to the gas states are 

possible as well. 

 

Figure 10. Possible geological pressure and temperature conditions in "cold" and "warm" basins worldwide 
superimposed onto carbon dioxide phase diagram. Thickened lines highlight conditions at optimal depths 800-
1000 m for "cold" and 1500-2000 m for "warm" basins, respectively. Interpolation between optimal "cold" and 

"warm" conditions (gradient coloured lines) shows range of pressures and temperatures expected at CO2 
storage depths. Image is constructed on basis of (Bachu, 2003). 

2.5. Quartz wettability in presence of carbon dioxide 

Quartz is the second most abundant mineral in the Earth's continental crust (about 12% by 

weight) (Anderson & Anderson, 2010; Marshall & Fairbridge, 1999), it is behind feldspars 

which compose about half of the crust. In addition to its global natural abundance quartz is 

present in large concentrations in cap rocks, more than 50% by weight (Stefan Iglauer, Al-

Yaseri, Rezaee, & Lebedev, 2015). Quartz wettability is therefore crucial for characterisation 

of overall wettability of real multi-mineral cap rocks. To understand and quantify wettability 

of quartz surface it has extensively been studied not only in numerous experiments but also 

with advanced methods of theoretical chemistry and materials science. 
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2.5.1. Experimental studies 

Experimental wettability studies explored different gaseous atmospheres including air 

(Mazurek, Pogorzelski, & Boniewicz-Szmyt, 2009; Roshan, Al-Yaseri, Sarmadivaleh, & Iglauer, 

2016), water vapour saturated air (Lamb & Furlong, 1982), hydrogen sulphide and carbon 

dioxide (Broseta, Tonnet, & Shah, 2012; Espinoza & Santamarina, 2010). Variety of water 

solutions have been tested ranging from distilled water (Sklodowska & Matlakowska, 1997) to 

brines of different salinity (Ahmed Z. Al-Yaseri, Lebedev, Barifcani, & Iglauer, 2016; Ahmed 

Zarzor Al-Yaseri, Roshan, Lebedev, Barifcani, & Iglauer, 2016; Broseta et al., 2012). Diversity 

of combinations surface-liquid-gas examined in the experiments is enriched by multiplicity of 

contact angle measurement methods. The are many approaches to measure the contact angle 

experimentally which are described in specialized textbooks, for example, Chapter 1 "Contact 

Angle and Wetting Properties" in (Bracco & Holst, 2013) offers nine methodologies for 

assessing the contact angle experimentally. Some common techniques to measure the contact 

angle relatively widely seen in research literature are: the sessile drop method (Sarmadivaleh, 

Al-Yaseri, & Iglauer, 2015), the captive bubble method (Kaveh, Rudolph, van Hemert, Rossen, 

& Wolf, 2014; Saraji, Goual, Piri, & Plancher, 2013), the capillary rise method (Koh, Hao, Smith, 

Chau, & Bruckard, 2009) and the direct measurement with the atomic force microscopy (Deng, 

Xu, Lu, Wang, & Shi, 2018). 

In the sessile drop method, a water droplet is placed on the surface of a mineral in atmosphere 

of the less dense phase, i.e. air, CO2 or other gases. The captive bubble method is an analogous 

approach where the less dense phase is injected underneath the surface of a mineral 

submerged into denser phase, i.e. water. In the capillary rise method, the contact angle is 

calculated using the values of experimentally measured capillary rise and radius (Bracco & 

Holst, 2013). In contrast to other methods, where droplet sizes are in the range of millimetres, 

the atomic force microscopy is used to measure the contact angle of micrometre-sized 

droplets. In the technique, the force between the sharp tip and a surface as a function of their 

separation is detected and used to reproduce the shape of the sample. Very high resolution 

of less than nanometre is attainable with the atomic force microscopy (Bracco & Holst, 2013). 

At the micrometre level of the atomic force microscopy, size of the water droplet (or bubble, 

in a more general case) has negligible effect on the contact angle measured in air atmosphere 

(Deng et al., 2018). For larger droplets, however, size matters and affects outcome of 
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measurements. The gravitational influence becomes significant when radius of the droplet 

exceeds the threshold value given by the capillary length. This threshold condition is fulfilled 

when the gravitational forces become comparable with the surface tension forces. Relative 

importance of one type of forces over the other is formally expressed by a dimensionless 

number, the Bond number (also known as the Eötvös number) (Hager, 2012): 

𝐵ை =
∆𝜌𝑔𝑟ଶ

𝛾
, 

where  is the density difference between the liquid and vapour phases, g is acceleration 

due to gravity, r is the droplet radius,  is the interfacial tension of the fluid pair. 

The droplet size therefore becomes an important parameter affecting measurements of the 

contact angle when: 

𝐵ை ≥ 1. 

Experimental assessments of the contact angle for all droplet sizes are influenced by the 

surface roughness and heterogeneity (Drelich, Miller, & Good, 1996). It was demonstrated in 

(Deng et al., 2018) that even for a micrometre sized water droplet the contact angles 

measured along the triple-phase contact line may have almost twofold difference, ranging 

from 27.8 to 48.9. To quantify effects of surface's roughness and heterogeneity on the 

contact angle and to link contact angles obtained for ideal smooth and homogeneous surfaces 

with real contact angles on rough and heterogeneous surfaces two models have been 

developed (Cassie & Baxter, 1944; Wenzel, 1936). Effect of surface roughness on the contact 

angle is expressed by an equation proposed by Robert Wenzel (Wenzel, 1936): 

𝑐𝑜𝑠𝜃ௐ = 𝑅௙𝑐𝑜𝑠𝜃, 

where W and  are the Wenzel contact angle and the contact angle obtained on the smooth 

and homogeneous surface, respectively; Rf is the roughness factor which is defined as the ratio 

of the area of the rough surface to the area of projected flat surface (in practice the roughness 

factor is always larger than one). 

Wenzel's theory assumes that the roughness grooves are completely filled with liquid for 

which the contact angle is measured, the assumption which is not required for the Cassie-

Baxter model (Cassie & Baxter, 1944): 
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𝑐𝑜𝑠𝜃஼஻ = 𝑓ଵ𝑐𝑜𝑠𝜃ଵ + 𝑓ଶ𝑐𝑜𝑠𝜃ଶ, 

where CB is the Cassie-Baxter contact angle; f1 and f2 are the area fractions for surface 

components 1 and 2, for which the contact angles are 1 and 2, respectively (in principle, the 

model can be extended to any number of surface components). 

 

Figure 11. Liquid droplet on a rough and inhomogeneous surface. The Wenzel (left) and the Cassie-Baxter (right) 
models. 

The Cassie-Baxter model can handle situations where the roughness grooves are filled with a 

gas (Figure 11), which becomes one of the surface components, let us say the second one. In 

a water-air system this means that 2=180, and with f2=1-f1 one arrives at: 

𝑐𝑜𝑠𝜃஼஻ = 𝑓ଵ(𝑐𝑜𝑠𝜃ଵ + 1) − 1. 

It is interesting to note that for a given surface material the contact angle can be tuned if 

necessary just by altering f1. In the context of CO2 storage, just because of surface roughness 

and the Cassie-Baxter wetting regime, the contact angles of water may be heightened and CO2 

storage capacity and security may be reduced. 

As may be inferred from presented in this section material the contact angle is a sensitive to 

number of parameters characteristic. Among those parameters are surface chemistry 

(hydrophilicity and hydrophobicity (Stefan Iglauer, 2017)) and surface conditions (roughness 

and homogeneity, pre-treatment and crystal face (Deng et al., 2018)), size of the droplet (or 

bubble), method used to measure the contact angle (Drelich et al., 1996). In addition, in the 

context of carbon geo-sequestration, attention should be paid to salinity of the denser phase 

and ionic strength of the solution, experimental atmosphere including type of gas and its 
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pressure and temperature. Increase in salinity, valency of dissolved ions, and in carbon dioxide 

pressure causes increase in CO2-wettability, while effect of temperature is less clear (Stefan 

Iglauer, 2017). Understanding of influence of these latter four factors (pressure and 

temperature, salinity, type of ions) on water/CO2 wetting behaviour of quartz is crucial for 

correct estimation of CO2 storage capacity and security of existing and prospective carbon 

geo-sequestration projects. 

An attempt (Roshan et al., 2016) to understand effects of pressure and temperature on the 

contact angle was made using an analytical expression derived in (Garcia, Osborne, & Subashi, 

2008, 2009): 

𝑐𝑜𝑠𝜃 = −1 −
∆𝜌

𝛾
න 𝑉௦(𝑧)𝑑𝑧

ஶ

௭೘೔೙

, 

where  is the density difference between the liquid and vapour phases,  is the interfacial 

tension of the fluid pair, Vs is the potential energy of the adsorbate molecule due to the 

substrate (the substrate potential), zmin is the position of the minimum of the potential near 

the surface. 

Because of high CO2 compressibility there is one strongly dominating factor affecting the 

contact angle with varying pressure - carbon dioxide density, which upon increase enhances 

CO2-mineral interactions (Stefan Iglauer, 2017). In terms of presented equation, the effect of 

pressure may be understood as follows. With increase in pressure the density difference 

between the liquid (water) and vapour (CO2) phases decreases, see Figure 9. It was shown that 

the ratio of the van der Waals potential integral over the interfacial tension for given 

temperature, brine composition and mineral substrate is constant (Ahmed Zarzor Al-Yaseri et 

al., 2016). Reduced due to increased pressure density difference in the second term on the 

right hand side of the equation is thus the main factor responsible for increase of the contact 

angle. 

For the sake of completeness effect of pressure on the interfacial tension should be 

characterised too. Pressure increase from ambient conditions causes rapid decrease in water-

CO2 interfacial tension from about 70 to 30 mN/m at temperatures ranging from 278 to 333 K 

(Hebach et al., 2002), after pressure reaches the saturation or supercritical values the 

interfacial tension remains almost unchangeable (Hebach et al., 2002). It is necessary to note 
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that in relative terms the effect of pressure on water-CO2 interfacial tension is much smaller 

than its effect on CO2 density, Figure 9. 

With variations in temperature there is no sole dominating factor, the density difference and 

the interfacial tension of the fluid pair are both affected; as well as the kinetic energy of the 

adsorbate molecules, which in turn results in variations in explored by the adsorbate 

molecules energies of the potential well. That is why the effect of temperature on the contact 

angle is more intricate. For example, the contact angle decreases with increase in temperature 

for coal and increases with increase in temperature for quartz (Stefan Iglauer, 2017). 

Qualitative picture of the advancing contact angle dependence on pressure and temperature 

of a deionized water droplet on quartz surface cleaned with air plasma in carbon dioxide 

atmosphere is shown in Figure 12. 

 

Figure 12. Advancing contact angle of a deionized water droplet on rough quartz surface (RMS 560 nm) cleaned 
with air plasma in carbon dioxide atmosphere at different conditions of pressure (in MPa) and temperature (in 

Kelvin). Source of data: (Ahmed Z. Al-Yaseri et al., 2016). 

It is clear from Figure 12 that increase in temperature and pressure has the same qualitative 

effect on the contact angle of a water droplet on quartz surface in CO2 atmosphere, both 

parameters increase the contact angle. It is also clear that at the geological sequestration 

conditions the contact angle is high, up to 50, and the quartz surface is only weakly water-

wet (Ahmed Z. Al-Yaseri et al., 2016). 

Experimentally measured advancing contact angles a should be expected to be a good 

approximation of the static contact angles defined by the Young's equation (Bracco & Holst, 
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2013). In general, the wetting phenomena is dynamic, the contact angles formed by expanding 

liquid are called "advancing" - a, and the contact angles formed by contracting liquid are 

called "receding" - r. The difference between the advancing and the receding angles 

originates from surface roughness and heterogeneity and is referred to as the contact angle 

hysteresis: 

𝐻 = 𝜃௔ − 𝜃௥ . 

After the PT-conditions, water salinity and type of dissolved ions are known to significantly 

affect quartz wettability in CO2 atmosphere, Figure 13. The effect of salinity is explained by 

screening of surface charges by salt ions of opposite charge which from double layer reducing 

surface electrostatic potential and thus reducing overall surface polarity and hydrophilicity 

(Stefan Iglauer, 2017). The higher the salt concentration the higher the contact angel. The 

effect increases with higher valency (i.e. higher charge concentration per unit of volume) and 

with higher ionic strength: 

𝐼 =
1

2
෍ 𝑐௜𝑧௜

ଶ

௡

௜ୀଵ

, 

where n is the number of types of ions in the solution, ci is the molar concentration of ion i 

(mol/L), zi is the charge of ion i. 

 

Figure 13. Advancing contact angle of a water droplet on rough quartz surface (RMS 560 nm) cleaned with air 
plasma with varying concentration of NaCl (in wt%) at 10 MPa of carbon dioxide pressure at two temperatures 

(in Kelvin). Source of data: (Ahmed Z. Al-Yaseri et al., 2016). 
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To facilitate understanding of natural phenomena and ensure reproducibility of the results 

idealized conditions are used in laboratories in which only few parameters are varied. Often 

clean mineral and quartz surfaces are prepared in strongly oxidizing solutions. On the other 

hand, in practical realizations of the carbon capture and storage technology mineral surfaces 

are far from ideal. Coal beds and depleted oil or gas reservoirs are considered as possible 

storage medium for carbon dioxide. Within these formations mineral surfaces aged in oil, 

alkylated surfaces with chemisorpt hydrocarbons, and composed of organic matter coal are 

interfaces encountered by stored CO2. Experimental studies indicate that in these structures 

surfaces of minerals are in the best case intermediate wet and can be strongly CO2-wet (Ali et 

al., 2019; Arif, Barifcani, Lebedev, & Iglauer, 2016; Stefan Iglauer et al., 2014). 

2.5.2. Theoretical studies 

There are number of works employing computational methods to simulate wetting behaviour 

of water on surfaces of minerals including quartz, in particular in presence of carbon dioxide 

and often in the context of the carbon geo-sequestration (Bagherzadeh, Englezos, Alavi, & 

Ripmeester, 2012; C. Chen, Chai, Shen, & Li, 2018; C. Chen, Chai, Shen, Li, & Song, 2017; C. 

Chen, Wan, Li, & Song, 2015; C. Chen, Zhang, Li, & Song, 2015; Giovambattista, Debenedetti, 

& Rossky, 2007; S. Iglauer, Mathew, & Bresme, 2012; Javanbakht, Sedghi, Welch, & Goual, 

2015; Liang, Tsuji, Jia, Tsuji, & Matsuoka, 2017; Liu, Yang, & Qin, 2010; McCaughan, Iglauer, & 

Bresme, 2013; Tenney & Cygan, 2014; Tsuji, Liang, Kunieda, Takahashi, & Matsuoka, 2013). 

These studies, among other aims, complement the experimental results especially in 

situations when quantification of the contact angle is hampered by parameters which are 

difficult or even impossible to control precisely because of side chemical reactions or 

contaminations. In case of quartz, the surface chemistry (hydrophilicity and hydrophobicity) 

is one of such parameters. This factor is the first in terms of importance for characterisation 

of the contact angle, followed by pressure, temperature, salinity and salt type (Stefan Iglauer, 

2017). Yet, the very exact structure of the surface of silica polymorphs remains unknown even 

in 2018 (Eder et al., 2015; Feya et al., 2018). Theoretical studies explored possible surface 

structures and identified contact angles on pristine (S. Iglauer et al., 2012) and hydroxylated 

(C. Chen, Wan, et al., 2015) surfaces, as well as the dependence of the contact angle on the 

degree of hydroxylation (C. Chen, Zhang, et al., 2015). Effect of CO2 contamination with CH4, 
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Ar and H2S on the water-CO2 interfacial tension and on the contact angle of a water droplet in 

CO2 atmosphere on a silica surface was studied in (C. Chen et al., 2018). 

Number of quartz polymorphs and crystal faces have been studied in the context of CO2 

sequestration and storage, although, in general, α-quartz is the crystal phase 

thermodynamically stable at reasonable geological conditions (Swamy, Saxena, Sundman, & 

Zhang, 1994), and the (001) surface of α-quartz is regarded as the most stable surface of 

pristine (de Leeuw, Higgins, & Parker, 1999) and hydroxylated α-quartz (Murashov, 2005; Yang 

& Wang, 2006). The pristine surface of α-quartz was used in (S. Iglauer et al., 2012). In this 

computational work of professor Bresme the (001) surface was reconstructed. In studies 

reported in (C. Chen et al., 2018; C. Chen, Wan, et al., 2015; C. Chen, Zhang, et al., 2015) 

previously developed force field and a surface model database for silica (Emami et al., 2014) 

were used. In the latter work the surface models were derived from the (101) plane of α-

cristobalite, which is stable above 1470C and metastable at lower temperatures, and from 

the (100) plane of α-quartz. In a work (C. Chen et al., 2017) the (202) plane of -cristobalite 

was used to study how ion type and salinity affect wettability of quartz in presence of CO2. 

Although variability of measured and calculated contact angles is high (Stefan Iglauer et al., 

2014), theoretical results in general show reasonable qualitative agreement with 

experimental studies (Stefan Iglauer, 2017); deviations from the agreement can be explained 

by experimental atmosphere, measuring technique, droplet size, surface pre-treatment, 

surface heterogeneity and roughness (Deng et al., 2018). If conditions of experiments and 

theoretical investigations are carefully matched, quantitative agreement can be 

demonstrated, e.g. the contact angle of a water droplet on hydroxylated quartz surface at 

318 K at 10 MPa CO2 pressure was calculated to be 22.6 using classical molecular dynamics 

simulations, and experimental measurements amounted to 20-21 (C. Chen, Wan, et al., 

2015). 

Modelling approaches and used approximations are of paramount importance in simulations 

of interfacial phenomena. Reported in literature results indicate that for the hydroxylated 

quartz surface fixation of hydroxyl groups, or perhaps even the whole surface, may be an 

oversimplification. The contact angle of a water droplet on quartz surface in CO2 atmosphere 

at temperature 318 K was found to be 22.5 in works (C. Chen et al., 2017; C. Chen, Wan, et 
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al., 2015) (actual stated contact angle values are 22.6 and 22.4 for 2015 and 2017 papers, 

respectively). In (C. Chen, Wan, et al., 2015) CO2 pressure was 10 MPa and concentration of 

silanol groups was 9.4 per nm2, fixed quartz surface was used. In (C. Chen et al., 2017) CO2 

pressure was 20 MPa and concentration of silanol groups was 4.7 per nm2, atoms of hydroxyl 

groups were not fixed. Doubling of CO2 pressure and two-fold reduction in concentration of 

OH groups must lead to significant increase in the contact angle, but it stayed the same. It 

must be added that in (C. Chen, Wan, et al., 2015) the crystal surface was taken from the 

surface model database for silica (Emami et al., 2014), where it was derived from the (100) 

plane of -quartz. In (C. Chen et al., 2017) the (202) plane of -cristobalite was used. Although 

the crystal phase and the surface index are important, the primary factor (for relaxed and 

coordinated surfaces) which influences the contact angle is the surface chemistry 

(hydrophilicity and hydrophobicity), which in case of hydroxylated quartz is mostly defined by 

concentration and (artificially limited) mobility of silanol groups, as demonstrated by the given 

comparison of two studies. 

2.6. Quartz crystal 

Crystalline silica (SiO2) has many polymorphs, some of them are α-quartz, -quartz, α-

cristobalite, -cristobalite, coesite and stishovite (Demuth, Jeanvoine, Hafner, & Ángyán, 

1999). Structures and properties of these polymorphs are known and understood. Low 

temperature polymorphs, such as α-quartz, exist at ambient conditions (Swamy et al., 1994). 

Upon heating at normal pressure α-quartz transforms into β-quartz at 573C, see Figure 14. 

The transition temperature sharply increases with pressure. Above approximately 3 GPa and 

1200C α-quartz becomes unstable and with increase in pressure transforms to coesite, and 

with increase in temperature transforms to -quartz. This range of pressures and 

temperatures covers geological carbon geo-sequestration conditions, where α-quartz is 

thermodynamically favourable polymorph. 
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Figure 14. Approximate phase diagram of silica. Image source: (serc.carleton.edu), drawn by Dexter Perkins and 
John Brady on basis of (Swamy et al., 1994). 

The primitive hexagonal unit cell of α-quartz (Levien, Prewitt, & Weidner, 1980) contains 3 

silicon and 6 oxygen atoms, Figure 15. Crystallographic vectors and angles of the primitive cell 

are: a=4.916 A, b=4.916 A, c=5.4054 A, α=90, =90, =120. The crystal can have two 

enantiomorphically related (chiral) space groups P3121 and P3221 (Adeagbo, Doltsinis, 

Klevakina, & Renner, 2008). Both space groups belong to the hexagonal crystal family and the 

trigonal crystal system which is characterised by the three-fold rotational symmetry. 



51 

 

Figure 15. The primitive unit cell of α-quartz. Yellow balls are silicon atoms; red balls are oxygen atoms. 

2.7. Quartz surface 

Importance of quartz and properties of its surface were emphasized by many authors because 

of several reasons among which are the following: catalytic role of dust grains in 

astrochemistry, biotoxicity related to undercoordinated silicon and oxygen atoms (Goumans, 

Wander, Brown, & Catlow, 2007), applications of quartz in construction industry and in 

piezoelectric devices (Malyi, Kulish, & Persson, 2014), abundance of the mineral in Earth's 
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crust (de Leeuw et al., 1999; Yang & Wang, 2006). Number of works are dedicated to 

properties and prediction of quartz surface structure using methods of computational 

chemistry and materials science (Y.-W. Chen, Cao, & Cheng, 2008; de Leeuw et al., 1999; Eder 

et al., 2015; Feya et al., 2018; Goumans et al., 2007; Malyi et al., 2014; Murashov, 2005; Yang 

& Wang, 2006). This effort of theoretical groups is a response to a lack of complete 

understanding of detailed surface structure from the experimental view point (Goumans et 

al., 2007; Malyi et al., 2014). The situation with quartz surface structures is well expressed by 

a quotation taken from (Eder et al., 2015): "Despite the many application areas, the atomic 

surface structures of silica polymorphs are neither well understood nor well characterised". 

According to contemporary models of α-quartz (001) surfaces there are by and large two 

extreme types of ideal structures: (i) the pristine (no hydroxyl groups, stable Si-O-Si bridges) 

and (ii) the fully hydroxylated. The ideal fully hydroxylated theoretical silica surface is covered 

with geminal silanol groups, which gives concentration of OH groups (or single silanol groups) 

about 9.4 per nm2 (Emami et al., 2014) (slightly depends on calculated lattice parameters). 

Any real hydroxylated silica surface (excluding possible contaminations and defects) is a 

combination of isolated silanols, vicinal silanols, geminal silanols and Si-O-Si bridges. Average 

concentration of OH groups (or single silanol groups) on real hydroxylated surfaces under 

ambient conditions is 4.5-6.2 per nm2 (Iler, 1979). This silanol density agrees well with 

relatively recent comprehensive review paper where average concentration of OH groups is 

said to be a physicochemical constant of 4.6 or 4.9 groups per nm2, depending on averaging 

technique, the least square or the arithmetical mean, respectively (Zhuravlev, 2000). 

Top view of fully hydroxylated (001) quartz surface is shown in Figure 16, side views are shown 

in Figure 17. This surface structure is reconstructed in number of theoretical studies (Goumans 

et al., 2007; Murashov, 2005; Yang & Wang, 2006). Zigzag hydrogen bonded network with 

short and long hydrogen bonds was noticed and explicitly discussed in (Goumans et al., 2007; 

Yang & Wang, 2006). Reported short and long distances of hydrogen bonds are 1.74 A and 

2.11 A in (Yang & Wang, 2006) and 1.81 A and 2.34 A in (Goumans et al., 2007). The PBE 

functional (Perdew, Burke, & Ernzerhof, 1996) and parameters of the calculations used in 

(Goumans et al., 2007) resulted in slightly upward orientation of the hydrogen atoms forming 

the long hydrogen bonds, which agrees with (Murashov, 2005), where the PW91 functional 

(Perdew et al., 1992; Y. Wang & Perdew, 1991) was used and the author did not discuss the 
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long hydrogen bonds. In work (Yang & Wang, 2006) authors also used the PW91 functional 

(Perdew et al., 1992; Y. Wang & Perdew, 1991) and reported almost parallel to the surface 

orientation of OH groups. Overall, all three reported structures are in reasonable agreement 

with each other with tolerable differences in bond lengths and angles. 

 

Figure 16. Top view of hydroxylated (001) quartz surface. Only top SiO4H2 groups are shown. Yellow balls are 
silicon atoms, red balls are oxygen atoms, white balls are hydrogen atoms. Short (strong) hydrogen bonds are 
shown with straight dashed lines. To highlight the zigzag structure of alternating strong and weak hydrogen 

bonds three long (weak) hydrogen bonds are shown with dashed blue ellipses along a horizontal line. 
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Figure 17. Side views (top: along x direction; bottom: along y direction) of a four-layer slab (four heights of the 
primitive quartz unit cell) of hydroxylated quartz. Atoms are shown with bonds, yellow - silicon atoms, red - 

oxygen atoms, white - hydrogen atoms. 

Pristine quartz surface was modelled and reconstructed in (Y.-W. Chen et al., 2008; de Leeuw 

et al., 1999; Eder et al., 2015; Feya et al., 2018; Malyi et al., 2014). According to available 

information the pristine surface has two very close in energy structures the 6-member 

triangle-like rings and the 6-member ellipse-like rings. To the best of our knowledge the latter 

and the most stable structure was predicted in (Y.-W. Chen et al., 2008). It was then studied 

in (Eder et al., 2015; Feya et al., 2018; Malyi et al., 2014), with experimental confirmation 

reported in (Eder et al., 2015). The most stable 6-member ellipse-like rings (001) pristine 

quartz surface is shown in Figure 18, side views of this surface are shown in Figure 19. 
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Figure 18. Top view of pristine (001) quartz surface. Only top layer atoms are shown. Yellow balls are silicon 
atoms and red balls are oxygen atoms. 
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Figure 19 Side views (top: along x direction; bottom: along y direction) of a four-layer slab (four heights of the 
primitive quartz unit cell) of pristine quartz. Atoms are shown with bonds, yellow - silicon atoms, red - oxygen 

atoms. 

2.8. Conclusions 

Carbon dioxide capture and storage was proposed as a technologically and economically 

feasible solution to reduce carbon dioxide content in earth's atmosphere and thus avert global 

warming. To ensure secure long term underground storage of carbon dioxide prospective 

storage formations must be carefully assessed against number of requirements. Among the 

most crucial ones is the CO2 wettability of rocks under reservoir conditions. Composition of 

those rocks vary significantly but is influenced by the fact that quartz is the second most 

abundant mineral in earth's continental crust. It is thus CO2 wettability of quartz which 

dominates overall CO2 trapping performance of storage and cap rocks. 

Trapping performance of rocks is diminished if they are CO2 wet. It is widely believed that 

pristine quartz becomes CO2 wet at reservoir pressures. It is also an accepted view point that 

in reality quartz surface is exposed to water and gets hydroxylated and hence water wet. It is 

thus reasonable to assume that if depleted oil or gas reservoirs are used for storage of CO2, 

quartz surfaces of rocks in those reservoirs which were previously exposed to hydrocarbons 

might be covered with chemisorpt hydrocarbon molecules. CO2 wettability of these chemically 

modified rocks is poorly understood and there is a substantial knowledge gap in modern 

literature and engineering knowledge regarding CO2 trapping capacity of alkylated quartz. 
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3. Computational methods 

3.1. Overview 

With development of information technology, parallel computing, computational hardware 

and software, methods of computational chemistry and materials science became accessible 

to broader communities and can be applied to study engineering problems. Among all the 

molecular dynamics is of particular interest, specifically in petroleum engineering, as it can be 

used to understand physicochemical processes at the pore level of geological formations. With 

electronic structure calculations now routinely tackling several hundred atoms, classical 

mechanics simulations reach the level of several tens of thousands atoms. In terms of time 

scale the molecular mechanics computations model longer than nanosecond processes. 

Quality and scope of this modelling was increasing steadily over the last decades with 

development of modern force fields covering wide range of molecules and crystals. 

Theoretical predictions are now so trustworthy that they established certain standards in 

research reporting. Experiential results are often required to be accompanied by theoretical 

predictions as a gesture of good scientific manners. Moreover, a realm of research activity and 

output was formed and is based solely on computational results which provide insights 

otherwise inaccessible. Following up these advances it was chosen to use molecular dynamics 

as the main method of research, and in this chapter theoretical approaches behind obtained 

and reported in this dissertation results are outlined. 

3.2. Force fields 

A collection of mathematical functions which for a given atomic configuration evaluates its 

energy is called a force field. The mathematical expressions composing a force field may have 

different forms which normally rooted to the nature of interatomic interactions. A simplified 

force field may have the following potential energy terms: 

𝑈(𝑟ଵ, 𝑟ଶ, … 𝑟ே) = ෍ 𝑈௕௢௡ௗ(𝑖௕௢௡ௗ, 𝑟௔, 𝑟௕)

ே್೚೙೏

௜್೚೙೏ୀଵ

+ ෍ 𝑈௔௡௚௟௘൫𝑖௔௡௚௟௘, 𝑟௔, 𝑟௕ , 𝑟௖൯

ேೌ೙೒೗೐

௜ೌ೙೒೗೐ୀଵ

+ ෍ 𝑈ௗ௜௛ (𝑖ௗ௜௛ௗ, 𝑟௔, 𝑟௕ , 𝑟௖ , 𝑟ௗ)

ே೏೔೓೏

௜೏೔೓೏ୀଵ

+ ෍ ෍ 𝑈௩ௗ௪,௘௟௘௖௧௥௢௦௧௔௧௜௖௦൫𝑖, 𝑗, ห𝑟௜ − 𝑟௝ห൯

ே

௝வ௜

ேିଵ

௜ୀଵ

, 
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where r1, r2, ... rN are positions of the atomic sites, system's configuration; Ubond, Uangle, 

Udihd are empirical functions representing potential energy of chemical bonds, valance and 

dihedral angles, Uvdw and Uelectrostatics describe van der Waals and the Coulomb 

interactions. The first three terms model intramolecular interactions. 

In a more general and universal case required for some molecular geometries a force field 

may include tethered particles and inversion angles forces, external field potentials, see for 

example (I.T. Todorov & Smith, 2016). Analytical expressions of every term in a force field relay 

on certain parameters which may be obtained from several sources such as ab-initio 

calculations and experimental data (X-ray diffraction, infrared spectroscopy, to name a few). 

Bond stretching term is often represented by a harmonic potential: 

𝑈(𝑟) =
𝑘௕

2
(𝑟 − 𝑟଴)ଶ, 

where kb is the force constant, r is the distance between atoms a and b, and r0 is the 

equilibrium bond length. 

Common potentials to model angle bending are the harmonic and the harmonic cosine or 

trigonometric potentials. The harmonic bending potential has analogous to the harmonic 

stretching potential form: 

𝑈(𝜃) =
𝑘௔

2
(𝜃 − 𝜃଴)ଶ, 

where ka is the force constant,  is the angle between atoms a, b and c, and 0 is the 

equilibrium bond angle. 

The harmonic cosine or trigonometric potential has the following form: 

𝑈(𝜃) =
𝑘௔

2
(cos 𝜃 − cos 𝜃଴)ଶ, 

where ka is the force constant,  is the angle between atoms a, b and c, and 0 is the 

equilibrium bond angle. 

Energy of torsion is usually expressed in a form of cosine function: 

𝑈(𝜑) = 𝐴[1 + cos(𝑚𝜑 − 𝛿)], 
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where  is the torsional angle, A determines the height of the potential barrier, m is the 

periodicity (number of minima or maxima between 0 and 2),  is the phase or equilibrium 

angle. 

The van der Waals interactions can be modelled with variety of analytical functions including 

the Lennard-Jones, Buckingham and the 12-6 potentials. As an example here the 12-6 

potential is used: 

𝑈(𝑟) =
𝐴

𝑟ଵଶ
−

𝐵

𝑟଺
, 

where A and B are the parameters, and r is the interatomic distance. 

Hard repulsive wall of the 12-6 or Lennard-Jones potentials is sometimes softened with the 

exponential function, like in the Buckingham potential (Buckingham, 1938): 

𝑈(𝑟) = 𝐴𝑒𝑥𝑝 ൬−
𝑟

𝜌
൰ −

𝐶

𝑟଺
, 

where A, ρ and C are the parameters, and r is the interatomic distance. 

Parameters of potentials describing van der Waals interactions are normally given for 

individual atoms. Interactions between unlike atoms are then obtained using combining rules, 

for example the Lorentz-Berthelot combining rules (Berthelot, 1898; Lorentz, 1881). In the 

case of classical Lennard-Jones potential (Jones, 1924) the rules distinguish the energy and the 

distance parameters: 

𝑈(𝑟) = 4𝜀 ൤ቀ
𝜎

𝑟
ቁ

ଵଶ

− ቀ
𝜎

𝑟
ቁ

଺

൨, 

where parameters  and σ are the depth of the potential well and the distance at which the 

potential is zero, respectively, and r is the interatomic distance. 

For known the energy and the distance parameters of individual atoms, the interaction 

parameters between the unlike atoms are then obtained as the geometric mean for the 

energy parameter and as the arithmetic mean for the distance parameter: 

𝜀௜௝ = ඥ𝜀௜𝜀௝ , 

𝜎௜௝ = (𝜎௜ + 𝜎௝)/2, 
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where i and j are indices of interacting atoms. 

Unlike other terms for the potential energy, which only approximate the true values, the 

electrostatic potential energy is expressed exactly: 

𝑈(𝑟) =
1

4𝜋𝜖଴

𝑞௜𝑞௝

𝑟௜௝
, 

where 𝜖଴ is the vacuum permittivity, q is the atomic charge, and rij is the distance between 

atoms with indices i and j. 

The neat expression and simplicity of the electrostatic potential are deceptive as assigning 

charges to atomic sites introduces certain difficulties. From the experimental view point 

charges can be fit to reproduce thermodynamic data but this is only possible for small 

molecules (Leach, 2001). On the theoretical side, modern ab-initio calculations are often used 

to assign partial charges to atoms. In the Mulliken population analysis (Mulliken, 1955) an 

electron of a molecular orbital contributes to the electronic density of all atoms and to that of 

the overlapping regions. These contributions are called "populations" and they are naturally 

obtained from calculations where molecular orbitals are constructed as linear combinations 

of atomic orbitals (Piela, 2014). When basis functions are not localized, like in case of 

modelling of periodic systems with plane wave basis sets, the Bader charge analysis (Bader, 

1994) is widely used to partition the charge density. It is intuitively understood that electron 

charge density is at its minimum somewhere in between nuclei of molecular or crystal 

systems. Sets of all points where the charge density is at its minimum form surfaces 

perpendicular to which the density is increasing. These minimum charge density surfaces (or 

zero flux surfaces) designate borders between atoms dividing charge density of molecules or 

crystals. The partitioning of the electron density in this way expresses the gist of the Bader 

charge analysis. 

Assigning partial charges to atomic sites is not the only task which introduces peculiarities into 

handling of the electrostatic interactions. The long range nature of these interactions requires 

special techniques to accurately account for them in periodic or pseudo-periodic systems. A 

short-range force can be defined as the one which spatial action falls off faster than 1/rd, 

where d is the dimensionality of the system (Allen & Tildesley, 1987). Potentials describing 

van der Waals interaction are thus belonging to the short-range potentials, action of which 
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can be cut beyond some reasonably large cutoff distance. On the other hand, the electrostatic 

interactions are long range and should not be cut to avoid artefacts in molecular dynamics 

simulations. There are computational methods to treat electrostatic potentials in this rigorous 

manner. It is believed, see for example (I.T. Todorov & Smith, 2016), that the Ewald summation 

(Ewald, 1921) is the most suitable method for calculating electrostatic interactions in periodic 

or pseudo-periodic systems. 

The electrostatic energy of a unit cell of a periodic system is given by the infinite over all unit 

cell replicas sum: 

𝑈௘௟௘௖௧௥௢௦௧௔௧௜௖௦ =
1

4𝜋𝜖଴

1

2
෍ ෍ ෍

𝑞௜𝑞௝

ห𝑟௜௝ + 𝑅ห

ே

௝ୀଵ

ே

௜ୀଵ

∗

ோ

, 

where R is the vector which connects the unit cell and its images, indicates summation over 

all lattice vectors (R = n1a1+n2a2+n3a3, a are vectors forming edges of the unit cell, n are 

integers); the asterisk over the outermost sum indicates that for the unit cell (R = 0) 

interactions i = j are omitted (every charge interacts with every other charge in the unit cell 

and with all charge replicas including its own, but not with itself). 

The sum is only conditionally convergent, meaning that results of the summation depend on 

the order in which terms are added up. Natural order of the summation is to start from the 

unit cell, then move to its nearby surrounding replicas and so on in approximately spherical 

layers. 
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Figure 20. Point charges and auxiliary charge distributions in the Ewald sum. 

To replace conditionally convergent infinite series the Ewald method proceeds as follows 

(Allen & Tildesley, 1987). Each point charge within the unit cell is augmented with a Gaussian 

charge distribution of opposite sign (screening distribution). This makes the electrostatic 

potential of screened charges short-ranged. Interactions between these augmented charges 

are then calculated in real space applying truncation just as for any other short-range 

potentials. To restore the original system another cancelling Gaussian charge distributions of 

opposite sign to initially introduced are placed at the same locations of the point charges, see 

Figure 20. Interactions between these latter distributions are summed up in the reciprocal 

space. The final step is to eliminate self-interactions of the cancelling charge distributions. As 

the result the electrostatic energy is represented by two absolutely convergent finite sums, 

one in the direct space Udir, another in the reciprocal space Urec, plus corrections Ucorr 

(Essmann et al., 1995): 

𝑈௘௟௘௖௧௥௢௦௧௔௧௜௖௦ = 𝑈ௗ௜௥ + 𝑈௥௘௖ + 𝑈௖௢௥௥. 

The correction term may not only include the self-interactions of the cancelling charge 

distributions but also intramolecular electrostatic interactions which, when they are 

incorporated into bond potentials, do not require explicit treatment. 

To reduce the computational cost of the Ewald summation from O(N3/2) to O(N log(N)) the 

mesh-based Ewald methods use the discrete fast Fourier transform to approximate the sum 

Ch
ar

ge

Distance

Point charge Screening charge Cancelling charge
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in the reciprocal space by a discrete convolution on an interpolating grid (Darden, York, & 

Pedersen, 1993; Essmann et al., 1995). 

As it is seen from material of this section inter- and intramolecular potentials may take variety 

of functional forms to fit certain chemical environments. In addition to mentioned in this 

section potentials modern force fields may include explicit polarization effects and may 

account for coupling between stretching, bending and torsion (Gonzalez, 2011). When 

analytical expressions fall short in satisfying practical needs tabulated potential forms may be 

used. The treatment of short- and long-range potentials is different, specifically in periodic 

and pseudo-periodic boundary conditions. Special analytical and numeric techniques are used 

for the electrostatic interactions, namely the Ewald summation. Parametrisation of force 

fields, in particular assigning partial charges to atomic sites, requires application of methods 

of computational chemistry, specifically the population or the charge analyses. 

Force fields are designed to represent quantum mechanical effects in classical terms using 

relatively simple analytical expressions, that is why they only work for specific molecular or 

crystal systems. Some of them reproduce properties of crystals and minerals, like the BKS 

potential (van Beest et al., 1990), the Heinz team force field (Emami et al., 2014) or the CLAYFF 

force field (Cygan et al., 2004). Some force fields reproduce properties of organic molecules 

or hydrocarbons, for example the MM3 (Allinger, Yuh, & Lii, 1989), the MM4 (Allinger, Chen, 

& Lii, 1996) and the DREIDING (Mayo et al., 1990) force fields. Potentials for inorganic 

molecules like water and carbon dioxide are well parametrized by the SPC model (H. J. C. 

Berendsen, Postma, van Gunsteren, & Hermans, 1981) or the TIP4P/2005 model (Abascal & 

Vega, 2005) for water; the EPM2 model (Harris & Yung, 1995) for carbon dioxide. 

3.3. Molecular dynamics 

In molecular dynamics a trajectory of a system consisting of N particles is generated by 

numerically solving the following system of equations of motion: 

𝑚௜

𝑑ଶ𝑟௜

𝑑𝑡ଶ
= 𝐹௜ , 

where m is the mass of a particle, r is the position of a particle, F is the force acting on a 

particle, t is time and i = 1, 2, ... N is particle's index. 

The force on a particle is found as a negative of the potential gradient: 
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𝐹௜ = −
𝜕

𝜕𝑟௜
𝑈(𝑟ଵ, 𝑟ଶ, … 𝑟ே). 

The gradient of the potential energy can be found numerically or analytically, the latter is 

preferred but not always possible. 

To start the integration initial positions and velocities must be known. The positions are given 

by the atomic configuration and velocities are randomly assigned from a Maxwell-Boltzmann 

distribution corresponding to a certain temperature. The velocities are then adjusted so that 

the velocity and the angular momentum of the centre of mass are zero. With sufficiently small 

time step t and a = F/m, the integration process proceeds very roughly as follows: positions 

are updated r(t+t) = r(t) + v(t)t, velocities are updated v(t+t) = v(t) + a(t)t, forces and 

accelerations are recalculated for the new configuration, these steps are repeated for the 

whole simulation period. To improve accuracy and stability of the integration the Taylor 

expansions of the position vector for +/-t are summed together to cancel odd-degree terms 

and limit the local integration error (the truncation error) to the forth order in t (H. 

Berendsen & van Gunsteren, 1986; Gonzalez, 2011): 

𝑟(𝑡 + ∆𝑡) = 2𝑟(𝑡) − 𝑟(𝑡 − ∆𝑡) + 𝑎(𝑡)∆𝑡ଶ + 𝑂(∆𝑡ସ). 

The velocities here can be obtained from the position terms as follows: 

𝑣(𝑡) =
𝑟(𝑡 + ∆𝑡) − 𝑟(𝑡 − ∆𝑡)

2∆𝑡
+ 𝑂(∆𝑡ଶ). 

This basic Verlet integration scheme (Verlet, 1967) underpins many practical molecular 

dynamics integration algorithms including the velocity Verlet (Swope, Andersen, Berens, & 

Wilson, 1982), which has two major steps. At the first step velocities are propagated to t+t/2 

and positions are propagated to t+t using half step velocities. In the second step the 

velocities are propagated to a full time step t (I.T. Todorov & Smith, 2016): 

𝑣 ൬𝑡 +
1

2
∆𝑡൰ = 𝑣(𝑡) +

∆𝑡

2

𝐹(𝑡)

𝑚
, 

𝑟(𝑡 + ∆𝑡) = 𝑟(𝑡) + ∆𝑡𝑣 ൬𝑡 +
1

2
∆𝑡൰, 

𝑣(𝑡 + ∆𝑡) = 𝑣 ൬𝑡 +
1

2
∆𝑡൰ +

∆𝑡

2

𝐹(𝑡 + ∆𝑡)

𝑚
. 
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In between two steps forces at time t+t are required to be recalculated at new positions 

r(t+t). The local integration error due to discretisation for both the positions and the 

velocities for the velocity Verlet algorithm is of the third order in t. The global error of the 

algorithm growths as O(t2) (Mazur, 1997). 

Integration of the original equations of motion generates trajectories in the microcanonical or 

NVE ensemble where the number of particles N, the volume of the simulation box V and the 

total energy E of simulated systems are conserved. Conservation of the total energy does not 

guarantee that the potential and the kinetic contributions to it are kept constant. For systems 

undergoing equilibration this leads to changing temperature. To keep the temperature T 

constant in the canonical NVT ensemble, or to keep both the temperature T and the pressure 

P constant in the isothermal-isobaric NPT ensemble the equations of motion have to be 

modified. The modification is accomplished through weak coupling to an external bath of 

constant temperature and pressure (H. Berendsen & van Gunsteren, 1986; H. J. C. Berendsen, 

Postma, van Gunsteren, DiNola, & Haak, 1984): 

𝑑𝑟௜

𝑑𝑡
= 𝑣௜ −

𝛽

3𝜏௉

(𝑃଴ − 𝑃), 

𝑑𝑣௜

𝑑𝑡
=

𝐹௜

𝑚௜
+

1

2𝜏்
൬

𝑇଴

𝑇
− 1൰ 𝑣௜ , 

where  is the isothermal compressibility; P and T are the time constants of coupling; P0 and 

T0 are the external reference pressure and temperature, respectively. 

As it can be seen from the equations in the limit of very large coupling constants the method 

reproduces original equations of motion and the NVE ensemble. For small coupling constants 

however, the method does not sample the true canonical NVT ensemble (Gonzalez, 2011). To 

keep the average temperature of the system constant while allowing for canonically 

distributed temperature fluctuations the Nose-Hoover method is used (Hoover, 1985; Nosé, 

1984). The general idea of the method is to make the heat bath an integral part of the 

simulated system by introducing an artificial particle with some mass and associated velocity. 

The magnitude of the mass determines the coupling and influences temperature fluctuations. 

The equations of motion are solved in modified Nose form. 
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Some chemical bonds or even geometries of whole molecules can be constrained or fixed in 

molecular dynamics simulations. To satisfy these constraints the SHAKE procedure (Ryckaert, 

Ciccotti, & Berendsen, 1977) is used. At first the atoms are moved as if they were 

unconstrained. Obtained deviations in bond parameters are used to calculate corrective 

forces used retrospectively. The last step is repeated until bond parameters satisfy the 

convergence criteria. With the velocity Verlet integration scheme the RATTLE version 

(Andersen, 1983) of the SHAKE algorithm is used. 

From a molecular dynamics simulation many thermodynamic, structural or dynamical 

properties can be computed (I.T. Todorov & Smith, 2016). Thermodynamic properties as 

temperature and pressure can be obtained from the kinetic energy and the virial: 

𝑇 =
1

𝑘஻𝑓
෍ 𝑚௜𝑣௜

ଶ

ே

௜ୀଵ

, 

𝑃 =
𝑁𝑘஻𝑇

𝑉
−

1

3𝑉
෍ ෍ 𝑟௜௝𝐹௜௝

ே

௝வ௜

ே

௜ୀଵ

, 

where kB is the Boltzmann's constant, f is the number of degrees of freedom, V is the volume 

of the system. 

As an example of the structural property, the radial distribution function in a single component 

system can be computed from a molecular dynamics simulation as: 

𝑔(𝑟) =
𝜌(𝑟)

𝜌
=

𝑉௦௜௠

𝑉௦௛௘௟௟(𝑟)

1

𝑁
቎

1

𝑁
෍ ෍ 𝛿(𝑟 − 𝑟௜௝)

ே

௝ஷ௜

ே

௜ୀଵ

቏, 

where ρ is the density (number of particles per unit volume), Vsim is the volume of a simulation 

box, Vshell is the volume of a spherical shell positioned at distance r from the chosen atom. 

The radial distribution function can be transformed into the x-ray diffraction structure factor 

S(Q) via the inverse Fourier transform (Keffer, 2016). 

The dynamical properties range from the atomic mean square displacement to correlation 

functions (Gonzalez, 2011), e.g. the velocity autocorrelation function: 
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𝐶(𝜏) =
1

𝑁
෍

1

𝑡௠௔௫
෍ 𝑣పഥ(𝑡) ∙ 𝑣పഥ(𝑡 + 𝜏),

௧೘ೌೣ

௧ୀ௧బ

ே

௜ୀଵ

 

where  and t denote time. 

Fourier transform of the velocity autocorrelation function produces the vibrational density of 

states, which can be measured using inelastic neutron scattering spectroscopy. 

3.4. Density functional theory 

The density functional theory is based on two theorems of Hohenberg and Kohn (Hohenberg 

& Kohn, 1964). The first theorem establishes equivalence of the ground state electronic wave 

function and the ground state electronic density. The second theorem states that there exists 

an energy functional which can be minimized by the ground state electronic density, in other 

words it formulates the variational principle: 

𝐸[𝜌] ≥ 𝐸[𝜌଴] = 𝐸଴, 

where E is the energy functional, ρ is the electronic density, index 0 denotes the ground state. 

To construct the energy functional Kohn and Sham used a fictitious system of non-interacting 

electrons subjected to an external potential (Kohn & Sham, 1965). In the Kohn-Sham 

formalism the kinetic energy of a many electron system is evaluated as the kinetic energy of 

non-interacting particles. The approximation introduces an error which is assigned to an 

undefined part in the energy functional - the exchange-correlation energy: 

𝐸[𝜌(𝑟)] = 𝑇଴[𝜌(𝑟)] +
1

2
න

𝜌(𝑟)𝜌(𝑟′)

|𝑟 − 𝑟′|
𝑑𝑟𝑑𝑟′ + 𝐸௑஼[𝜌(𝑟)] + න 𝑢(𝑟)𝜌(𝑟)𝑑𝑟, 

where r is the position vector, T0 is the kinetic energy of non-interacting particles, EXC is the 

exchange-correlation energy, u is the external potential. 

Here and further on in this section atomic units are used, i.e. numerical values of the electron 

mass (me), the elementary charge (e), the reduced Plank's constant (ℏ = h/(2π)), and the 

Coulomb force constant (1/(4π𝜖଴)) are set to unity. 

To obtain the Kohn-Sham equations a constrained minimization of the energy functional is 

performed (Piela, 2007). The Lagrange multipliers method is used to maintain normalization 

of the electronic density and the variations of the total energy E due to variations of the 
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orbitals i* are demanded to vanish, which results in a system of one electron Schrodinger-

like equations: 

ቈ−
1

2
∇ଶ + න

𝜌(𝑟ᇱ)

|𝑟 − 𝑟ᇱ|
𝑑𝑟ᇱ + 𝑉௑஼(𝑟) + 𝑢(𝑟)቉ 𝜙௜(𝑟) = 𝜀௜𝜙௜(𝑟), 

where VXC is the exchange-correlation potential, εi are the lowest eigenvalues of the Kohn-

Sham equations which are the energies of non-interacting particle wave functions i, 

pseudofunctions (not true wave functions) or the Kohn-Sham orbitals, which generate the 

electronic density according to: 

𝜌(𝑟) = ෍ 𝜙௜
∗(𝑟)𝜙௜(𝑟)

௜

= ෍|𝜙௜(𝑟)|ଶ

௜

. 

In the energy functional E[ρ] the kinetic energy T0[ρ] is found as a sum of kinetic energies of 

all electrons described by the Kohn-Sham orbitals: 

𝑇଴[𝜌] = ෍ න 𝜙௜
∗(𝑟)(−∇ଶ)𝜙௜(𝑟)𝑑𝑟

௜

. 

The dependence of the exchange-correlation energy EXC[] on the electronic density is 

unknown. There are two classes of widely used approximations: the local density 

approximation and the generalized gradient approximation. 

In the local density approximation the exchange and correlation energies are determined 

locally as functionals of homogeneous electronic density ρ=N/V, where N is the number of 

electrons and V is the volume of many electron system. As a simple example, the spin-

polarized Wigner correlation functional reads as (Gill, 1998; Wigner, 1938): 

𝐸஼[𝜌] = −4𝑎 න
𝜌ఈ𝜌ఉ

𝜌
൬

1

1 + 𝑏𝜌ିଵ/ଷ
൰ 𝑑𝑟, 

where a and b are parameters; 𝜌ఈ  and 𝜌ఉ are the densities of electrons with +1/2 and -1/2 

spins, respectively, and 𝜌 = 𝜌ఈ + 𝜌ఉ. 

The generalized gradient approximation attempts to correct locality of the local density 

approximation and acknowledges dependence of the exchange-correlation energy on the 

density in the whole space. This is done by incorporating the electronic density and its gradient 
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into the functional, for example, the Perdew and Yue exchange functional reads as (Perdew & 

Yue, 1986): 

𝐸௑[𝜌] = −
3

4
൬

3

𝜋
൰

ଵ/ଷ

න(1 + 1.296𝑠ଶ + 14𝑠ସ + 0.2𝑠଺)ଵ/ଵହ𝜌ସ/ଷ𝑑𝑟, 

where the reduced density gradient 𝑠 = |∇𝜌|/(2𝑘ி𝜌), and 𝑘ி = (3𝜋ଶ𝜌)ଵ/ଷ. 

It should be mentioned that despite being approximate, some modern exchange-correlation 

functional, e.g. Perdew-Burke-Ernzerhof (Perdew et al., 1996), do not rely on empirical 

parameters but on universal physical constraints like the normalization condition on the 

exchange-correlation hole (Ernzerhof & Scuseria, 1999). 

3.5. Conclusions 

Alkylated quartz ability to store CO2 was not studied before with methods of computational 

material science, which creates unique challenges. Traditionally molecular dynamics is used 

to simulate a water droplet on quartz surface in CO2 environment. There are force fields to 

describe pristine and hydroxylated quartz surfaces, water and carbon dioxide molecules. Non-

bond terms of those fields are mixed using certain rules to form a combined force field for 

overall quartz-water-CO2 system. This approach only works if constituent molecules or crystals 

are not involved in chemical interactions and thus fails if chemisorption plays an important 

role in formation of the system to be modelled. In the last case a deeper integration of the 

force fields is required. 

Required deeper integration of the force fields can have physicochemical substantiation which 

is based on demanding ab-initio approaches of the computational chemistry and material 

sciences. Just as in development of modern force fields, where accurate ab-initio potential 

energy surface can be approximated with some simplified mathematical models, important 

for coupling of molecular and crystal force fields parameters can be found using, for example 

the density functional theory. 

The density functional theory is computationally demanding and necessary tool to initiate a 

new wave of molecular dynamics studies of CO2 wettability of alkylated quartz surfaces. Found 

with aid of the density functional theory force field parameters for combined quartz-water-

CO2-hydrocarbons systems shall further be used to propose possible structures of alkylated 
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quartz surfaces and to investigate CO2 trapping capacities of minerals partially or fully 

composed of alkylated quartz. 
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4. The suitability of spheroidal constructions to estimate the contact 

angle using snapshots of molecular dynamics simulations 

4.1. Annotation 

Accurate characterisation of wettability of minerals is important for efficient oil recovery and 

carbon geo-sequestration. In studies where molecular dynamics simulations are used to 

compute the contact angle, emphasis is often placed on results or theoretical details of the 

simulations themselves, overlooking potentially applicable methodologies for determination 

of the contact angle. In this chapter a concept of a method utilizing spheroidal geometric 

constructions to estimate the contact angle of a water droplet on silica surface in carbon 

dioxide atmosphere is outlined and applied to the final snapshots of two molecular dynamics 

simulation runs. Two carbon dioxide pressures and two wettability modes (hydrophilic and 

hydrophobic) are examined to assess the method's performance. The outcomes of these 

calculations are compared with results produced with the iso-density chart method; and good 

agreement with the latter approach is demonstrated. The proposed method can be used as 

an alternative, or in conjunction with other techniques, to increase the confidence in contact 

angle estimations via molecular mechanics calculations. Reliable contact angle estimations on 

the other hand, can guarantee accurate storage capacity and security of carbon capture and 

storage projects. 

4.2. Introduction and motivation 

Carbon capture and storage is a recognized technology that reduces concentration of carbon 

dioxide in the Earth's atmosphere (IPCC, 2005). Storage capacity and security of formations 

used to store CO2 depend on wettability of minerals (Stefan Iglauer, 2017; Stefan Iglauer et 

al., 2015), specifically quartz in carbon dioxide environment, which was studied 

experimentally and theoretically (Stefan Iglauer et al., 2014). 

There are number of works employing molecular dynamics to simulate the wetting behaviour 

of water on silica surfaces, in particular in the presence of carbon dioxide and often in the 

context of carbon geo-sequestration (Bagherzadeh et al., 2012; C. Chen et al., 2018; C. Chen 

et al., 2017; C. Chen, Wan, et al., 2015; C. Chen, Zhang, et al., 2015; Giovambattista et al., 

2007; S. Iglauer et al., 2012; Javanbakht et al., 2015; Liang et al., 2017; Liu et al., 2010; 

McCaughan et al., 2013; Tenney & Cygan, 2014; Tsuji et al., 2013). In some studies, formation 
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of the meniscus between two slabs is modelled (Bagherzadeh et al., 2012), in others a 

cylindrical droplet is used (Tenney & Cygan, 2014). While these approaches offer smaller 

system sizes and less demanding computations, they may miss important wetting features, 

like preferential wetting directions on some surfaces (Deng et al., 2018). With increasing 

computational power of modern computers these techniques become less popular, thus the 

majority of researchers directly simulate a water droplet on the solid surface and further 

analyse the results (C. Chen et al., 2017; C. Chen, Wan, et al., 2015; Giovambattista et al., 2007; 

S. Iglauer et al., 2012; McCaughan et al., 2013). 

However, the analysis of such simulation results is often limited to two-dimensional 

structures. From these, the contact angle is determined via second order polynomial fits to 

the two-dimensional water droplet profile (Giovambattista et al., 2007), or via drawing 

contours around two-dimensional water density plots (Bagherzadeh et al., 2012; C. Chen et 

al., 2017; C. Chen, Wan, et al., 2015; S. Iglauer et al., 2012; McCaughan et al., 2013). 

These approaches are local, thus only a certain part of the droplet's profile cross section is 

considered. When tangential lines are fitted, the three-dimensional nature of the studied 

systems is lost, which introduces a bias (when projecting three-dimensional objects into two-

dimensional space). The approaches lack appreciation of the physico-chemical aspects of 

droplet formation in the simulation environment. It is meant by the latter that in absence of 

gravity the system (water droplet) which is destined to minimize its surface energy (and thus 

the surface area) unavoidably adopts spheroidal shape. In some recent developments, three-

dimensionality of spheroidal droplets was taken into account, with water density profiles 

constructed in cylindrical coordinates, with further fitting of two-dimensional circles to these 

profiles (S. Iglauer et al., 2012). However, no attempts have been made to use the most natural 

geometrical constructions and a coordinate system for spherically shaped objects, i.e. 

spheroidal constructions and the spherical coordinate system. In addition to this, in 

computational works dedicated to the simulation of wetting behaviour of water in a carbon 

dioxide environment, there is no discussion of the performance of the methods used to 

estimate the contact angles or their accuracies. This work thus has a twofold goal. Firstly, it is 

argued that a holistic method to estimate the contact angle can be developed that (i) treats 

the overall droplet in three dimensions, based on the spherical coordinate system, and (ii) 

respects intrinsic physics and the resulting geometry of the simulated structures using 
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spheroidal geometric construction. Secondly, an attempt is made to initiate a discussion on 

the performance of the approaches used to compute the contact angles and on the rational 

choice of parameters used in these approaches. 

To this end a water droplet on a pristine (001) -quartz surface in carbon dioxide environment 

under 4 and 10 MPa pressure and at 300 K temperature is used. The pristine quartz surface 

was previously modelled and reconstructed in (Y.-W. Chen et al., 2008; de Leeuw et al., 1999; 

Eder et al., 2015; Feya et al., 2018; Malyi et al., 2014). According to available information in 

the literature the pristine surface has two energetically very similar structures the 6-member 

triangle-like rings and the 6-member ellipse-like rings. To the best of our knowledge the latter 

and the most stable structure was predicted in (Y.-W. Chen et al., 2008). It was then studied 

in (Eder et al., 2015; Feya et al., 2018; Malyi et al., 2014), with experimental confirmation 

reported in (Eder et al., 2015). As far as it is known, there are no reports where the most stable 

6-member ellipse-like rings pristine (001) α-quartz surface is explicitly mentioned in the 

context of its wettability or reconstructed using classical molecular dynamics. 

4.3. Method development 

Development of the method that is based on the spherical coordinate system requires 

identification of the smallest radius of a sphere which encapsulates all water molecules of the 

droplet. If position of this sphere's centre is known, its radius can be easily calculated as the 

distance to the furthest water molecule. It is thus necessary to find the location of the smallest 

circumscribing sphere. As it will be clear from the following discussion this is valid for 

hydrophobic surfaces; with some minor alterations the approach can then be generalized to 

also include hydrophilic surfaces. 

The radius of the circumscribing sphere depends on position of its centre, and it is reasonable 

to assume that the centre of the minimal radius sphere lies on a normal of the surface which 

intersects the centre of mass of the droplet. To find the exact position of the centre the 

following scanning algorithm is introduced, see Figure 21. Suppose that the vertical line 

through the centre of mass of the water droplet is found as a locus of points with x and y 

coordinates of the mass centre. A step which divides the line into integer number of segments 

is selected, e.g. hundredth of the cell height. Looping over every point between segments is 

performed. For every point a distance to every atom of all molecules comprising the water 
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droplet is computed. The largest distance is taken as the encapsulating radius corresponding 

to the given point. The smallest radius identified is the radius of the sphere which was looked 

for, and the position of the sphere's centre is the position of the point to which this radius 

corresponds. The search interval is narrowed down next by taking one step backward and one 

step forward from the point found. This interval is divided into the same number of steps and 

the search is repeated. The interval is narrowed down until the step size is below a given 

accuracy threshold, in this work the threshold 10-6 A is used. 

 

Figure 21. Simulation cell with schematic illustration of hydrophobic surface, water droplet and steps of the 
scanning algorithm. 

The described procedure is exemplified for 12 initial steps in Figure 21. The radii of spheres 

encapsulating the droplet for steps 1 and 7 are shown as R1 and R7. In the first pass R7 is going 

to be identified as the smallest droplet encapsulating radius. In the second pass the search 

interval is going to be narrowed down to the interval between points 6 and 8. In this particular 

example the radius shown as R7 is going to remain the smallest encapsulating radius until the 

algorithm reaches the threshold value for the search interval. In a more general case the 

smallest encapsulating radius is refined over the course of algorithm execution. It is worth 

noting that there is no need to scan the whole cell. Obviously, the centre of the sphere is inside 

the droplet, so one only needs to scan from the top of the droplet to its bottom. 
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For hydrophilic surfaces the above described algorithm finds the wetted radius of the droplet 

(Rw), see Figure 22. With known droplet height (Hd) this value can be used to identify the 

position of the centre of the circumscribed sphere (Zr) and its radius (R): 

𝑍௥ = 𝑍௧௢௣ − 𝑅, 

𝑅 =
𝑅௪

ଶ + 𝐻ௗ
ଶ

2𝐻ௗ
. 

To obtain the latter expression note that in the hydrophilic case, see Figure 22: 

𝑅ଶ = 𝑅௪
ଶ + (𝑅 − 𝐻ௗ)ଶ. 

For the sake of completeness, it is worth noting that for any two points on circle's contour (R1, 

Z1) and (R2, Z2) within one quadrant, not just (0, Ztop) and (Rw, 0), a more general expression 

for the position Zr can be derived: 

𝑍௥ =
𝑅ଶ

ଶ + 𝑍ଶ
ଶ − 𝑅ଵ

ଶ − 𝑍ଵ
ଶ

2(𝑍ଶ − 𝑍ଵ)
. 

 

Figure 22. Simulation cell with schematic illustration of a hydrophilic surface, showing the water droplet, steps 
and elements of the scanning algorithm. 
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However, in actual simulations droplets rarely resemble perfect spheres or spherical caps. It 

is thus necessary to refine the radii found. This refinement is done for both, the wetted radius 

(hydrophilic case) and the radius of the circumscribed sphere. For the latter one density plots 

in spherical coordinates are constructed by changing the radius from zero to R in small steps 

dR and calculating the number of molecules in the spherical shell between R and dR, see Figure 

23. For a hydrophobic surface the volume of the spherical shell is equal to the volume of a 

sphere of radius R+dR minus the volume of the sphere of radius R, and minus volume of the 

spherical cap. For a hydrophilic surface the volume of the spherical shell is equal to the volume 

of the spherical cap. The spherical cap, just as the spherical shell, is spatially limited between 

radii R and R+dR. The threshold density, i.e. the density where the water droplet ends (or 

starts), is assumed to be half the normal water density. The exact figure is taken as 0.033/2 

water molecules per cubic angstrom, which corresponds to half of normal water density 

1000 kg/m3. Example plots of the water density in spherical coordinates are illustrated in 

Figure 28 and Figure 29. To refine the wetted radius in the hydrophilic case an analogous 

procedure is applied with the only difference being that the cylindrical coordinates are used 

instead of spherical coordinates. The location of the thin cylinder is at the z coordinate of the 

radius and its thickness is taken to be 3 A, close to the mean van der Waals diameter of 

water(Franks, 2000). The dR value is taken to be 0.25 A for both coordinate systems, the 

spherical and the cylindrical. 
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Figure 23. Calculation of water density in spherical coordinates for hydrophobic and hydrophilic surfaces. 

When the radius of the water molecules encapsulating sphere, and its position relative to the 

surface are known calculations of the contact angle become trivial, see Figure 24. With Ztop 

measured from the surface, for the hydrophobic case the contact angle  is given by: 

𝜃 = 180° − 𝛼, 

cos 𝛼 =
𝑍௧௢௣ − 𝑅

𝑅
. 

And for the hydrophilic case the contact angle is: 

𝜃 = 𝛼, 

sin 𝛼 =
𝑅௪

𝑅
. 
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Figure 24. Illustration of contact angle calculations. 

As treatment of hydrophilic and hydrophobic surfaces is different, it is important to distinguish 

between them. Thus the following inequality is used to decide if the surface is hydrophilic, 

𝑅 > 𝐻ௗ. 

Note that the formulae written in terms of Ztop can easily be rewritten in terms of the position 

of the centre of the circumscribed sphere once it has been found. 

Contact angles computed with the circumscribed sphere method are compared with results 

obtained from the iso-density chart method. In the latter method the droplet is divided into 

thin circular layers, the thickness is taken to be 0.25 A; in each layer the water density is 

calculated in the cylindrical coordinate system starting from well outside of the droplet, i.e. 

the density is calculated in thin rings with dR=0.25 A. By proceeding towards the droplet 

centre the position of iso-density 0.033/2 water molecules per cubic angstrom is identified in 

each layer. The resulting line connecting all obtained data points plotted in coordinates height 

versus radius contours the extent of the droplet, see Figure 32 and Figure 33 for the example. 

The average radius of the lowest two points is used to set the intersection of the tangential 

line with the horizontal axis. The next 5, 7 and 9 data points are used to fit the tangential lines 

to the iso-density and thus three contact angles are determined. An average (over the three 

values) contact angle is compared with that obtained with the circumscribed sphere method. 
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Note that in both methods, when calculating water density profiles, the positions of the water 

molecules are approximated by positions of the oxygen atoms. 

4.4. Computational details 

A general purpose parallel molecular dynamics simulation package DL_POLY 4.08 was applied 

to perform computations (Bush, Todorov, & Smith, 2006; Ilian T. Todorov, Smith, Trachenko, 

& Dove, 2006). Results of the simulations were visualized with VMD (Humphrey, Dalke, & 

Schulten, 1996) and VESTA (Momma & Izumi, 2008) software, the latter one was also used for 

manipulations with molecular and periodic structures. 

In all classical molecular dynamics simulations integration of the equations of motion was 

performed with the velocity Verlet algorithm (Swope et al., 1982). The time step in all 

simulations was set to 2 fs. In the NPT simulations the Nose-Hoover thermostat and barostat 

(Hoover, 1985; Nosé, 1984) with the relaxation constants 0.05 and 0.5 ps, respectively, were 

used. In the NVT simulations the Nose-Hoover thermostat with the relaxation constant 0.05 

ps was used. Interactions cutoff distance was set to 17 A in all calculations. Electrostatics were 

computed with the smoothed particle mesh Ewald summation (Darden et al., 1993; Essmann 

et al., 1995). 

4.4.1. Force fields 

A set of force fields was employed in this study. The BKS potential (van Beest et al., 1990) was 

used for the pristine quartz surface. The potential was coupled with the TIP4P/2005 model for 

water (Abascal & Vega, 2005) and the EPM2 model for carbon dioxide (Harris & Yung, 1995). 

Only non-bond potential terms were utilized, with all H2O and CO2 molecules being treated as 

rigid bodies. Geometrical details of the rigid bodies are: CO distance (EPM2 CO2) 1.149 A; OH 

distance (TIP4P/2005 H2O) 0.9572 A; OM distance (TIP4P/2005 H2O) 0.1546 A; HOH angle 

(TIP4P/2005 H2O) 104.52. 

The Buckingham potential (Buckingham, 1938) was used to model oxygen-oxygen and silicon-

oxygen interactions of the pristine quartz surface: 

𝑈(𝑟) = 𝐴𝑒𝑥𝑝 ൬−
𝑟

𝜌
൰ −

𝐶

𝑟଺
, 
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where U is the potential energy of interacting atoms separated by the distance r; A, ρ and C 

are the parameters of the potential, see Table 1. All silicon-silicon interactions were modelled 

with electrostatic forces only. 

Table 1. The Buckingham potential parameters used for the pristine quartz surface (van Beest et al., 1990). 

Interactions A, kcal/mol ρ, A C, kcal/mol 

A6 

q, e m, amu 

O-O 3.20304104 0.3623188 4.03609103 O=-1.2 O=15.9994 

Si-O 4.15225105 0.2052124 3.07983103 Si=2.4 Si=28.0855 

The Lennard-Jones potential was used to model dispersion interactions of water, carbon 

dioxide and the ions for the pristine quartz surface: 

𝑈(𝑟) = 4𝜀 ൤ቀ
𝜎

𝑟
ቁ

ଵଶ

− ቀ
𝜎

𝑟
ቁ

଺

൨. 

Parameters of the potential ε and σ are given in Table 2. 

Table 2. The Lennard-Jones potential parameters used to model CO2-H2O-SiO2 systems (Abascal & Vega, 2005; 
Harris & Yung, 1995; S. Iglauer et al., 2012; van Beest et al., 1990). 

Atomic sites ε, kcal/mol σ, A q, e m, amu 

C (CO2) 0.05591 2.757 0.6512 12.0107 

O (CO2) 0.16001 3.033 -0.3256 15.9994 

O (H2O) 0.18523 3.1589 0 15.9994 

H (H2O) 0 0 0.5564 1.0080 

M (H2O) 0 0 -1.1128 0 

Si (SiO2) 0.12751 3.795 2.4 28.0855 

O (SiO2) 0.15504 3.154 -1.2 15.9994 

The interaction parameters between the unlike atoms were obtained as the geometric mean 

for the energy parameter and as the arithmetic mean for the distance parameter (the Lorentz-

Berthelot combining rules (Berthelot, 1898; Lorentz, 1881)): 

𝜀௜௝ = ඥ𝜀௜𝜀௝ , 

𝜎௜௝ = (𝜎௜ + 𝜎௝)/2, 

where i and j are indices of the unlike atoms. 
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4.4.2. Reconstruction of the pristine quartz surface 

From the hexagonal unit cell of α-quartz (Levien et al., 1980) shown in Figure 25 a super cell 

2x2x1 was created. An orthorhombic cell for further preparation of the pristine surface was 

then extracted from the super cell (Adeagbo et al., 2008), see Figure 25. There are 18 atoms 

in the orthorhombic cell, 6 silicon atoms and 12 oxygen atoms. 

 

Figure 25. Quartz unit cells used in this work. Left: primitive hexagonal unit cell of α-quartz, isometric view. 
Right: reconstruction of the orthorhombic cell (solid bold rectangle) from 2x2x1 super cell, top view (dashed 

parallelogram shows the primitive cell). Red balls - oxygen atoms, blue balls - silicon atoms. 

Crystallographic lattice vectors of the orthorhombic cell amount to: a=4.916 A, b=8.515 A, 

c=5.405 A. Out of this orthorhombic cell a super cell 12x7x12 was constructed and used to 

equilibrate the quartz crystal at 1 atm pressure and 300 K temperature for 105 steps. The 

system was simulated in the NPT ensemble. Lattice vectors of the equilibrated orthorhombic 

cell were found to be a=4.940 A, b=8.557 A, c=5.432 A, which are only 0.5% larger than the 

crystallographic values obtained from (Levien et al., 1980). Using this equilibrated 

orthorhombic cell a 20x12x4 slab was constructed. Every uncoordinated oxygen atom at the 

top of the slab was shifted from the host silicon atom towards the neighbouring silicon atom 

in x and y directions by 0.6 A to build precursors of the Si-O-Si bridges. After that the slab was 

relaxed at 10 K for 105 steps to form proper Si-O-Si bridges and the initial ordered surface 

structure. The system was simulated in the NVT ensemble. During the relaxation and in all 

subsequent simulations described in this work the bottom layer (in terms of the unit cell 

height) of the four-layer slab was kept frozen to emulate the bulk crystal. The surface was 

prepared in a simulation box which had the same dimensions as the box used for the fully 
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assembled quartz-water-CO2 systems. Arrangement of the very top atoms of the surface is the 

same as in the lowest energy surface obtained in (Feya et al., 2018; Malyi et al., 2014). The 

surface consists of 6-member ellipse-like rings, Figure 26. 

 

Figure 26. Four-layer quartz slab used in this work. Left: view of the super cell 3x2x1 along z direction with only 
top atoms shown for clarity (the orthorhombic unit cell is highlighted with dashed rectangle). Right: slab views 

along x (right top) and y (right bottom) directions. Red balls - oxygen atoms, blue balls - silicon atoms. 

4.4.3. Simulation setups 

Utilizing above described force fields and the pristine quartz surface two simulation models 

were constructed with two different carbon dioxide pressures (4 and 10 MPa). Temperature 

in all simulations was set to 300K. Preliminary equilibration of carbon dioxide and water with 

the subsequent construction of the models was performed. 

Two boxes 120x120x80 A for carbon dioxide and 50x50x50 A for water (the TIP4P/2005 

(Abascal & Vega, 2005) were used to pre-equilibrate uniformly distributed molecules at 300K. 

Density of carbon dioxide at given pressure and temperature were used to determine the 

volume per every molecule, this density was taken from the NIST data book at 300 K and at 

the relevant pressures of 4 and 10 MPa (webbook.nist.gov). Water density was taken to be 

1000 kg/m3. Dynamics of these three systems (one for H2O and two for CO2) were modelled 

in the NVT ensembles. Overall 5105 steps were performed for CO2 and 105 for H2O. 

On top of the pre-equilibrated quartz slabs a half sphere of radius 24 A was filled with water 

molecules from above described box. Overall 772 TIP4P/2005 water molecules fit into the half 

sphere. These "water droplets" were placed in the centre of the slabs. The rest of the space 

up to 60 A above from the surface was filled with pre-equilibrated carbon dioxide. There were 

642 and 5559 CO2 molecules above the pristine surface at 4 and 10 MPa, respectively. A gap 

of 1.5 A starting from four quartz unit cell heights (the slab's height) was left empty to avoid 



83 

overlap of atoms and molecules. Note that actual initial distance between top slab atoms and 

water and gas molecules was slightly larger due to surface construction during relaxation and 

disposition of molecules in the pre-equilibration boxes, thus molecules located exactly at the 

border were rejected upon filling the simulation boxes. Vacuum space of 70 A was provided 

above the gas phase. All simulations were performed with periodic boundary conditions in x 

and y directions. In z direction a repulsive force was initially set at 60 A above from the surface: 

𝐹 = 𝑘(𝑧଴ − 𝑧), 𝑧 > 𝑧଴, 

where k=0.24 kcal/mol (1 kJ/mol) - is the force constant, and z0 is the position of the repulsive 

potential. 

The position of this repulsive wall was then corrected in such a way that the density of the 

pre-equilibrated carbon dioxide filling space above the surface matched its physical density at 

given pressure and temperature. In all cases the potential was never displaced towards the 

surface by more than 6 A, see Table 3. Minimal distance to the repulsive potential of more 

than 54 A ensures that the contact angle at the surface is not affected by perturbations in the 

CO2 density caused by the wall. 

Dynamics of two prepared quartz-water-carbon dioxide systems were simulated in the NVT 

ensembles. Overall 106 steps were performed for every system, 2 ns simulation time, out of 

which 105 were equilibration steps. Dimensions of the simulation boxes were 

98.81x102.68x151.73 A. Figure 27 demonstrates the initial simulation setups for two studied 

systems. Main computational details are summarized in Table 3. 
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Figure 27. Initial simulation setups for systems investigated at two CO2 pressures - 4 MPa (left) and 10 MPa 
(right). The hemispherical water droplets above the quartz surfaces surrounded by CO2 molecules are clearly 

visible. 

Table 3. Summary of computational details. 

Parameters System 1 System 2 

CO2 pressure, MPa 4 10 

Temperature, K 300 

Force fields BKS, TIP4P/2005, EPM2 

Interactions cutoff, A 17 

Time step, ps 0.002 

Number of steps (equilibration steps) 106 (105) 

Ensemble NVT 

Thermostat Nose-Hoover 

Thermostat relaxation constant, ps 0.05 

Repulsive potential z0, A 54.64 54.31 

Repulsive potential k, kcal/mol 0.24 

Half sphere droplet radius, A 24 
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Parameters System 1 System 2 

H2O molecules 772 

CO2 molecules 642 5559 

Slab top layer 240(Si6O12) 

Slab two middle layers 480(Si6O12) 

Slab frozen (bottom) layer 240(Si6O12) 

Slab unit cell dimensions, A 4.94x8.56x5.43 

Slab dimensions in unit cells 20x12x4 

Simulation box dimensions, A 98.81x102.68x151.73 

4.5. Method application and discussion 

For both systems investigated the very last snapshots of the simulations were analysed using 

above described methodology. Obtained results of the contact angle analysis are summarized 

in Table 4. 

Table 4. Contact angle computational results. 

Initial simulation setup System 1 System 2 

CO2 pressure, MPa 4 10 

Circumscribed sphere radius, A 31.375 22.125 

Position of sphere's centre with respect to the 

surface, A 

-12.82 1.88 

Contact angle (circumscribed sphere method), 

degrees 

65.9 94.9 

Contact angle (iso-density chart method), degrees 69.0 (+/-4.7) 92.6 (+/-2.6) 

It is noteworthy to see how the two methods, the circumscribed sphere method and the iso-

density chart method, arrived at essentially the same results using different routes. The largest 

discrepancy in found contact angles is in the range of 5%. Thus, the surface at 4 MPa of CO2 

pressure is hydrophilic (the contact angle is less than 90), the surface at 10 MPa of CO2 

pressure is slightly hydrophobic (the contact angle is more than 90). These results are in 

agreement with previously reported simulation data where the contact angles were found to 

be 70 and 80 at 300 K and 4 and 10 MPa of CO2 pressure, respectively (S. Iglauer et al., 2012). 

In an experimental study conducted at 298 K, during repeated exposure to CO2, the contact 
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angles of water droplets on quartz substrates were found to be 90 and 80 at 4 and 10 MPa 

of pressure, respectively (Bikkina, 2011), which is in reasonable agreement with obtained here 

values. 

It should be noted here that simulations executed in this work are organized such that the 

initial atomic configurations are close to the equilibrium (the contact angle of the 

hemispherical droplet is 90, c.f. to computed above 65.9 and 94.9). In addition to this, all 

elements of the initial setups (the slab, CO2, water molecules of the droplet) are relaxed and 

pre-equilibrated. It thus follows that 2 ns simulation time is sufficient for statistically 

significant results extracted from a single simulation snapshot. Quantitative validation for the 

latter statement can be produced using tails of generated trajectories. From the last 50 000 

steps (0.1 ns simulation time) five simulation snapshots separated by 10 000 steps were 

extracted and the contact angles were computed using the circumscribed sphere method. For 

the systems at 4 and 10 MPa CO2 pressure the contact angles amounted to 62.6 (+/-3.3) and 

96.5 (+/-1.7), respectively. Small error bars indicate that the systems are well equilibrated 

and obtained results used for comparison with works mentioned in the previous paragraph 

are significant. 

Water density profiles constructed in spherical coordinates are shown in Figure 28 and Figure 

29. Approaching the spheres' centres from the infinity, the threshold water density (0.033/2 

water molecules per cubic angstrom) signals where the droplets start. A common feature of 

both plots is relatively slow increase in the density in the beginning and its abrupt decrease in 

the end. A slow threshold approach makes refinement of droplets' radii relatively reliable, as 

the density increases from zero to 0.033/2 water molecules per cubic angstrom over the 

distance of several angstroms. 
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Figure 28. Water density in spherical coordinates for the system at 4 MPa CO2 pressure. Horizontal line shows 
half of water's normal density. 

 

Figure 29. Water density in spherical coordinates for the system at 10 MPa CO2 pressure. Horizontal line shows 
half of water's normal density. 

Spheres circumscribed around water droplets and their relative positions with respect to the 

surfaces are presented in Figure 30 and Figure 31. As expected, circumscribed spheres average 

fuzzy borders of the droplets eliminating the directional bias. 
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Figure 30. Water droplet and its circumscribed sphere on the quartz surface at 4 MPa CO2 pressure, isometric 
view (left) and top view (right). Orange balls are oxygen atoms and white balls are hydrogen atoms of the 

TIP4P/2005 water. 

 

Figure 31. Water droplet and its circumscribed sphere on the quartz surface at 10 MPa CO2 pressure, isometric 
view (left) and top view (right). Orange balls are oxygen atoms and white balls are hydrogen atoms of the 

TIP4P/2005 water. 

Iso-density charts used to compare results of the contact angle calculations with the 

circumscribed sphere method are shown in Figure 32 and Figure 33. The circumscribed 

spheres almost average the iso-density constructed in cylindrical coordinates, especially at 

10 MPa CO2 pressure. The contact angles calculated using three sets of data points (5, 7 and 

9) average the iso-densities close to the surface and show good agreement between each 
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other (error bars are less than 7%): 69.0 (+/-4.7) and 92.6 (+/-2.6) for systems at 4 and 

10 MPa of CO2 pressure, respectively. 

 

Figure 32. Iso-density chart constructed in cylindrical coordinates for a water droplet on a pristine quartz 
surface at 4 MPa CO2 pressure. Blue line shows half of water normal density. Red dots depict data points used 

to fit the tangential line, the straight line (5, 7 and 9 points were used for the averaging, the case for 7 points is 
shown). The dashed line shows the circumscribed sphere contour found in the spherical coordinates. 

 

Figure 33. Iso-density chart constructed in cylindrical coordinates for a water droplet on a pristine quartz 
surface at 10 MPa CO2 pressure. Blue line shows half of water normal density. Red dots depict data points used 
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to fit the tangential line, the straight line (5, 7 and 9 points were used for the averaging, the case for 7 points is 
shown). The dashed line shows the circumscribed sphere contour found in the spherical coordinates. 

Obtained numerical parameters and overall agreement between two methods used to 

determine the contact angle, as well as visual inspection of the simulation snapshots and the 

diagrammatic data demonstrate that the spheroidal constructions and the spherical 

coordinate system have promising potential in the area. The algorithms proposed here are 

simple and can be intuitively understood, and the required computational effort to analyse a 

simulation snapshot is minor. 

4.6. Conclusions 

The concept of how to determine computational contact angles of a liquid droplet resting on 

a solid surface from individual snapshots of molecular dynamics simulations have been 

formulated, implemented and analysed in this study. Spherical coordinates to circumscribe a 

sphere around given configuration of water molecules form the basis of the method, which is 

thus natural and consistent with the droplet's geometric computational framework. The 

method also shows good agreement with the iso-density chart method which was applied 

here. 

The contact angle of a water droplet on the most stable 6-member ellipse-like rings (001) 

surface of -quartz, which was reconstructed here using classical molecular dynamics, was 

found to be 66 and 95 at 4 and 10 MPa of CO2 pressure, respectively. 

Procedures used to compute the contact angles on basis of molecular dynamics output have 

deficiencies and limitations when applied on their own. The circumscribed sphere method in 

its current implementation is best suited for hydrophobic surfaces, but otherwise sensitive to 

the integrity of the water droplet and may need pre-processing for droplets with poorly 

defined borders to remove escaped (from the main body of water) molecules. The iso-density 

chart method is less sensitive to integrity, but local in nature and thus requires caution when 

fitting the tangential line. Without a universal unbiased method, a combination of several 

approaches can complement each other in providing a confident estimate of the contact angle 

from molecular dynamics computations. 
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7. Conclusions 

Carbon dioxide capture and storage was proposed as a technologically and economically 

feasible solution to reduce carbon dioxide content in earth's atmosphere and thus avert global 

warming. To ensure secure long term underground storage of carbon dioxide prospective 

storage formations must be carefully assessed against number of requirements. Among the 

most crucial ones is the CO2 wettability of rocks under reservoir conditions. The composition 

of those rocks vary significantly and are influenced by the fact that quartz is the second most 

abundant mineral in the earth's continental crust. Thus the CO2 wettability of quartz 

dominates the overall CO2 trapping performance of storage and cap rocks. If depleted oil or 

gas reservoirs are used for storage of CO2 quartz surfaces of rocks in reservoirs which have 

been previously exposed to hydrocarbons might be covered with chemisorpt hydrocarbon 

molecules. The CO2 wettability of these chemically modified rocks is poorly understood and 

there is a substantial knowledge gap in modern literature and engineering knowledge 

regarding CO2 trapping capacity of alkylated quartz. 

To model quartz surfaces with chemisorpt hydrocarbons both CLAYFF and DREIDING force 

fields were coupled at atomic site charge level using the DFT and the Bader charge analysis. 

The charge of the hydroxyl hydrogen substituted with a pentyl group was reallocated to the 

newly formed oxygen-carbon bond connecting the C5H11 group and quartz surface. 

Redistribution of the charge in proportion 0.796 to 0.204 for the carbon and the oxygen atoms, 

respectively, is shown to be consistent with the DFT results in terms of the absolute charge 

difference between the DFT charges and the force field charges on atoms of the OC bond; and 

in terms of the relative charges on both oxygen atoms of the geminal silanol group. Actual 

values of charges on the oxygen and the carbon atoms are computed to be -0.863301 and 

0.338301 e. 

Augmented with modified charges of the OC bond, CLAYFF and the DREIDING force fields were 

applied to solve a practical problem of calculating the contact angle of a water droplet on 

alkylated quartz surfaces in a CO2 environment. A systematic computational study of 

wettability of fully hydroxylated and alkylated (001) -quartz surface under 10 MPa pressure 

of carbon dioxide at 300 K with respect to surface concentration of pentyl groups was 

performed. Considered concentrations of the alkyl groups varied from 0.29 to 4.63 C5H11/nm2. 

It was shown that when the surface density of pentyl groups increases from 0.29 to 
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3.18 C5H11/nm2 the contact angle of a water droplet changes from 10-20 to 180, thus the 

surface becomes completely hydrophobic. 

A comprehensive description of wettability of alkylated quartz surface requires three 

parameters: the theoretical contact angle, the apparent contact angle and the hidden contact 

angle. These contact angles are determined at the tip level of pentyl groups and the level of 

the quartz surface. The hidden contact angle is calculated as the angle of a water "skirt", which 

is formed between the level of the quartz surface and the tip level of pentyl groups. The hidden 

contact angle remains relatively small (less than 90) up to the threshold pentyl density of 

2.604 C5H11/nm2, after which it rather abruptly increases to 180. Such a behaviour is termed 

as the binary wettability, when the surface is either hydrophilic or extremely hydrophobic, 

with intermediate wetting regime observed only in a very narrow range of the surface pentyl 

density of 0.29 C5H11/nm2. It was concluded that this binary wettability of alkylated quartz 

surface originates from the steric effects preventing water molecules from reaching the quartz 

surface. 

Additionally, the concept and the method of how to determine computational contact angles 

of a liquid droplet resting on a solid surface from individual snapshots of molecular dynamics 

simulations have been formulated, implemented and analysed. Spherical coordinates to 

circumscribe a sphere around given configuration of water molecules form the basis of the 

method, which is thus natural and consistent with the droplet's geometric computational 

framework. The method also shows good agreement with the iso-density chart method which 

was used here. Apart from proposed original method to determine the computational contact 

angle, this research contributes to the scientific and engineering community in two ways. 

Firstly, there is a fundamental contribution in the form of modified and adapted for the 

modelling of the alkylated quartz force fields. Secondly, there is a practical contribution in the 

form of a deeper understanding of the wetting processes of chemically modified with 

hydrocarbons quartz surfaces. 
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