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Abstract

In recent years, topological phases of matter have presented exciting new avenues to achieve
scalable quantum computation. In this thesis, we investigate a class of quantum many-body spin
models known as symmetry-protected topological (SPT) phases for use in quantum information
processing and storage. We explore the fault-tolerant properties of SPT phases, and how they
can be utilized in the design of a quantum computer. Of central importance in this thesis is
the concept of quantum error-correction, which in addition to its importance in fault-tolerant
quantum computation, is used to characterise the stability of topological phases at finite
temperature.

We begin with an introduction to quantum computation, quantum error correction, and
topological phases of matter. We then focus on the fundamental question of whether symmetry-
protected topological phases of matter can exist in thermal equilibrium; we prove that systems
protected by global onsite symmetries cannot be ordered at nonzero temperature. Subsequently,
we show that certain three-dimensional models with generalised higher-form symmetries can
be thermally SPT ordered, and we relate this order to the ability to perform fault-tolerant
measurement-based quantum computation. Following this, we assess feasibility of these phases
as quantum memories, motivated by the fact that SPT phases in three dimensions can possess
protected topological degrees of freedom on their boundary. We find that certain SPT ordered
systems can be self-correcting, allowing quantum information to be stored for arbitrarily long
times without requiring active error correction. Finally, we develop a framework to construct
new schemes of fault-tolerant measurement-based quantum computation. As a notable example,
we develop a cluster-state scheme that simulates the braiding and fusion of surface-code defects,
offering novel alternative methods to achieve fault-tolerant universal quantum computation.
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Information is physical.

Rolf Landauer

1 | Introduction

1.1 Introduction

One of the most remarkable applications of quantum information is the theoretical development
of quantum computing. Quantum computers are devices that exploit the unique quantum
mechanical phenomena of coherent quantum systems to solve difficult computational problems,
including many that are intractable using current approaches. Originally proposed by Richard
Feynmann in the 80s [1] as a way to overcome the notorious difficulty of simulating quantum
systems, the theory of quantum computing has since flourished into a rich multidisciplinary
field with many important applications. Perhaps the most famous example of this is Shor’s
discovery of an integer factoring algorithm [2], which has a runtime exponentially faster than
the best known classical algorithm. This profound discovery has propelled the field forward, as
Shor’s algorithm along with others [3–5] presents a radical paradigm shift for computing and
the broader face of technology.

With the promise of quantum computing also comes a unique challenge – coherent quantum
systems are fragile, and the information stored in a quantum system can decohere easily. As
such, the design and construction of a quantum computer requires exceptional control, in order
to preserve the delicate quantum information from the effects of noise. This challenge has
led to the development of the beautiful theory of quantum fault-tolerance and quantum error
correction, which provide novel approaches to tackle decoherence. At the core of fault-tolerance
is the threshold theorem [6–10], which guarantees that arbitrary sized quantum computations are
possible, provided the noise experienced by each qubit and component is below a threshold value.
For systems with below-threshold noise, arbitrary size quantum computations can be performed
fault-tolerantly with only modest resource overheads. Estimates of the noise threshold value
vary greatly and are constantly changing, as error modelling becomes more sophisticated, and
fault-tolerant techniques and error-correcting codes are being rapidly improved. It is becoming
clear that scalable quantum computation is no longer a pipe-dream, as current experimental
progress places near term quantum devices within tantalising reach.

As the quantum information has matured, its domain has expanded and it has developed
deep connections with many areas of mathematics, physics, computer science and chemistry.
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Notably, the confluence of condensed matter and fault-tolerant quantum computation has
led to many profound insights in recent years. For example, new quantum error-correcting
codes and even radically different approaches to computing (such as through the manipulation
of quasiparticles called anyons [11]) have been inspired by the discoveries of the condensed
matter community. Conversely, the discovery of new types of topological codes (such as fractal
codes [12]) has led to new paradigms in the classification of phases of matter.

It is the goal of this thesis to leverage this symbiotic relationship between condensed
matter and quantum information further, to develop and understand fault-tolerant methods
for quantum computing using the unique capabilities of topological phases of matter. By now,
topological phases – such as Kitaev’s toric code [11] – are ubiquitous in fault-tolerant quantum
computing. While it is clear at a coarse level that the natural robustness of these phases to
noise offers great potential, how to precisely translate these features into useful, fault-tolerant
computational structures can be a nontrivial task. We will be focussing on a family of ordered,
many-body spin models called symmetry-protected topological phases for their use in quantum
information storage and processing. We discuss how thermally stable SPT phases can be used
as resources for fault-tolerant measurement-based quantum computation, as well as for quantum
memories with macroscopic lifetimes. In the remainder of this introduction chapter, we review
some of the basic concepts of quantum computation and topological phases of matter.

1.2 Quantum computing

There are many radically different approaches to quantum computing, varying greatly in
both the method of computation as well as physical realisation. The most prominent models
of computation are the circuit model [13], adiabatic quantum computation [14], topological
quantum computation [11, 15], and measurement-based quantum computation [16]. While the
models are all very distinctive, the computational content of each approach is the same [17–20].
In developing physical architectures, it is beneficial to have a variety of approaches, as some
architectures are more suited to a particular model. For example, measurement-based quantum
computation is an attractive model for architectures based on linear optics [21, 22] or trapped
ions [23, 24].

The benefit of having a variety of approaches is the additional flexibility that is offered
in the development of physical architectures, as physical manifestations of some models may
be preferable in some architecture over others (for example, measurement-based quantum
computation is an attractive model for architectures based onlinear optics [21, 22] or trapped
ions [23, 24]). In the remainder of this section, we will outline some models of computation
that will be used throughout the thesis, introduce quantum-error correction, and outline some
methods of fault-tolerance.
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1.2.1 Preliminary notation

The central ingredient common to all of these approaches is the qubit – the elementary unit of
quantum information. A qubit is the smallest quantum degree of freedom, and its statespace is
given by the two-dimensional vector space C2. With n-qubits, the statespace is given by the
n-fold tensor product

Hn = C2 ⊗ . . .⊗ C2︸ ︷︷ ︸
n times

∼= C2n
. (1.1)

A standard basis for the n-qubits is the computational basis

B = {|a1, a2, . . . , an⟩ | ai ∈ Z2}. (1.2)

An important set of operations is given by the Pauli operators on one qubit

I =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (1.3)

The group generated by these operators is the Pauli group on one qubit P1 = ⟨X,Y, Z⟩. On
n-qubits the Pauli group is given by the n-fold tensor product

Pn = P1 ⊗ P1 ⊗ . . .⊗ P1︸ ︷︷ ︸
n times

(1.4)

The Pauli group provides a basis for linear operators, and an important set to describe many
quantum operations. Unless stated otherwise, we leave n implicit and just refer to the Pauli
group on n qubits as P.

The Clifford group C is the normaliser of the Pauli group P,

C := N (P) = {u ∈ U(2n) | uPu† ∈ P ∀P ∈ P}. (1.5)

It is generated by the Hadamard gate H, the Phase gate S, and the two qubit controlled-not
gate CX, acting on all possible qubits or pairs of qubits:

H = 1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (1.6)

For a fixed number of qubits n, the Clifford hierarchy is defined by setting C1 = P, and
sequentially defining
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CD = {u ∈ U(2n) : uPu† ∈ CD−1,∀P ∈ P} (1.7)

for D ≥ 2. In particular, we have that C2 is the Clifford group on n-qubits, while important
non-Clifford operations are the T gate and the three qubit controlled-controlled-Z gate CCZ,

T =
(

1 0
0

√
i

)
, CCZ = diag(1, 1, 1, 1, 1, 1, 1,−1), (1.8)

which both belong to C3. Important to note is that for D > 2, CD is no longer a group, but is
a finite set.

1.2.2 The circuit model

A particularly useful way of thinking about computation (while ignoring details of the exact
physical implementation) is through the circuit model. In the circuit model, states are prepared,
undergo unitary evolution, and finally, are measured. The unitary evolution depends on the
specific algorithm that is to be implemented, and is realised through a sequence of gates acting
on the Hilbert space of some number of qubits. Typically, it is assumed that preparations
and final measurements are in the computational basis. The output of the computation is
encoded in the final state and must be reliably deducible from the measurement outcomes. Since
measurements are probabilistic in nature, we only require that the correct solution is acquired
with a success probability of strictly greater than 1/2; the circuit can then be repeatedly run to
gain an arbitrarily high probability of success.

Quantum circuits are typically represented by a number of wires and boxes. Wires represent
a qubit evolving in time (with time running from left to right), and boxes represent either gates
or measurements acting on qubits at a particular time. An example of a quantum circuit is
depicted in Fig. 1.1.

|0〉

|0〉

|0〉

H

H

H

T

S

T

Fig. 1.1 An example quantum circuit. Qubits are initialised on the left, and a number of gates
are applied, in order from left to right.

The gates that of a quantum circuit must be drawn from some gate-set. Critically, if
arbitrary quantum computations are to be possible, then the gate set must be universal. We say
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a set of gates G is universal for quantum computation if any unitary operation can be arbitrarily
well approximated by a quantum circuit using gates from G. In other words, the unitary circuits
on n qubits with gates from G are dense in U(2n) (with metric described below). It turns out
that discrete sets of universal gates exist, a standard choice is given by Gst = {H,S,CX, T}.
Note that we have redundantly included S = T 2, as it is often the case that T gates are costly to
implement compared to the Clifford gate S. Many other universal gate sets exist, for example,
{H,S,CX,A} is universal for any non-Clifford A, and {CCZ,H} is also universal [25].

While circuits generated from a discrete gate set can not synthesise general unitaries exactly,
in practice we are only interested in approximations thereof. In particular, we can determine
the approximation error between an ideal unitary V and one generated by a finite set of gates
U by the operator norm

d(U, V ) = ∥U − V ∥op = sup
|ψ⟩

∥(U − V ) |ψ⟩∥ . (1.9)

Universality of Gst means that for any given target unitary V on n qubits, there exist sequences
of n qubit circuits Ci, i = 1, 2, . . . of increasing depth, comprised of gates from {H,S,CX, T}
such that d(Ci, V ) → 0. Closeness of unitaries in this metric means that the corresponding
probability distributions upon measurement (for any POVM) are also close. The Solvay-Kitaev
algorithm provides a way to produce an approximation of any unitary, given a universal gate set.
While the algorithm is efficient in inverse error and Hilbert space dimension in terms of run-time
and number of gates required, it is not efficient in number of qubits. In fact, approximating an
arbitrary n-qubit unitary is very hard, requiring, in general, exponentially many gates (for a
fixed error).

1.2.3 Measurement-based quantum computation

The approach of measurement-based quantum computation (MBQC) is starkly different to
that of the circuit model. In contrast to the circuit model – where computation is specified
by a sequence of unitary gates on an initial product state, followed by a computational
basis measurement – MBQC proceeds by performing single qubit measurements on a fixed,
highly entangled resource state. The choice of measurements determines the algorithm to
be implemented, and with the right resource state, arbitrary quantum computations are
possible. These single qubit measurements drive the computation, consuming entanglement in
the process. In addition to being a useful framework for certain architectures (such as linear
optical architectures [21, 22] and trapped ion architectures [23, 24]), MBQC is also a powerful
theoretical framework which allows us to investigate computational usefulness of phases of
matter. We discuss this idea in more detail in Sec. 1.4.
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Crucially, since measurements are in general random, to ensure deterministic computation
one must adapt measurement bases depending upon previous measurement outcomes. This
complexity of deciding these future measurement outcomes is often very tame, and can be
performed with a small amount of classical side processing (for most models only mod-2 addition
is required) [26, 27]. As such, entanglement in the resource state alone is not enough; we must
also be able to extract correlations in the classical data returned from measurements. Indeed,
too much entanglement can result in the resource state being useless for MBQC [28].

In order to perform longer computations or computations involving more qubits, only the
size of the resource state needs to be increased. For certain families of resource states, adaptive
single qubit measurements are sufficient to perform universal quantum computation, and such
families are known as universal resource states. There are in fact many known families of
universal resource states. The most well known are the square lattice graph states (which we
will describe further below) [26, 20], other graph states [29, 30], various AKLT states [31–34],
Hypergraph states [35, 36] and more [37–40].

Graph states

For MBQC, an important class of resource states are the cluster states, also known as graph
states. These states can be defined for any graph, and universality of the state depends heavily
upon the underlying graph. Let G = (V,E) be a graph, where V is a set of vertices and E a
set of edges. Then a graph state |ψG⟩ corresponding to the graph G can be defined as follows:

1. For each vertex v ∈ V , place a qubit prepared in the |+⟩ = 1√
2(|0⟩v + |1⟩v) state.

2. For each edge e = (v, w) apply the controlled-Z gate

CZe = exp
(
iπ

4 (1 − Zv)(1 − Zw)
)
. (1.10)

The circuit UE =
∏
e∈E CZe is called the entangling circuit. As the state prior to application

of UE is a +1 eigenstate of Xv for v ∈ V , we can find new +1-eigenoperators for the resource
state by conjugating Xv by UE :

Kv := UEXvU
†
E = Xv

∏
w∈N (v)

Zw, (1.11)

where N (v) is the neighbourhood of v, consisting of all vertices sharing an edge with v. The
operators Kv are called graph stabilizers or cluster stabilizers, since the graph state satisfies

Kv |ψG⟩ = |ψG⟩ ∀v ∈ V. (1.12)
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In general, graph states can be highly entangled [29]. Universality depends on the underlying
family of graphs used. The canonical example is the square lattice cluster state [26]. On this
lattice measurements in the X, Y , Z, and 1√

2(X ± Y ) basis are sufficient to perform universal
qantum computation. One can view measurements on the square lattice cluster state as
simulating the circuit model: Pauli Z measurements are used to print out computational wires,
X and Y are used to enact Clifford gates, and 1√

2(X ± Y ) measurements are used to perform
T gates. Adaptivity amounts to determining the sign in the measurement 1√

2(X ± Y ), and can
be done by evaluating the parity of certain previous measurement outcomes. Schematically,
this is represented in Fig. 1.2.

⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑

• • • • • • • • •⇑

⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑• •

⇑ ⇑ ⇑ ⇑ ⇑ ⇑• • • •

⇑• • • • • • • • •

⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑⇑ ⇑

⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑

• • • • • • • • •⇑

⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑• •

⇑ ⇑ ⇑ ⇑ ⇑ ⇑• • • •

⇑• • • • • • • • •

⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑⇑ ⇑

Fig. 1.2 Schematic for measurement-based quantum computation on a square lattice graph
state. Simulated time runs from left to right. Qubits live on the vertices of a square lattice.
Measurements in the Z-basis are depicted by blue nodes, measurements in the X-basis are
depicted by red nodes with upward facing arrows. Measurements in the 1√

2(X ± Y )-basis are
depicted by red nodes with rotated arrows.

1.2.4 Quantum error correction

One of the primary underlying challenges of quantum information science is that coherent
quantum systems are fragile, and the information stored in a quantum system can decohere
easily. Since all of the operations discussed in the previous section (state preparations, unitary
gates, measurements) are all prone to error in any physical realisation, we must ensure that the
computation is performed in a way that errors can be tolerated. In order to protect information,
we must use error-correcting codes. Quantum error correction is the fundamental ingredient
that allows fault-tolerant quantum computing to be possible.

The simplest example of a classical error-correcting code is the repetition code. In this
code, the goal is to protect one bit of information. To achieve this, the information is stored
redundantly

0 7→ 00 . . . 0︸ ︷︷ ︸
n

1 7→ 11 . . . 1︸ ︷︷ ︸
n

. (1.13)
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Provided that errors occur to less than half of the bits, then we can successfully recover the
encoded information using a majority vote. Therefore, if the probability of an error that flips
a bit is sufficiently low, then the repetition code provides enhanced protection of classical
information.

The philosophy behind quantum error correction is similar: we redundantly encode quan-
tum information by embedding it in a larger Hilbert space. The added difficulty in finding
quantum error-correcting codes comes from: (1) sources of error can come in multiple bases, (2)
measurements can in general collapse the state, destroying the quantum information, (3) the
no-cloning theorem [41] prevents us from copying arbitrary states. Fortunately, these challenges
only serve as inspiration, and the field of quantum error correction is rich with interesting
examples.

Stabilizer codes

One of the most well-known and rich frameworks to construct quantum error-correcting codes
is the stabilizer formalism, introduced by Gottesman [42]. This formalism provides an efficient
way of expressing a large class of quantum error-correcting codes, codestates, the effect of errors,
and the measurements used to diagnose these errors.

A stabilizer code on n qubits is specified by an abelian subgroup S of the Pauli group
P = Pn, not containing −1. The codespace C is specified by the mutual +1-eigenspace of all
operators in S:

C = {|ψ⟩ ∈ C2n | g |ψ⟩ = |ψ⟩ ∀g ∈ S}. (1.14)

States in C are referred to as codestates, and elements of S are called stabilizers. Codestates
can be mapped between each other by means of logical operators. The logical Pauli operators
are given by elements

L = ZP(S), (1.15)

where ZP(S) is the centraliser of S in P, consisting of all Pauli operators that commute with
all stabilizers. Logical operators include stabilizers, which act trivially on codestates, along
with nontrivial Pauli operators which are elements of ZP(S) − S. Since logical operators have
equivalent action on C up to multiplication of stabilizers, we can group them into equivalence
classes given by ZP(S)/S.

For a stabilizer code on n qubits with n − k independent stabilizer generators, we have
dim(C) = 2k, as well as ZP(S)/S ∼= Pk. This means that for a stabilizer group with n −
k independent generators, we can encode k logical qubits. Here, a set of stabilizers S =
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⟨g1, . . . gn−k⟩ are independent if for some binary numbers αj ∈ Z2, we have

n−k∏
i=1

g
αj

j = 1 =⇒ αj = 0 ∀j. (1.16)

We have already seen an example of a stabilizer code; the graph state of Eq. (1.12) which
has a stabilizer group given by the operators in Eq. (1.11) and encodes no logical qubits (the
codespace consists of a unique state – the cluster state). Other important classes of stabilizer
codes include the Shor code [43], Reed-Muller codes [44, 45], CSS codes [46] which allows us to
construct quantum codes based on certain pairs of classical codes, and topological codes, which
we discuss in the next section.

Errors and decoding

Errors are detected by performing stabilizer measurements. These measurements produce no
information about the logical state, but only about the location of errors. If we write the
stabilizer group in terms of a set of independent generators S = ⟨g1, . . . gn−k⟩, the Hilbert space
decomposes as

H =
⊕

s
Cs, (1.17)

where each choice of s ∈ Zn−k
2 labels a set of eigenspaces of g = (g1, . . . gn−k). Namely, for each

s = (s1, . . . sn−k), the subspace Cs is defined by

Cs = {|ψ⟩ ∈ C2n | gi |ψ⟩ = (−1)si |ψ⟩ , ∀i}. (1.18)

The codespace is given by C0, where 0 = (0, . . . , 0).

For any state within the codespace, measurement of a stabilizer produces a +1 outcome.
Upon measurement of a (perhaps overcomplete) generating set of stabilizers, a syndrome is
obtained: a list of measurement outcomes. Any −1 outcomes indicate the presence of errors.
A syndrome of s means the post measured state belongs to the syndrome space Cs. Error
correction consists of choosing a Pauli operator R that returns the erred state to C0. Error
correction is successful if no logical fault has been implemented in the process, that is, if
RE ∈ S. The algorithm that determines the correction operator is the decoder. It receives a
syndrome (corresponding to some error) and returns a recovery operator R.

A stabilizer code can correct a set of errors E = {Ea | a ∈ A} ⊂ Pn (for some index set
A), if and only if EaEb /∈ ZP(S) − ⟨i⟩S, ∀Ea, Eb ∈ E . For any Pauli operator P , we define
wt(P ) to be the number of nontrivial Pauli factors of P (for example wt(X ⊗ 1 ⊗ Z ⊗ 1) = 2).
The distance of the code d is defined to be the smallest weight of any nontrivial logical Pauli
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operator. That is
d = min

P∈ZP (S)−S
wt(P ). (1.19)

The distance is used as useful tool in assessing how tolerant a code is to Pauli errors. A code
with distance d can detect Pauli errors of weight up to d− 1, and can correct any Pauli errors
of weight up to ⌊d−1

2 ⌋. We refer to a stabilizer code on n qubits which encodes k logical qubits
with distance d, as an [n, k, d] code.

In general, measurements can be faulty and therefore stabilizers must be repeatedly measured
to obtain reliable information about the location of errors [47]. Remarkably, some codes admit
single-shot error correction, whereby only a single round of stabilizer measurements is required
to obtain reliable information about the location of errors. Examples of single-shot codes are
the gauge color code in three-dimensions [48] and the self-dual four-dimensional toric code [47].
As error correction is in general resource intensive and complex, single shot codes offer a
competitive advantage.

Subsystem codes

An important generalisation of stabilizer codes are subsystem codes [49–52]. A subsystem code
can be constructed by declaring some logical qubits as gauge degrees of freedom that are not
used to encode logical information. Logical information is therefore encoded in a subsystem
of the stabilizer codespace. A prominent advantage of such codes is that the measurement of
stabilizers can sometimes be replaced by the measurement of simpler, lower weight operators
(known as gauge operators). We will see examples of such codes in Chapters 3 and 4.

1.2.5 Topological codes

Perhaps one of the most important classes of stabilizer codes are topological codes. Topological
codes are stabilizer codes that encode qubits in global or topological degrees of freedom and
detect errors using only local stabilizer measurements. Assuming that errors act locally, they
cannot corrupt the logical information if encoded in global degrees of freedom.

We first note that a topological code is really a family of codes, {Si | i = 1, 2, . . .}, where
(Si)i constitutes a sequence of codes of increasing size. A D-dimensional topological code family
consists of:

1. Qubits arranged with a finite density on a D-dimensional manifold MD. For example,
they may be on the sites of a D-dimensional lattice.

2. A stabilizer group that can be locally generated. Namely, there exists a generating set
S = ⟨g1, . . . gn−k⟩ such that Supp(gi) is contained within a ball of finite radius. We also
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require that each qubit is in the support of only a constant number of stabilizers in the
generating set.

For a topological code to be nontrivial, we also require that the distance of the code scales with
increasing system size.

Two-dimensional topological codes are widely pursued for a variety of reasons. Firstly, no
long range interactions are required for syndrome extraction, which is a desirable feature for
architectures with locality constraints. Secondly, the degree of protection they offer is readily
tunable, as the distance can be scaled to achieve a target logical error-rate. The most important
families of topological stabilizer codes are the two dimensional surface codes (including the
toric code and planar code), originally due to Kitaev [7, 11] their higher dimension versions
[47, 53], and the color codes in two dimensions [54] and higher [55, 56].

Toric codes perhaps best exemplify the beautiful concept behind topological codes; they
can be defined on any cellulation of a D-dimensional manifold. After choosing a cellulation,
the surface code is uniquely defined by an integer k ∈ {1, . . . D − 1}. To each k-cell we place a
qubit, to each (k + 1)-cell p we define a Z-stabilizer Zp, and to each (k − 1) cell v we define
an X stabilizer Xv. The Zp stabilizers are given by a product of Pauli-Z on all qubits on the
boundary of the (k + 1) cell p, while Xv stabilizers are given by a product of Pauli-X on all
qubits incident to the (k − 1) cell v. These operators always commute, and the stabilizer group
S is generated by all such stabilizers. Logical operators are associated with homologically
nontrivial cycles of the cellulation. To each nontrivial k-cycle, a logical Z operator is defined by
a product of Z operators along the cycle. Similarly, we can define a logical X operator for each
nontrivial k-cocycle. As nontrivial (co)cycles are global features of the manifold, the logical
information is topologically encoded.

The information storage capabilities of topological codes in 2D have been well characterised.
In particular, topological codes with n qubits, encoding k logical qubits with distance d must
satisfy the bound kd2 ≤ O(n) [57]. The toric code saturates this bound. For subsystem
codes with local generators this can be relaxed to kd ≤ O(n) [58] (and is known to be
tight [58, 59]), however they must also satisfy d2 ≤ O(n) [60, 61]. This motivates further study
of two-dimensional topological subsystem codes for their improved coding properties [59].

Self-correcting quantum memories

Performing error correction is resource intensive and a complex process. A potential solution is
to find memories that are self-correcting. A self-correcting quantum memory is the quantum
analogue of a classical hard-drive, that allows information to be robustly stored for long periods
of time. Such a memory does not require active error correction, and instead naturally dissipates
errors that build up over time. By constructing larger systems, the memory time can grow
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without bound. Self-correction is known to be possible in 4D (for sufficiently low temperatures),
with the first known example being the 4D toric code [47, 62]. Whether such models can exist
in three-dimensions or less is one of the major unsolved problems in quantum information,
and one with important implications to the future of quantum computing. We will discuss
self-correction in much greater detail in Chapter 3.

1.2.6 Fault-tolerant logic

In order to perform fault-tolerant quantum computation, we must also be able to perform logic
gates in a protected way. In order to do so, we must make sure we do not spread errors by
too much. In this way, any additional errors that are introduced during the logical gates can
be handled by error correction, provided the error-rate is sufficiently low. In the following, we
outline some methods of performing fault-tolerant logical gates in topological codes.

Locality-preserving logical gates

One of the popular methods for achieving fault-tolerant logic in topological codes is to find
transversal implementation of logical gates. For a code on n-qubits, a single qubit logical gate
U is transversal if it can be implemented in the form

U =
n⊗
i=1

Ui, (1.20)

for some single qubit gates Ui. The reason such an implementation is desirable, is that single
qubit operations do not spread errors. If E is some set of errors on the code, and U is transversal
as above, then Supp(UEU †) ⊆ Supp(E), meaning the set of support of the error has not grown
by mapping the logical state |ψ⟩ to U |ψ⟩ (of course the local gates Ui may themselves be
faulty). More generally, one can consider logical gates that are transversal with respect to some
partition of qubits, meaning that the logical gate factors (with respect to the tensor product)
across the partition. Notable examples of codes with transversal gates are the 2D color codes
[54] which admit all Cliffords transversally, and the 3D color codes, which have a transversal
logical T gate.

It is known that no single code admits a universal set of transversal gates due to a theorem of
Eastin and Knill [63]. In an effort to circumvent this theorem, one often considers generalisations
of transversality, such as constant-depth quantum circuits or locality-preserving quantum circuits.
Constant-depth quantum circuits provide a similar degree of protection, as the propagation
of errors is limited to a bounded light cone. For a lattice in D-dimensions, a constant-depth
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quantum circuit U takes the form

U =
d∏
j=1

Cj , Cj =
nj⊗
i=1

U
(j)
i , (1.21)

where d is constant (independent of the system size) called the depth, and each of the unitaries
Ui is supported on a ball of constant radius. Logical gates of this form are examples of locality-
preserving gates, as errors can only spread by a constant amount, in this case, by a distance dr,
where r is the maximum range of any gate Ui.

However, the group of logical gates that can be implemented by constant-depth quantum
circuits is also constrained by dimension. Namely, Bravyi and König have shown that for a
D-dimensional topological code, gates implementable by constant-depth quantum circuits must
belong to the D-th level of the Clifford Hierarchy CD [64]. This means in particular that 2D
topological codes cannot implement non-Clifford gates by constant-depth quantum circuits, and
that topological codes in any dimension only admit a finite set of constant-depth logical gates.
The Bravyi König result has been extended to subsystem codes by Pastawski and Yoshida [65],
where they also demonstrate several other trade-offs between desirable code-properties – such
as code-distance or loss-tolerance – with fault-tolerant implementability of logical gates [65].

Topological defect based quantum computation

Looking beyond transversal gates and locality-preserving logical gates there are a variety of
alternatives. A popular approach is to encode into global degrees of freedom corresponding
to topological defects. Such defects are regions of inhomogeneity in the code, and can take
for example the form of punctures in the surface code [66], or lattice dislocations called twist
defects [67]. Topological defects are physical defects in the lattice or underlying manifold that
the code resides on, and can be considered as modifications of the original code.

These topological defects can carry charge, and therefore be used to encode quantum
information. By making the defects large or well separated, the information is immune to
local errors and operations; only operations that enclose a defect or connect two defects can
access the quantum information. Topological defects can have rich interplay with each other,
and one can perform logical gates by braiding and fusing them. For example, in the surface
code, the braiding of punctures and twists can be used to realise encoded Clifford gates. These
operations can be realised by adiabatically varying the code, for instance through a sequence
of measurements that alter the defect locations [68, 69]. Such a sequence of measurements
can be viewed as a series of modifications to the code, and are commonly referred to as code
deformation.
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1.2.7 Lattice surgery

Lattice surgery is an alternate approach for surface codes to realise encoded gates [70–72]. The
idea is that multi-qubit logical Pauli measurements between different logical qubits can be
used to achieve logical Clifford gates. In many topological codes, multi-qubit logical Pauli
measurements can be performed locally and in a fault-tolerant way, and this is called lattice
surgery. In the case of surfaces codes, if arranged appropriately, logical Pauli measurements
can be implemented by measuring local Pauli operators between neighbouring surface codes.
The operators measured can be viewed as the stabilizers of a larger code and therefore have an
interpretation of modifying the underlying lattice structure (hence the name). Lattice surgery
has been extended to more general topological codes, such as color codes [73].

Gauge fixing

Gauge-fixing is a procedure where Pauli measurements and subsequent Pauli corrections are
performed to map between different stabilizer codes. Gauge fixing is particularly advantageous
when used to switch between two codes with transversal operations that combined are universal.
Best described using the language of subsystem codes [49, 51], one can interpret the measurement
as projecting certain (gauge) degrees of freedom into a fixed state (up to a potential Pauli
correction). In particular, a subsystem code is a stabilizer code where some of the logical qubits
are not used to protect information and are referred to as gauge qubits. Measurements and
operations on these gauge qubits do not disturb the encoded information, and as such we are
free to modify them as we please. By fixing them in different states we can map between
different stabilizer codes

Prominent examples of universal fault-tolerant logic by gauge fixing include the Paetznick
and Reichardt scheme based on triorthogonal codes [74], and dimensional jumping between the
3D color code (admitting transversal T ) and the 2D color code (admitting transversal Cliffords)
due to Bombin [75, 76].

Fault-tolerant MBQC

Finally, we comment on fault-tolerance protocols for MBQC. Due to the equivalence of the
circuit model and MBQC, one can in principle construct MBQC variants of the aforementioned
fault-tolerant protocols. Code deformation within the surface code is naturally expressed within
the MBQC framework, as originally proposed by Raussendorf et. al. [66]. The idea is to use
a three-dimensional cluster state, upon which measurements simulate the manipulation of
punctures within the surface code. In this setup, two of the lattice dimensions correspond
to the surface code dimensions, and the third corresponds to simulated time. Defects in the
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surface code can be introduced and braided by single qubit Z measurements, and local X
measurements used to propagate the code through time. These measurements can be used to
reconstruct stabilizer check operators to detect errors, as the resource state is constructed such
that M ∩ S ̸= ∅, where M is the group generated by single qubit measurements, and S is the
cluster state stabilizers of Eq. (1.11). The existence of these check operators is essential for
fault-tolerant computation.

In Chapter 4 we will explore this concept in much greater depth, discussing generalisations
and modifications to this approach. In particular, we will show how to construct graph states
and measurement patterns that simulate general gauge-fixing, code deformation and lattice
surgery approaches on arbitrary stabilizer (and subsystem) codes.

1.3 Topological phases of matter

One of the fundamental questions of condensed matter is to classify what phases can exist
and what are their properties. One of the most successful theories in this direction is Lan-
dau’s symmetry breaking paradigm [77]. Landau classified systems according to the types of
symmetries they break, describing ordered states in terms of local order parameters. Crystals
and ferromagnets are prominent examples of the types of systems captured by this framework.
However it was realised that certain quantum phases of matter did not fit into this paradigm,
for example spin liquids and certain quantum hall systems [78–83]. Such systems are are known
as topological phases of matter, and their existence is fascinating not only from the perspective
of fundamental physics, but for their application to quantum information too.

In this section we will outline what topological phases are and several ways of characterising
them. We emphasise that the field is still rapidly changing and definitions are in flux, as new
classes of models are being discovered.

1.3.1 Many-body spin models

With the abundance of exotic new materials being discovered, the tools used to model and
understand them have become more sophisticated. Quantum many-body models have had a
variety of success in elucidating properties of existing systems and predicting new materials.
Examples include quantum spin liquids, topological insulators, integer and fractional quantum
Hall materials, and many more [84–86, 82, 87]. We focus on many-body models where the
constituent degrees of freedom are hard-core bosons, and such models can be described by
tensor products of finite dimensional spins.

The models that we consider in this thesis describe strongly interacting, gapped, local spin
systems. The Hilbert space of such systems consist of tensor products of finite dimensional spins,
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which we will often refer to as qubits (for spin half particles) or qudits (for higher dimensional
spins). These spins can be arranged with some finite density in D-dimensional space, and most
commonly are assumed to live on the sites of a finite degree graph or lattice. The Hamiltonians
that describe these systems are given by sums over local terms, where a term is local if it is
supported on a ball of finite radius and is of bounded strength (one can consider nonlocal
interactions, provided the strength of the term decays rapidly with the support radius).

Importantly, we do not consider a single system, but a sequence of systems of increasing size,
and we are most concerned with the ground space properties after taking the thermodynamic
limit. One can coarsely distinguish between two very different types of systems depending on
whether the energy gap remains open or if it closes. Here, the energy gap, or more simply
the gap, is the difference between the ground space energy and the first excited space energy
(where any exponentially small splitting between approximately degenerate ground states is
ignored). If the gap remains uniformly bounded away from zero, we say the system is gapped,
otherwise it is gapless. We will primarily be concerned with gapped systems in this thesis.

1.3.2 Topological order

Topologically ordered systems are states that realise interesting global patterns of entanglement.
There are many ways of characterising and defining topological order. Thus far, there is no
universally agreed upon definition that is applicable to systems in all dimensions. The central
idea common to all definitions is that topologically ordered systems should be distinct from
trivial non-interacting spin systems. The term topological order can apply to either a state or
a Hamiltonian, and we will describe both situations.

Closely related is the idea of a topological phase, which is an equivalence class of topologically
ordered states sharing the same global features. Two Hamiltonians are said to belong to the
same phase, if there exists a gapped path of local Hamiltonians that connects them. Here, a
path is defined by smoothly varying parameters in the Hamiltonian. This allows us to define the
trivial phase, which is that of a non-interacting, gapped local Hamiltonian that has a product
state as its ground state. Any phase that is not the trivial phase is a topological phase, and
any Hamiltonian that does not belong to the trivial phase is said to be topologically ordered.
Quantum phase transitions occur when parameters in the system are tuned such that the gap
closes. Quantum phase transitions correspond to non-analytic behaviour in the ground space
and can result in changes in the macroscopic features of a system.

The topological stability theorems [88–90] give a precise definition for topological order. The
definitions of topological order presented in Refs. [88–90] are, roughly speaking, that a system
possesses a ground space containing global degrees of freedom that are inaccessible to local
operations. For instance, degenerate ground states of a topologically ordered system must be
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locally indistinguishable, meaning the expectation value of any local observable is the same for
any ground state. They prove that for gapped, local commuting projector models meeting their
definition, local perturbations can only modify the energy spectrum in a controlled way, and
that the gap of the system remains open, provided the local perturbation strength is sufficiently
small. Thus the essential feature of a topological phase in this sense, is that it is robust to all
local perturbations.

In terms of states, topological order is characterised by long-range entanglement that can
not be removed by local unitaries [91, 92]. A state (that is a ground state of a gapped local
Hamiltonian) is said to be topologically ordered if it cannot be approximately mapped to
a product state, using a local unitary. Here a local unitary can take many different forms,
depending on the application or framework of interest. For instance, a local unitary may be
considered a constant-depth quantum circuit, where all of the gates are local. Alternatively,
it may take the form of evolution under a gapped, local Hamiltonian with bounded strength
terms, for a bounded amount of time [92]. The fact that topological order can be characterised
by quantum circuit complexity is a remarkable discovery.

One can similarly define topological phases as equivalence classes of ground states. We say
two ground states belong to the same phase if they can be related by a local unitary (again, the
local unitary may take the form of, for example, a constant-depth quantum circuit, or evolution
under a local Hamiltonian). Here, the trivial phase is the one containing all product states, and
states within this phase are said to be short range entangled. States that do not belong to the
trivial phase are called long range entangled, or topologically ordered. The Hamiltonian-based
definition and the state-based definitions of phases are related. Gap-preserving deformations of
a Hamiltonian induce local unitary evolution in the ground space by means of (quasi-)adiabatic
evolution [93, 94, 91]. Conversely, any two states equivalent under local unitary evolutions also
have path connected parent Hamiltonians (conjugating a gapped local Hamiltonian by a local
unitary gives another gapped local Hamiltonian).

Properties of topologically ordered phases

One of the hallmarks of topologically ordered systems, and often used as the defining feature,
is the existence of anyonic excitations. Anyons are particles that can exist in 2D systems that
have exchange statistics that are neither fermionic nor bosonic, and are perhaps one of the
most fascinating features of topologically ordered systems. The presence of anyonic excitations
is closely related to the existence of topological degeneracy, where the ground space degeneracy
depends on the topology of the manifold it is defined on. The toric code provides an illustrative
example, when defined on a closed 2D surface, the ground space degeneracy is given by 4g where
g is the genus of the surface. These degenerate ground states are locally indistinguishable, in
that the expectation value of any local observable is the same. This rules out the possibility of
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having any local order parameter, and also implies that the ground space degeneracy is stable,
in that it cannot be lifted by any local perturbation, provided it is sufficiently small.

Another important way of characterising topologically ordered systems is to define topological
invariants: quantities that do not change under smooth deformations of the ground space (for
example, ground space degeneracy). An important topological invariant is the topological
entanglement entropy, first introduced by Kitaev and Preskill [95]. Groundstates of gapped
many-body systems generically obey an area law for entanglement [96, 97], meaning the von
Neumann entropy of a reduced state on some region is expected to scale in proportion to the
boundary of that region. However, for topologically ordered systems such as the toric code,
it was discovered that there can be additive corrections to this law [98]. For a 2D system,
the topological entanglement entropy (TEE) arises as a constant additive correction to the
entanglement area law, and a nonzero value signifies topological order. The TEE is closely
related to the existence of anyonic excitations, its value can be expressed in terms of the
total quantum dimension of the system (a quantity determined by the number of anyonic
excitations and their fusion channels). Thus, except in spurious cases [99–101], the topological
entanglement entropy provides a way of diagnosing nontrivial topological order.

Due to the robustness to local errors, topologically ordered systems are promising candidates
for quantum memories. In particular, the degenerate ground space of a topologically ordered
system can be used as a codespace, where local errors do not corrupt the information. Kitaev’s
toric code [11] – an example of a topologically ordered spin model – provides the most well-known
instantiation of this idea, as it is currently one of the most actively pursued error-correcting
codes in both theory and experiment.

We finally remark that defining topological phases in the presence of measurements is
an interesting problem. Measurements are somewhat pathological in that they can enable
transfigurations between states with very different amounts of entanglement. For example,
a depth-1 circuit of single qubit measurements can be used to drive between a 2D cluster
state (topologically trivial) and a toric code state (topologically nontrivial) [102]. If however,
we model the measurements as being implemented by an adiabatic evolution [103], then one
recovers the expected circuit depth that is required to transform between these states. Further
investigation in this direction is an interesting problem.

1.3.3 Symmetry-protected topological order

Symmetries are ubiquitous in nature, and it turns out that the types of topological phases
that can exist are much richer when symmetry is taken into account. A recent breakthrough
in condensed matter physics is the discovery of new types of ordered short-ranged entangled
systems that preserve certain symmetries, and such systems are said to exhibit symmetry
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protected topological (SPT) order. The first discovery of such a system was a new type of 2D
time reversal invariant band insulator, now known as a topological insulator [104–106]. Since
then, there has been many newly predicted and discovered SPT ordered models, including
in strongly many body spin models, where for example, SPT ordered systems can exist in
one-dimension [107] while intrinsically topologically ordered systems (i.e. without symmetry)
require at least two-dimensions.

In terms of Hamiltonians, a gapped many-body system is said to be SPT ordered if the
following conditions are met. Firstly, the Hamiltonian must be invariant under a set of
symmetries, and these symmetries are not spontaneously broken. Secondly, there is no gapped,
symmetry-preserving path of local Hamiltonians that connects to a trivial model. Thirdly, if
the symmetry is broken, it is possible to find a gapped path connecting to a trivial model. Here,
a trivial model is any symmetry respecting Hamiltonian whose terms are non-interacting. So
in other words, SPT ordered systems belong to the trivial phase in the absence of symmetry,
but a distinct phase in the presence of symmetry. In terms of the states, the third condition
implies that the ground state is unique and short range entangled. While the second condition
implies that this state cannot be mapped to a product state using a local unitary, if the local
unitary respects the symmetry.

Because these systems belong to the trivial phase if the symmetry is broken, they do not
exhibit any of the exotic features of (intrinsic) topologically ordered phases. Namely, they
do not possess long range entanglement, topology dependent ground space degeneracies, nor
anyonic excitations in the bulk. The exotic features of SPT ordered systems manifest when they
have boundaries; SPT ordered systems always have protected boundary modes. The meaning
of protected boundary modes depends on dimension. In 1D, it means the boundaries of a
spin chain support degeneracies that are inaccessible to local symmetry-preserving operations.
For 2D, the boundaries must always be gapless or break the symmetry (either explicitly or
spontaneously) [108, 109]. While for 3D, a new possibility opens: if the 2D boundary is gapped
and symmetry-preserving, then it must be topologically ordered [110–112].

1.3.4 Symmetry-enriched topological order

As the theory of SPT phases became better understood, research was undertaken on the
interplay between symmetry and topologically ordered systems. Systems that have unbroken
symmetries and host anyonic excitations are known as symmetry-enriched topological (SET)
phases, and it was soon realised that the symmetry can interact in highly nontrivial ways with
anyonic excitations of such systems. For example, anyons can gain fractional charge under
the symmetry, or the symmetry can even act as a permutation on the set of anyons [113–115].
These symmetries can be used to define domain walls and symmetry defects [113], that enact
nontrivial permutations on the anyons upon their crossing or braiding.
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The theory of SET phases of matter is closely related to the theory of SPT phases. For
instance, some SET phases can only be realised on the boundary of a higher dimensional SPT
phase: It was found that certain anyon permuting symmetries are anomalous [116], meaning
they cannot be physically realised in a standalone 2D system, but that the anomaly can be
‘cancelled’ by a matching 3D SPT phase [117]. Additionally, many SPT and SET phases can be
related by a duality mapping known as gauging. One can partially or fully gauge symmetries of
SPT phases to obtain SET or topologically ordered models [109, 113, 118]. Finally, the domain
walls that appear in SET phases are closely related to the theory of SPT phases [119].
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Fig. 1.3 The types of phases are characterised by whether they are long range entangled or not,
and whether they have unbroken symmetries or not. One could replace the bottom row with
whether the system hosts anyonic excitations or not.

1.3.5 Thermal stability of quantum phases

Up until now, we have considered quantum phases at zero temperature. An important problem
that is emerging in recent years is to classify what types of topological phases can exist in
equilibrium at nonzero temperature. Much of the difficulty lies in first defining topological
order for states beyond the zero temperature limit (and more generally mixed states), as many
of the Hallmarks of topological order are specific to the ground space.

Broadly speaking, there have been three main approaches to defining topological order
at nonzero temperature. The first is to employ order parameters such as the topological
entanglement entropy (TEE) or topological mutual information to probe nontriviality of
thermal states [120–122]. Secondly, circuit complexity has been used as a metric of nontriviality.
One defines a thermal state as being topologically nontrivial if it requires a large-depth circuit
to prepare it from a classical ensemble [123]. The third type is to define a topologically ordered
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system as thermally stable if it has a long lifetime (and therefore long thermalisation time)
when viewed as a quantum memory [124]. Essentially, this last approach states that a phase is
thermally stable if it is self-correcting.

Many of these definitions have been shown to agree in many cases. For example, under all
definitions, 2D commuting models are thermally trivial, while the 4D toric code is topologically
ordered at nonzero temperature under all definitions [47, 124, 123, 120]. However, not all
definitions are the same. The 3D toric code is circuit trivial at nonzero temperature [123], has a
constant lifetime for quantum information (but a macroscopic lifetime for classical information),
however it retains a nonvanishing TEE for low enough temperatures [121]. Finding models that
maintain topological order in 3D or less is an important problem, and such examples may lead
to the discovery of a physically realistic self-correcting quantum memory.

1.4 Computational phases of matter

An exciting paradigm in recent years is the concept of a computational phase of matter. One
can ask the question: what are the properties of a Hamiltonian that allow for universality
of measurement-based quantum computation when cooled to its ground state? The question
of whether one can have a universal phase of matter, where all states within the phase are
universal resources for MBQC was first proposed by Doherty and Bartlett [125]. The hope
was that phases of matter could exist where the computational power does not depend on
the precise state within the phase, but rather is a property of the phase itself, insensitive to
microscopic imperfections and perturbations.

A fascinating discovery is that such phases can exist. That is, there are phases of matter
where one can perform computation without an exact description of the underlying resource
state, relying only more coarse features. A prevailing view in recent years is that SPT
order is a computational resource for MBQC, and that SPT phases are natural candidates
for computational phases. This paradigm was first shown for a variety of 1D SPT ordered
models [126–128], where the classification of 1D phases is heavily utilized [129–131]. However,
1D models are incapable of universal quantum computation, and instead can only be used
as computational wires, capable only of single qubit (qudit) operations. Later it was proven
that neighbourhoods of an SPT phase around the square lattice cluster point can be used for
universal quantum computation [132], along with numerical simulations demonstrating that
certain SPT phase boundaries coincide with computational universality [34, 133]. Recently it
was proved that the entire phase of the square lattice cluster model is universal, if rigid-line like
symmetries are imposed [134]. Additionally, cluster models with rigid fractal symmetries [135]
have also shown to support universal phases.
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While several examples of such phases now exist, questions of general classification schemes,
whether rigid subsystem symmetries are necessary (as opposed to global onsite symmetries),
and whether they can be made fault-tolerant are now becoming important. One question of
interest, that we will approach more precisely in the next chapter, is whether one can extend
computational phases of matter to nonzero temperature. A first pressing question is how to
define SPT order at nonzero temperature.

1.5 Organisation of the thesis

The goal of this thesis is to study the utility of symmetry-protected topological phases in the
design of a quantum computer. The remainder of the thesis consists of three chapters and a
conclusion. These chapters are organised as follows:

Chapter 2: Symmetry-protected topological order at nonzero temperature

In this chapter, we ask the question of whether symmetry-protected topological phases can
persist at nonzero temperature. At zero temperature, it has previously been shown that such
phases are enabling resources for universal MBQC. This chapter is concerned with moving
beyond the zero temperature limit and answering the question of whether these quantum phases
and their computational properties are robust at nonzero temperature.

We begin this chapter by introducing the setting of SPT phases we are interested in. We
then define carefully what it means for a model to have SPT order at nonzero temperature
using an appropriate notion of circuit complexity for Gibbs ensembles. We then prove that all
of the currently known SPT phases with onsite symmetries (that are represented by commuting
projector models), namely the group cohomology models, are SPT-trivial at any nonzero
temperature. In other words, the SPT order in these models is present only at zero temperature
(in the exact ground space).

Moving beyond onsite symmetries, we show that thermal SPT phases can exist at nonzero
temperature, using the three-dimensional cluster state model of Raussendorf, Bravyi and
Harrington [136]. We introduce this model and the symmetries it possesses – a particular
kind of symmetry known as a 1-form symmetry. We demonstrate that this model is SPT
ordered at nonzero temperature using two arguments: (i) by gauging the model to produce a
nontrivial domain wall in the four-dimensional toric code, and (ii) by constructing nonlocal
order parameters which dinstinguish the model from the trivial phase. We then discuss the
operational interpretation of these order parameters as quantifying the entanglement that can
be localized between distant regions in the thermal state through measurements in the bulk.
This provides a direct link between thermal SPT phases and fault-tolerant measurement-based
quantum computation.
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Chapter 3: Symmetry-protected self-correcting quantum memories

This chapter concerns the feasibility of self-correction in models that have symmetries present.
We ask whether self-correction is possible in three dimensional spin models protected by
symmetry. We propose symmetry-protected topological phases as candidates for self-correcting
quantum memories. This class of models are natural to consider for self-correcting quantum
memories due to their ‘protected’ boundary modes, and the fact that they can form thermally
stable phases of matter in 3D. We find that certain 3D models, protected by 1-form symmetries,
are self-correcting. Throughout this chapter we focus on the relationship between thermal
stability of bulk SPT order and self-correction, arguing that the two notions are fundamentally
linked within the class of models we examine.

We begin this chapter with a review of self-correction and the relevant energetic quantities
that determine the memory time. We then formalise what it means for a model to be self-
correcting in the presence of symmetry; noting that one can always trivially obtain self-correction
by imposing arbitrarily strong symmetries, we first formalise the conditions that must be satisfied
for a model to meet the conditions of a nontrivial symmetry-protected self-correcting quantum
memory. Following this, we then argue that the more conventional SPT models that are
protected by onsite (0-form) symmetries cannot be self-correcting in 3D. We then present two
models, one based on a three-dimensional cluster model, the other based on the gauge-color
code, that are self-correcting under 1-form symmetries. The self correcting properties of these
models arise from a bulk-boundary correspondence for SPT phases at nonzero temperature. In
particular, this correspondence places a polynomial lower bound to the circuit depth required to
prepare approximate Gibbs states for these systems. We conclude this chapter by investigating
under what conditions 1-form symmetries can become emergent.

Chapter 4: Universal fault-tolerant measurement-based quantum compu-
tation

In this chapter we focus on the model of measurement-based quantum computation, and develop
new techniques to achieve fault-tolerant quantum computation in this setting. This chapter
is concerned with developing a framework for fault-tolerant MBQC – based on single qubit
measurements on a cluster state – to employ protocols designed for the more conventional
circuit-based model of quantum computation. The framework provides a wealth of new protocols
for fault-tolerant quantum computation within the measurement-based framework, offering more
resource efficient and noise-tolerant alternatives to conventional approaches. Additionally, we
show how MBQC can be understood as a specific case of gauge fixing of a particular subsystem
code.
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We begin this chapter by reviewing measurement-based quantum computation on cluster
states. After recalling how measurements on a 1D cluster state can propagate a qubit through
time, we build up the framework by showing how to construct a foliated channel – a system
capable of propagating an encoded qubit (of a quantum error-correcting code) through time.
We then show how logical information can be manipulated by concatenating different foliated
channels. We illustrate the utility of this framework by demonstrating how to simulate the
manipulation of certain symmetry-defects in the surface code – called twist defects – with
single qubit measurements on a three-dimensional cluster state. These twist defects behave
like quasiparticles known as Majorana fermions, and schemes based on their braiding and
fusion have been shown to be the among the best approaches to realise low-overhead quantum
computation in the circuit-based model.

While the focus of this Chapter is on quantum computation (over topological phases),
we emphasise that the models we develop can be viewed as examples of SPT phases with
higher-form symmetries. In particular, the models can be seen as generalisations of the cluster
model of Raussendorf, Bravyi and Harrington discussed in Chapter 2, where fault-tolerance
arises from employing error correction to effectively enforce these higher-form symmetries. Using
the techniques in Chapter 2 one can demonstrate SPT-nontriviality at nonzero temperature for
many of these models. We also remark that the theory of domain walls and symmetry defects
is intimately related to the theory of SPT phases (see for example Ref. [119] and Chapter 2,
Sec. 2.3.2).
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Abstract
We address the question of whether symmetry-protected topological (SPT) order can
persist at nonzero temperature, with a focus on understanding the thermal stability of
several models studied in the theory of quantum computation. We present three results
in this direction. First, we prove that nontrivial SPT-order protected by a global onsite
symmetry cannot persist at nonzero temperature, demonstrating that several quantum
computational structures protected by such onsite symmetries are not thermally stable.
Second, we prove that the 3D cluster state model used in the formulation of topological
measurement-based quantum computation possesses a nontrivial SPT-ordered thermal
phase when protected by a generalized (1-form) symmetry. The SPT-order in this model
is detected by long-range localizable entanglement in the thermal state, which compares
with related results characterizing SPT-order at zero temperature in spin chains using
localizable entanglement as an order parameter. Our third result is to demonstrate that
the high error tolerance of this 3D cluster state model for quantum computation, even
without a protecting symmetry, can be understood as an application of quantum error
correction to effectively enforce a 1-form symmetry.

2.1 Introduction

Topological phases are not only fascinating from the perspective of fundamental physics but
are also well-suited for the design of quantum computers, for two essential reasons. First, such
phases possess topology-dependent ground-state degeneracies, into which quantum information
can be encoded and which can manifest themselves through boundary degrees of freedom.
That is, qubits arranged on a spin lattice in a topologically-ordered phase are an instance of a
quantum error correcting code: information is encoded in nonlocal degrees of freedom, offering
robustness to local errors that can be detected through the measurement of local syndromes.
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Second, these desirable properties are robust against perturbations that act locally on the
system [88], making them ideal for quantum information processing with faulty devices without
the requirement of precise control over all microscopic degrees of freedom.

Although much of the existing work on the study of topological phases is devoted to
studying ground state (zero temperature) properties, identifying systems that can maintain
their quantum coherence in equilibrium at some nonzero temperature would be highly desirable
for quantum computing applications. Most of the well-studied exactly-solvable models in two
or three dimensions (such as Kitaev’s toric code) do not maintain their topological order except
at zero temperature [123, 137]. The full range of phenomena of topological models in three or
more dimensions has yet to be fully explored, though, so there is plenty of room for optimism.

A promising new direction in recent years is to add a symmetry to the mix. Symmetries
have historically proven to be a powerful tool for understanding the structure and thermal
stability of many-body phases of matter, for example, Landau’s paradigm of symmetry breaking,
the Mermin-Wagner theorem [138], and Elitzur’s theorem[139]. More recently, symmetries have
been used to characterise the order in systems away from equilibrium, such as periodically
driven (Floquet) systems, where the thermalization time can be long [140, 141]. Even at
zero temperature, a rich set of ordered phases can appear even in trivial models when a
symmetry is enforced; such symmetry-protected topological (SPT) phases are described by
short-range entangled states that cannot be adiabatically connected to a trivial product state
while preserving the symmetry [129–131]. Like topological phases, these SPT phases can
possess ground-state degeneracies manifested through boundary degrees of freedom, and these
degeneracies are robust against local symmetry-respecting perturbations. With symmetry, new
avenues open up. For example, SPT-nontrivial phases can be identified even in spin chains with
only one spatial dimension; nontrivial topological phases require at least 2D.

Nontrivial SPT phases are not likely to be useful for defining good quantum codes, mainly
because this would require a very strong assumption about the error model (i.e., that it respects
the symmetry). Nonetheless, SPT phases have found several applications in our understanding
of other features of quantum computation. First, the model for measurement-based quantum
computation (MBQC) [26] can be understood in terms of performing computations on frac-
tionalized edge modes associated with the boundaries of symmetry-protected phases of spin
chains [142, 126, 143]; a very precise relationship between the computational properties of a
spin chain and its SPT-order was developed by Else et al. [127, 132] and Miller et al. [144].
Second, a direct relationship between the set of fault-tolerant gates for a topological code,
the classification of gapped boundaries of this code, and SPT phases for which these gapped
boundaries serve as ground states has been shown [119, 145]. This relationship is useful for
the construction of fault-tolerant non-Clifford gates and may have applications in magic state
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distillation. These results hint at a new relationship between such gapped domain walls and
SPT-ordered phases on the boundary, in particular in higher dimensions.

Very little is known about the thermal stability of SPT-ordered systems, and the possibility
is left open that some of the robust properties of SPT-ordered phases for quantum computing
may survive at nonzero temperature when the local symmetry is enforced. The presence of
SPT-order in thermal systems is deeply connected to survival of the aforementioned gapped
boundaries in a topological code and their associated fault-tolerant non-Clifford gates at nonzero
temperature. The survival of SPT-order for systems excited out of the ground state has been
investigated in the context of many-body localization [146, 147].

Our first result is a proof that a nontrivial SPT phase protected by a global onsite (zero-form)
symmetry cannot exist for any nonzero temperature. This proof requires us to formulate a
definition of nontrivial SPT-order for thermal states, which we do through an appropriate
definition of a symmetric Gibbs state together with a definition of nontrivial SPT-order for
mixed states based on circuit complexity following a similar approach by Hastings for topological
order [123]. We prove this result for the broad class of models described by group cohomology
[111].

As SPT-order has been shown to be an enabling feature of measurement-based quantum
computation, this no-go result would suggest that thermal states at nonzero temperature cannot
be used as resource states for such schemes. Surprisingly, though, we know this to be false,
through the existence of several counterexamples. The topological cluster state scheme of
Raussendorf et al. [66] is the basis for essentially all currently-pursued high-error-threshold
architectures for quantum computing (its circuit-model implementation gives the well-studied
‘surface code’ architecture [148]). Using a cluster state Hamiltonian in three dimensions, the
results of Ref. [136] show that the thermal state of this model is a resource for quantum
computation below some critical temperature. This is despite the fact that this cluster model
Hamiltonian does not undergo any thermodynamic phase transition, even when protected by
an onsite symmetry, and so the physical origin of its thermal stability remains elusive. Other
3D Hamiltonians have been proposed that are universal for MBQC at nonzero temperature
[149, 40, 150], but there is currently no guiding principle explaining the thermal robustness of
MBQC.

As our second result, we present and analyse the 3D cluster state model from the perspective
of SPT-order, and show that this model possesses a nontrivial SPT phase at nonzero temperature
when protected by a 1-form symmetry. Higher-form symmetries are a natural generalization
of the 0-form global symmetry for which the group action is onsite. A q-form symmetry can
be imposed by an operator acting on a closed codimension-q manifold M. When q > 0, the
symmetry imposes much stronger constraints than the onsite, q = 0 case. Several recent
works have investigated SPT phases with higher-form symmetries [151–156]. By enforcing
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a 1-form symmetry on the 3D cluster state model, we prove that SPT-ordering in 1-form
symmetric models can be maintained at nonzero temperature. We explicitly construct types
of nonlocal order parameters that characterize this SPT-ordering in the thermal state. These
order parameters consist of pairs of membranes, and when equipped with local error-correcting
operations on the boundaries serve as a witness of the long-range localizable entanglement that
is present in the thermal state.

Our third result is to provide an operational interpretation of this SPT-ordering under the
1-form symmetry, using the concept of localizable entanglement in the thermal state. This
interpretation provides an explanation of the thermal stability of the topological cluster state
model for quantum computation, even for the case where symmetries are not enforced. In one
dimension, the SPT-ordering at zero temperature of the cluster state model protected by a
global 0-form Z2 × Z2 symmetry is characterised by the ability to localize entanglement in
the ground state between the fractionalized edge modes via symmetry-adapted measurements
in the bulk [127, 132]. By analogy, in the 3D cluster state model, we demonstrate that our
order parameter takes near-maximal values for the nontrivial SPT phase at low temperature,
which guarantees robustness of the localizable entanglement between two boundary surface
codes of this model via symmetry-adapted measurements in the bulk. In addition to localizing
entanglement, the measurements provide complete information about the 1-form symmetry
operators. Therefore, even when the 1-form symmetry is not enforced, measurement of these
symmetry operators allows for error correction of the resulting thermal state to the corresponding
thermal SPT-ordered state for which entanglement is ensured. Therefore, the scheme can offer
thermal stability even without enforcing the symmetry.

The Chapter is organised as follows. In section 2.2 we formulate and define the types of
models and relevant notions of SPT-order for thermal states. We then provide a proof that
SPT-order protected by an onsite symmetry cannot exist at nonzero temperature. We prove
this first for a well known SPT model in 2D, and then for the more general group cohomology
models. In section 2.3 we show that the 3D cluster model possesses SPT-order at nonzero
temperature, protected by a 1-form symmetry. We show this firstly through an argument based
on gauging and secondly through a nonlocal order parameter. In section 2.4 we discuss the
nontrivial SPT protected by 1-form symmetry in the context of measurement-based quantum
computation. We conclude with a discussion and outlook in section 2.5.

2.2 Thermal SPT-order

In this section we introduce the types of models we will be treating and the relevant definitions
of SPT-order. We then develop a toolset to analyse SPT-order in a thermal setting, making
use of the well-known framework of simulating thermalization of quantum many-body systems



2.2 Thermal SPT-order | 29

based on the Davies map [157, 158]. Our main result in this section is a proof of the instability
of SPT-order at nonzero temperature for models in arbitrary dimension protected by an onsite
symmetry.

2.2.1 The setting

Consider a discrete lattice Λ embedded in a D-dimensional manifold MD. Spins with local
Hilbert space Hi are placed at each site i ∈ Λ (‘sites’ can be chosen to be at vertices, edges,
etc., of the lattice), with total Hilbert space H = ⊗i∈ΛHi. The types of models that we are
considering can be represented by local, commuting projector Hamiltonians H =

∑
X hX , where

each local term hX is supported on a subset X ⊆ Λ with diam(X) ≤ const. We assume
that the system has some symmetry described by a group G, with unitary representation S.
The symmetries we consider can be onsite symmetries, as well as more general higher-form
symmetries, which we now define. An onsite symmetry takes the form

S(g) =
⊗
i∈Λ

ui(g), (2.1)

where ui(g) is the representation of G on a single site i ∈ Λ. A q-form symmetry (for some
q ∈ {0, 1, . . . , D − 1}) consists of operators SM(g), supported on codimension-q submanifolds
M in MD, with g ∈ G [151–156]. In this language, an onsite symmetry may also be referred
to as a 0-form symmetry. In such a theory, charged excitations are q-dimensional objects and
symmetry operators impose conservation laws on higher-dimensional charged objects.

A useful way to classify phases of matter at zero temperature is to use circuit complexity [92].
A quantum circuit may be represented as

Ucirc =
d∏
j=1

Dj where Dj = u
(j)
1 ⊗ u

(j)
2 ⊗ . . .⊗ u

(j)
kj
, (2.2)

where each geometrically local gate u(j)
k is supported on a region of radius at most r, and d is

the number of layers. The depth of such a circuit is defined to be the product rd, and a circuit
is known as low-depth if rd is constant in the system size1. We say a ground state of a gapped
Hamiltonian H is short-range entangled, if it can be transformed into a product state using a
low-depth circuit [92]. In the context of SPT phases, the local gates u(j)

k of a quantum circuit
are constrained to commute with the symmetry S(g).

1Note that it is common to refer to r and d as the range and the depth of the circuit Ucirc, respectively, but
we do not make this distinction.
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Namely, SPT-order at zero temperature is defined in the following way. Let |ψ⟩ be the
unique ground state of a gapped Hamiltonian H on a closed (without boundary) lattice, with
symmetry G. Then |ψ⟩ belongs to a nontrivial SPT phase if:

1. it is short-range entangled,

2. any low-depth circuit connecting |ψ⟩ to a product state has gates that break the symmetry.

We emphasize that while there may exist a low-depth symmetric unitary map that connects
a state with nontrivial SPT-order to a product state, the local gates composing it cannot be
symmetric. SPT models have trivial bulk properties in the sense that they have no exotic
excitations or degeneracies dependent on the topology of the underlying manifold. Despite this
absence, interesting protected surface states are known to appear at the boundary of an SPT
phase. For example, in 1D, nontrivial SPT chains can exhibit fractionalized edge modes at their
endpoints, such as with spin-1 antiferromagnets in the Haldane phase or Majorana nanowires.
In general, in higher dimensions, it is believed that the 1D surface of a 2D SPT must be gapless
or break the symmetry [108, 109], while in three or more dimensions it is believed that the
surface must be gapless, break the symmetry or be topologically ordered [110, 159].

A large and well-known class of SPT models are the group cohomology models protected
by onsite symmetries [111]. In terms of circuit depth, using gates of constant range, these
wavefunctions require a circuit of depth O(N) to symmetrically disentangle, where N is the
number of spins (for example, the one-dimensional case is proven in [160]). While this class
captures a large number of SPT phases, there are known models beyond group cohomology,
including 3D models that are protected by time reversal symmetry [161–164]. More recently,
looking beyond onsite symmetries has led to generalised SPT models protected by higher-form
symmetries, both in the continuum and on the lattice [153, 155, 156].

2.2.2 Defining SPT-order for thermal states

As defined above, SPT-order is manifestly a pattern of entanglement in the gapped ground state
of a Hamiltonian. In this section we extend this definition to systems at nonzero temperature
after briefly reviewing thermalization via the Davies map [157, 158]. We will argue that in the
presence of symmetry, a natural notion of a thermal state at temperature T is the symmetric
Gibbs ensemble

ρ(β) = lim
λ→∞

ρλ(β), (2.3)

where β = T−1, and ρλ(β) is the (usual) Gibbs ensemble of a modified Hamiltonian H(λ)

ρλ(β) = Z(λ)−1e−βH(λ), H(λ) = H − λ
∑
g∈G

S(g), (2.4)
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where Z(λ) = Tre−βH(λ). Note that in the case of a higher-form symmetry, the sum in Eq.
(2.4) is over all symmetry operators. The symmetric ensemble arises naturally in two different
contexts: (i) the fixed point of a system thermalizing in the presence of a symmetry, (ii) the
post error corrected state of a thermal ensemble. We will overview the first point (i) in this
section, before returning to error correction in detail in section 2.4.2.

To motivate this notion of a symmetric thermal state, consider thermalization as modelled
by weakly coupling the system to a bosonic bath

H ′ = HS ⊗ IB + IS ⊗HB +Hint, (2.5)

where HS is the system Hamiltonian describing the SPT phase, HB is the bath Hamiltonian,
and Hint =

∑
α sα ⊗ bα is the interaction Hamiltonian comprised of the system and bath

operators sα and bα respectively. The interaction Hamiltonian is constrained by the symmetry
in that it must commute with the symmetry on the joint system U(g) = S(g) ⊗ IB. Note
that we require no other symmetry of the bath, other than that the couplings respect the
system symmetry S(g). (If instead we required U(g) = S(g) ⊗ S(g)B, for a suitable extension
of the symmetry S(g)B to the bath, then we can always trivialise the SPT system due to the
invertibility of SPT phases. We will explain this subtle point following the definition below.)

In order to realise the usual Gibbs ensemble as the fixed point of the reduced system
dynamics, we require the dynamics to be ergodic. This is usually achieved by choosing bath
couplings that are as simple as possible while ensuring the system operators address all energy
levels of the system Hamiltonian HS . The necessary and sufficient condition for ergodicity
is that no nontrivial operators commute with all of the Hamiltonian and system operators
[165, 166]. In the presence of symmetry, such a choice in general will not be possible, since the
system operators sα must respect the symmetry. Therefore ergodicity can only be achieved on
a given sector, and for the sake of concreteness we focus our attention on the symmetric sector
(the +1-eigenspace of U(g)).

We assume that the coupling is chosen such that the only operators that commute with HS

and all of the system operators sα are symmetry operators, and additionally that the initial
state belongs to the symmetric sector. Then, following the Davies prescription, the unique
fixed point of the dynamics generated by the above interaction will be the symmetric Gibbs
ensemble of Eq. (2.3). We will return to the assumption of the initial state belonging to the
symmetric sector in section 2.4, specifically in the context of error correction.

Given this ensemble, let us now define what it means to have SPT-order at nonzero
temperature by modifying a definition due to Hastings [123]. The notion of a trivial state
is replaced by a classical symmetric ensemble, which is the symmetric Gibbs ensemble of a
classical Hamiltonian Hcl. Here a classical Hamiltonian refers to a Hamiltonian expressible by
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a sum of terms diagonal in a local product basis. To define SPT at nonzero temperature, we
follow Hastings [123] and ask what is the circuit depth required to approximate the symmetric
Gibbs ensemble, beginning with a classical Gibbs ensemble.

Definition 1. Let ρ be the symmetric Gibbs state of a Hamiltonian H that has symmetry
S(g), g ∈ G and a SRE, unique ground state. We say ρ is (r, ϵ) SPT-trivial if there exists:

1. An enlarged Hilbert space H′ = H ⊗ K.

2. A classical, nondegenerate Hamiltonian Hcl defined on H′ with symmetry

U(g) = S(g) ⊗ IK. (2.6)

3. A circuit U with depth r acting on the enlarged space H′, composed of symmetric gates,
such that ∥∥∥ρ− TrK

(
UρclU†

)∥∥∥
1
< ϵ, (2.7)

where ρcl is the symmetric Gibbs ensemble of Hcl, and ∥·∥1 denotes the trace norm.

We make a few remarks on this definition. Firstly, we require Hcl in the definition to be
non-degenerate to exclude spontaneous symmetry breaking, since the symmetric Gibbs state of
such a system can be highly nontrivial in terms of circuit depth. Secondly, we make the choice
of symmetry in Eq. (2.6) to avoid the following situation. Suppose the choice of symmetry
was given by U(g) = S(g) ⊗ S(g). For any SPT-ordered state |ψ⟩ with symmetry S(g), there
exists a state

∣∣ψ−1〉 with symmetry S(g) such that |ψ⟩ ⊗
∣∣ψ−1〉 can be prepared from a product

state by a constant-depth circuit that is symmetric under U(g). This property is referred to as
the invertibility of SPT phases [167]. After tracing out the second subsystem, this choice of
symmetry would imply that |ψ⟩ is (r, 0) trivial (even at T = 0) for some constant r.

Operationally, the above definition asserts than an SPT-trivial state is one that can be
prepared from a classical ensemble using a low-depth symmetric quantum circuit (potentially
with ancillas). An important consequence of this definition is that if a (symmetric) Gibbs
ensemble can be expressed (up to error ϵ) as a mixture of (r, 0) SPT-trivial states, then it is an
(r, ϵ) SPT-trivial state [123]. Indeed our strategy in the following section will be to show that
the symmetric Gibbs ensemble of SPTs protected by onsite symmetries can be approximated
by a convex combination of states, each of which is symmetrically low-depth equivalent to a
product state.

2.2.3 Onsite symmetric models have no SPT-order at nonzero temperature

We now show that any SPT-ordered Hamiltonian H with an onsite symmetry is trivial at
any T > 0 according to the above definition. For concreteness, we focus on a particular 2D
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example with Z2 onsite symmetry and defer the more general result to the next subsection.
The proof proceeds by first constructing a new Hamiltonian H ′ from H whose Gibbs ensemble
approximates that of H and is obtained by removing terms from H. By dividing the lattice
into disjoint regions of small size (i.e. logarithmic in the system size), the missing terms present
within each region allow us to define a circuit with small-depth that transforms H ′ into a
trivial Hamiltonian describing a paramagnet. We find that many tools used to prove that
two-dimensional, commuting projector Hamiltonians have trivial (intrinsic) topological order at
nonzero temperature (in the absence of symmetry) in Ref. [123] apply in this context.

Our proof method has the following physical interpretation. In the SPT-ordered Hamiltonian
H, excitations are point-like objects and the Z2 onsite symmetry imposes a conservation law on
H that the number of point-like excitations must be even. By removing terms in H ′, we create
sinks where single point-like excitations can be created and destroyed, circumventing the above
conservation law. Using these sinks, one can construct a symmetric disentangler out of operators
that move point-like excitations into the sinks. This construction leaves open the possibility of
thermal SPT-order in the presence of higher-form symmetries, as the removed terms do not act
as sinks for the higher-dimensional excitations of these models, as we investigate in the next
section.

The example 2D model we consider was first discussed in [109] (although it appeared,
previously in a different guise in [108]), and will capture the key ingredients used to prove the
general case. Consider a triangular lattice whose set of vertices, edges and faces is labelled by
∆0, ∆1, and ∆2 respectively. On each vertex v ∈ ∆0 resides a qubit as in Fig. 2.1a, and let
N = |∆0| be the number of qubits. Consider first the trivial paramagnet

H0 = −
∑
v∈∆0

Xv, (2.8)

where Xv is the Pauli X operator acting on the qubit at vertex v. The unique, gapped ground
state of this model is the trivial product state |ψ0⟩ = |+⟩⊗N , where |+⟩ = 1√

2(|0⟩ + |1⟩). The
Hamiltonian, and thus the unique ground state, possess an onsite Z2 symmetry generated by

S =
⊗
v∈∆0

Xv. (2.9)

We would like to construct a model with the same symmetry, but belonging to a nontrivial SPT
phase. We first define the controlled-Z unitary acting on two qubits sharing an edge e = (v1, v2)
to be

CZ(v1,v2) = exp
(
iπ

4 (I − Zv1)(I − Zv2)
)
. (2.10)
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Fig. 2.1 (Color online) (a) The triangular lattice and one of the terms hv belonging to H1. The
1-link of the vertex v is the set of blue (thick line) edges. (b) A valid configuration has sinks
(large dots) for each square region in Pl, where a sink is a vertex v with kv = 0.

The nontrivial model can be constructed from these operators as a sum of local terms

H1 = −
∑
v∈∆0

hv, hv = Xv

∏
e∈Link1(v)

CZe, (2.11)

where the Link1(v) consists of the neighbouring edges of v that do not contain v, as depicted
by thick blue edges in Fig. 2.1a. We note that H1 is slightly different to the model presented in
[109], but they are equivalent up to a constant-depth quantum circuit comprised of symmetric
gates. Each of the terms hv are commuting and satisfy h2

v = I, and therefore have eigenvalues
±1. One can confirm that this model shares the same Z2 symmetry as the trivial paramagnetic
model H0.

The unique ground state |ψ1⟩ is the +1-eigenstate of each of the terms hv. Additionally, one
can show that this model is short-range entangled, as it can be connected to the trivial ground
state via the following unitary U1 =

∏
t∈∆2 C

⊗2Zt, where C⊗2Zt the 3-qubit controlled-Z
unitary acting on qubits in a triangle t = (v1, v2, v3) as:

C⊗2Zt = exp
(
iπ

8 (I − Zv1)(I − Zv2)(I − Zv3)
)
. (2.12)

The unitary U1 given by the whole circuit commutes with the symmetry, [U1, S] = 0, provided
the lattice has no boundary. But importantly, each gate in the circuit is not symmetric on its
own, [C⊗2Zt, S] ̸= 0. It is shown in [109] that H1 cannot be adiabatically connected to the
trivial paramagnet H0 without closing the gap or breaking the symmetry, so it is impossible to
approximate U1 by a constant-depth circuit comprised of symmetric gates. Therefore, H1 has
nontrivial SPT-order at zero temperature.
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Now let us show that the model H1 becomes SPT-trivial at nonzero temperature. Similarly
to Refs. [123, 168], we associate a binary value kv ∈ {0, 1} to each site v ∈ ∆0 to indicate the
presence or absence of a term in an imperfect Hamiltonian:

H(k) = −
∑
v∈∆0

kvhv, (2.13)

where k ∈ {0, 1}N . For a given imperfect Hamiltonian H(k) we say a site v is a sink if kv = 0,
corresponding to a missing term. We now wish to express the Gibbs ensemble in terms of a
convex sum of the ground spaces of imperfect Hamiltonians. Let ρ(k) be the uniform mixture of
symmetric ground states of H(k). Then following [168], we define the free symmetric ensemble
at β = T−1 as

ρf (β) =
∑

k∈{0,1}N

Pr(k)ρ(k), (2.14)

where Pr(k) is a probability distribution

Pr(k) = (1 − pβ)w(k)p
N−w(k)
β , pβ = 2

e2β + 1 , (2.15)

and w(k) is the Hamming weight of the vector k (the number of nonzero entries).

Lemma 1. Let ρ(β) be the symmetric Gibbs ensemble of H1 with T > 0, then

∥ρ(β) − ρf (β)∥1 ≤ O(e−ηN ) (2.16)

for some constant η > 0 (independent of system size).

Proof. The proof is similar to that in Ref. [168]. Consider first the usual Gibbs ensemble ρ′(β)
of H1 (without enforcing the symmetry). Because H1 is a sum of commuting terms, we have

ρ′(β) = 1
Z ′

∏
v∈∆0

eβhv . (2.17)

Since each term satisfies h2
v = I, we have exp(βhv) = cosh(β)I + sinh(β)hv. Introducing a new

normalization factor Z̃ = (eβ + e−β)NZ ′ we have

ρ′(β) = 1
Z̃

∏
v∈∆0

(
(1 − p)I + hv

2 + p
I

2

)
, (2.18)
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where we have set p = 2/(e2β + 1). Expanding this out and introducing a dummy binary
variable kv for each vertex v ∈ ∆0, we have

ρ′(β) = 1
Z̃

∑
k∈{0,1}N

 ∏
v∈∆0

(1 − p)kvp1−kv

(
I + kvhv

2

) , (2.19)

which we can rewrite as
ρ′(β) = 1

Z̃
∑

k∈{0,1}N

Pr(k)ρ(k), (2.20)

where
ρ(k) = 1

2N
∏
v∈∆0

(I + kvhv) , (2.21)

and Pr(k) is given by Eq. (2.15). Note that ρ(k) is a uniform mixture of all ground states of
the imperfect Hamiltonian H(k). Let us confirm that the normalization of ρ(k) is correct. For
any subset M ⊆ ∆0, we have

Tr
( ∏
v∈M

hv

)
= Tr

( ∏
v∈M

U1XvU
†
1

)
= Tr

( ∏
v∈M

Xv

)
= 0, (2.22)

and therefore Tr (ρ(k)) = 1. Now notice that

∑
k∈{0,1}N

Pr(k) =
N∑
l=0

(
N

l

)
(1 − p)lpN−l = 1, (2.23)

and therefore Z̃ = 1, which means we have

ρ′(β) =
∑

k∈{0,1}N

Pr(k)ρ(k). (2.24)

Having considered the usual Gibbs ensemble without symmetries, we now consider the Gibbs
ensemble with the symmetry enforced. Let P = (I + S)/2 be the projector onto the +1-
eigenspace of S (recall, S is the symmetry operator defined in Eq. (2.9)). The symmetric Gibbs
ensemble ρ(β) can be obtained by projecting ρ′(β) into the symmetric sector and renormalizing

ρ(β) = Pρ′(β)P
Tr(Pρ′(β)P ) . (2.25)

For k1 := (1, . . . , 1), the Hamiltonian H(k1) has a unique and symmetric ground state and
therefore ρ(k1) = ρ(k1). For k ̸= k1, the imperfect Hamiltonian H(k) has a 2N−w(k)-dimensional
ground space, which is partitioned equally into the +1- and −1-eigenspaces of S. Therefore we
have

Tr(Pρ(k)P ) = 1
2 Tr(ρ(k)) = 1

2 ∀k ̸= k1. (2.26)
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The symmetric ground space projectors of the imperfect Hamiltonian H(k) can be written

ρ(k) =

ρ(k) if k = k1,

2Pρ(k)P otherwise
(2.27)

Let us evaluate the normalization factor Z = Tr(Pρ′(β)P ). We obtain

Z =
∑

k∈{0,1}N

Pr(k) Tr(Pρ(k)P ) =
∑

k ̸=k1

1
2Pr(k) + Pr(k1) = 1

2(1 + Pr(k1)). (2.28)

In particular, notice that Z ∈ [1
2 , 1]. Then the trace distance between ρf (β) and ρ(β) is given

by

∥ρ(β) − ρf (β)∥1 =

∥∥∥∥∥∥Z−1 ∑
k∈{0,1}N

Pr(k)Pρ(k)P −
∑

k∈{0,1}N

Pr(k)ρ(k)

∥∥∥∥∥∥
1

(2.29)

Using Eq. (2.27), and the triangle inequality, we get

∥ρ(β) − ρf (β)∥1 ≤
(
2 − Z−1

) ∑
k ̸=k1

Pr(k) ∥Pρ(k)P∥1 + (1 − Z−1)Pr(k1) ∥ρ(k1)∥1 (2.30)

=
(
2 − Z−1

) ∑
k ̸=k1

Pr(k)1
2 + (Z−1 − 1)Pr(k1), (2.31)

where we have used Eq. (2.26) in the second line. Then making use of Eqs. (2.23) and (2.28),
we get

∥ρ(β) − ρf (β)∥1 ≤ 1
2
(
2 − Z−1

)
(1 − Pr(k1)) +

(
Z−1 − 1

)
Pr(k1) (2.32)

≤ 2 Pr(k1)
1 + Pr(k1) . (2.33)

Since Pr(k1) = (1 − pβ)N and pβ ∈ (0, 1] for T > 0, we therefore have

∥ρ(β) − ρf (β)∥1 ≤ 2e−N log(1−pβ). (2.34)

Setting η = − log(1 − pβ) > 0, the claim follows.

We now divide up the lattice into a square grid Pl as in Fig. 2.1b, with each square region
having side-length l = (c log(L))

1
2 for some constant c. We will choose c to be sufficiently large

to ensure that, with high probability, there will be at least one sink within each square region.
A configuration k is called l-valid if there is a sink in every square region and invalid otherwise.
We want to show that the Gibbs state ρ(β) at inverse temperature β is well approximated by a
distribution over l-valid configurations.
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Lemma 2. For a given grid Pl, let V ⊆ {0, 1}N be the set of l-valid configurations, and let

ρV(β) =
∑
k∈V

Pr(k)ρ(k). (2.35)

For any T > 0, there exists a constant δ > 0 (independent of system size) such that ρV(β)
satisfies

∥ρV(β) − ρ(β)∥1 ≤ O
(
L−δ

)
. (2.36)

Proof. Recall that Pr(k) =
∏
v∈∆0(1 − p)kvp1−kv , such that 1 − p is the probability of having a

sink at a given vertex. Let PV :=
∑

k∈V Pr(k), then from Lemma 1, we have the following

∥ρV(β) − ρ(β)∥1 =

∥∥∥∥∥∥
∑
k ̸∈V

Pr(k)ρ̄(k)

∥∥∥∥∥∥
1

(2.37)

≤
∑
k ̸∈V

Pr(k) (2.38)

= 1 − PV (2.39)

Let B be the set of vertices within a square region of the grid Pl. The contribution of
configurations containing at least one sink in each square region is given by

PV =
∏

squares B
(1 − qB), (2.40)

where qB = (1 − p)|B| is the probability that square region B contains no sink. Since the
probability of each square having a sink is independent, and there are n = L2/c log(L) squares
in the grid Pl, using Bernoulli’s inequality, we have

PV = (1 − qB)n ≥ 1 − nqB. (2.41)

Since |B| = c log(L), we have qB = Lc log(1−p), and Eq. (2.39) becomes

∥ρV(β) − ρ(β)∥1 ≤ L2+c log(1−p)

c log(L) (2.42)

≤ 1
c
L−δ, (2.43)

where we have defined δ = −2 − c log(1 − p). Notice that for T > 0, we have log(1 − p) < 0.
Therefore, choosing c > −2/ log(1 − p) gives δ > 0.

We can now show that the symmetric Gibbs ensemble ρ(β) is SPT-trivial by constructing a
symmetric disentangling circuit that maps ρ(k) to a product state, for each valid configuration
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k. Then since ρ(β) is approximated by a sum of SPT-trivial states, it follows that ρ(β) is
SPT-trivial. We note that the following theorem also applies if we replace the symmetric Gibbs
ensemble by the usual Gibbs ensemble.

Theorem 1. For any T > 0, the symmetric Gibbs ensemble ρ(β) of H1 is (r, ϵ) SPT-trivial,
where r = O(log

1
2 (L)), and ϵ = O

(
L−δ

)
.

Proof. Let k be a valid configuration. To construct a disentangling circuit Dk for ρ(k) we define
the elementary gates of the circuit

U(v,w) = exp
(
π

4hvZvZw
)
, W(v,w) = exp

(
π

4XvZvZw

)
, v, w ∈ ∆0. (2.44)

Notice that both U(v,w) and W(v,w) are symmetric. Moreover, for any vertex v, and any sink h,
the operator ZvZh has the following commutation and anti-commutation relations

{hv, ZvZh} = 0, [hw, ZvZh] = 0 ∀w ̸= v. (2.45)

Because of the above relations, we can interpret ZvZh as an operator which creates an excitation
at vertex v in the imperfect Hamiltonian H(k).

The disentangling circuit Dk is composed of a number of layers Dk =
∏d
j=1 Dj , such that

each Dj is comprised of gates with constant range, and d = (c′ log(L))
1
2 for some constant c′.

The goal is to first disentangle terms near each sink, and then inductively the next nearest
neighbours, moving outwards as depicted in Fig. 2.2. We define sets of vertices which determine
the order that we perform the gates. Let the initial set of vertices V (0) contain exactly one
sink in each square region (if there are many in each square region, choose any of them). Then
for j ≥ 1, let

V (j) = {v ∈ ∆0 | dist(v, w) ≤ j for some w ∈ V (0)}, (2.46)

be the union of balls of radius j around each sink, where dist(v, w) is the shortest path between
vertices v and w. We also define

V (j) = V (j) \ V (j − 1), (2.47)

to be the set of vertices in V (j) that are not in V (j − 1). Notice that for increasing j, V (j)
defines neighbourhoods of increasing size around each of the sinks, and that V (j) can be
considered the boundary set of vertices of V (j).

For any vertex v, let hj(v) ∈ V (j) be the nearest vertex to v that belongs to V (j) (if there
are multiple, choose any of them). Then the j’th layer of the circuit is defined by

D′
j =

∏
v∈V (j)

U(v,hj−1(v)). (2.48)
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Fig. 2.2 (Color online) The disentangler acts first on terms in H(k) neighbouring the sinks
(large dots), then moves outward. The set V (0) consists of the sinks, depicted as large dots,
and the successive shaded (blue) discs represent the sets V (1), V (2) and V (3).

Now D′
j has constant depth for each j, because it is comprised of gates supported on a small

neighbourhood of V (j). The gates can be divided into non-overlapping sets, each of which can
be performed simultaneously (for example, the lattice is 3-colorable, and all gates U(v,hj−1(v))

with v a fixed colour can be performed in parallel).

Each gate U(v,w) has the following action under conjugation:

hv 7→ −ZvZw, (2.49)

and commutes with hl for all l ̸= v, w, and ZxZy for all x, y ≠ v. Notice that for the first layer,
D1 conjugates all the terms hv sharing an edge with a sink into terms −ZvZh0(v), where h0(v)
is the sink adjacent to the vertex v. Subsequent layers Dj map all the terms hv inside V (j) to
terms of the form ZvZw. Let the constant c′ be chosen such that d = (c′ log(L))

1
2 is the diameter

of each square region. Since each square region has a sink in it, we have V (d) = ∆0. Therefore,
after at most d layers, the circuit D′

k =
∏d
j=1 D′

j conjugates the imperfect Hamiltonian H(k)
into a sum of terms of the form ZvZw.

Next, we make use of the gates W(v,w). In a similar way, we define the j’th layer of a second
circuit by

D′′
j =

∏
v∈V (j)

W(v,hj−1(v)). (2.50)

The circuit D′′
k =

∏d
j=1 D′′

j has depth d, as can be shown by the same argument given for D′
k .

Each gate W(v,w) has the following action under conjugation:

ZvZw 7→ Xv, (2.51)
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and commutes with ZlZm for all l,m ̸= v. Defining Dk = D′′
k ◦ D′

k , the circuit Dk applied to
the imperfect Hamiltonian has the following action

DkH(k)D†
k =

∑
v∈∆0

kvXv := H0(k). (2.52)

Therefore the circuit Dk maps ρ(k) 7→ ρ0(k), where ρ0(k) is the (normalised) symmetric ground
space projector of H0(k), which is a product state. This holds for each valid configuration
k ∈ V and therefore each ρ(k) is a (2d, 0)-trivial state, where d = (c′ log(L))

1
2 for some constant

c′.

A state ρ(β) is (r, ϵ) SPT-trivial if and only if it can be approximated up to error ϵ (in trace
norm) by a convex combination of (r, 0) SPT-trivial states. Since from Lemma 2 we have that
ρ(β) is approximated to within ϵ = O

(
L−δ

)
error by the imperfect state in Eq. (2.35), and the

imperfect state is a convex combination of (2d, 0) SPT-trivial states, the result then follows.

The existence of a symmetric unitary D that disentangles terms is closely related to the
existence of sinks at some sites kv = 0, where point-like excitations can be locally created and
destroyed. The existence of such excitations is a generic feature of Hamiltonians describing SRE
phases, which suggests how the proof can be generalized to arbitrary dimension. In the next
subsection, we sketch the more general proof for any SPT models based on group cohomology,
using the tools developed in this section.

2.2.4 Thermal instability of SPT for group cohomology models

We now prove the more general formulation of Theorem 1: that SPTs in arbitrary dimension,
protected by onsite symmetries are trivial at nonzero temperature. We prove this statement
for a class of models based on the group cohomology formalism [111]. This class captures
many of the known SPT phases protected by onsite symmetries, and we believe the arguments
presented here can be generalised to models with onsite symmetries outside of the formalism.
The construction of these models involves some technical details which we briefly review.

The models are constructed in terms of special functions known as cocycles of the group G.
A d-cochain of the group G over U(1) is a function νd : Gd+1 → U(1) that satisfies

νd(g0, g1, . . . , gd) = νd(gg0, gg1, . . . , ggd) ∀g, gk ∈ G. (2.53)
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An important set of d-cochains are the d-cocycles, which satisfy the additional cocycle condition
for any d+ 2 elements g0, . . . , gd+1 of G, namely

d+1∏
j=0

νd(g0, . . . , gj−1, gj+1, . . . , gd+1)(−1)j = 1 ∀gk ∈ G. (2.54)

An equivalence relation on the set of d-cocycles is given by multiplication by a d-coboundary.
A d-coboundary λd is a d-cochain that can be expressed as

λd(g0, g1, . . . , gd) =
d∏
j=0

µd−1(g0, . . . , gj−1, gj+1, . . . , gd)(−1)j
, (2.55)

for some (d− 1)-cochain µd−1. Note that every d-coboundary is a d-cocycle, but not necessarily
the other way around. The equivalence classes of d-cocycles are labelled by elements of the
d-cohomology group Hd(G,U(1)).

For a system with symmetry group G in d spatial dimensions, consider a triangulation T∆

of a d-dimensional manifold. We label the k-simplexes of the triangulation by σk, and the set
of all k-simplexes by ∆k. We assume that T∆ has a bounded degree (the number of edges
containing any given vertex must be constant). Additionally, we require that the triangulation
has a branching structure (an orientation on each edge such that there is no oriented loop
on any triangle) which allows us to give a parity P (σd) = ±1 to each d-simplex. To each
vertex v ∈ ∆0, we associate a |G|-dimensional Hilbert space, a basis for which is given by
{|g⟩ , g ∈ G}. Let N = |∆0| be the number of spins. The symmetry action is given by the left
regular representation

S(g) |g1, . . . , gN ⟩ = |gg1, . . . , ggN ⟩ . (2.56)

Consider first the trivial product state

|ψ0⟩ = |+⟩⊗N , where |+⟩ = 1√
|G|

∑
g∈G

|g⟩ , (2.57)

which is the ground state of the trivial Hamiltonian

H0 =
∑
v∈∆0

(I − 2|+⟩⟨+|v) , (2.58)

where the notation |+⟩⟨+|v means the projector |+⟩⟨+| at site v, and identity elsewhere. Notice
that (I − 2|+⟩⟨+|v)2 = I. For any (d+ 1)-cocycle νd+1, one can construct the unitary

U =
∏

σd∈∆d

(Uσd
νd+1)P (σd), P (σd) = ±1, (2.59)
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where Uσd
νd+1 acts on spins that are vertices of σd and P (σd) represents the orientation of σd.

Here Uνd+1 is a (d+ 1)-body diagonal phase operator that acts as

Uνd+1 |g1, . . . , gd+1⟩ = νd+1(1, g1, . . . , gd+1)|g1, . . . , gd+1⟩. (2.60)

Consider the Hamiltonian H(νd+1) = UH0U
† with ground state |ψ(νd+1)⟩ = U |ψ0⟩. Two

important results in Ref. [111] are the following:

1. The unitary U , Hamiltonian H(νd+1), and state |ψ(νd+1)⟩ are symmetric under the onsite
symmetry of G.

2. If νd+1 is nontrivial (i.e. it is not equivalent to the constant ν ′
d+1 = 1), then |ψ(νd+1)⟩

belongs to a nontrivial SPT phase.

An important consequence of the cocycle functions that will be used in our proof, is their
invariance under the so-called Pachner moves. Pachner moves are local operations that convert
one triangulation into another one. Any two triangulations of a (piecewise linear) manifold can
be related by a sequence of Pachner moves. In two-dimensions, the two basic Pachner moves
are shown in Fig. 2.3. If two triangulations are related by a sequence of Pachner moves, then
the SPT wavefunctions on these triangulations are related by a symmetric unitary combined
with the addition/removal of ancillas in the |+⟩ state. Since a sequence of Pachner moves
corresponds to a symmetric unitary, we can define the depth of this sequence. Namely, we define
a parallel Pachner move as any sequence of Pachner moves performed on disjoint d-simplexes.
Then the depth of a Pachner sequence is the number of parallel Pachner moves, multiplied
by the (max) diameter of the d-simplexes that are acted upon (this equals the depth of the
corresponding symmetric unitary).

We now prove that for any group G and in any dimension d, the above Hamiltonian must
have trivial SPT-order at nonzero temperature. The proof proceeds in a similar way to Theorem
1, where we first approximate the Gibbs ensemble ρ(β) by a convex combination of valid
configurations, and then show that each valid configuration is low-depth equivalent to a classical
ensemble. Since a combination of trivial ensembles is trivial, the result follows.

Theorem 2. For any T > 0, the symmetric Gibbs state ρ(β) of H(νd+1) is (r, ϵ) SPT-trivial,
where r = O(log(L) log log(L)), and ϵ = 1/poly(L), where poly(L) is a polynomial in the lattice
linear size L.

Proof sketch. Let T∆ be the triangulation upon which H(νd+1) is defined. For simplicity of
presentation, we assume the triangulation is translationally invariant on some scale (although
non-essential, this allows us to use a lattice renormalization argument). We assume that for
each hypercubic region of side-length l, there is a constant number Nc = O(ld) of vertices in
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FIG. 7: The membrane operators (a) M(�1) and (b) M(�2). The top and bottom surfaces are

identified, as are the front and back surfaces. Since the membrane operators are supported on

disjoint sublattices, their boundaries restricted to either L or R anti-commute.

the following order parameter

O�(⇢) :=
1

2
(hM(�1)i⇢ + hM(�2)i⇢) , (70)

where hM(�i)i⇢ = Tr(M(�i)⇢). In Lemma 3 we will upper bound the value O�(⇢) for

thermal states with trivial SPT order. Then in Lemma 4 we show that there exists a critical

temperature Tc, such that O�(⇢C(�)) ⇡ 1 for the symmetric thermal state of the RBH model

at 0  T  Tc.

Lemma 3. For any (Z2)
2 symmetric ensemble ⇢0 that is (r, ✏) SPT trivial, there exist

regions L and R as above, with constant width w and lattice size d su�ciently large such

that O�(⇢0)  1/2 + ✏.

Proof. For simplicity, write M1 = M(�1) and M2 = M(�2). Since ⇢0 is (r, ✏) SPT trivial,

we can approximate it by ⇢0 =
P

a p(a) | ai h a| up to error ✏ in trace norm, where each

| ai is an (r, 0) SPT trivial state, and p(a) is a probability distribution. We now make use

of the algebraic relations on the boundaries of membrane operators. For each | ai, we have

h a| Mi | ai = h'| U †
aMiUa |'i for some depth r, symmetric circuit Ua where |'i is a product

state.

First take enlarged regions L0 of L and R0 of R obtained by taking r-neighbourhoods

around L and R respectively. For a transversal operator A, and a subset ⌅ ✓ C, let A⌅

denote the restriction of A to ⌅. Since the membranes Mi are transversal, we can decompose

them across the regions, Mi = ML0
i ⌦ M bulk

i ⌦ MR0
i , where the bulk region is (L [ R0)c. We

now claim that the regions L0 and R0 are large enough so that [M bulk
i , Ua] = 0 for i = 1, 2

and 8a.

Consider M1 first. For any region ⌅ away from the boundary of �1, we can always find a

1-coboundary b⇤1 such that M1|⌅ = S(b⇤1)|⌅. Since each gate in Ua must commute with S(b⇤1)
for any 1-coboundary b⇤1, it follows each gate must also commute with M bulk

1 . This is not

satisfied in general at the boundaries of �1. Provided M bulk
1 is supported a distance greater

than the depth r of the circuit away from the boundaries �1, we have [M bulk
1 , Ua] = 0 8a. A

similar argument holds for M2.
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the following order parameter

O�(⇢) :=
1

2
(hM(�1)i⇢ + hM(�2)i⇢) , (70)

where hM(�i)i⇢ = Tr(M(�i)⇢). In Lemma 3 we will upper bound the value O�(⇢) for

thermal states with trivial SPT order. Then in Lemma 4 we show that there exists a critical

temperature Tc, such that O�(⇢C(�)) ⇡ 1 for the symmetric thermal state of the RBH model

at 0  T  Tc.

Lemma 3. For any (Z2)
2 symmetric ensemble ⇢0 that is (r, ✏) SPT trivial, there exist

regions L and R as above, with constant width w and lattice size d su�ciently large such

that O�(⇢0)  1/2 + ✏.

Proof. For simplicity, write M1 = M(�1) and M2 = M(�2). Since ⇢0 is (r, ✏) SPT trivial,

we can approximate it by ⇢0 =
P

a p(a) | ai h a| up to error ✏ in trace norm, where each

| ai is an (r, 0) SPT trivial state, and p(a) is a probability distribution. We now make use

of the algebraic relations on the boundaries of membrane operators. For each | ai, we have

h a| Mi | ai = h'| U †
aMiUa |'i for some depth r, symmetric circuit Ua where |'i is a product

state.

First take enlarged regions L0 of L and R0 of R obtained by taking r-neighbourhoods

around L and R respectively. For a transversal operator A, and a subset ⌅ ✓ C, let A⌅

denote the restriction of A to ⌅. Since the membranes Mi are transversal, we can decompose

them across the regions, Mi = ML0
i ⌦ M bulk

i ⌦ MR0
i , where the bulk region is (L [ R0)c. We

now claim that the regions L0 and R0 are large enough so that [M bulk
i , Ua] = 0 for i = 1, 2

and 8a.

Consider M1 first. For any region ⌅ away from the boundary of �1, we can always find a

1-coboundary b⇤1 such that M1|⌅ = S(b⇤1)|⌅. Since each gate in Ua must commute with S(b⇤1)
for any 1-coboundary b⇤1, it follows each gate must also commute with M bulk

1 . This is not

satisfied in general at the boundaries of �1. Provided M bulk
1 is supported a distance greater

than the depth r of the circuit away from the boundaries �1, we have [M bulk
1 , Ua] = 0 8a. A

similar argument holds for M2.

Fig. 2.3 In two dimensions, there are two distinct Pachner moves: (a) two triangles are replaced
by two triangles and (b) three triangles are replaced by one triangle and the number of vertices
changes by 1. The arrows represent the orientation of each edge. Notice that there are no
oriented loops on any triangle.

T∆. Since T∆ has bounded degree (by assumption), we have that each vertex belongs to a
constant number of d-simplexes.

Similarly to the two-dimensional case, we divide up the lattice into a hypercubic grid Pl
such that each hypercubic region has side-length l = (c log(L))

1
d for some constant c. For

each k ∈ {0, 1}N , we can define an imperfect Hamiltonian H(k). Let ρ(k) be the normalized,
symmetric ground-space projector of H(k). Any configuration that has at least one sink in
every hypercubic region is called valid. By a straightforward generalization of Lemma 2, we
can approximate ρ(β), up to an error that is an inverse polynomial in the system size L by a
weighted combination of valid configurations ρ(k).

Fix a valid configuration k, and let S be a subset of vertices containing precisely one sink in
each hypercubic region. The goal is to find a sequence of Pachner moves taking T∆ to a different
triangulation TS , whose vertex set is the chosen set of sinks S (note that TS is not uniquely
determined, but any choice will suffice). This sequence of Pachner moves gives a corresponding
symmetric unitary Dk , taking the imperfect Hamiltonian to a trivial Hamiltonian. In particular,
let TS be any triangulation with vertices that are sinks and whose set of k-simplexes is labelled
by ∆S

k (see Fig. 2.4c). Then
U

(S)
k =

∏
σd∈∆S

d

(Uσd
νd+1)P (σd) (2.61)

is a symmetric unitary that is supported entirely on the set of sinks and therefore the imperfect
Hamiltonian H0(k) of the trivial model H0 in Eq. (2.58) is invariant under US . Then since TS

and T∆ are Pachner equivalent, there exists a symmetric unitary Dk such that

DkH(k)D†
k = U

(S)
k H0(k)U (S)†

k = H0(k), (2.62)
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from which it follows that Dkρ(k)D†
k is a trivial product state.

Now it only remains to determine an upper bound on the depth of the circuit Dk corre-
sponding to this sequence of Pachner moves. We now describe a sequence of Pachner moves
taking T∆ to TS that upper bounds the depth of Dk by O(log(L) log log(L)).

The sequence of Pachner moves taking T∆ to TS can be divided into two steps: a renormal-
ization sequence, followed by a small vertex shifting. We present the argument in 2 dimensions,
as the case for higher dimensions works analogously, where the 2 dimensional Pachner moves
are replaced with the corresponding higher dimensional Pachner moves. The steps are depicted
in Fig. 2.4. Note that we will keep track of the original vertices throughout, which we refer
to as ambient vertices (as they correspond to the original degrees of freedom). Any ambient
vertices that are not part of new triangulations correspond to spins in the |+⟩ state.

(a) (b) (c)

Fig. 2.4 (Color online) The two principle steps to take the original triangulation T∆ in (a)
to the triangulation TS in (c), whose vertices are all sinks (large dots). The first step is to
renormalize the T∆, resulting in the triangulation in (b). The second step is a vertex shifting,
resulting in the triangulation in (c). The grid Pl with side-lengths (c log(L))

1
d is displayed by

the dashed lines. Faded grey nodes denote ambient vertices no longer part of the triangulation,
which correspond to decoupled spins in the |+⟩ state after the circuit D has been applied.

Firstly, we perform a sequence of renormalization steps, which increases the original length
of the edges in T∆ from O(1) to l, and in doing so reduces the number of vertices down to one
per cubic region. Firstly, we claim that to renormalize the length of all edges by a factor of 2
takes a constant number of parallel Pachner moves. Indeed for a triangular lattice, it takes 12
parallel Pachner moves to scale the lattice by a factor of 2, as depicted in Fig. 2.5. In general,
the number of moves will be proportional to the maximum degree of a vertex. Since we wish to
rescale the edge length to l = (c log(L))

1
d , we need to do O(log log(L)) renormalization steps.

Each Pachner move acts on a simplex of size at most ld = c log(L), and therefore the depth of
this Pachner sequence is O(log(L) log log(L)).

Secondly, we need to transform the renormalized triangulation (depicted in Fig. 2.4b) to TS .
Since there is only one vertex per cubic region in the renormalized triangulation, this process can
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(a) (b) (c)

(d) (e) (f)

Fig. 2.5 (Color online) The first six parallel Pachner moves for a single renormalization step
that scales the edge lengths of the triangular lattice by a factor of two. New edges arising from
Pachner moves are depicted by thick (red) lines. Notice that some of the edges are unchanged
(namely the diagonal ones), but this process can be repeated to rescale them too. Sinks are not
displayed in this figure as they do not yet play a role. This process can be repeated O(log log(L))
times to rescale T∆ to the renormalized triangulation in Fig. 2.4b.

be considered as a shifting of the vertices. This can be achieved by firstly reintroducing the sinks
as vertices using the second Pachner move in Fig. 2.3, then removing the remaining ambient
vertices using a combination of Pachner moves2. Since Pachner moves in disjoint simplexes
can be performed in parallel, the depth of this sequence is proportional to the degree which
(by assumption) is bounded in the original triangulation, and therefore also the renormalized
triangulation. Then as each move acts on a simplex of size ld = c log(L) the depth of this
sequence is O(log(L)).

Putting these two steps together we have the depth of the sequence of Pachner moves taking
T∆ to TS is O(log(L) log log(L)). This sequence of Pachner moves gives rise to a symmetric
circuit Dk taking ρ(k) to a trivial state. Since this argument works for every valid configuration,
we have that ρ(β) is polynomially approximated by a sum of (O(log(L) log log(L)), 0) SPT-trivial
states, and therefore ρ(β) is (r, ϵ) SPT-trivial, with r = O(log(L) log log(L)), and ϵ = 1/poly(L).
Note that the key ingredient in this sequence of Pachner moves is that the degree remains
bounded at all stages, and therefore to disentangle any spins requires only a constant number

2Note that we assume that we have a sufficiently large system such that there exists enough sinks to perform
the required Pachner moves. This is without loss of generality as we are concerned with the scaling rather than
small system details.
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of Pachner moves. The exponent of the log may be improved for example by keeping the sinks
in the triangulation during the renormalization steps.

2.3 A model with a thermal SPT phase

Despite proving that a thermal SPT phase is impossible in models with only onsite symmetries,
we now provide an example of a model with thermal SPT-order by enforcing a stronger, higher-
form symmetry. The model we consider is the cluster model on a particular three-dimensional
lattice, first introduced by Raussendorf, Bravyi and Harrington (RBH) [136], protected by a
Z2 × Z2 1-form symmetry. While the discussion here is specific to the RBH model, the tools
developed and the analysis is quite general, and can be extended to other higher-form models.

Cluster states are well known within the quantum information community for their impor-
tance as a resource for measurement-based quantum computation (MBQC) [20]. They can be
defined on any graph or lattice, and their usefulness for computation is strongly dependent
upon the underlying graph or lattice dimension [169, 20]. In the context of SPT phases, the 1D
cluster model is known to belong to a nontrivial phase with a Z2 × Z2 onsite symmetry [170],
and states within this phase have been shown to be useful as quantum computational wires
[132]. Additionally, certain states in 2D possessing SPT-order protected by onsite symmetries
have been shown to be universal resources for MBQC [35, 171].

From an information processing standpoint, the RBH model is very compelling. The model
forms a basis for the topological MBQC scheme, a universal model of quantum computation with
a very high threshold arising from topological considerations [66, 172]. We wish to understand
the physical origin and underlying quantum order that underpins the high threshold of this
scheme. We begin by reviewing the RBH model.

2.3.1 The RBH model

In order to present the RBH model, it will be helpful to review some homological terminology,
which will allow us to specify all relevant operators and make the following analysis simpler.
The lattice we consider is a cubic lattice C of linear size d. For simplicity, we consider periodic
boundary conditions in each direction such that C has topology of a 3-torus. We label by ∆3,
∆2, ∆1, and ∆0 the set of all cubes, faces, edges, and vertices of C, respectively. Elements of
∆k are called k-cells and denoted by σk for k ∈ {0, 1, 2, 3}.
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Some homological notation

The lattice C naturally gives rise to a chain complex

C3
∂3 // C2

∂2 // C1
∂1 // C0, (2.63)

which is a set of vector spaces Ck and linear maps ∂k : Ck → Ck−1 between them called boundary
maps, which we now define. Each vector space Ck ≡ Ck(C; Z2) has elements consisting of formal
sums of the basis elements σk ∈ ∆k with coefficients from the field Z2. A general vector ck in
Ck is called a k-chain, and can be uniquely written as ck =

∑
σk∈∆k

a(σk)σk, with a(σk) ∈ Z2.

Intuitively, a k-chain can be one-to-one identified with a subset of k-cells of ∆k, so a 3-chain
c3 ∈ C3 represents a subset of volumes (i.e. c3 ⊂ ∆3), a 2-chain represents a subset of surfaces,
and so on. Between vector spaces Ck we have the boundary map ∂k : Ck → Ck−1, defined on
each basis element as

∂k(σk) =
∑

σk−1∈∆k
σk−1⊂σk

σk−1 (2.64)

and extended to an arbitrary k-chain by linearity. Here, the sum is over all (k − 1)-cells σk−1

that are contained in σk.

There are two important classes of chains known as cycles and boundaries. The k-cycle
group Zk = ker(∂k) is the vector space (which can be regarded as a group) consisting of k-chains
that have no boundary. Elements of Zk are known as k-cycles. Similarly, the k-boundary
group Bk = im(∂k+1) is the vector space consisting of k-chains that are the boundary of a
(k + 1)-chain. Elements of Bk are known as k-boundaries. Importantly, the boundary maps
satisfy ∂k−1 ◦∂k = 0, which implies that every boundary is a cycle, but in general not every cycle
is a boundary. A cycle that is not a boundary is referred to as nontrivial or noncontractible.

One can define the dual lattice C∗ of the cubic lattice C, which is obtained by replacing
volumes by vertices, faces by edges, edges by faces, and vertices by volumes. The dual lattice
C∗ is also a cubic lattice, but shifted with respect to the primal (initial) lattice. We can define
a chain complex associated with the dual lattice in a similar way to Eq. (2.63), where C∗

k are
vector spaces with k-cells of the dual lattice as basis vectors, and corresponding boundary maps
∂∗
k . We denote the dual cycle groups by Z∗

k , and dual boundary groups by B∗
k.

Since each k-chain corresponds to a unique dual-(3 − k)-chain, the dual boundary map
∂∗
k : C∗

k → C∗
k−1 can be thought of as a map ∂∗

k : C3−k → C4−k. Namely, since any (3 −k)-chain
c3−k is dual to a unique dual-k-chain c′

k, we define ∂∗
kc3−k to be the unique (4 − k)-chain dual

to ∂∗
kc

′
k. In the following, we suppress the subscript on the boundary and dual boundary maps,

and we will freely apply the dual boundary map on both chains and dual chains using the
previous correspondence. This allows us to regard 1-cycles and dual-1-cycles as closed loop-like
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subsets of the lattice C, and 2-cycles and dual-2-cycles as closed surface-like subsets of the
lattice C.

The RBH Hamiltonian

With this terminology, we can now present the RBH model in a useful homological formulation.
The Hilbert space can be constructed by placing a qubit on every 2-cell σ2 ∈ ∆2 and every
1-cell σ1 ∈ ∆1, which we will refer to as the primal and dual qubits respectively (we think
of dual qubits as residing on the 2-cells of the dual lattice). The Hilbert space is given by
H = H1 ⊗ H2, where H1 is the Hilbert space of the dual qubits, and H2 is the Hilbert space of
the primal qubits.

For a given 2-chain c2 =
∑
σ2∈∆2 a(σ2)σ2, with a(σ2) ∈ Z2, define the Pauli operator

X(c2) =
∏
σ2∈c2

Xσ2 , (2.65)

where Xσ2 is the Pauli X supported on the qubit at σ2. One can similarly define operators
for Pauli Z as well as for the dual qubits. A general Pauli operator P then has the following
decomposition

P = iαX(c2)Z(c′
2)X(c1)Z(c′

1), (2.66)

for some α ∈ {0, 1, 2, 3}, 2-chains c2, c′
2 and 1-chains c1 and c′

1. One could equivalently
decompose the operator P in terms of dual chains.

In this notation we can now describe the RBH Hamiltonian on this lattice. The Hamiltonian
is given by a sum of local, commuting (5-body) terms

HC = −
∑

σ1∈∆1

K(σ1) −
∑

σ2∈∆2

K(σ2), (2.67)

where
K(σ1) = X(σ1)Z(∂∗σ1), and K(σ2) = X(σ2)Z(∂σ2), (2.68)

as depicted in Fig. 2.6a. We note that K(σ1) and K(σ2) are the standard cluster state stabilizer
generators. The cluster state |ψC⟩ is the unique ground state of HC which is the +1-eigenstate
of each of the cluster terms K(σ1) and K(σ2).

An alternative description in terms of a circuit description shows that the cluster state is
short-range entangled. Consider the circuit UCZ comprised of controlled-Z gates between every
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neighbouring primal and dual qubit

UCZ =
∏

σ1∈∆1
σ2∈∆2

( ∏
σ′

1∈∂σ2

CZ(σ2,σ′
1)

)( ∏
σ′

2∈∂∗σ1

CZ(σ1,σ′
2)

)
, (2.69)

where the controlled-Z operator is defined in Eq. (2.10). One can confirm that

U†
CZHCUCZ = −

∑
σ1∈∆1

X(σ1) −
∑

σ2∈∆2

X(σ2) =: HX . (2.70)

From this relation we see that the cluster state can be prepared from a product state by the
circuit UCZ , as

|ψC⟩ = UCZ |+⟩⊗|∆2∪∆1| , (2.71)

where |+⟩ is the +1-eigenstate of Pauli X. Since UCZ can be represented by a constant-depth
quantum circuit, the cluster state is short-range entangled. We now proceed to identify a 1-form
Z2 × Z2 symmetry of the model and show that |ψC⟩ resides in a nontrivial SPT phase at zero
temperature when this symmetry is enforced.

1-form symmetry

The cluster state is a short-range entangled state and so in the absence of a symmetry it belongs
to the SPT-trivial phase. One can show that with only an onsite symmetry, this model remains
in the SPT-trivial phase3. We introduce a Z2 ×Z2 1-form symmetry of the model and show that
the cluster state is in a nontrivial SPT phase when this symmetry is enforced. Formally, we
have two copies of a Z2 1-form symmetry: one for each lattice (primal and dual). The symmetry
actions are given by a unitary representation S of the 2-boundary and dual-2-boundary groups
as

S(b2) := X(b2), S(b′
2) := X(b′

2), (2.72)

for any 2-boundary b2 ∈ B2 and dual-2-boundary b′
2 ∈ B∗

2 . Any 2-boundary or dual-2-boundary
corresponds to a closed, two-dimensional surface M of the primal or dual lattice, respectively.
The 1-form symmetry can therefore be viewed as being imposed by symmetry operators
supported on qubits residing on closed, contractible two-dimensional submanifolds of C.

3Indeed, for a cluster state in any dimension D ≥ 2, with onsite symmetry, one can generalise the two-
dimensional result of [35] and construct a disentangling circuit involving symmetric gates comprised of controlled-Z
operations.



2.3 A model with a thermal SPT phase | 51

A local, generating set of symmetry operators is given by the following elementary operators

G̃ = {S(∂σ3), S(∂∗σ0) | σ3 ∈ ∆3, σ0 ∈ ∆0}, (2.73)

which are all 6-body. For example, an elementary 1-form operator S(∂σ3) is supported on
the surface of a single cube as depicted in Fig. 2.6b. Multiplying two neighbouring symmetry
operators S(b2)S(b2) = S(b2 + b2) can be viewed as gluing together the pair of surfaces that
they correspond to. We conclude that the symmetry is a representation of the boundary groups
B2 ×B∗

2 .

Z

Z Z

Z

ZZ

ZZ

ZZ

ZZ

XXX

(a)

XX

XX XX

XX

XX

XX

XX

XX XX

XX

XX

XX

(b)

Fig. 2.6 (Color online) (a) A unit cell of the cluster lattice C with a single cluster term K(σ2).
(b) An elementary 1-form operator S(∂σ3). The primal qubits are depicted as light (green)
circles and the dual qubits are depicted in dark (blue) circles.

An important feature of the 1-form symmetry operators is that they can be expressed as
products of cluster terms

S(b2) =
∏
σ2∈b2

K(σ2) and S(b′
2) =

∏
σ∗

1∈b′
2

K(σ1), (2.74)

where the second product is over all 1-cells σ1 whose dual belong to b′
2. For example, this is

easily verified for the elementary 1-form operator in Fig. 2.6. It follows that these operators
commute with HC , and thus are symmetries of the cluster model. Additionally, the cluster state
is a +1-eigenstate of these symmetry operators. Interestingly, such operators arise naturally
in the context of topological MBQC and error correction [172, 136] and we will return to this
connection in the following section.

Thermal state of the 1-form symmetric RBH model

We now consider the symmetric Gibbs state of the RBH model Hamiltonian HC . In the presence
of the 1-form symmetry, excitations in the RBH model take the form of one-dimensional,
loop-like objects, which can be seen as follows. Excitation operators can be constructed out of
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Pauli-Z operators, but the 1-form symmetry demands they form closed loops in the following
way. Consider the operator Z(c1) for any 1-chain c1 ∈ C1. This operator anti-commutes with
cluster terms along the cycle

{K(σ1), Z(c1)} = 0 ⇐⇒ σ1 ∈ c1, (2.75)

and will commute with the 1-form symmetry operators if and only if it has no boundary ∂c1 = 0.
Therefore excitation operators on the dual lattice are given by Z(γ) where γ ∈ Z1 is a 1-cycle.
Similarly, excitation operators on the primal lattice are given by Z(c′

1), for any dual-1-cycle
c′

1 ∈ Z∗
1 . Recall, 1-cycles and dual-1-cycles look like loop-like objects, and example excitation

operators are shown in Fig. 2.7.

A general symmetric excitation is given by |ψ(γ, γ′)⟩ = Z(γ)Z(γ′) |ψC⟩ with γ ∈ Z1, γ′ ∈ Z∗
1 ,

and the energy cost of introducing this excitation is E(γ, γ′) = 2(|γ| + |γ′|). Notice that
excitations created by Pauli X operators can be converted into the above form, since they
are equivalent up to products of cluster terms (of which the cluster state is a +1-eigenstate).
As such, excited states are in one-to-one correspondence with elements of the 1-cycle and
dual-1-cycle groups Z1 × Z∗

1 .

The symmetric Gibbs state under this 1-form symmetry is given by a distribution over loop
configurations

ρC(β) =
∑

(γ,γ′)∈Z1×Z∗
1

Prβ(γ, γ′)
∣∣ψ(γ, γ′)

〉 〈
ψ(γ, γ′)

∣∣ , (2.76)

where the sum is over all primal and dual 1-cycles, and

Prβ(γ, γ′) = 1
Z
e−βE(γ,γ′), where Z =

∑
(γ,γ′)∈Z1×Z∗

1

Prβ(γ, γ′). (2.77)

Here, Prβ(γ, γ′) is a probability distribution over loop-like configurations. In the following
subsection, we show that this ensemble has nontrivial SPT-order under the 1-form symmetry,
using a duality map known as gauging. Then in the subsequent section, we will provide a proof
of the nontrivial SPT-ordering of the thermal state using a set of non-local order parameters as
witnesses of the SPT-order.

2.3.2 SPT-order of the RBH model

We now show that the RBH model possesses nontrivial SPT-order under the 1-form symmetry
by means of a duality map known as gauging. Gauging is a procedure widely used throughout
the study of many-body physics [109, 173–175], and has recently found application in the study
of fault-tolerant logical gates in topological quantum codes [156, 145]. Gauging is the process
of transforming a global symmetry G into a local symmetry by minimally coupling the system
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Fig. 2.7 (Color online) Examples of excitation operators. A 1-cycle is depicted by the thiner
dark (blue) line, while a dual-1-cycle is depicted by the thicker light (green) line.

to gauge fields. We will use an argument originally proposed by Levin and Gu [109] that two
Hamiltonians must belong to distinct SPT phases if the gauged versions belong to distinct
topological phases.

We will take the approach of [156, 145] and view the gauging procedure as a duality map
between SPT-ordered Hamiltonians and topologically ordered Hamiltonians, a correspondence
known to hold for many models [173]. By showing that the gauged RBH model belongs to a
different phase than the gauged trivial model, we can deduce that the RBH model belongs to a
nontrivial SPT phase. Furthermore, thermal stability of the SPT-order can be demonstrated
by showing that the RBH cluster state corresponds to a nontrivial gapped domain wall in the
4D toric code, which is known to have thermally stable topological order [47].

Gauging the 1-form symmetry

We now outline the procedure of gauging the Z2 × Z2 1-form symmetry. More details of gauging
models possessing higher-form symmetries can be found in [145]. We start with a basis for the
primal and dual Hilbert spaces H1 and H2 given by vectors of the 1-chain and 2-chain groups
respectively. For any 1-chain c1 ∈ C1, we can uniquely specify a computational basis state

c1 =
∑

σ1∈∆1

a(σ1)σ1, =⇒ |c1⟩ = |{a(σ1)}⟩ , (2.78)

where a(σ1) ∈ Z2. A similar identification holds for the computational basis states in H2 and
the 2-chain group. The gauging map G on the level of states takes states in H1 to H2, and
states in H2 to H1 and can be concisely defined by the boundary and dual boundary maps, as
follows. On the computational basis, the map G : H1 ⊗ H2 → H2 ⊗ H1 is defined by

G(|c1⟩ ⊗ |c2⟩) = |∂∗c1⟩ ⊗ |∂c2⟩ , (2.79)
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and extended to H = H1 ⊗ H2 by linearity. For example, on a computational basis state, G is
depicted in Fig. 2.8.

(a)

G|e1y
|e4y

|e2y
|e3y |f 1y

|e1 ` e2 ` e3 ` e4y

(b)

|f4y |f2y

|f3y

|f1y
G |e1y

|f1 ` f2 ` f3 ` f4y

Fig. 2.8 (Color online) The gauging map on computational basis states. (a) States on the dual
sublattice map to states on the primal sublattice. (b) States on the primal lattice map to states
on the dual sublattice. The sums are performed mod 2.

Importantly, any state |ψG⟩ in the image of G satisfies the gauge symmetry condition

Z(z2)Z(z′
2) |ψG⟩ = |ψG⟩ , (2.80)

for any 2-cycle z2 and dual-2-cycle z′
2. These gauge symmetry operators are similar to the

1-form operators in the RBH model, only they are now in the Pauli-Z basis, and there are
additional gauge symmetry operators for nontrivial and 2-cycles dual-2-cycles. Since higher-form
symmetries can be viewed as gauge symmetries in a dual description, the distinction between
the two types of symmetries is not a definitive one. In this Chapter, we treat higher-form
symmetries as symmetries which exist before the gauging map, and gauge symmetries as those
which emerge after the gauging map.

The gauging map G can be extended to a map on symmetry respecting operators. For any
symmetric operator A, the gauged operator A′ is defined implicitly by the following equation

G(A |ψ⟩) = A′G(|ψ⟩). (2.81)

Importantly, the 1-form symmetry operators are mapped to the identity. Note that A′ is only
defined up to gauge symmetry operators in Eq. (2.80). One can use Eq. (2.81) to verify that
gauging the trivial Hamiltonian HX of Eq. (2.70) gives the following Hamiltonian

H
(G)
X = −

∑
σ1∈∆1

X(∂∗σ1) −
∑

σ2∈∆2

X(∂σ2). (2.82)
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Since the gauged Hilbert space satisfies the gauge symmetry condition in Eq. (2.80), one can
add Z-type terms Z(∂σ3) and Z(∂∗σ0) to the gauged Hamiltonian H

(G)
X to fix out the gauge

invariant ground space. Therefore, gauging the trivial Hamiltonian gives rise to two decoupled
three-dimensional toric code Hamiltonians with qubits on faces and edges, respectively. Each of
the toric codes belong to a nontrivial (intrinsic) topologically ordered phase at zero temperature.

On the other hand, gauging the RBH Hamiltonian gives

H
(G)
C = −

∑
σ1∈∆1

K(G)(σ1) −
∑

σ2∈∆2

K(G)(σ2), (2.83)

where
K(G)(σ1) = Z(σ1)X(∂∗σ1), K(G)(σ2) = Z(σ2)X(∂σ2). (2.84)

This is equivalent to the original RBH Hamiltonian up to a Hadamard transformation H⊗|∆1∪∆2|,
where H is the Hadamard gate, exchanging the Pauli X and Z operators. Therefore the ground
state of H(G)

C remains short-range entangled. As G is locality preserving and gap preserving,
the inequivalence of the two gauged models shows that the RBH model belongs to a nontrivial
SPT phase under the 1-form symmetry.

Gapped domain wall at nonzero temperature

An interesting and perhaps surprising application of the classification of SPT-ordered phases is
in the construction of gapped domain walls in topological models [145]. Here, we show that the
RBH model with Z2 × Z2 1-form symmetry can be used to construct a nontrivial domain wall
in two copies of the four-dimensional toric code. The fact that the domain wall implements a
nontrivial automorphism of the excitation labels in the 4D toric codes demonstrates that the
RBH model has nontrivial SPT-order at zero temperature [119, 156]. We will in addition use
this argument to demonstrate that the RBH model with 1-form symmetry retains its SPT-order
at nonzero temperature, by leveraging the thermal stability of the 4D toric code.

To illustrate this procedure, let us first consider the simpler case of a two-dimensional
system with Z2 × Z2 0-form symmetry. Namely, consider a square lattice Λ with boundary
and place qubits on vertices of Λ. Qubits can be labelled by one of two colors in such a way
that neighbouring qubits are of different colors. We consider a system consisting of a trivial
Hamiltonian in the bulk and the cluster state Hamiltonian on the boundary:

H0 = −
∑

u∈bulk(Λ)
Xu +H1D

cluster, (2.85)



56 | Symmetry-protected topological order at nonzero temperature

where H1D
cluster consists of terms supported on the boundary of Λ in the following way,

H1D
cluster = −

∑
j∈∂(Λ)

Zj−1XjZj+1, (2.86)

and the sum is over qubits on the boundary (which have been given a linear ordering).

The whole Hamiltonian has a Z2 × Z2 0-form symmetry, generated by tensor product of
Pauli X on each sublattice of a given color. One can apply the gauging map to obtain a gauged
Hamiltonian which possesses intrinsic topological order with gapped boundary. In this example,
we will have two copies of the toric code with twisted gapped boundaries, where the two copies
of the toric code are coupled by terms acting on the boundary. On this gapped boundary, pairs
of point-like excitations e1m2 and e2m1 may condense, where ei and mi (i = 1, 2) represent
electric charges and magnetic fluxes from each copy of the toric code. The ei and mi excitations
correspond to violated X-type and Z-type stabilisers respectively, and occur at the end of
strings of Z-type and X-type operators respectively.

By unfolding the lattice (see Fig. 2.9, also Ref. [176]) one can view this gapped boundary
as a gapped domain wall connecting two copies of the toric code. Upon crossing this domain
wall, anyonic excitations are exchanged in the following manner:

e1 ↔ m2, m1 ↔ e2. (2.87)

Since this is a nontrivial automorphism of excitation labels, the cluster state cannot be prepared
by a low depth quantum circuit as detailed in [119]. Gapped domain walls in higher-dimensional
topological phases of matter can be also constructed from 0-form SPT phases, leading to explicit
construction of gapped domain walls in the higher-dimensional generalizations of the quantum
double model.

Now let us turn to a construction of gapped domain walls from 1-form SPT phases. Consider
a four-dimensional system with Z2 × Z2 1-form symmetry, defined on a lattice Λ′ with the cubic
lattice C (described in the previous section) as its boundary. We will consider the following
Hamiltonian:

H1 = −
∑

v∈bulk(Λ′)
Xv −HC

RBH, (2.88)

where HC
RBH is the RBH Hamiltonian supported on qubits living on the three-dimensional

boundary ∂Λ′ = C of the lattice Λ′. We can gauge the above Hamiltonian to obtain two
copies of the four-dimensional toric code with twisted gapped boundaries. On the boundary,
loop-like excitations e1m2 and e2m1 may condense. Here, ei and mi (i = 1, 2) correspond
to loop-like electric and magnetic excitations (i.e. violated X-type and Z-type stabilisers
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Fig. 2.9 (Color online) (a) Gauging Z2 × Z2 symmetry of the two-dimensional model (which has
the 1D cluster model on its boundary) leads to a twisted gapped boundary where point-like
e1m2 and e2m1 particles may condense. This can be viewed as a nontrivial domain wall in the
two-dimensional toric code. (b) Gauging the Z2 × Z2 1-form symmetry of the four-dimensional
model (which has the three-dimensional RBH model on its boundary) leads to a nontrivial
domain wall in the four-dimensional toric code, which exchanges electric and magnetic loop-like
excitations.

of the four-dimensional toric code, respectively). The ei and mi excitations occur on the
one-dimensional boundary of a two-dimensional membrane of Z-type and X-type operators,
respectively. One can consider this gapped boundary as a gapped domain wall connecting the
two copies of the four-dimensional toric code. Upon crossing the domain wall (see Fig. 2.9), the
following exchange between electric and magnetic loop-like excitations is implemented

e1 ↔ m2, m1 ↔ e2. (2.89)

This observation already provides an argument that the RBH model is an example of a
nontrivial 1-form SPT phase. To address the thermal stability of the SPT-order of the RBH
model, one may appeal to the thermal stability of the four-dimensional toric code where the
nontrivial braiding statistics between electric and magnetic loop-like excitations survive even
at nonzero temperature. The fact that the gapped domain wall implements an exchange of
loop-like excitations with nontrivial braiding properties at nonzero temperature is an indication
that the underlying RBH Hamiltonian with 1-form symmetry is thermally stable.
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2.3.3 Order parameters for detecting SPT-order of the thermal RBH model

We now give a direct proof of the nontrivial SPT-order of the thermal RBH model when the
1-form symmetry is enforced. The proof is based on a set of membrane operators that serve as
order parameters. In addition to serving as witnesses of SPT-order, these membrane operators
can be used to demonstrate the ability to perform gate teleportation in the MBQC scheme, as
explored in section 2.4. These operators can be viewed as generalisations of the string order
parameters used to detect SPT-order in one dimension [177–179] and similar constructions
can be made for other higher-form SPT-ordered models. Such operators can be specified a
two-dimensional surfaces as follows. For any dual-2-chain Γ1 ∈ C∗

2 and any 2-chain Γ2 ∈ C2

(which will be thought of as surfaces in the primal and dual lattices respectively), we define a
membrane operator

M(Γ1) :=
∏

σ∗
1∈Γ1

K(σ1), M(Γ2) :=
∏

σ2∈Γ2

K(σ2), (2.90)

where the first product is over all 1-cells σ1 whose dual belongs to Γ1. By definition of the
cluster terms in Eq. (2.68), the membrane operators can be written as follows

M(Γ1) = X(Γ1) · Z(∂∗Γ1), M(Γ2) = X(Γ2) · Z(∂Γ2). (2.91)

Since the cluster terms are commuting, the membrane operators for any 2-chain and dual-2-
chain will also commute with each other and the cluster Hamiltonian. Additionally, at zero
temperature the cluster state will be a +1-eigenstate of these operators for any choice of Γ1

and Γ2 (as the cluster state is a +1-eigenstate of the cluster terms).

We now specify a class of membrane operators that we will be interested in. First, let
(x̂, ŷ, ẑ) be a coordinate system of the cubic lattice C (with opposite boundaries identified). We
choose two two-dimensional slices L ⊆ C and R ⊆ C that are separated in the ẑ direction by
a distance of at least d/4 (where d is the linear size of the lattice C). These two regions are
required to be extensive in both the x̂ and ŷ directions (i.e. each region has the topology of a
torus) as depicted in Fig. 2.10.

We choose Γ1 to be a nontrivial dual-2-cycle in the x̂− ẑ plane, which can be regarded as a
noncontractible surface (see Fig. 2.10a). Let Γ2 be a 2-chain in the ŷ − ẑ plane, with boundary

∂Γ2 = SL2 + SR2 , (2.92)

such that SL2 ⊆ L and SR2 ⊆ R are both nontrivial 1-cycles winding in the ŷ direction. The
membrane operators corresponding to Γ12 and Γ2 are illustrated in Fig. 2.10. We note that the
precise form of Γ1 and Γ2 is not important, any membranes that differ by a 2-boundary or a



2.3 A model with a thermal SPT phase | 59

dual-2-boundary may be considered equivalent. We note that the distance between the left and
right boundaries SL2 and SR2 is lower bounded by d/4.
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Fig. 2.10 (Color online) (a) The membrane operator M(Γ1) and (b) the membrane operator
M(Γ2). The top and bottom boundaries are identified, as are the front and back boundaries.
The primal qubits lie on the darker (blue) sheets, and the dual qubits on the lighter (green)
sheet. The restrictions of these membrane operators to either L or R anti-commute. Note that
length in the ẑ direction has been exaggerated.

These membrane operators are constructed to have nontrivial algebraic relations on the
regions L and R. Namely, let ML(Γ1) and ML(Γ2) be the restriction of M(Γ1) and M(Γ2) to
the region L, respectively. Then this restriction gives an anti-commuting pair of operators

{ML(Γ1),ML(Γ2)} = 0. (2.93)

This is because the boundary of M(Γ2) consists of a string of Pauli Z operators, which intersects
the sheet of Pauli X operators of M(Γ1) at a single site, as depicted in Fig. 2.10. Similarly, the
restriction of the membrane operators to R gives a pair of anti-commuting operators. By analogy
to one-dimensional SPT phases, the membrane operators M(Γ1) and M(Γ2) generate a Z2 × Z2

group, while their restriction to the boundaries gives a nontrivial projective representation of
the Z2 × Z2 group [127, 132, 160].

For these choices, let Γ = (Γ1,Γ2) denote the pair of membranes and let M1 = M(Γ1) and
M2 = M(Γ2). To define the order parameter, we must also allow for the ability to perform
local error correction within a neighbourhood of each region L and R. As we will see, this
error correction will be a necessary ingredient to detect SPT-order in the RBH thermal state.
In particular, let L and R be non-intersecting neighbourhoods of L and R respectively, and
let EL ⊗ ER be any operation local to L and R. Namely, EL ⊗ ER consists of measurements,
followed by an outcome dependent local unitary, which will be thought of as an error correction
map. For a state ρ, the order parameter is defined as the expectation value of the membrane
operators, maximized over all locally error corrected states ρ = EL ⊗ ER(ρ),

OΓ(ρ) := max
ρ=E

L
⊗E

R
(ρ)

1
2 Tr (ρ(M1 +M2)) . (2.94)
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For our purposes it will be sufficient to consider error correction within neighbourhoods of L and
R that have radius O(log(d)). One can impose the additional restriction that the measurements
and unitaries of EL ⊗ ER be symmetric, although this is not required to distinguish phases.

In Lemma 3 we will derive an upper bound on the value of OΓ(ρ) for thermal states with
trivial SPT-order. Then in Lemma 4 we show that there exists a nonzero critical temperature
Tc, such that OΓ(ρC(β)) ≈ 1 for the symmetric thermal state of the RBH model at 0 ≤ T ≤ Tc.

Lemma 3. For any Z2 × Z2 symmetric ensemble ρ0 that is (r, ϵ) SPT-trivial with r sub-linear
in the lattice size d, there exist sufficiently large d such that OΓ(ρ0) ≤ 1/2 + ϵ.

Proof. Since ρ0 is (r, ϵ) SPT-trivial, we can approximate it by ρ′ =
∑
a p(a) |ψa⟩ ⟨ψa| up to

error-ϵ in trace norm, where each state |ψa⟩ is an (r, 0) SPT-trivial state, and p(a) is a probability
distribution. For each |ψa⟩, we have ⟨ψa|Mi |ψa⟩ = ⟨φ|U †

aMiUa |φ⟩ for some symmetric circuit
Ua of depth r, where |φ⟩ is a product state.

Let w be the largest value out of O(log(d)) and r. Take enlarged regions L of L and R of
R obtained by taking w-neighbourhoods around L and R respectively. Since r is sub-linear
in d, then we can take d sufficiently large such that L ∩R = ∅. For a transversal operator A
(meaning it is a tensor product of single-qubit operators), and a subregion χ of the lattice C, let
Aχ denote the restriction of A to χ. Since the membranes Mi are transversal, we can decompose
them across the regions, Mi = ML

i ⊗M bulk
i ⊗MR

i , where the bulk region is the complement of
L ∪ R. We now claim that the regions L and R are large enough so that [M bulk

i , Ua] = 0 for
i = 1, 2 and all a.

Firstly, we must have [M1, Ua] = 0 for all a. This is because for any local region χ, there
exists a dual-2-boundary b′

2 such that Mχ
1 = S(b′

2)χ. Since each gate in Ua has to be symmetric,
it must commute with S(b′

2) for any dual-2-boundary b′
2. It follows that each gate must also

commute with M1. Now consider M2, for any region χ away from the boundary of Γ2, similarly
we can always find a 2-boundary b2 such that Mχ

2 = S(b2)χ. Similarly, each gate in Ua must
commute with S(b2) for any 2-boundary b2 and therefore also with M bulk

2 . This is not satisfied
in general near the boundaries of Γ2. But provided M bulk

2 is supported a distance greater than
the circuit depth r away from the boundaries SL2 and SR2 , then we have [M bulk

2 , Ua] = 0, ∀a.

We can therefore write U †
aMiUa = ML

i,a⊗M bulk
i ⊗MR

i,a, where ML
i,a = UaM

L
i U

†
a and similarly

for MR
i,a. From Eq. (2.93), the restriction of membrane operators M1 and M2 to the either of

the disjoint regions L or R, give rise to the following anti-commutation relations

{ML
1 ,M

L
2 } = {MR

1 ,M
R
2 } = 0. ∀a (2.95)
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Because of unitary equivalence between the operators, we also have

{ML
1,a,M

L
2,a} = {MR

1,a,M
R
2,a} = 0 ∀a, (2.96)

where these operators also have eigenvalues ±1. Since |φ⟩ is a symmetric product state, it is a
+1-eigenstate of M bulk

i . However, |φ⟩ cannot be a simultaneous eigenstate of both ML
1,a and

ML
2,a, nor of MR

1,a and MR
2,a due to the anti-commutation relations of Eq. (2.96) and since L

and R are disjoint. In particular, since |φ⟩ is a tensor product |φ⟩ = |φ⟩L ⊗ |φ⟩bulk ⊗ |φ⟩R then

⟨ψa|Mi |ψa⟩ = ⟨φ|U †
aMiUa |φ⟩ (2.97)

= ⟨φ|LM
L
i,a |φ⟩L · ⟨φ|bulkM

bulk
i |φ⟩bulk · ⟨φ|RM

R
i,a |φ⟩R (2.98)

= ⟨ML
i,a⟩ · ⟨MR

i,a⟩ (2.99)

for i = 1, 2, where ⟨ML
i,a⟩ = ⟨φ|LM

L
i,a |φ⟩L and ⟨MR

i,a⟩ = ⟨φ|RM
R
i,a |φ⟩R. It is shown in [180]

that for k mutually anti-commuting operators {Ai}, each with eigenvalues ±1, any state |ψ⟩
satisfies the following inequality

k∑
i=1

⟨Ai⟩|ψ⟩ ≤
k∑
i=1

⟨Ai⟩2
|ψ⟩ ≤ 1, (2.100)

where the expectation value is taken with respect to the state |ψ⟩. Using Eq. (2.99), we have
for the approximate state

Tr
(
ρ′(M1 +M2)

)
=
∑
a

p(a)
(
⟨ML

1,a⟩ · ⟨MR
1,a⟩ + ⟨ML

2,a⟩ · ⟨MR
2,a⟩

)
(2.101)

≤
(
⟨ML

1,a⟩2 + ⟨ML
2,a⟩2

) 1
2
(
⟨MR

1,a⟩2 + ⟨MR
2,a⟩2

) 1
2 (2.102)

≤ 1, (2.103)

where the first inequality is the Cauchy-Schwarz inequality and the second inequality is using
Eq. (2.100). Now for any error correction map EL ⊗ ER that is localized to the non-intersecting
neighbourhoods L and R of L and R respectively, we have by the same argument

Tr
(
EL ⊗ ER(ρ′)(M1 +M2)

)
≤ 1. (2.104)

Then since ρ′ and ρ0 are close in trace norm, they have similar expectation values of bounded
observables, in the following way. Assume E = EL ⊗ ER is the map which maximizes OΓ(ρ0),
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then

|OΓ(ρ0) − 1
2 Tr

(
E(ρ′)(M1 +M2)

)
| = 1

2 | Tr
(
(M1 +M2)(E(ρ0) − E(ρ′))

)
| (2.105)

≤ 1
2
∥∥(M1 +M2)(E(ρ0) − E(ρ′))

∥∥
1 (2.106)

≤ 1
2 ∥M1 +M2∥∞ ·

∥∥E(ρ0) − E(ρ′)
∥∥

1 (2.107)

≤
∥∥ρ0 − ρ′∥∥

1 (2.108)

≤ ϵ, (2.109)

where the second inequality follows from Hölder’s inequality. The claim then follows.

One could define more complicated order parameters so that the bound on OΓ(ρ0) in
Lemma 3 can be made arbitrarily small. However, our choice and the above bound will be
sufficient to show the RBH model has nontrivial SPT-order. Next we show that the thermal
RBH model with 1-form symmetry has a high expectation value of the membrane operators
provided the temperature is below some critical temperature Tc. We do this by showing that
large loop excitations are confined in the low temperature phase. In subsection 2.3.4 we will
show that Tc is the critical temperature of the three-dimensional Z2 Ising gauge model.

Lemma 4. For the symmetric thermal Gibbs ensemble ρC(β) of the RBH model with Z2 × Z2

1-form symmetry with 0 ≤ T ≤ 2/log(5), there exists a constant δ > 0 (independent of systems
size) such that for sufficiently large d we have

OΓ(ρC(β)) ≥ 1 − O(d−δ). (2.110)

Proof. Consider first the expectation value of M2. Since M2 can be constructed from a product
of cluster terms (as in Eq. (2.91)), we have at zero temperature Tr(M2ρ) = 1. Using the
symmetric Gibbs ensemble ρC(β) in Eq. (2.76), the expectation value of a membrane operator
is given by

Tr(ρC(β)M2) =
∑

(γ,γ′)∈Z1×Z∗
1

Prβ((γ, γ′))⟨M2⟩|ψ(γ,γ′)⟩, (2.111)

where the expectation value is with respect to the excited state |ψ(γ, γ′)⟩ = Z(γ)Z(γ′) |ψC⟩.
Let |Γ2 ∩ γ′| denote the number of times γ′ intersects Γ2. Since |ψ(γ, γ′)⟩ is a ±1 eigenstate of
M(Γ2), we have

⟨M(Γ2)⟩|ψ(γ,γ′)⟩ =

+1 if |Γ2 ∩ γ′| = 0 mod 2

−1 if |Γ2 ∩ γ′| = 1 mod 2.
(2.112)

The right-hand side of Eq. (2.112) is independent of the 1-cycle γ since it is supported on the
dual lattice and therefore Z(γ) commutes with M2. Notice that a similar expression holds for
M1. We call γ′ an error cycle if |Γ2 ∩ γ′| = 1 mod 2 (and similarly for Γ1). We will show that
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there exists a critical temperature Tc, below which, large error cycles are suppressed and that
error correction on the boundaries can account for the remaining errors. First we define an
approximate state, where large loop-like excitations have been removed.

We say γ ∈ Z1 is a loop if any proper subset γ′ ⊊ γ, is not a cycle. We can partition the
set of 1-cycles according to the size of the largest loop they contain. Specifically, let Zα1 ⊆ Z1

consist of the set of 1-cycles whose largest loops are of length smaller than α (a similar definition
holds for Z∗α

1 ⊆ Z∗
1 ). Then define the approximate state

ραap(β) =
∑

(γ,γ′)∈Zα
1 ×Z∗α

1

Prβ(γ, γ′)
∣∣ψ(γ, γ′)

〉 〈
ψ(γ, γ′)

∣∣ . (2.113)

We claim that for a fixed 0 ≤ T < Tc = 2/ log(5), there exists a constant c such that for
α = c log(d), we have ∥∥∥ραap(β) − ρ(β)

∥∥∥
1

≤ O(d−δ), (2.114)

for some constant δ > 0. To see this, fix α = c log(d) and let V = (Z1 × Z∗
1 ) \ (Zα1 × Z∗α

1 ), be
set of (dual-)cycles containing a loop of size at least α (note that a loop may refer to a subset
of a 1-cycle or a dual-1-cycle). Then we have∥∥∥ραap(β) − ρ(β)

∥∥∥
1

=
∑

(γ,γ′)∈V
Prβ(γ, γ′). (2.115)

We can bound the above equation using the following relation

∑
(γ,γ′)∈V

Prβ(γ, γ′) ≤
∑

loops l∈Z1∪Z∗
1

|l|≥α

∑
(c1,c′

1)∈Z1×Z∗
1

l⊆c1 or l⊆c′
1

Prβ(c1, c
′
1), (2.116)

≤
∑

loops l∈Z1∪Z∗
1

|l|≥α

e−2β|l| ·
∑

(c1,c′
1)∈Z1×Z∗

1
l⊈c1 and l⊈c′

1

Prβ(c1, c
′
1), (2.117)

≤
∑

loops l∈Z1∪Z∗
1

|l|≥α

e−2β|l| (2.118)

≤
∑
k≥α

N(k)e−2βk, (2.119)

where N(k) is the number of loops in Z1 ∪ Z∗
1 of size k. For the cubic lattice C, the number of

loops N(k) of size k can be bounded by N(k) ≤ 26
5 |∆0|5k (we can upper bound the number of

possible loops by counting the number of non-backtracking walks: a non-backtracking walk can
begin at any vertex and can move in at most 5 independent directions). Therefore, provided
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β > log(5)/2, we have

∑
(γ,γ′)∈V

Prβ(γ, γ′) ≤ 12
5 |∆0|

∞∑
k=α

e−k(2β−log(5)) (2.120)

= c′|∆0|e−α(2β−log(5)), (2.121)

where c′ = 12/5(1 − e(log(5)−2β)) is independent of d. Since |∆0| = (d + 1)3, the error in Eq.
(2.114) is exponentially small in α, provided the temperature is below a critical temperature Tc.
Here, we have given a lower bound on Tc by 2/ ln(5). In terms of the lattice size d we have

∑
(γ,γ′)∈V

Prβ(γ, γ′) ≤ O(d−c(2β−log(5))+3). (2.122)

Choosing c ≥ 3/(2β − log(5)), we have δ = c(2β − log(5)) − 3 > 0 and the claim follows. Notice
that this argument shows that large loop excitations in the RBH thermal state are suppressed,
and is similar to Peierls’ argument for spontaneous magnetization in the two-dimensional Ising
model [181].

Now we show that for these values of T and α, there exists an error correction map E such
that

Tr
(
E(ραap(β))(M1 +M2)

)
≥ 2 − O(d−δ). (2.123)

Indeed, notice that if d is large enough, the approximate state contains no homologically
nontrivial excitations, as they must have length at least d. These are the only types of errors
that reduce the expectation value of M1, and so the approximate state satisfies

Tr(ραap(β)M1) = Tr(ραap) (2.124)

= 1 −
∑

(γ,γ′)∈V
Prβ(γ, γ′) (2.125)

≥ 1 − O(d−δ). (2.126)

using Eq. (2.122). The only types of errors in the approximate state that reduce M2 are
dual-1-cycles containing a loop that wraps around a boundary component of ∂Γ2 = SL2 ⊔ SR2 .
Therefore any excitation in ραap(β) that gives rise to an error is contained within an α/2
neighbourhood of SL1 and SR1 . By measuring all cluster terms K(σ2) in an α/2 neighbourhood
of ∂Γ2 one can determine the location of any possible error cycles (for sufficiently large d, these
α/2 neighbourhoods are non-intersecting). Then depending on the parity of the number of
error loops, one can apply a correction operator Z(γ′) for some dual-1-cycle γ′ wrapping around
SL2 or SR2 , that returns ραap(β) to the +1 eigenspace of M2. Letting E denote the measurement
and recovery steps (which in particular does not change the expectation value of the other
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membrane operator M1 since the recovery is a local unitary), the approximate state similarly
satisfies Tr(E(ραap(β))M2) ≥ 1 − O(d−δ), and therefore Eq. (2.123) holds.

Finally, let E be the aforementioned error correction map, using an argument similar to
that in Lemma 3, we have∣∣∣Tr

(
E(ραap(β))(M1 +M2)

)
− Tr (E(ρC(β))(M1 +M2))

∣∣∣ ≤ 2
∥∥∥E(ραap(β)) − E(ρC(β))

∥∥∥
1

(2.127)

≤ 2
∥∥∥ραap(β) − ρC(β)

∥∥∥
1

(2.128)

≤ O(d−δ). (2.129)

Then using Eq. (2.123) we have that

OΓ(ρC(β)) ≥ 1 − O(d−δ), (2.130)

completing the proof.

Lemma 4 tells us that OΓ(ρC(β)) → 1 in the limit of infinite system size. This, along with
Lemma 3, shows that the RBH cluster model, protected by 1-form symmetry has nontrivial
SPT-order for temperatures 0 ≤ T ≤ Tc. The key ingredient in the proof is that large loop
configurations are energetically suppressed in the low temperature phase, and this results in
a type of string tension. This is the characteristic behaviour of the Z2 lattice gauge theory
in three dimensions, and we make this connection precise in the next subsection. Above the
critical temperature, the string tension disappears as large error cycles become entropically
favourable [182, 183] and thus OΓ(ρC(β)) will approach 0. We correspondingly expect the
SPT-order to disappear above Tc.

2.3.4 Comparison with a three-dimensional Ising gauge model

Having proved that the nontrivial SPT-order of the RBH model under the 1-form symmetry
survives at nonzero temperature, we now compare it to a three-dimensional Ising gauge model
[182, 184]. This comparison is natural because the 1-form symmetry of the RBH model and
the gauge symmetry of the three-dimensional Ising gauge model are closely related. The model
can be defined on the same lattice C as the RBH model, and the Hamiltonian is given by a
sum of plaquette terms

HIG = −
∑

σ2∈∆2

Z(∂σ2) −
∑

σ1∈∆1

Z(∂∗σ1). (2.131)
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We notice that the first and second terms are supported on disjoint sublattices so that HIG

describes two decoupled copies of a three-dimensional Ising gauge model on the cubic lattice.
This model has local gauge symmetries, which are the 1-form operators of Eq. (2.72).

Excitations of this model take the form of loop-like objects, and can be created by products
of Pauli X operators. These loop-like excitations have an energy cost proportional to their
length in the same way as the RBH model with 1-form symmetry. Indeed, the spectrum of
HIG is identical to that of the RBH model HC with 1-form symmetry enforced, and one can
construct a duality mapping between the 1-form symmetric model HC and two copies of the
three-dimensional Ising gauge model HIG.

This Ising gauge model HIG has a low-temperature ordered phase where the excitations
have string tension, such that large loops excitations are suppressed. The suppression of large
excitations was the necessary ingredient in the proof of Lemma 4 which we use to show the
nontriviality of the 1-form symmetric RBH model at nonzero temperature. Therefore the lower
bound of Tc in Lemma 4 of 2/ log(5) ≈ 1.24 can be increased to the critical temperature of the
three-dimensional Ising gauge model, which has been estimated via numerical simulations [184],
to be TIG ≈ 1.31.

It is worth noting that the model described by the Hamiltonian HIG and the RBH model
HC belong to distinct phases at zero temperature under 1-form symmetries, since the three-
dimensional Ising gauge model has long-range entangled (topologically ordered) ground states.
This distinction persists to nonzero temperature T with 0 ≤ T ≤ Tc, as the HIG retains the
same order as the three-dimensional toric code [121]. Indeed, the three models: the trivial
paramagnet HX , the RBH model HC and the three-dimensional Ising gauge theory HIG, all
have the same spectrum under 1-form symmetries and belong to distinct symmetric phases for
temperatures 0 ≤ T ≤ Tc. From the viewpoint of quantum information processing tasks, each
of these phases has distinct uses: HIG can be used as a memory at nonzero temperature for
the storage of classical bits [121], while the RBH model HC is a universal resource for MBQC
at nonzero temperature.

2.4 Localizable entanglement

In the previous section, we have shown that the RBH model possesses nontrivial SPT-order
at nonzero temperature when protected by a 1-form symmetry, and we developed order
parameters that detect this nontrivial SPT phase. In subsection 2.4.1 we provide an operational
interpretation for these order parameters in terms of quantifying the entanglement that can be
localized between distant regions in the thermal state through measurements in the bulk. This
provides a connection with the zero-temperature results in 1D SPT models [127], where all
nontrivial SPT-ordered ground states possess long-range localizable entanglement. These order
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parameters are also relevant in the context of quantum computation, as localizable entanglement
is the underlying mechanism through which—via gate teleportation— the RBH thermal state
functions as a resource for measurement-based quantum computation.

In subsection 2.4.2 we then turn our attention back to the standard RBH model without
symmetry, and reflect on the robustness of this model for measurement-based quantum com-
putation even in the case where no symmetry is enforced. We find a novel perspective: that
error correction can be used to restore an effective 1-form symmetry, and when the correction
is successful, the model can be used to localize entanglement between distant regions. This pro-
vides a direct link between thermal SPT phase and fault-tolerant measurement-based quantum
computation, or more generically, high error-threshold quantum computing architectures.

2.4.1 Localizable entanglement in the 1-form SPT model

A primitive form of computation is the ability to generate entanglement between distant regions.
Localisable entanglement L̃LR is the average entanglement (according to some entanglement
measure E) of the post measured state between two regions L, R, maximized over all choices
of single-site measurements M on the complement of L ∪ R. Following [185], the localisable
entanglement is defined as

L̃LR(ρ) = max
M

∑
s

psE(ρs), (2.132)

where ρs = ΠsρΠs/Tr(Πsρ) is the post-measurement state associated with a local measurement
projector Πs = |s1⟩⟨s1| ⊗ · · · ⊗ |sn⟩⟨sn| on (L ∪R)c and measurement outcome s = (s1, . . . , sn),
and ps = Tr(Πsρ) is the probability of outcome s.

In general, maximizing over all possible local measurements is difficult, but if the state ρ
has a high degree of symmetry then the optimal measurement bases Πs may be determined
from symmetry arguments [186]. For the 3D cluster state with the 1-form symmetry, it is
straightforward to show (following [125, 187]) that the optimal local measurement bases for
localizing entanglement are always the X-basis; i.e., one should perform local X measurements
on all spins in the bulk. The localizable entanglement of the state ρ can then be expressed as
the average entanglement of the post-measurement state ρs across the L/R partition:

L̃LR(ρ) =
∑
s

psE(ρs). (2.133)

This entanglement is also known as the SPT-entanglement [187], and shown to be an order
parameter for SPT phases protected by onsite symmetries at zero temperature. We note that,
in the presence of the 1-form symmetry, localizable entanglement and SPT-entanglement are
identical.
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We now show that the order parameters OΓ(ρ) developed in the previous section serve as a
witness for localizable entanglement of the thermal SPT state. We note that the membrane
operators M(Γi) take the form

M(Γi) = ML
i ⊗M bulk

i ⊗MR
i , (2.134)

where the bulk region is the complement of L ∪ R. Since L and R are 2-dimensional slices,
the restrictions ML

1 and MR
1 are 1-dimensional strings of Pauli X operators, and ML

2 and
MR

2 are 1-dimensional strings of Pauli Z operators. Consider measurement of Pauli X on all
qubits that either do not belong to the two-dimensional slices L and R, or belong to 2-cells
of L and R. Then the post measured state is an eigenstate of a pair of two-dimensional toric
codes, each defined on the slices L and R (see Ref. [136] for details). The membrane operators
restricted to these slices are equivalent to logical operators of the two-dimensional toric codes,
and in particular may be written in terms of these logical operators as ML∪R

1 = XL ⊗XR and
ML∪R

2 = ZL ⊗ ZR.

After performing the local X measurements on the bulk qubits, the measurement projector
Πs projects into eigenstates of M bulk

i . Then the single qubit measurement outcomes can be
multiplied to infer the outcome of each bulk operator M bulk

i . This classical information is
transmitted to L and R and we can infer the ±1 outcomes of the logical operators XL ⊗XR

and ZL ⊗ ZR for the post measured state. Note that due to the anti-commutation relations
of Eq. (2.93) these correlations are that of a maximally entangled state encoded within
two two-dimensional toric codes. The order parameter of Eq. (2.94) after measurement,
⟨XL ⊗XR + ZL ⊗ ZR⟩/2, is therefore an entanglement witness for the entanglement between
topological degrees of freedom. Note that measurement outcomes of XL ⊗XR and ZL ⊗ ZR

for the post measured state might potentially depend on the choice of membrane M bulk
i , but

as discussed in section 2.3.3, we can freely deform the membrane operators due to the 1-form
symmetries, thus removing any ambiguity. This entanglement enables gate teleportation in
the topological cluster state quantum computing scheme [66], using the thermal state as the
resource state.

Having provided an operational interpretation of thermal SPT-order as localizable entan-
glement in measurement-based quantum computation, we now briefly consider the physical
consequence of this localizable entanglement. Non-triviality of SPT-order manifests itself
most dramatically through physical properties on the boundaries. For instance, 1D nontrivial
SPT phases typically exhibit robust gapless boundary modes similar to those in topological
insulators. The aforementioned localizable entanglement, or SPT-entanglement, for 1D SPT
phases directly measures the boundary degeneracy that appear when the system has open
edges [187]. For three-dimensional systems with symmetries, their two-dimensional boundaries
may exhibit robust gapless modes, symmetry-breaking phases and/or 2D topological order
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[110, 159]. With 1-form symmetries in the bulk, the boundary of the 3D cluster state at
zero temperature supports the two-dimensional toric code on effective qubits localized near
the boundary, and localizable entanglement, as quantified by membrane operators, measures
the boundary degeneracy of the toric code on the boundaries. It is tempting to speculate
that the presence of localizable entanglement at nonzero temperature in the 3D cluster state
suggests that this boundary topological order persists even at nonzero temperature due to
1-form symmetries in the bulk.

2.4.2 Recovering effective 1-form symmetry with error correction

We have shown that the RBH model can retain its long-range localizable entanglement at nonzero
temperature when a 1-form symmetry is enforced. The original results of Ref. [136] demonstrate,
however, that this localizable entanglement persists in the thermal state even without any
symmetry protection! This result is surprising because, as we have shown, the protection of a
1-form symmetry is necessary to define an SPT-ordered phase at nonzero temperature. To add
to the confusion, the transition in localizable entanglement in the unprotected model, from
long-range at low temperature to short-range at high temperature, does not correspond to
any thermodynamic transition. Indeed, the Gibbs state of the RBH model without symmetry
protection has no thermodynamic phase transition, and is equivalent to the Gibbs state of a
non-interacting paramagnet. What is the underlying quantum order that persists up until this
transition in localizable entanglement?

We offer a resolution to this confusing situation, by demonstrating that the persistence of
localizable entanglement in the RBH model to nonzero temperature can be understood through
imposing an effective 1-form symmetry in the unprotected model via error correction. The
1-form operators are not enforced a priori, but their eigenvalues are reconstructed via the
outcomes of the local measurements, and the resulting state can be ‘restored’ to the SPT-ordered
thermal state. We can therefore relax the symmetry requirement on the model, provided it can
be effectively restored through error correction.

Consider the thermal state ρ0(β) of the RBH model HC where no symmetry is enforced. In
the absence of a symmetry, ρ0(β) is equivalent to the exact cluster state with local Z errors
applied to each qubit with probability p = (1 + exp(2β))−1, as shown in Ref. [136]. In order to
restore the 1-form symmetry, we follow the error correction scheme detailed in Ref. [136], which
is based on the techniques of Ref. [47]. We now outline the steps involved with this procedure
and we note that error correction proceeds on each sublattice independently.

Firstly, consider the measurement of all 1-form operators in the local generating set G̃ =
{S(∂σ3), S(∂∗σ0) | σ3 ∈ ∆3, σ0 ∈ ∆0} given by Eq. (2.73), and let {sb = ±1} be the set of
corresponding measurement outcomes. A syndrome is the set of all operators in G̃ which return
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measurement outcome −1 and can be found as the dual boundary ∂∗(c′
1) of an error chain

Z(c′
1), and the boundary ∂c1 of an error chain Z(c1), where c1 ∈ C1 and c′

1 ∈ C∗
1 . To recover

the 1-form symmetry, one can identify a recovery 1-chain γ1 ∈ C1 and dual-1-chain γ′
1 ∈ C∗

1
such that

∂(γ1 + c1) = 0, and ∂∗(γ′
1 + c′

1) = 0. (2.135)

The recovery operator U{sb} = Z(γ1)Z(γ′
1) is a product of Pauli Z operators, which is dependent

on the measurement outcomes. The post-correction state is

ρsym =
∑
{sb}

U{sb}
(
Π{sb}ρinΠ{sb}

)
U †

{sb} (2.136)

where Π{sb} is the projection operator onto subspace with syndrome values {sb}. Since this
error-corrected state ρsym is 1-form symmetric by construction, its nontriviality under 1-form
symmetries, in a sense of the circuit complexity, can be defined.

We have recovered the 1-form symmetry, but we have to determine when the error correction
is successful, as the choice of recovery chains satisfying Eq. (2.135) is not arbitrary. The measure
of success is determined by the usefulness of the post-correction state for localizing entanglement,
as we will discuss. We say error correction is successful if the recovery chains γ1 and γ′

1 satisfy

γ1 + c1 ∈ B1, and γ′
1 + c′

1 ∈ B∗
1 (2.137)

meaning they are homologically trivial. This means we only need to find recovery chains that
are equivalent to γ1 and γ′

1 up to a 1-boundary and a dual-1-boundary, respectively. Optimal
error correction finds the most probable equivalence class of chains satisfying Eqs. (2.135) and
(2.137) for the given syndrome and is known as maximum-likelihood decoding [47].

The error correction succeeding is equivalent to the post-correction state ρsym having the
same +1 expectation values of the operators X(z2) and X(z′

2) as the cluster state, where
z2 ∈ Z2 is a nontrivial 2-cycle, and z′

2 ∈ Z∗
2 is a nontrivial dual-2-cycle. In this case, the

corrected state can be reliably used to localize entanglement between distant regions L and R,
since the measurement outcomes of bulk of the membrane operators M bulk

i in Eq. (2.134) can
be accurately determined. In the case that γ1 + c1 or γ′

1 + c′
1 are homologically nontrivial, then

we say a logical error has occurred, and there is no entanglement in the post measured state.

Throughout the above discussion, an important consequence of the localizable entanglement
protocol is that one can defer the error correction procedure until after the single qubit
measurements have been performed. In particular, rather than measure 1-form operators
explicitly, one can perform all of the single qubit X measurements first and take products of
measurement outcomes to infer the eigenvalues of the 1-form operators G̃. One can classically
process the measurement outcomes to identify the post measured state, as pointed out in
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Ref. [136]. This gives perspective on why the localisable entanglement persists in the thermal
RBH model without symmetry protection, as the measurement outcomes used to localize
entanglement also provide the potential for error correction.

A subtlety in this argument is the fact that the definition of ρsym depends on the error
correction protocol, which determines the choice of recovery map U{sb} in Eq. (2.136). In
order to discuss the hidden SPT-order in an initial state ρ0(β), it is sensible to use the optimal
quantum error correction protocol to construct the 1-form symmetric ensemble ρsym. The
question of finding a threshold for this optimal error correction can be rephrased as a problem
of finding a phase transition in a certain statistical mechanical model, the random-plaquette
Z2 gauge theory in three-dimensions [47]. The random-plaquette Z2 gauge theory undergoes a
phase transition between an low-temperature ordered and a high-temperature disordered phase
[188]. The ordered phase corresponds to the ability to successfully perform error correction
with a high success probability in the RBH model at low temperature. The threshold can be
found at the critical point in the three-dimensional random-plaquette Z2 gauge theory along
the Nishimori line (see Fig. 2.11). The critical point corresponds to a temperature of T0 ≈ 0.6,
which lower bounds the transition in localizable entanglement [136]. It is thus natural to
speculate that the thermal SPT-order in ρ0(β) persists up to T0.

So far we have considered the thermal state of the RBH model both with and without
1-form symmetries enforced. A natural family of models which interpolates between these two
cases is the symmetric Hamiltonian of Eq. (2.4), with finite strength symmetry terms

H(λ) = HC − λ
∑
Sb∈G̃

Sb, λ ≥ 0. (2.138)

In the limit of λ → ∞, the thermal state is the 1-form symmetric state, for which measurement
of the operators G̃ always returns +1. As we have discussed, the related statistical model is the
three-dimensional Ising gauge theory (or equivalently, the random-plaquette Z2 gauge theory
with no randomness), which has a critical temperature at T∞ ≈ 1.3. Below this temperature
we can always localize entanglement between distant boundaries.

For intermediate values of λ ∈ (0,∞), excitations also have an additional energy cost at their
boundaries (proportional to λ), as there is a finite energy penalty to violating the symmetry.
Increasing λ penalizes excitations which cannot be successfully corrected, leading to increased
success rate if the same protocol is used. Finding the success rate appears difficult, as the
corresponding statistical model is three-dimensional random-plaquette Z2 gauge theory, but with
correlation between the plaquette random variables. If one neglects these correlations (which
will be valid for small λ), then the transition temperature for finite λ would be approximated by
the line separating the order and disorder phases in the phase diagram of the three-dimensional
random plaquette Z2 gauge theory (see Fig. 2.11).
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We remark that the protocol dependence of characterising topological order of thermal
states is a generic challenge, both in the presence or absence of symmetries. It has been
shown by Hastings, that the 4D toric code is topologically ordered at sufficiently small but
finite temperature using the fact that quantum error correction protocol reliably works at low
temperature [123].

T
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T8

T0

ordered

Nishimori line

Fig. 2.11 (Color online) Sketch of the phase diagram of the three-dimensional random-plaquette
Z2 gauge theory [47]. The random-plaquette Z2 gauge theory has ±1 couplings, and the
fraction of negative couplings is labelled p, the disorder strength. The disorder strength p
is on the horizontal axis, and temperature T is on the vertical axis. The solid (black) line
is the boundary between the ordered and disordered phase. The dashed (blue) curve is the
Nishimori line e−2β = p/(1 − p). The Nishimori point at (pc, T0) lies at the intersection of
the phase boundary and the Nishimori line. The critical temperatures of H(λ) in the limiting
case of λ = 0,∞ are depicted on the vertical axis. For intermediate values λ ∈ (0,∞), if
correlation between plaquette random variables is ignored, the critical temperature is expected
to interpolate between T0 and T∞.

2.5 Outlook

Stability of thermal SPT-order provides a physical account for the surprisingly high error
threshold attained in quantum computing architectures involving the 3D cluster state as well
as a guiding principle to look for useful resource states for fault-tolerant quantum computation.
Our work also opens new avenues for studies of higher-form SPT phases and their thermal
properties with possible applications to quantum information processing as well as realizations
of higher-form symmetries. Despite the theoretical beauty of higher-form SPT phases, the
practical challenge was that physically realistic condensed matter systems do not naturally seem
to possess higher-form symmetries. Our perspective on error correction in the 3D cluster state
suggests that 1-form symmetries can emerge from error correction even if we do not impose
them as physical symmetries. This raises an intriguing possibility of realizing higher-form
symmetries in an emergent manner through quantum error correction. With this perspective,
one can ask whether the three-dimensional models of Refs. [149, 40], which have thermal states
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that are universal for MBQC, have underlying symmetries that give rise to SPT-order at
nonzero temperature. In addition, our generalized definition of topological order at nonzero
temperature in the presence of symmetries may be of independent interest as it provides insight
into generalizing the Davies map formalism to simulate thermalization for quantum many-
body systems with symmetries. This may be interesting in the context of symmetry-enriched
topological phases, where the stability of a quantum memory may be enhanced by symmetry.

Thermal SPT phases are likely to find other applications in a broader context of fault-tolerant
quantum computation. One particularly promising avenue is single-shot error correction [75],
which can significantly reduce the computational overhead in quantum computation. Conven-
tional error correction needs to take into account a possibility of faulty measurements, and
thus repeated measurements are required to get reliable syndrome values. Single-shot error
correction, where each syndrome is measured only once, is possible for topological stabilizer
quantum codes which retain topological order at nonzero temperature [75]. While this observa-
tion relates thermal topological order to single-shot error correction, what remains as a puzzle
is the fact that the 3D gauge color code [75, 189], an example of a subsystem quantum code,
also admits single-shot error correction. This fact strongly suggests that the gauge color code
retains some sort of order at nonzero temperature, but such thermal order would appear to be
in conflict with the thermal instability of topological order at nonzero temperature in all the
known three-dimensional models [137]. Our findings on thermal SPT-order hints that the 3D
gauge color code may possess SPT-order protected by some set of symmetry operators that
enable single-shot error correction.

Our perspective of the nontrivial 1-form SPT model as a gapped domain wall described in
section 2.3 raises an interesting question concerning topological defects associated with such a
3D domain wall. In a two-dimensional toric code, defects associated with the endpoints of a
gapped domain wall can be viewed as Majorana fermions [67]. This observation led to a huge
body of work on characterizations of topological defects in two-dimensional topologically ordered
systems [113, 190]. In our construction of a three-dimensional gapped domain wall associated
with a nontrivial 1-form SPT model, its two-dimensional boundary may be viewed as some
kind of topological defect in the 4D toric code. Characterization of such higher-dimensional
defects and their thermal stability may be an interesting future question. We note also that
the thermal stability of Majorana fermions in nanowires is also of interest [191, 192] and our
characterisation of thermal SPT stability may contribute to this work.
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correcting quantum memories

Abstract
A self-correcting quantum memory can store and protect quantum information for a
time that increases without bound with the system size, without the need for active
error correction. We demonstrate that symmetry can lead to self-correction in 3D spin
lattice models. In particular, we investigate codes given by 2D symmetry-enriched
topological (SET) phases that appear naturally on the boundary of 3D symmetry-
protected topological (SPT) phases. We find that while conventional onsite symmetries
are not sufficient to allow for self-correction in commuting Hamiltonian models of this
form, a generalized type of symmetry known as a 1-form symmetry is enough to guarantee
self-correction. We illustrate this fact with the 3D ‘cluster state’ model from the theory
of quantum computing. This model is a self-correcting memory, where information is
encoded in a 2D SET ordered phase on the boundary that is protected by the thermally
stable SPT ordering of the bulk. We also investigate the gauge color code in this
context. Finally, noting that a 1-form symmetry is a very strong constraint, we argue
that topologically ordered systems can possess emergent 1-form symmetries, i.e., models
where the symmetry appears naturally, without needing to be enforced externally.

3.1 Introduction

Quantum error correcting codes can be used to protect information in a noisy quantum computer.
While most quantum codes require complex active error correction procedures to be performed
at regular intervals, it is theoretically possible for a code to be self-correcting [47, 62, 137].
That is, the energetics of a self-correcting quantum memory (SCQM) can suppress errors for a
time that increases without bound in the system size, without the need for active control. Such
a memory is typically envisioned as a many-body spin system with a degenerate ground space.



76 | Symmetry-protected self-correcting quantum memories

Quantum information can then be stored in its degenerate ground space for an arbitrarily long
time provided that the system is large enough and the temperature is below some critical value.

In seeking candidate models for self-correction, inspiration has been drawn from recent
advances in our understanding of topologically ordered spin lattice models. The simplest
example of a two-dimensional topologically ordered model is Kitaev’s toric code [193], one of
the most studied and pursued quantum error correcting codes. With active error correction,
the toric code has a lifetime that grows exponentially with the number of qubits. However it
is not self-correcting, as without active error correction the lifetime of encoded information is
independent of the number of qubits. On the other hand, the four-dimensional generalization
of the toric code [47] provides a canonical example of a self-correcting quantum memory.

Encouraged by the capabilities of the 4D toric code, there has been a substantial effort to
find self-correcting quantum memories that meet more physically realistic constraints and, in
particular, exist in three or fewer spatial dimensions. A number of no-go results make this
search very challenging [61, 65, 124, 194–197]. While there has been considerable progress with
proposals that attempt to circumvent these constraints in various ways [12, 194, 196, 198–203],
none have yet provided a complete answer to the problem.

Symmetry can provide new directions in the search for self-correcting quantum memories, as
the landscape of ordered spin lattice models becomes even richer when one considers the interplay
of symmetry and topology. If a global symmetry is imposed on a model, a system can develop
new quantum phases under the protection of this symmetry. The properties that distinguish such
symmetry-protected phases from more conventional phases persist only when these symmetries
are not broken. This has led to new types of phases protected by symmetry, including symmetry-
protected topological (SPT) phases [92, 111, 129–131, 204] (phases with no intrinsic topological
order) and symmetry-enriched topological (SET) [112–115, 117, 163, 164, 190, 205–210] phases
(those including both intrinsic topological order and symmetry). These phases have found many
applications in quantum computing [34, 35, 67, 119, 125–127, 132, 134, 142–144, 156, 171, 211–
218].

In this chapter, we show that such phases can support self-correcting quantum memories in
three-dimensions, provided an appropriate symmetry is enforced. We argue that the generic
presence of point-like excitations in commuting Hamiltonian models protected by an onsite
symmetry precludes thermal stability (mirroring the instability of the 2D toric code), and so
we are naturally led to consider higher-form symmetries. Models with higher-form symmetries
have excitations that are higher-dimensional objects, such as strings or membranes, rather
than point-like excitations that are typical in models with onsite symmetries. With such
exotic excitations, we can seek models with the type of energetics believed to be needed for
self-correction. Focussing on models with symmetries that are not spontaneously broken, we
consider models that have an SPT ordered bulk. We then give two examples of 3D models
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that are self-correcting when a 1-form symmetry is enforced. The first example is based on the
3D ‘cluster state’ model of Raussendorf, Bravyi and Harrington (RBH) [136]; this model with
a 1-form symmetry has a bulk that remains SPT-ordered at non-zero temperature [216]. We
show that a self-correcting quantum memory can be encoded in a 2D SET boundary of this 3D
model, and is protected by the thermally-stable SPT ordering of the bulk. The second example
is based on the 3D gauge color code [75], which is conjectured to be self-correcting; we show
that a commuting variant of this model is self-correcting when subject to a 1-form symmetry.

Finally, we consider whether 1-form symmetries that lead to self-correction can be emergent,
rather than enforced. A symmetry is emergent if it arises in the low-energy effective theory
of a model, rather than one that is required explicitly in the microscopic model. The analogy
here is to the charge-parity symmetry that emerges in the effective anyon theory that describes
the low-energy theory of many topologically ordered models, such as the toric code; such
symmetries need not be externally enforced, as they are intrinsic to the model and stable
under perturbations. We give evidence that the 1-form symmetry used in the 3D gauge color
code example may be emergent, arising as a result of emergent charge-parity symmetries on
topologically-ordered codimension-1 submanifolds of the 3D bulk. In the gauge color code, this
symmetry is the ‘color flux conservation’ identified by Bombin [48].

We would like to emphasise upfront an important subtlety in defining a symmetry-protected
self-correcting quantum memory. Enforcing symmetries can be extremely powerful, and along
with potentially providing protection against errors, a poor choice in symmetry may be so strong
as to render the system useless as a quantum memory. In particular, one must be careful that
the symmetry still allows for the implementation of logical operators using ‘local moves’, i.e.,
sequences of local, symmetric operators. This requirement of a symmetry-protected SCQM will
rule out some choices of strong symmetries. For example, in the case of topological stabilizer
codes, this removes the possibility of enforcing the entire stabilizer group as the symmetry (or
for example, all of the vertex terms of a 3D toric code). We will revisit this subtle issue along
with other rules in more detail in Sec. 3.2.3.

The chapter is structured as follows. In Sec. 3.2, we review self-correction and the conditions
required for it, as well as phases of matter protected by symmetry. We analyse the effect of
coupling symmetry-protected models to a thermal bath in Sec. 3.2.3, and argue that onsite
symmetries are insufficient to offer thermal stability of a symmetry-protected phase. In Sec. 3.3
we present our first example of a self-correcting quantum memory protected by a higher (1-
form) symmetry: a thermally-stable 3D SPT-ordered model with a protected 2D SET-ordered
boundary. A second example, based on the 3D gauge color code, is analyzed in Sec. 3.4. We
discuss the possibility of such 1-form symmetries being emergent in 3D topological models in
Sec. 3.5, based around the gauge color code. We discuss some implications of these results and
open questions in Sec. 3.6.
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3.2 Background

In this section we briefly review self correcting quantum memories, as well topological phases
with symmetry.

3.2.1 Self-correcting quantum memories

The requirements of a self-correcting quantum memory have been formalized in the so-called
‘Caltech rules’ [196, 202] (also see Ref. [137] for a review). Specifically, a self-correcting quantum
memory (SCQM) in d spatial dimensions is a quantum many body spin system with the
following four properties: (i) the Hilbert space consists of a finite density of finite-dimensional
spins in d spatial dimensions; (ii) the Hamiltonian H has local terms with bounded strength
and range, such that each spin is in the support of only a constant number of terms; (iii) the
ground space of H is degenerate (in the large size limit) such that a qubit can be encoded in
the ground space and that this ground space is perturbatively stable; (iv) the lifetime of the
stored information after coupling the system to a thermal bath must grow without bound in
the system size. Typically, it is required that the lifetime grow exponentially in the system
size, however there are situations when polynomial growth may be sufficient. Another desirable
feature for a practical SCQM is the existence of an efficient decoder: a classical algorithm that
can correct for errors in the system that have accrued over time.

While the four-dimensional toric code meets all of the above requirements, there is currently
no model that has been shown to meet these conditions in three-dimensions or fewer. The
search for such a model has been encumbered by an assortment of no-go results for models
consisting of commuting Pauli terms, known as stabilizer models [61, 65, 124, 194–196]. These
no-go results are typically centered around the idea that a SCQM must have a macroscopic
energy barrier, meaning any sequence of errors that are locally implemented must incur an
energy cost that diverges with the size of the system. (Note we will define the energy barrier
more concretely in the following subsection.) If a code has a macroscopic energy barrier then,
naively, one may expect that logical faults can be (Boltzmann) suppressed by increasing the
system size. This is indeed part of the puzzle, as it has been shown that a diverging energy
barrier is necessary but not sufficient for self-correction for commuting Pauli Hamiltonians
[219, 220] and abelian quantum doubles [197]. (In particular, this rules out any codes based on
entropic error suppression such as that of Brown et al. [203].)

As such, any self-correcting quantum memory should be free of string-like (one-dimensional)
logical operators, as these codes have a constant energy barrier. This holds since the restriction
of a string-like logical to some region will commute with all terms in that region, and potentially
only violate local terms near the boundary of the string. Therefore, to build up a logical fault
(i.e., a logical string operator), one only needs to violate a constant number of terms, costing a
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constant amount of energy. This immediately rules out all 2D stabilizer codes [61], and 3D
stabilizer Hamiltonians that have translationally invariant terms and a ground space degeneracy
that is independent of system size (the so-called STS models of Yoshida [124]). Quantum codes
in 3D that are free of string-like logicals have been investigated by Haah [12, 194] and Michnicki
[198, 199], however they do not achieve a memory time that is unbounded (with the size of the
system) for a fixed temperature.

One class of proposals seeks to couple a 2D topologically ordered model, such as the toric
code, to a 3D theory with long range interactions with the goal of confining the anyonic
excitations. For example, excitations in the toric code can be coupled to the modes of a 3D
bosonic bath [200, 201, 196] such that anyonic excitations experience long range interactions.
This coupling can result in a strong suppression of anyon pair production via a diverging
chemical potential, and a confinement in excitation pairs leading to self-correcting behaviour.
A complication with this approach is that the bulk generically requires fine tuning, and the
chemical potential can become finite upon a generic perturbation [196]. Such models are not
self-correcting under generic perturbations.

Finally, while the search for self-correcting quantum memories has primarily focussed on
stabilizer codes, subsystem codes [49, 51] are a promising direction because many of the no-go
theorems described above do not directly apply. Briefly, a subsystem code is a stabilizer code
where some of the logical qubits are chosen not to be used for encoding, and instead are left
as redundant gauge degrees of freedom. For the purposes of quantum memories, the use of
subsystem codes and gauge qubits offers much more flexibility in selecting a Hamiltonian for
the code, and the spectral requirements of the model for self-correction are potentially more
relaxed. The 3D gauge color code [75] is an example of a topological subsystem code with a
variety of remarkable properties, including a fault-tolerant universal set of gates via a technique
known as gauge fixing, and the ability to perform error-correction with only a single round
of measurements. This later property is known as single-shot error correction [48] and arises
from a special type of confinement of errors during the measurement step. It is conjectured in
Ref. [75] that the 3D gauge color code is self-correcting.

Thermalization and memory time

The central question for a candidate self-correcting quantum memory is how long the encoded
information can undergo thermal evolution while still being recoverable. For a self-correcting
quantum memory, this time should grow with the system size provided the temperature is
sufficiently low. In this section, we briefly review thermalization and motivate the energy barrier
as a useful tool to diagnose the memory time.



80 | Symmetry-protected self-correcting quantum memories

The standard approach to modelling thermalization of a many body system is to couple
the system to a thermal bosonic bath. Let Hsys be the Hamiltonian describing the quantum
memory of interest, and let Hbath be a Hamiltonian for the bosonic bath. Thermalization is
modelled by evolution under the following Hamiltonian

Hfull = Hsys +Hbath + λ
∑
α

Sα ⊗Bα, (3.1)

where Sα ⊗ Bα describe the system-bath interactions, Sα is a local operator acting on the
system side, Bα is an operator acting on the bath side, and α is an arbitrary index. It is
assumed that the coupling parameter is small, |λ| ≪ 1.

Suppose that the state is initialized in a ground state ρ(0) of Hsys. As the system is coupled
to the thermal bath, after some time t the system evolves to a noisy state ρ(t). Due the
nature of the coupling, described by local coupling operators Sα ⊗Bα, errors are introduced
to the system in a local way, and so the time evolution of the state ρ(t) must be described
by a local sequence of operations. One can give a precise description of this process using a
perturbation theory analysis, such as a master equation approach like the well-known Davies
formalism [157, 158] which we review in Sec. 3.7.

For a self-correcting quantum memory, we wish to be able to recover the state ρ(0) from ρ(t)
after some time t using a single final round of error correction. Error correction consists of two
steps, firstly a sequence of measurements is performed on the noisy state ρ(t) to obtain an error
syndrome, then a recovery map is performed that depends on the syndrome (the measurement
outcomes). The net action of the syndrome measurement and recovery map can be condensed
into a map Φec : H → H, where H is the Hilbert space of the memory system. For a fixed error
rate ϵ, we can define the memory time τmem as the maximum t for which the inequality

∥Φec(ρ(t)) − ρ(0)∥1 ≤ ϵ (3.2)

is satisfied.

An upper bound to the memory time, is the mixing time τmix, which is the time taken for
ρ(t) to be ϵ close to the Gibbs state (for some fixed ϵ). This bound holds since once the system
has thermalized to the Gibbs state, the system retains no information about the initial state.
However, the memory time can be substantially less than the mixing time (as, for example,
with the 3D toric code) [219], and so this mixing time does not in general give us a tight bound
on the memory time. Instead, a useful proxy for determining the memory lifetime of a SCQM
is the energy barrier, since a growing energy barrier is necessary in many cases to achieve
self-correction. In the following subsection we define this quantity.
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Energy barrier

If we cannot recover the logical information after some time t, then we say that a logical fault
has occurred. The coupling to the bath can lead to a logical fault if a sequence of local errors
from the system-bath coupling results in a logical operator (or an operator near to a logical
operator). Due to the locality of the coupling between the system and bath (in Eq. (3.1)),
errors are introduced to the memory in a local way. There is an energy cost associated with
any such process, which is directly related to the probability of such a process occurring when
coupled to a bath at temperature T . We now define this energy barrier precisely.

We first define a local decomposition of a logical operator. In this chapter we restrict to
stabilizer Hamiltonians, however the energy barrier can similarly be defined for any commuting
projector Hamiltonian. Let HS = −

∑
i hi be a stabilizer Hamiltonian (i.e., each local term is

a Pauli operator, and all terms mutually commute), and l a Pauli logical operator. A local
decomposition of l is a sequence of Pauli operators D(l) = {l(k) | k = 1, . . . N} such that l(1) = I

and l(N) = l, and l(k) and l(k+1) differ only by a local (constant range) operator.

For any ground state |ψ0⟩ of HS , the state l(k) |ψ0⟩ is also an eigenstate of HS (for each k)
with energy E(k). We can use this to define the energy barrier ∆ for a logical fault. Namely,
the energy barrier for the local decomposition D(l) is defined as

∆D(l) = max
k

(E(k) − E0), (3.3)

where E0 is the ground space energy. The energy barrier for a logical fault in HS is defined as

∆ = min
l,D(l)

∆D(l). (3.4)

In other words, the energy barrier for a logical fault is the smallest energy barrier of any
logical operator, minimized over all local decompositions. Intuitively, the energy barrier should
be large in order to suppress logical faults from occurring.

The expectation for many models is that below some critical temperature the memory time
will grow exponentially in the energy barrier

τmem ∼ eβ∆ (3.5)

which is known as the Arrhenius law. This relationship is observed to hold for many models
such as the classical 2D Ising model and 4D toric code, but does not hold in general, (for
instance in models when entropic effects are significant [12, 194, 198, 199]). Indeed for stabilizer
Hamiltonians, an energy barrier that grows with the size of the system is a necessary condition
(although not sufficient) for self-correction [219, 220].
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Dimensionality of excitations and self-correction

We conclude this subsection with a comment regarding the crucial role of the dimensionality
of excitations in the feasibility of self-correction. The conventional wisdom is that deconfined
point-like excitations are an obstruction to self-correction, as harmful errors can be introduced
with a low energy cost due to excitations that are free to propagate. For models with higher
dimensional excitations, the energy cost to growing and moving these excitations can be large,
such that logical errors are suppressed.

The properties of excitations and their dimensions for a given system can often be understood
in terms of its symmetries. As we will see in Sec. 3.2.3, systems with global onsite symmetries
have point-like excitations that are free to propagate, and therefore such symmetries do not offer
any extra stability. This motivates the consideration of more general subsystem symmetries
beyond the global onsite case. Higher-form symmetries are a family of symmetries that generalise
the conventional global onsite symmetry. Excitations in systems with higher-form symmetries
form higher-dimensional objects, and so their importance in the context of self-correction
becomes apparent.

3.2.2 Topological phases with symmetry

Quantum phases of matter are characterised by their ground state properties. Two gapped local
Hamiltonians are said to belong to the same phase if they are connected by a one-parameter
continuous family of local Hamiltonians without closing the gap. When symmetry is at play, the
classification becomes richer, as all Hamiltonians in the family must respect the symmetry. In
particular, it is possible that two Hamiltonians that are equivalent in the absence of symmetry,
become inequivalent when the symmetry is enforced. This leads to the notion of SPT and SET
phases, which we now briefly define (see Ref. [92] for a detailed discussion).

Consider a lattice Λ in d dimensions with a D-dimensional spin placed at each site i ∈ Λ.
We consider systems described by a gapped, local Hamiltonian H =

∑
X⊂Λ hX . Here, ‘local’

means that each term hX is supported on a set of spins X with bounded diameter. We also
assume the system has a symmetry described by a group G with a unitary representation S.
We say two gapped Hamiltonians H0 and H1 with symmetry S(g), g ∈ G belong to the same
phase if there exists a continuous path of gapped, local Hamiltonians H(s) s ∈ [0, 1] that all
obey the symmetry S(g) such that H(0) = H0 and H(1) = H1.

For SPT and SET ordered systems, one commonly considers global symmetries S(g) that
act via an onsite fashion on the underlying degrees of freedom. The global action of these onsite
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symmetries S(g) may be expressed as

S(g) =
⊗
i∈Λ

u(g), g ∈ G, (3.6)

where u(g) is a local, site-independent representation of G.

We will also consider a generalised class of global symmetries, known as higher-form
symmetries, which have been recently of high interest in the condensed matter, high energy and
quantum information communities [153, 155, 156, 216, 221, 222]. These higher-form symmetries
form a family of increasingly stringent constraints that generalize the onsite case, and this will
be central in the discussion of the interplay of symmetry and self-correction. We introduce
these symmetries in Sec. 3.2.2, and for the present discussion and the definitions of SPT and
SET phases, the action of the symmetry S(g) is left general.

Symmetry protected topological phases

An SPT phase with symmetry S(g) is defined as class of symmetric Hamiltonians which are
equivalent under local symmetric transformations which do not close the gap and which are
not in the same class as the trivial phase (a non-interacting spin model with a product ground
state), but which are in the same phase as the trivial model if the symmetry were not enforced.
Ground states of such models are short range entangled, meaning they can be mapped to a
product state under a constant depth quantum circuit; however, such a circuit must break the
symmetry. Key characteristics of such phases are the absence of anyonic excitations, and the
absence of topology dependent ground space degeneracy. However, when defined on a lattice
with boundary, these phases host protected modes localized on the boundary, meaning the
boundary theory of an SPT phase must be either symmetry breaking, gapless, or topologically
ordered (note that a topologically ordered boundary can only exist when the boundary has
dimension d ≥ 2). As such, these systems are typically regarded as having a trivial bulk,
but exotic boundary theories. Some well known examples are the 1D cluster state and the
spin-1 Haldane phase (with Z2

2 symmetry), both of which host degenerate boundary modes that
transform as fractionalized versions of the symmetry. More generally the group cohomology
models [111] provide a systematic way of constructing SPT ordered models.

Symmetry enriched topological phases

An SET phase with symmetry S(g) is defined by a Hamiltonian that is distinct from the trivial
phase, even without any symmetry constraint. These topological phases can form distinct
equivalence classes under the symmetry S(g), and are referred to as SET phases. The key
characteristics of such phases are the presence of anyonic excitations, and topology-dependent
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ground space degeneracy. These anyons can carry fractional numbers of the symmetry group,
or may even be permuted under the symmetry action. Such anyon permuting symmetries can
be used to define symmetry defects on the lattice, which can be thought of as localized and
immobile quasiparticles that transform anyonic excitations when they are mutually braided.
Some well known examples of SETs are found in Refs. [113, 190, 205–207], and a general
framework is given by the symmetry-enriched string-nets of Refs. [114, 115]. These SET phases
fall into two categories. The first category consists of non-anomalous SET phases. These
are standalone topological phases in d-dimensions with onsite symmetry S(g) as in Eq. (3.6).
Anyons may undergo transformations under the symmetry action S(g). The second category
consists of anomalous SET phases. These are d-dimensional topological phases with a symmetry
action that cannot be realised in an onsite way on the degrees of freedom on the d-dimensional
boundary. These anomalous phases appear only on the boundary of (d+1)-dimensional SPT
phases.

It is conjectured that the topologically ordered boundary of an SPT phase with bulk onsite
symmetry must always be anomalous. In particular, a wide class of 3-dimensional SPT phases
can be classified by the group cohomology models [111], which are labelled by elements of the
cohomology group H4(G,U(1)). (See Refs. [161, 223–225] for examples of models outside this
classification.) Moreover, in 2 dimensions, anyonic systems with discrete unitary symmetry
G (that does not permute the anyons) also have a label in H4(G,U(1)) that classifies the
anomalies [226] (see also [113]). The case ω = 1 (i.e., trivial) means that there is no anomaly,
and ω ̸= 1 means the system is anomalous and cannot be realised in 2-dimensions in a standalone
way with onsite symmetries [112, 117, 163, 164, 208, 209]. A conjecture of Ref. [209] is that
the gapped boundary topological theory of a group cohomology model must always have an
anomaly ω ∈ H4(G,U(1)) that agrees with the label specifying the bulk SPT order. This kind
of bulk-boundary correspondence was proved in Ref. [210] in the case that the symmetry group
G is abelian and does not permute the boundary anyons. Moreover, in Ref. [116], a general
procedure to extract a boundary anomaly label from a bulk SPT has been given, in agreement
with the conjecture.

Higher-form symmetries

We will make use of a family of symmetries called higher-form symmetries [153, 155, 156,
216, 221, 222], generalizing the onsite case. These symmetries have been of recent interest for
several reasons, in particular, they provide a useful structure for error correction in quantum
computation [216], have been used to construct new phases of matter [156], and to understand
topological phases from the symmetry breaking paradigm [155, 222].

A q-form symmetry (for some q ∈ {0, 1, ..., D−1}) is given by a symmetry operator associated
with every closed codimension-q submanifold of the lattice; these operators are written as SM(g)
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where M is a closed codimension-q submanifold of Λ and g ∈ G. On these codimension-q
submanifolds, the action of the symmetry operators takes an onsite form: for g ∈ G and a
codimension-q submanifold M, the symmetry operator is

SM(g) =
∏
i∈M

u(g), g ∈ G (3.7)

where the product runs over all sites i of the submanifold M, and u(g) is a local, site-
independent representation of G. That is, higher-form symmetries can be thought of as
being onsite symmetries on lower dimensional submanifolds. For systems with boundary, the
submanifolds that the higher-form symmetries are supported need only be closed relative the
boundary of the lattice. In other words, the manifold M on which the symmetry is supported
may have a boundary on the boundary of the lattice Λ, i.e. ∂M ⊂ ∂Λ.

A key feature of systems with q-form symmetries is that symmetric excitations must form
q-dimensional objects. Of particular interest in this chapter will be 1-form symmetries in 3-
dimensional systems, which are the next weakest generalization (within the family of higher-form
symmetries) of the conventional global onsite symmetry. Symmetry operators in such systems
are supported on closed 2-dimensional surfaces, and excitations form closed 1-dimensional
loop-like objects. In Sec. 3.3 and Sec. 3.4 we will look at two examples of self-correcting
quantum memories protected by Z2

2 1-form symmetries.

Self-correction and topological order

The relationship between self-correction and thermal stability is complex. Self-correction is
a dynamic property of a system, whereas thermal stability is an equilibrium property. In
many previous investigations, various quantities have been used as proxies or indicators of
self-correction, for instance, the existence of a nonzero temperature phase transition [202, 227],
the presence of topological entanglement entropy in the Gibbs state [121], or the nontriviality
of Gibbs ensemble in terms of circuit depth [123]. Here, by ‘thermal stability’ we specifically
mean the presence of topological order in the thermal state, as determined by the minimal
circuit depth to prepare, following Refs. [123, 216]. While we do not yet have a general result
connecting the thermal stability and memory time, we explore the connection between these two
notions further through the example of the RBH model, by proving bulk thermal stability from
the existence of a macroscopic energy barrier on the boundary. This type of bulk-boundary
correspondence (at nonzero temperature) provides evidence in favour of a close relationship
between thermal stability and self-correction.
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3.2.3 Symmetry constraints and quantum memories

In this section, we consider what types of symmetric models may be worth investigating as
potential self-correcting quantum memories.

An important condition that must be met by a symmetry-protected self-correcting quantum
memory is that all logical operators can be implemented through a sequence of symmetric local
moves. That is, all logical operators l admit a local decomposition D(l) = {l(k) | k = 1, . . . N},
such that all l(k) are symmetric. This implies that even in the presence of symmetry, the bath
is capable of implementing all logical faults, and the logical information will eventually be
thermalized. If such a condition is not met, one can construct ‘trivial’ self-correcting models in
which the symmetry is spontaneously broken, as explained below.

No spontaneous symmetry breaking

If we require our model to admit symmetric local decompositions of all logical operators, then
the enforced symmetry S(g) cannot be spontaneously broken. In a model where the symmetry
is spontaneous broken, the ground space has less symmetry than the Hamiltonian, and this can
render the model trivial as a memory by disallowing logical operator actions at all. Different
ground states will in general be in different eigenspaces of the symmetry operator, and thus
enforcing the symmetry would be prohibit transitions between ground states. In the case that
the spontaneously broken symmetry is higher-form, enforcing it could remove some or all of the
anyonic excitations from the model.

The 3D toric code provides an illustrative example, where one can trivially obtain a self-
correcting quantum memory by enforcing a Z2 1-form symmetry that prevents any of the vertex
terms from flipping. Enforcing the vertex and plaquette terms in a 2D toric code provides
another trivial example of this phenomenon. These examples do not admit symmetric local
decompositions of all logical operators. For this reason, we only consider models where the
symmetry is not spontaneously broken, and SPT ordered systems provide a natural family of
candidates.

Onsite symmetries are insufficient for stability

In this section we argue that onsite symmetries are insufficient to promote a 2D topological
quantum memory to be self-correcting, even if such a phase lives on the boundary of a 3D
SPT model. Our goal here is simply to motivate moving beyond onsite symmetries (to higher-
form symmetries), not to rigorously rule out any role for onsite symmetries in the study of
self-correction.
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In particular, consider the case where the full system is given by a commuting Hamiltonian
with boundary, and that the protecting symmetry is abelian and onsite (with possibly an
anomalous boundary action). The excitations in such systems will be point-like, and their
presence precludes the possibility of having thermally stable (symmetry-protected) topological
order, as shown in Ref. [216]. This suggests that the boundary theory is also not thermally
stable, and thus not self-correcting. Indeed, as we show in Sec. 3.8, this is the case for the
class of models where the boundary is an abelian twisted quantum double with a potentially
anomalous boundary symmetry. Specifically, we show that there is a constant (symmetric)
energy barrier in this case. Therefore we see that in the case of onsite (0-form) symmetries, the
SPT ordered bulk offers no additional stability to the boundary theory. This motivates us to
consider the boundaries of SPTs protected by 1-form (or other higher-form) symmetries.

System-bath coupling with symmetry and the symmetric energy barrier

Consider the system bath coupling of Eq. (3.1) and a symmetry S(g) (with g ∈ G for some
group G). If

[Hfull, S(g)] = 0, (3.8)

then all of the errors that are introduced due to interactions with the bath must be from
symmetric processes that commute with S(g). In particular, only excitations that can be
created by symmetric thermal errors will be allowed and the symmetry is preserved throughout
the dynamics.

Under symmetric dynamics, we should only consider local decompositions of logical operators
that commute with the symmetry when defining the energy barrier ∆. If a local decomposition
D(l) = {l(k) | k = 1, . . . , N} of a logical operator l is such that [l(k), S(g)] = 0 for all k and all
g ∈ G, then we call D(l) a symmetric local decomposition of l. We label such symmetric local
decompositions with symmetry G by DG(l). Then the symmetric energy barrier is defined as

∆G = min
l,DG(l)

∆DG(l). (3.9)

Namely, it consists of the smallest energy barrier for any logical operator, where the cost is
minimized over all symmetric local decompositions. For notational simplicity, we often omit
the subscript G as the symmetry is clear from context.

With the abundance of no-go results for self-correction in 2D and 3D stabilizer memories,
the relevant question is whether one can achieve self-correction if the system bath coupling
respects a symmetry. In particular, for a given model HS , can a symmetry S(g) be imposed
such that Hsys has a macroscopic symmetric energy barrier?
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3.3 Self correction with a 1-form SPT phase

Our first example of a 3D self-correcting model in the presence of a 1-form symmetry is described
by a commuting Hamiltonian based on the cluster-state model of Raussendorf, Bravyi, and
Harrington (RBH) [136]. This model has been used in high-threshold schemes for fault-tolerant
quantum computation [66, 136, 172]. In particular, the RBH model underpins the topological
formulation of measurement-based quantum computation, where single qubit measurements
are used to simulate the braiding of punctures in the 2D toric code.

The RBH model is an example of an SPT ordered system under 1-form symmetry, which is
thermally stable [216]. It contains no anyonic excitations in the bulk, however when defined
on a lattice with a boundary, the boundary theory can be gapped, topologically ordered,
and possesses point-like anyonic excitations. In particular, the boundary can be chosen to be
described by a boundary Hamiltonian equivalent to the 2D surface code. Without any symmetry,
the excitations of this 2D surface code phase are deconfined, and information encoded in this
surface will thermalize in constant time in the absence of error-correction. However, in the
presence of symmetry, a natural question is whether the boundary code inherits any protection
from the bulk SPT order. We will show that in the presence of 1-form symmetry, the bulk SPT
order gives rise to confinement of boundary excitations and ultimately a macroscopic lifetime
of boundary information. As such, this model provides a simple example of an anomalous SET
phase on the boundary of a 3D higher-form SPT that is thermally stable, giving a self-correcting
quantum memory.

We first define and present the bulk properties of this model. We then define some important
boundaries of the model, including the anomalous toric code SET phase. Finally we present
the global lattice and boundary conditions and discuss the resulting model as a quantum code
and show that it results in a symmetry-protected SCQM.

3.3.1 The RBH model – bulk properties

The RBH bulk Hamiltonian

In this subsection, we define the RBH model in the bulk. Consider a 3D cubic lattice L. Label
the set of all vertices, edges, faces and volumes of L by V , E, F , Q. Similarly, to prepare
ourselves for boundary conditions that are to be specified later, we label the interior vertices,
edges, faces and volumes by V o, Eo, F o, Qo, and Lo is the collection of all interior cells. For
now we ignore any boundary conditions (meaning we consider only interior cells), and one may
consider periodic boundary conditions until specified otherwise. We place a qubit on every face
f ∈ F and on every edge e ∈ E. We refer to qubits on faces as primal qubits, and qubits on
edges as dual qubits.
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The bulk Hamiltonian is a sum of commuting cluster terms

HLo = −
∑
f∈F o

Kf −
∑
e∈Eo

Ke, (3.10)

where each cluster term is a 5-body operator

Kf = Xf

∏
e:e⊂f

Ze, Ke = Xe

∏
f :e⊂f

Zf , (3.11)

and Xv and Zv are the usual Pauli-X and Pauli-Z operators acting on the qubit v. These
terms are depicted in Fig. 3.1

We note that the terms in the Hamiltonian can be considered ‘dressed’ terms of a simpler,
trivial bulk model. In particular, we define the “trivial model” H(0)

Lo to be a trivial paramagnet:

H
(0)
Lo = −

∑
i∈Eo∪F o

Xi. (3.12)

One can see that these two models are equivalent up to a constant depth circuit

HLo = UH
(0)
Lo U †, (3.13)

where U is a product of controlled-Z gates that act on all pairs of neighbouring qubits at sites
i and j by

CZij = exp
(
iπ

4 (1 − Zi)(1 − Zj)
)
. (3.14)

Indeed, let a face f and an edge e be referred to as neighbours if the edge is contained within
the face e ⊂ f . Then U is a product of controlled-Z gates over all neighbouring sites

U =
∏
f∈F o

∏
e⊂f

CZfe. (3.15)

From this we can see that the bulk Hamiltonian HLo is non-degenerate (since H
(0)
Lo is

non-degenerate).

Bulk excitations without symmetry

We now consider the excitations in the model in the absence of any symmetry considerations.
In the bulk, all excitations can be created by products of Pauli-Z operators applied to the
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Fig. 3.1 (a) A portion of the bulk lattice. Primal qubits are depicted in green, while dual qubits
are depicted in blue. (b) A bulk cluster term Kf . In both figures, bold lines indicate nearest
neighbour relations between qubits, while dashed lines indicate edges of the ambient cubic
lattice.

ground state. Indeed, for any subset of edges E′ ⊂ Eo or subset of faces F ′ ⊆ F o, the operator

Z(E′, F ′) =
∏
f∈F ′

Zf
∏
e∈E′

Ze (3.16)

anti-commutes with precisely the cluster terms Ke and Kf for which e ∈ E′ and f ∈ F ′, and
commutes with all remaining bulk terms. Moreover, all excitations can be reached in this way
(as can be verified by considering the trivial model H(0)

Lo and the local unitary U of Eq. (3.15)).
The energy cost for creating excitations at sites in E′ ∪ F ′ with the operator Z(E′, F ′) is given
by

|E′ ∪ F ′|∆gap (3.17)

where ∆gap = 2 is the energy gap.

The bulk model is very simple due to its low-depth equivalence with the trivial paramagnet.
Excitations can be locally created on any site by flipping a spin, they have no interaction with
each other, and the energy cost of a general excitation is proportional to the number of flipped
spins. We refer to excitations supported on sites F ′ ⊆ F o as primal excitations, and excitations
supported on sites E′ ⊂ Eo as dual excitations.

1-form symmetries

The model HLo has a Z2
2 1-form symmetry, consisting of operators supported on closed 2-

dimensional surfaces on each of the primal and dual sublattices. In particular, a generating
set are given by vertex and cube operators (for dual and primal qubits, respectively), for each
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Fig. 3.2 Generators of the 1-form symmetry in the bulk. (a) A primal generator Sq. (b) A dual
generator Sv. Thick lines denote neighbour relations, and dashed lines denote the cubic lattice.

q ∈ Q and v ∈ V

Sq =
∏
f :f⊂q

Xf , Sv =
∏
e:v⊂e

Xe. (3.18)

Each of these vertex and cube operators are 6-body in the bulk. Taking products of these
operators gives rise to the Z2

2 1-form symmetry

G = ⟨Sv, Sq | v ∈ V, q ∈ Q⟩. (3.19)

One can easily check that these operators commute with both HLo and H
(0)
Lo .

It has been shown that under these symmetries the bulk model HLo belongs to a nontrivial
SPT phase while the trivial bulk H(0)

Lo belongs to the trivial phase. Moreover, this distinction
persists to nonzero temperature, where HLo remains SPT ordered [216].

Bulk excitations with 1-form symmetries

We now consider what excitations are possible in the presence of the 1-form symmetry G. If we
consider bulk excitations, then the excitation operator Z(E′, F ′) of Eq. (3.16) is symmetric if
and only if both E′ is a cycle (i.e., it has no boundary) and F ′ is a cocycle (meaning it is dual
to a cycle on the dual lattice – where vertices are replaced with cubes, edges with faces, and so
on). In other words, the only symmetric bulk excitations are formed by combinations of closed
loop-like (i.e., 1-dimensional) objects, and we refer to them as loop excitations. We can further
refer to loop excitations as either primal or dual if they are supported on sets of faces or edges,
respectively.

Both the primal and dual loop excitations have an energy cost proportional to their length,
and are thus confined. This confinement leads to thermal stability of the model.
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3.3.2 Boundaries

To obtain degeneracy in the ground space we must consider a lattice with boundaries. The
allowable boundary Hamiltonians are dictated by the symmetry action on the boundary, which
in turn is governed by the precise boundary geometry. In addition to changing the ground space
degeneracy of the model, the choice of boundary Hamiltonian may allow for different types of
excitations to condense on them. By condense, we mean that an excitation can be absorbed on
the boundary (and the reverse process is also possible, where excitations can be emitted from a
boundary). In the following, we will consider four different types of symmetric gapped boundary
Hamiltonians that each allow different excitations to condense on them. These boundaries will
allow us to construct the Hamiltonian with a degenerate ground space (i.e. codespace) that is
self-correcting under 1-form symmetry.

We will first focus on a toric code boundary, which will be used to encode information. We
will then introduce other boundary types that do not contain any degeneracy, but will allow
for all logical operators to be implemented through a sequence of symmetric local moves (as
required by the discussion in Sec. 3.2.3).

Boundary condensation

Throughout the remainder of this section, it will be useful to characterise the types of boundaries
in terms of the types of excitations that can condense on them. By boundary, we mean a
combination of the choice of how to terminate the lattice, the symmetry appropriately defined
on this lattice, and a Hamiltonian that commutes with the symmetry (we will see examples
of these choices in the next subsection). We define a boundary as being primal-condensing or
dual-condensing as follows.

Definition 1. We refer to a boundary as primal-condensing (dual-condensing) if any primal
(dual) loop excitation can be piecewise removed near the boundary using local, symmetric
operations.

A schematic depicting a dual-condensing boundary is shown in Fig. 3.3. Importantly, for
a boundary to be able to condense a general loop excitation, it must be capable of piecewise
condensing it. This piecewise requirement is what makes the above definition nontrivial, as
small loop excitations can always be condensed wholly, by contracting them to a point (which
is not true for loop excitations with nontrivial topology). Importantly, a boundary is primal-
condensing (dual-condensing) if and only if primal (dual) string excitations can terminate on
them in a symmetric way. For example, Fig. 3.3 (ii) depicts a dual loop excitation terminating
on a dual-condensing boundary. Therefore, symmetric excitations only need to be closed loops
modulo their respective primal/dual-condensing boundaries.
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Fig. 3.3 A dual-condensing boundary can absorb a dual loop excitation. (i) A dual loop
excitation in the bulk is depicted in blue, while the dual-condensing boundary is shaded light
blue. (ii) The loop is moved to the boundary, where part of it is absorbed. (iii) The loop is
fully absorbed.

Both the symmetry and Hamiltonian of the boundary play an important role in determining
whether it is primal or dual-condensing. While a boundary may have its own set of excitations
that are localised within it (and they may interact with bulk loop excitations), the definition of
primal-condensing and dual-condensing are independent of this. We now look at an important
boundary that is both primal-condensing and dual-condensing.

Toric code boundary conditions

As mentioned, the type of Hamiltonian that can be defined on the boundary is heavily constrained
by the symmetry. We first consider boundary conditions that support a 2D toric code phase.
This type of boundary will be used to encode logical information.

We consider a lattice with one boundary component which we terminate with ‘smooth’
boundary conditions (see Fig. 3.4). Namely, the cubic lattice is terminated on a smooth plane,
such that there are boundary volumes, boundary faces, boundary edges, and boundary vertices,
each having a lower number of incident cells (neighbours) compared to the bulk. We label the
collection of all boundary volumes, faces, edges, and vertices by ∂L. We will fix the topology
and geometry more precisely later, for this section we consider a lattice supported on a 3D
half space, i.e., with coordinates (x, y, x) satisfying x ≥ 0, −∞ < y < ∞, −∞ < z < ∞,
such that the boundary is on the x = 0 plane. On the boundary, qubits are placed only on
boundary edges, and not on boundary faces, as depicted in Fig. 3.4. We refer to these qubits as
boundary qubits. (Note that we have constructed this boundary using dual qubits. This choice
is arbitrary, and an analogous boundary exists that is comprised of primal qubits.)



94 | Symmetry-protected self-correcting quantum memories

(a)

X

X

X X

X

X

X X
.

.

. .

Z

Z

Z Z

X

X X

X

Z

Z Z

Z

v

f

(b)

Fig. 3.4 (a) The boundary of the lattice consists only of dual qubits which are depicted in blue.
Primal qubits on faces penetrating into the bulk are depicted in green. (b) The boundary terms
Av and Bf . In both figures, bold lines indicate nearest neighbour relations, while dashed lines
indicate edges of the cubic lattice. The dashed lines on the boundary can be thought of as the
edges of a toric code lattice.

For this geometry, we consider Hamiltonians of the form

H = HLo +H∂L, (3.20)

where, HLo is the bulk Hamiltonian of Eq. (3.10) (which sums only over sites on the interior,
meaning it contains only complete cluster terms) and H∂L is a boundary Hamiltonian. A
boundary Hamiltonian is in general any Hamiltonian with local terms acting near the boundary
of the lattice ∂L that commute with the symmetry (whose action we describe shortly).

Boundary degrees of freedom

To determine what types of Hamiltonians are possible on the boundary, we describe the
boundary Hilbert space in terms of a more natural boundary algebra. We begin with the
case H∂L = 0 such that H = HLo consists of all 5-body cluster terms of Eq. (3.11). In this
case there is an extensive degeneracy localised near the boundary: there is a qubit ’boundary
degree of freedom’ for every boundary edge (i.e. one for every e ∈ E ∩ ∂L). It is important
to distinguish between the qubits that belong to the boundary, and the degrees of freedom
localised near the boundary that describe the ground space. Indeed, the operators that act
on these degrees of freedom within the ground space of H are not simply given by the Pauli
operators acting on boundary qubits. That is, for some Pauli operator Pe acting on e ∈ E ∩ ∂L,
we have Π0PeΠ0 ̸= Π0Pe in general, where Π0 is the ground space projector (in fact we have
equality only if the bulk is a trivial paramagnet). The effective Pauli-X and Pauli-Z operators
can be obtained by finding the dressed versions of these Pauli operators using the unitary in
Eq. (3.15).
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Fig. 3.5 Symmetry operators on the boundary (a) Sq with q ∈ ∂L, (b) Sv with v ∈ ∂L. Thick
lines denote neighbour relations, and dashed lines denote the cubic lattice.

More explicitly, the effective Pauli-X and Pauli-Z operators for these boundary degrees of
freedom are given by

X̃e := UXeU
† = XeZf(e), Z̃e := UZeU

† = Ze, (3.21)

where U is a product of CZ gates as in Eq (3.15) and f(e) is the unique face f ∈ F o such
that e ⊂ f . These operators preserve the ground space (as they commute with all bulk cluster
terms) and act on the boundary degrees of freedom in the ground space as the usual Pauli spin
operators. We will describe boundary degrees of freedom in terms of the boundary algebra
generated by X̃e, Z̃e. We emphasise that the support of the boundary algebra is not strictly
contained on the boundary qubits, as would be the case if the bulk Hamiltonian was trivial.
This subtle difference between the boundary degrees of freedom and cut boundary qubits is
important, as we will see.

Symmetry action on the boundary

The Z2
2 1-form symmetry on a lattice with a boundary is again given by the group G in

Eqs. (3.18) and (3.19). On the boundary, such operators are 5-body (rather than 6-body) and
are depicted in Fig. 3.5.

A general boundary Hamiltonian can be written in terms of operators from the boundary
algebra. We must therefore analyse the action of the 1-form symmetry on the boundary algebra
(to infer how the boundary degrees of freedom transform under the symmetry). First, we note
that the operators of Eq. (3.21) are not themselves symmetric. Taking the boundary symmetry
operators Sv and Sq with v ∈ V ∩ ∂L, q ∈ Q∩ ∂L (depicted in Fig. 3.5), for any e ∈ E ∩ ∂L we
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have (under conjugation)

Sv : X̃e 7→ X̃e, Z̃e 7→ (−1)1e(v)Z̃e (3.22)

Sq : X̃e 7→ (−1)1q(e)X̃e, Z̃e 7→ Z̃e, (3.23)

where 1e(v) = 1 if v ⊂ e and 1e(v) = 0 otherwise, and similarly 1q(e) = 1 if e ⊂ q and 1q(e) = 0
otherwise.

From this we can write the action of the 1-form symmetry in the ground space of H in
terms of operators in the boundary algebra as follows. Define the following ‘dressed toric code’
operators for every v ∈ V ∩ ∂L and every f ∈ F ∩ ∂L:

Av =
∏

e∈∂E:v⊂e
Xe

∏
f :e⊂f

Zf , Bf =
∏
e:e⊂f

Ze, (3.24)

where ∂E = E ∩ ∂L is the set of boundary edges. Such operators are depicted in Fig. 3.4. They
are dressed versions of the usual toric code operators

Av =
∏

e∈∂E:v⊂e
Xe Bf =

∏
e:e⊂f

Ze, (3.25)

and can be obtained by conjugating them by the unitary of Eq. (3.15).

Now it can be verified from the (anti)commutation relations of Eqs. (3.22-3.22) that the
1-form symmetry acts as

Sv ≡ Av ∀ v ∈ V ∩ ∂L, (3.26)

Sq ≡ Bf(q) ∀ q ∈ Q ∩ ∂L, (3.27)

and as the identity otherwise. Here f(q) is the unique face f(q) = ∂q ∩ ∂L, and Av and Bf are
defined in Eq. (3.24). The equivalence ≡ means that the two operators have the same action in
the ground space. In other words, Sv and Av (resp. Sq and Bf(q)) have identical commutation
relations with all boundary operators X̃e and Z̃e of Eq. (3.21), and therefore have equivalent
action on the boundary degrees of freedom.

There are two observations to make about the action of the symmetry on the boundary.
Firstly, the symmetry is represented as a 1-form symmetry on the boundary degrees of freedom:
i.e. Av and Bf generate a symmetry group whose elements are supported on closed loops.
Secondly, the supports of these symmetry operators are not strictly contained on the boundary
qubits.
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Toric code boundary Hamiltonian

In order to add a nontrivial Hamiltonian H∂L to the boundary, it must be composed of terms
that commute with Av and Bf from Eq. (3.24). The simplest such Hamiltonian is where the
terms are given by Av and Bf . This gives us the dressed toric code boundary

H∂L = −
∑
v∈∂V

Av −
∑
f∈∂F

Bf , (3.28)

where ∂V and ∂F are the set of all boundary vertices and faces (respectively). Again, the
terms of this Hamiltonian are depicted in Fig. 3.4.

Toric code boundary excitations

The toric code Hamiltonian introduces a new set of excitations on the boundary, that are
interesting in themselves, but also interact nontrivially with bulk excitations.

The boundary supports anyonic excitations that are free to propagate in the absence
of any symmetry. Indeed, for a string l ⊆ ∂E on the boundary, we can define the string
operator Z(l) =

∏
e∈l Ze. The string operator Z(l) commutes with all Hamiltonian terms,

apart from vertex terms Av with v ∈ ∂l for which it anti-commutes with. We define flipped
Av terms as e-excitations, and string operators Z(l) create these excitations. Similarly, we
can define a dual string operator X̃(l′) =

∏
e∈l′ Xe

∏
f∈l′⊥ Zf for a string l′ ⊂ ∂E, which

when applied to the ground space, creates m-excitations on the faces at the ends of l′. Here,
l⊥ = {f ∈ F o : ∂f ∩ l ̸= ∅} denotes the set of faces sitting just inside the boundary incident
to the string l. At the endpoints of the string operator X̃(l′), m-excitations occur, as the
plaquette operators Bf with f on the ends of l′ anti-commute with X̃(l′), while all remaining
terms commute. Examples of such operators are depicted in Fig. 3.6

Now we consider excitations that respect the symmetry. On the boundary, we see that
boundary excitations are symmetric only if they are accompanied by a bulk string excitation.
In particular, a string operator Z(l) creating e particles at vertices µ and ν is made symmetric
by attaching a bulk string operator Z(E′) whose boundary is at the location of the two particles
∂E′ = {µ, ν} (i.e., l ∪ E′ is a cycle). Similarly, the dual string operator X̃(l′) that creates m
excitations at µ′ and ν ′ can be made symmetric by attaching a bulk string operator Z(F ′)
such that the union l′⊥ ∪ F ′ is a dual cycle (i.e., has no boundary on the dual lattice). Such
excitations will flip cluster stabilizers in the bulk, for all terms Ke with e ∈ E′ and Kf with
f ∈ F ′, but will only create a pair of e or m particles on the boundary at their endpoint.

The following two lemmas characterise the valid configurations of excitations in the presence
of symmetry.
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Fig. 3.6 (a) The e and m type excitations on the boundary of string and dual-string operators.
For an e-excitation (m-excitation) to be symmetric they must be accompanied by a bulk dual
(primal) string excitation terminating on them. (b) An example of a symmetric excitation. Two
e-excitations live on the boundary of a bulk dual string excitation, depicted in red.

Lemma 1. The toric code boundary is both primal-condensing and dual-condensing.

Proof. We first show that it is dual-condensing. We can decompose any cycle l ⊂ E into two
components: l = lint ∪ lboun where lint = l ∩ Eo is its interior component and lboun = l ∩ ∂E

is its boundary component. As we have seen, Z(lint) anti-commutes with all terms Ke with
e ∈ lint and commutes with all other terms. Also, Z(lboun) commutes with all terms apart
from Av with v ∈ ∂lboun. Therefore any bulk dual loop excitation given by an operator Z(l)
may be translated to a boundary using a series of local symmetric moves (translations may
be performed by sequentially applying Z(c) operations for some small cycle c). The dual loop
excitation can then be piecewise absorbed upon contact with the boundary.

To show primal-condensing, the argument is similar. We decompose any dual-cycle l′ ⊂ F

into two components l′ = l′int ∪ l′boun where l′boun = l′ ∩ Fboun and l′int = l′ ∩ (F \ Fboun) where
Fboun = {f ∈ F | ∂f ∩ ∂E ̸= ∅}. Intuitively, Fboun is the set of faces that contain one edge
on the boundary of the lattice. Then Z(l′int) anti-commutes with all terms Kf with f ∈ l′int
and commutes with all other terms. Now find a string t ⊂ ∂E on the boundary such that
t⊥ = l′boun (recall t⊥ = {f ∈ F o : ∂f ∩ t ̸= ∅}). Such a string can always be found. Now
Z(l′boun) itself doesn’t commute with all bulk cluster terms Kf , but Z(l′boun)X(t) = X̃(t) is a
dressed string operator that commutes with all terms apart from the plaquettes Bf with f ∈ δt.
Then similarly to the previous case, any primal loop excitation in the bulk can be translated
to the boundary where it can be piecewise absorbed by sequentially applying local Pauli X
operators.

As we have seen, primal and dual excitations need only be closed loops modulo the toric
code boundary, where they can terminate as an anyonic m or e-type excitations, respectively.
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The following lemma states that in fact these anyonic excitations can only exist if they are at
the end of a bulk string excitation.

In the following, for any subset of faces f , let δf ⊂ Q be the set of volumes that each
contain an odd number of faces of f on their boundary (δf = {q ∈ Q : |∂q ∩ f | ≠ 0 mod 2}).
have precisely one face on their boundary belonging to f .

Lemma 2. In the 1-form symmetric sector, e-excitations can be located at sites Ve ⊂ ∂V if
and only if accompanied by a bulk string excitation supported on l ⊂ E satisfying ∂l = Ve.
Similarly, m-excitations can be located at sites Fm ⊂ ∂F if and only if accompanied by a bulk
string excitation supported on l′ ⊂ F satisfying δFm = δl′.

Proof. For the e-excitations, we have the following constraint: For every vertex operator Av,
v ∈ ∂V , there exists a unique e ∈ Eo such that Sv = AvKe (can be seen upon inspection
of Fig. 3.5). As Sv = +1 in the ground space, it must also be for any excitations produced
by a symmetric process. Therefore any flipped term Av must be accompanied by a uniquely
determined flipped bulk term Ke. As every dual qubit on an edge e is in the support of two
symmetry generators Sv1 and Sv2 , which also must be preserved, the flipped term Ke must be
part of a string excitation can only terminate at another flipped term Aw, w ∈ ∂V .

For the m-excitations, the argument is the same after noting the following constrain between
bulk and boundary excitations: For every plaquette operator Bf , f ∈ ∂F , there exists a unique
q ∈ Q such that Sq = Bf

∏
f ′∈∂qKf ′ .

Energetics of boundary excitations

For any two vertices v, v′ ∈ V let d(v, v′) denote the lattice distance between v and v′ as
d(v, v′) = minl⊂E{|l| : ∂l = (v, v′)}. Namely, it is the smallest number of edges required to
connect the two vertices. Similarly, for any two faces f, f ′ ∈ F , d(f, f ′) is defined to be the
lattice distance between f, f ′ on the dual lattice (where 3-cells are replaced by vertices, faces
by edges, edges by faces, and vertices by 3-cells). Also, recall ∆gap = 2 is the energy gap.

Lemma 3. For the model H defined on the half Euclidean (3D) space, the minimal energy
cost to symmetrically create a pair of e-excitations (m-excitations) at positions x, x′ is given by
(d(x, x′) + 4)∆gap.

Proof. Consider the process of creating a pair e-excitations on the boundary at positions
x(i0), x(i0)′ and then moving them to positions x = x(ik), x′ = x(ik)′ using a sequence of moves
labelled by i1, . . . ik. The positions of the excitations at steps ij are given by x(ij), x(ij)′. From
Lemma 2 at every step ij , the excitations must be accompanied by a dual string excitation in
the bulk supported on l(ij) ⊂ Eo with ∂l(ij) = (x(ij), x(ij)′). The energy cost of the string
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l(ij) is given by its length |l(ij)|∆gap which minimally is (d(x(ij), x(ij)′) + 2)∆gap. Adding in
the energy cost 2∆gap of the two e-excitations we get the result. The m-excitations follows
analogously.

We will use this lemma in the following subsections to derive the symmetric energy barrier.

Trivial bulk and boundary

We contrast this with respect to the trivial model. Namely, consider the trivial model H(0) =
H

(0)
Lo +H

(0)
∂L , with H

(0)
Lo defined in Eq. (3.12) and

H
(0)
∂L = −

∑
v∈∂L

Av −
∑
f∈∂F

Bf . (3.29)

with Av and Bf the undressed toric code terms of Eq. (3.25). The trivial model H(0) can be
connected to our model H using the circuit of Eq. (3.15). Lemma 1 still holds for the trivial
model, however Lemma 2 and subsequently Lemma 3 do not. Indeed one can symmetrically
create a pair of flipped plaquettes Bf using a string of X operators, without creating any bulk
excitation. The coupling between boundary anyons and bulk strings is crucial for self correction,
as otherwise the anyons remain deconfined on the boundary. We discuss how this conditions
results from the anomalous SET order of the boundary, and the SPT order of the bulk in
Sec. 3.3.6.

We have now symmetry and spectral properties of the toric code boundary. We will defer
the discussion of ground space degeneracy of this model until the next section where we discuss
the full model and lattice topology in more detail (as the ground space degeneracy depends
strongly on the boundary topology).

3.3.3 Other types of boundaries

We now define other boundary conditions that will be used in the construction of the code.
These boundaries will not be used to encode logical qubits, but rather to ensure that all logical
operators can be achieved using a sequence of local symmetric moves. We define three different
boundary geometries that support the following types of boundary Hamiltonians:

1. the primal boundary HamiltonianHP , which is primal-condensing but not dual-condensing;

2. the dual boundary HD, which is dual-condensing but not primal-condensing; and

3. the “sink” boundary Hsink, which is primal-condensing and dual-condensing.
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The different boundaries are distinguished by what excitations can condense on them in a
symmetric way; the primal boundary is chosen to allow primal string-like excitations (i.e.,
excitations on primal qubits) to condense, the dual boundary is chosen to allow dual string-like
excitations (i.e., excitations on dual qubits) to condense, and both strings can condense on the
sink boundary. There exist nondegenerate, symmetric Hamiltonians consisting of commuting
Pauli terms with these properties, as we now show.

In the following, the main feature that determines the excitations that can condense is
whether they support complete primal (Sq) or dual (Sv) 1-form symmetry generators or not.
Complete 1-form generators are depicted in Fig. 3.2, and incomplete 1-form generators are
depicted in Fig. 3.5. The primal boundary supports complete primal symmetry generators,
and incomplete dual generators. The dual boundary supports complete dual generators and
incomplete primal generators. The sink boundary supports complete primal and dual generators.

All of the Hamiltonians in this subsection are given by a sum over (potentially truncated)
cluster terms

Hboundary = −
∑
f∈∂F

Kf −
∑
e∈∂E

Ke, (3.30)

where Ke and Kf of the form of Eq. (3.11). The choice of boundary lattice geometry will
dictate the precise structure of the cluster terms, and some may be lower weight than the bulk
5-body terms. The Hamiltonians are all non-degenerate as they are locally equivalent to a
trivial paramagnet.

We note that similarly to the bulk case, excitations on the boundary are given by operators
Z(E′, F ′) of Eq. (3.16), for E′ ⊂ ∂E and F ′ ⊂ ∂F . Such an operator flips precisely the terms
Ke and Kf with e ∈ E′ and f ∈ F ′, this can be verified by local unitary equivalence with the
trivial paramagnet using Eq. (3.15). We note the usual product relation between cluster terms
and symmetry operators

Sq =
∏
f∈∂q

Kf , Sv =
∏
e:v⊂e

Ke, ∀q ∈ Q, ∀v ∈ V (3.31)

puts nontrivial constraints on the relationship between bulk and boundary excitations, that we
will now explore.

Primal boundary

For the primal boundary, we consider the ‘smooth’ boundary conditions of the previous
subsection. On the boundary, qubits are placed on both boundary edges, and boundary faces,
as depicted in Fig. 3.7. On this boundary, the 1-form symmetry is generated by complete (i.e.
6-body) primal symmetry operators Sq of Fig. 3.2, and incomplete (i.e. 5-body) dual symmetry
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operators Sv of Fig. 3.5. The Hamiltonian terms of HD are 4-body Ke operators and 5-body
Kf operators, as depicted in Fig. 3.7. These terms all commute with the symmetry.

Lemma 4. The primal boundary HP is primal-condensing and not dual-condensing.

Proof. We first show that the boundary is primal-condensing by showing that primal excitations
can terminate on it. Firstly, for any pair of faces f, f ′ ∈ ∂F on the boundary, any subset of faces
l′ ⊂ F o with δl′ = δ(f ∪ f ′) defines a symmetric excitation operator Z(l′) (i.e. [Z(l′), Sq] = 0
∀q ∈ Q). This is due to the fact that every boundary face f belongs to a unique 3-cell q,
meaning each boundary primal qubit is in the support of a unique symmetry generator Sq (as
opposed to two in the bulk). As Z(l′) flips precisely the terms Kf with f ∈ l′ and commutes
with all others, we can locally and symmetrically absorb primal loop excitations near the primal
boundary.

To show that the primal boundary is not dual-condensing, we note that for every dual qubit
on some boundary edge e ∈ ∂ is in the support of of two symmetry generators Sv, Sv′ . Therefore
the only operators Z(l), l ⊂ E that commute with the 1-form symmetry operators satisfy ∂l = ∅.
This means that dual excitations must form closed loops, even on the boundary.
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Fig. 3.7 (a) The lattice at the primal boundary. Primal qubits are depicted in green, while dual
qubits are depicted in blue. (b) The primal boundary Hamiltonian HP consists of cluster terms,
as depicted by (i) and (ii). Bold lines indicate nearest neighbour relations between qubits,
while dashed lines indicate edges of the ambient cubic lattice.

Dual boundary

The dual boundary is similar to the primal boundary; it can be obtained by reversing the role of
primal and dual qubits on the boundary. In particular, the boundary of the lattice is depicted in
Fig. 3.8. The boundary is terminated such that the 1-form symmetry is generated by complete
(i.e. 6-body) dual symmetry operators Sv of Fig. 3.2, and incomplete (i.e. 5-body) primal
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symmetry operators Sq of Fig. 3.5. The Hamiltonian terms of HD are 5-body Ke operators and
4-body Kf operators, as depicted in Fig. 3.8. These terms all commute with the symmetry.

Lemma 5. The dual boundary HD is dual-condensing and not primal-condensing.

Proof. The proof is the same as Lemma 4, exchanging the role of primal and dual qubits.
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Fig. 3.8 (a) The lattice at the dual boundary. Primal qubits are depicted in green, while dual
qubits are depicted in blue. (b) The dual boundary Hamiltonian HD consists of cluster terms,
as depicted by (i) and (ii). Bold lines indicate nearest neighbour relations between qubits,
while dashed lines indicate edges of the ambient cubic lattice.

Sink boundary

Finally, we consider the sink boundary. This lattice boundary is again given by the ‘smooth’
boundary conditions of the previous subsection. On the boundary, qubits are placed only on
boundary faces, and not boundary edges, as depicted in Fig. 3.9. On this boundary, both primal
and dual 1-form symmetries are generated by complete (i.e. 6-body) operators of Fig. 3.2. The
Hamiltonian terms of HPD are 5-body Ke operators and 1-body or 4-body Kf operators, as
depicted in Fig. 3.9. These terms all commute with the symmetry.

Lemma 6. The sink boundary HPD is both primal-condensing and dual-condensing.

Proof. The proof is similar to the first part of Lemma 4: we observe that the boundary contains
both primal and dual qubits that belong to unique 6-body symmetry generators Sq and Sv,
respectively (as opposed to two). As such primal and dual excitation chains can symmetrically
terminate on these qubits.
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Fig. 3.9 (a) The lattice at the sink boundary. Primal qubits are depicted in green, while dual
qubits are depicted in blue. (b) The dual boundary Hamiltonian HPD consists of cluster terms,
as depicted by (i) and (ii). The primal qubits on the boundary surface have no neighbours
(meaning the corresponding cluster term is given simply by Pauli X). Bold lines indicate
nearest neighbour relations between qubits, while dashed lines indicate edges of the ambient
cubic lattice.

3.3.4 The cubic RBH code

We now use these various boundaries to construct a the code that is self correcting under 1-form
symmetries, we call the model the cubic RBH model.

The lattice

The lattice L we consider has the topology of a 3-ball. Namely, we consider cubic boundary
conditions: the lattice is a cubic lattice with dimensions d× d× d, with six boundary facets,
depicted in Fig. 3.10. The bulk of the model is given by the usual RBH cluster Hamiltonian,
while on each of the six boundary facets we choose one of four different boundary conditions.
Namely, one of the six boundary faces is chosen to support the logical information using a
dressed toric code H∂L – which we will call the toric code boundary – and the remaining five
boundary faces supports either a primal boundary, a dual boundary or a sink boundary, as
depicted in Fig. 3.10.

The lattice must terminate on each of these boundary facets according to the boundary
conditions outlined in the previous two subsections. In Fig. 3.10 we show a small example
of the lattice when viewed from the direction of the toric code (i.e. H∂L) boundary. Note in
particular that the toric code boundary facet has planar boundary conditions due to the way
it terminates on the primal and dual boundaries. Namely, the top and bottom edges of the
toric code boundary facet are known as rough edges, and the left and right edges are known as
smooth edges.
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Fig. 3.10 (a) The boundaries of the cubic RBH model. H∂L is the toric code boundary, HP

and HD are the primal and dual boundaries respectively, and Hsink is the sink boundary. (b)
The lattice for the toric code boundary H∂L. The top and bottom edges are called rough
boundary conditions while the left and right edges are called smooth boundary conditions. The
Hamiltonian consists of the negative sum of all star and plaquette terms Av, Bf from Eq. (3.24).
Dashed lines denote edges of the cubic lattice.

The Hamiltonian

The Hamiltonian decomposes into bulk and boundary components. The bulk Hamiltonian is
given by the usual RBH cluster Hamiltonian HLo of Eq. (3.10). The boundary Hamiltonians
come in four different types, firstly, on the toric code boundary we put the dressed toric code
Hamiltonian H∂L of Eq. (3.28). Dressed toric code terms are truncated near the rough and
smooth edges. In particular, the plaquette terms Bf are truncated near the rough boundaries,
while the star terms Av are truncated near the smooth boundaries. The Hamiltonians HP , HD,
and Hsink on the primal, dual and sink boundaries, can all be expressed in the form Hboundary

of Eq. (3.30). Terms in these Hamiltonians are cluster terms that are potentially truncated,
depending on what boundary they reside on.

The symmetry operators are again generated by Sv and Sq of Eq. (3.18). They are 5-body
or 6-body operators, depending on if they are near a particular boundary. All Hamiltonian
terms are symmetric and mutually commuting.

The ground space

As discussed, the bulk Hamiltonians HLo , along with the boundary Hamiltonians HP , HD, and
Hsink are all non-degenerate. The overall degeneracy manifests on the toric code boundary H∂L.
In particular, for the planar boundary conditions on the toric code boundary, there is a 2-fold
degeneracy. This can be easily verified by its local unitary equivalence with the planar code,
which encodes one logical qubit.
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Logical operators and codespace

The toric code Hamiltonian H∂L encodes one logical qubit, with string logical operators X
and Z running between opposite pairs of edges of the boundary face. In particular, the logical
operators are given by

X =
∏
e∈ad

Xe

∏
f∈a⊥

d

Zf , Z =
∏
e∈bd

Ze, (3.32)

where ad is a dual-cycle on the boundary (meaning it it a cycle on the dual of the boundary
lattice) that runs between the two smooth edges, bp is a cycle on the boundary that runs
between the two rough edges, and a⊥

d = {f ∈ F o : ∂f ∩ ad ̸= ∅}. These logicals are depicted in
Fig. 3.11. Note in particular, that such strings are symmetric, as the top and bottom boundary
facets are dual-condensing, while the left and right are primal-condensing.
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Fig. 3.11 Logical operators for the toric code boundary H∂L. (a) Logical X runs between the
left and right smooth edges. (b) Logical Z runs between the top and bottom rough edges.
Dashed lines denote edges of the cubic lattice.

Logical operator decomposition

In this model, logical operators admit symmetric local decompositions, as we now demonstrate.
The toric code Hamiltonian encodes one logical qubit, with string logical operators X and Z

running between opposite pairs of edges of the boundary face. These logicals are given by
Eq. (3.32). In order to implement either logical operators (X or Z) through a sequence of local
moves, we will also create a large bulk excitation. (Note this is expected, as we claim the model
is self-correcting, we must necessarily traverse a large energy barrier to implement a logical
operator). This large bulk excitation can then be absorbed by the sink boundary in order
to return to the codespace. Importantly, e-excitations (m-excitations) can be symmetrically
created and destroyed at the rough edge (smooth edge) of the toric code boundary. In fact,
implementing a logical Z (X) operator can be viewed as a process creating an e-excitation
(m-excitation) from one rough (smooth) edge to the opposite rough (smooth) edge. The strategy
is outlined in Fig. 3.12.
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Lemma 7. Both logical X and Z of the cubic RBH model admit symmetric local decompositions.

Proof. We first consider a symmetric local decomposition of Z. Consider a string operator Z(c),
c ⊂ E supported on the dual qubits near the code boundary, as in Fig. 3.12. Grow this string
operator until we achieve Z(l+ l′) ≡ Z(l)Z(l′), where l+ l′ is a contractible loop (and therefore
achievable by local symmetric moves), l is a string running between the top and bottom rough
edges, and l′ is a string in the bulk with the same boundaries as l. Thus Z(l) is a logical Z
operator, and Z(l′) is an operator causing a bulk string-like excitation, anchored between the
two dual boundaries. We then consider translating the bulk excitation caused by Z(l′) to the
sink boundary, following Fig. 3.12 (which can be achieved with local symmetric moves as the
two loops are homologous). This operator, and the corresponding excitations, can then be
absorbed by the sink boundary as it is dual-condensing.

Logical X operators can be decomposed in a similar way. First, consider the same process
as above to produce a string operator Z(l′), l ⊂ F supported on the primal qubits anchored
between the opposite primal boundaries (can be achieved in the same way, as the sink boundary
is primal-condensing). Z(l′) can be translated adjacent to the code boundary, such that l′ = a⊥

d

for some dual-cycle on the boundary ad. One can then apply a sequence of Pauli-X operators
along ad, giving logical X.
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Fig. 3.12 Implementing a logical Z operator through a sequence of local moves. (i) An error
chain Z(c) supported on dual qubits (the union of the solid blue and dashed blue lines) is
created near the toric code boundary. This error chain creates string excitations in the bulk
(solid blue), and anyonic excitations where it meets the toric code boundary. (ii) The loop
is grown until it consists of a logical operator Z (dashed blue line) along with a large bulk
excitation (solid blue), anchored between the two dual boundaries. (iii) The bulk excitation is
moved to the sink boundary, where it can be absorbed. The whole process results in a logical Z.
Logical X operators can be implemented in a similar way, where an error loop on the primal
lattice is grown and propagated, and an additional chain of Pauli X errors is also propagated
along the toric code boundary.
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The energy barrier

As we have seen, when the dynamics are restricted to the 1-form symmetric sector, bulk
excitations form collections of closed loop-like objects. Secondly, boundary anyonic excitations
only appear at the end of a bulk string-like excitation. This coupling of the thermal properties
between bulk and boundary in the presence of symmetry, is enough to achieve a diverging
symmetric energy barrier (as defined in Eq. (3.9)).

Definition 2. We define the lattice width d of the cubic RBH model as d = min{dZ , dX , dsink},
where dZ is the smallest lattice distance between the two rough edges of the toric code boundary,
dX is the smallest lattice distance between the two smooth edges of the toric code boundary, and
dsink is the smallest lattice distance between the toric code boundary and the sink boundary.

Note that min{dZ , dX} is the usual (code) distance of the planar code on the same boundary.
For any edge e ∈ ∂E (face f ∈ ∂F ) we define dsink(e) (dsink(f)) as the lattice distance to the
nearest dual-condensing (primal-condensing) boundary. Recall also the lattice distance d(x, x′)
defined in Sec. 3.3.2.

Lemma 8. Let C ⊂ ∂E ∪ ∂F denote the positions of a general configuration of boundary
anyons. Then the energy cost to symmetrically create this configuration is lower bounded by
(d̃C + |C|)∆gap, where

d̃C = min
P∈P̂

 ∑
{a},{b,c}∈P

dsink(a) + d(b, c)

 (3.33)

where P is a partition of the elements of C into pairs {b, c} of the same type or singletons {a},
and P̂ is the set of all such partitions.

Proof. This is the generalisation of Lemma 3 to the cubic RBH model. The proof follows
in the same way, where we additionally note that each e (m) anyon may be connected by
a bulk loop excitation to either another e (m) anyon, or to an appropriate dual-condensing
(primal-condensing) boundary. As such, the smallest energy cost is obtained by finding the
total length of the (shortest) perfect match for all anyons, where anyons are allowed to pair
with their respective boundary. The energy cost is then obtained by scaling the length of the
excitations by the gap ∆gap, and adding in the contribution for each anyon.

Theorem 1. The symmetric energy barrier for a logical fault in the cubic RBH model is lower
bounded by

d · ∆gap
2 − r′, (3.34)

where d is the lattice width, defined in Def. 2, and r′ is constant (independent of lattice size).



3.3 Self correction with a 1-form SPT phase | 109

Proof. Let {l(k) | k = 1, . . . N} be any sequence of operators such that each l(k) is symmetric,
l(k) and l(k+1) differ only locally, l(1) = I and l(N) is a logical operator supported on either ad
dual-cycle or the bp cycle of Eq. (3.32). Let r be the largest range of any operator l(k)l(k+1) for
any k ∈ 1, . . . N , which is assumed to be constant.

By locality of l(k), we must traverse an intermediate state that has a nonzero number of
anyonic excitations on the code boundary. Moreover, since at each time step the separation
between anyons can only change by a constant amount, to achieve a nontrivial logical operator,
there is a time step k′ ∈ {1, . . . N} with a configuration of anyons given by Ck′ , such that
dCk′ ≥ min{⌊dX/2⌋, ⌊dZ/2⌋} − r. Here, dCk′ is given by the (minimum length) perfect match
of all anyons on ∂L, where anyons can be matched with the boundaries they can condense on.
Note that d̃Ck′ ≥ min{dCk′ , dsink}, where d̃Ck′ is defined in Eq. (3.33). Then by Lemma 8, we
have that the energy cost of the configuration Ck′ is at least (d̃Ck′ + |Ck′ |)∆gap which is lower
bounded by (min{dCk′ , dsink} + |Ck′ | − r)∆gap. Using the definition of the lattice width and
letting r′ = r∆gap, the result follows.

This proof gives a conservative lower bound on the energy barrier, but it is sufficient for
our purposes. In particular, as the lattice width d grows with the number of qubits, we have a
macroscopic energy barrier. In other words, the energy barrier energy barrier for a logical fault
grows with the size of the system.

Self correction

We have shown that the 1-form symmetric cubic RBH model inherits a macroscopic energy
barrier to a logical fault, due to the string-like nature of excitations resulting from the 1-form
symmetry together with its coupling of bulk and boundary excitations. The question is whether
this is sufficient for an unbounded memory time. In Sec. 3.9, we give an argument following
the well-known Peierls argument (see also Ref. [47]) to show that this energy barrier implies
self-correction of the 1-form symmetric RBH model. In brief, we estimate the probability that
an excitation loop l of size w emerges within the Gibbs ensemble at inverse temperature β. We
show that large loop errors are quite rare if the temperature is below a critical temperature Tc,
and we give a lower bound on Tc at 2/ log(5). As such, if the error rate is small enough (that
is, the temperature is low enough), then the logical information in the code is stable against
thermal logical errors and the encoded information on the boundary will be protected for a
time growing exponentially in the system size.

Along with the memory time, we have therefore met al all of the requirements of a symmetry-
protected, self-correcting quantum memory. In particular, we have shown that all operators
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admit a symmetric, local decomposition in Lemma 7. Additionally, the ground space of this
system is perturbatively stable, as it meets the TQO stability conditions of Ref. [88]. Finally,
as a code, it admits an efficient decoder [47, 136]. Therefore this model meets the requirements
for a self-correcting quantum memory when protected by the Z2

2 1-form symmetry.

3.3.5 Encoding in more general boundaries

One may ask what other boundary conditions can be used to construct a self-correcting code
under 1-form symmetries. In this subsection we outline one other choice, along with ruling out
a number of others.

In particular, note that in the previous discussion we could replace the sink Hamiltonian
with another toric code Hamiltonian, as it is both primal and dual condensing. While the
degeneracy of the ground space increases by another factor of two in this case, we do not get
an increase in the number of qubits that we can encode. This is because the two opposite toric
code boundaries must always be correlated as dictated by the symmetry: labelling the two
codes as L and R, there is no local symmetric decomposition of individual logical operators ZL
and ZR (XL and XR), but only of the product ZL ⊗ ZR (XL ⊗XR). This property is similar
to theory of SPT phases in one dimension, where the two separate degenerate boundary modes
of a 1D chain cannot be independently accessed in the presence of symmetry.

Similarly, one could remove the primal and dual boundaries, by considering the lattice
L with a topology of T 2 × I, where T 2 is the torus and I = [0, 1] is the interval. On each
side, T 2 × {0}, T 2 × {1} we choose toric code boundary conditions and define a toric code
Hamiltonian H∂L. With this topology, the ground space of the system is 24-fold degenerate (as
each boundary toric code has a degeneracy dg = 22g where g is the genus of the 2D manifold it
is defined on, with g = 1 for the torus). For each toric code, one can define logical operators

X1 =
∏
e∈ad

Xe

∏
f∈a⊥

d

Zf , Z1 =
∏
e∈bp

Ze, (3.35)

and
X2 =

∏
e∈bd

Xe

∏
f∈b⊥

d

Zf , Z2 =
∏
e∈ap

Ze, (3.36)

for cycles ap, bp and dual-cycles ad, bd wrapping around the two nontrivial cycles of the torus
labelled by a and b. Similarly, we can only make use of one of the toric codes, as the two
copies are correlated under the 1-form symmetry. In other words, we do not have a symmetric
decomposition of all logical operators, only a subgroup of them.
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Fig. 3.13 The solid torus. The boundary of the solid torus is a torus, where two nontrivial cycles
a and b are depicted. One might expect to be able to encode two logical qubits in the system,
however any operator supported on the b loop does not admit a symmetric local decomposition.

Topological obstruction to logical decompositions

The issue of finding choices of boundary conditions that allow for symmetric local decompositions
of logical operators is nontrivial. For example, on a solid torus D2 × S1, with D2 a disk and S1

a circle (depicted in Fig. 3.13), we cannot encode any logical qubits. Although the boundary
of the solid torus is a torus, there does not exist symmetric local decompositions of logical
operators supported on the b cycle of Fig. 3.13). For example, logical operators Z supported on
the b cycle (in Fig. 3.13) cannot be created by a sequence of local, symmetric operators, because
any such sequence results in a homologically trivial (contractible) cycle. This phenomenon
will always occur for codes that live on the boundary of a 3-manifold due to the following
fact: for any 2-manifold, precisely half of the noncontractible cycles (if they exist) become
contractible when the manifold is realised as the boundary of a 3-manifold [228]. This justifies
our consideration of the more involved boundary conditions of the previous subsection.

3.3.6 Bulk boundary correspondence at nonzero temperature

As shown above, the 1-form symmetries constrain the form of the excitations in the model and
give rise to an energy barrier, and self-correction. These 1-form symmetries are a very strong
constraint, and one may ask if a code is trivially guaranteed to be self-correcting whenever such
symmetries are enforced. (As a example of a strong symmetry leading trivially to self-correction,
consider the toric code where the symmetry of the full stabilizer group is strictly enforced.)

In this section we show that the 1-form symmetry, although strong, is itself not sufficient
to lead to self-correction unless the bulk is SPT ordered (such as in the previous models).
Specifically, we show that self-correction under 1-form symmetries depends on the bulk SPT order
of the model, establishing a bulk-boundary correspondence for SPTs at nonzero temperature.
Recall, at zero temperature, the correspondence is that a system with nontrivial SPT order in
the bulk must have a protected boundary theory – meaning it is gapless or topologically ordered
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– whenever the symmetry is not broken [108, 110]. Here we show that the bulk boundary
correspondence holds at nonzero temperature in the RBH model; that the stability of the
boundary toric code phase (i.e., whether or not we have a SCQM) depends on the bulk SPT
order at nonzero temperature.

In order to make this connection, we recall a formulation of phase equivalence due to Chen et
al. [92]. Namely, two systems belong to the same phase if they can be related by a local unitary
transformation (a constant depth quantum circuit), up to the addition or removal of ancillas.
Importantly, with symmetries S(g) present, the local unitary transformations must commute
with the symmetry and the ancillas that are added or removed must be in a symmetric state.

We now remark on the earlier claim on the necessity of the SPT nontriviality of the
bulk to achieve self-correction. To do so, we first note that the symmetric energy barrier is
invariant under symmetric local unitaries (that is, it is a phase invariant). Indeed consider two
Hamiltonians HA and HB (defining quantum memories) in the same phase. Then in particular,
we have HA +HA and HB are related by a symmetric local unitary U , where let HA consists
of a sum of local projections on the ancillas A into a symmetric state. Since HA and HA +HA

differ only by a sum of non-interacting terms on the ancilla, they have the same energy barrier.
Let X be a logical operator for HA, and consider a local decomposition {l(k)

X | k = 1, . . . N} of
X (recall l(1)

X = I and l
(N)
X = X, and l

(k)
X and l

(k+1)
X differ only by a local operator). This is

also a logical decomposition for HA +HA. Then {Ul(k)
X U † | k = 1, . . . N} constitutes a local

decomposition for a logical operator of HB, with the same energy barrier. This works for all
choices of logical operators X and the models have the same symmetric energy barrier.

The invariance of the energy barrier requires us to consider a SPT-nontrivial bulk to achieve
self-correction in the presence of 1-form symmetries. Indeed, if we instead considered the SPT-
trivial model H(0)

Lo of Eq. (3.12) with undressed toric code terms of Eq. 3.25 on the boundary in
the presence of 1-form symmetries, we see that there is no energy barrier, in the following way.
Consider the logical X operator, which is given by a product of Pauli X operators supported
on a dual cycle on ∂L (it is not dressed, unlike the logical X of the RBH model H). Then
the symmetric energy barrier for this error is a constant 2∆gap, since the process of creating
two m particles and wrapping them around a boundary cycle is symmetric, and only flips two
Bf plaquettes at any given time. Therefore the trivial model is not self-correcting, even in
the presence of 1-form symmetries. In particular, this also gives a simple argument for why
H belongs to a distinct SPT phase to H(0)

Lo . Indeed, the SPT ordering in the bulk is crucial
to achieving the bulk-boundary anyon coupling of Lemma 2, that leads to a confinement of
anyons as in Lemma 3.

This bulk boundary correspondence (at nonzero temperature) holds for systems with onsite
symmetries too; we have argued in Sec. 3.2.3 that self-correction was not possible on the 2D
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boundary of a 3D SPT protected by onsite symmetry. This coincides with with the lack of bulk
SPT order at T > 0 when the protecting symmetry is onsite, as shown in Ref. [216].

Anomalies

Finally, we return to the connection between higher-form anomalies and stability of the boundary
theory. Recall that anomalies arise when considering a system with a boundary and analysing
the action of the symmetry on boundary degrees of freedom. Let us first clarify what we mean
by a higher-form anomaly, by examining the 1-form case in 3-dimensions. Consider the bulk
RBH Hamiltonian of Eq. (3.16), with the boundary conditions described in Sec. 3.3.2, which is
symmetric under 1-form symmetries Sq, Sv, q ∈ Q, v ∈ V .

Recall the effective Pauli-X and Pauli-Z operators for these boundary degrees of freedom are
given by X̃e and Z̃e in Eq. (3.21). As we have seen, the action of the 1-form symmetry on these
boundary degrees of freedom induces a 1-form symmetry on the boundary degrees of freedom.
However, this boundary 1-form symmetry cannot be strictly realised on the boundary E \ Eo.
Indeed, from the commutation relations with 1-form symmetries, we have Sv ≡ Av, Sq ≡ Bf(q)

as in Eq. (3.26). But Av and Bf(q) are not contained within E \ Eo.

In fact, there is no way to reduce the boundary action of Eq. (3.26) into a form that
is contained entirely within the boundary, meaning that the boundary action is anomalous.
Without the 1-form anomaly, there are no terms coupling the bulk and boundary, and one can
choose the boundary theory to be a completely decoupled 2D theory, as in the example of H(0)

Lo .
In such a theory, one can find a logical operator that has a symmetric local decomposition with
constant energy cost, meaning the anomaly is necessary to have a self-correcting boundary.
Such anomalies should only occur when we have a SPT ordered bulk.

3.4 The gauge color code protected by 1-form symmetry

We now turn to a model based on the gauge color code in 3 dimensions as our second example
of a symmetry-protected self-correcting quantum memory. The gauge color code [75] is an
example of a topological subsystem code. In this section we study a commuting Hamiltonian
model with a 1-form symmetry based on the gauge color code. This model provides another
example of a self-correcting quantum memory protected by a 1-form symmetry. We first give a
brief overview of the gauge color code before defining the Hamiltonian model we are interested.
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Subsystem codes

In addition to logical degrees of freedom, subsystem codes contain redundant ‘gauge’ degrees of
freedom in the codespace that are not used to encode information. Whereas stabilizer codes are
specified by a stabilizer group S that is an abelian subgroup of the Pauli group, a subsystem
code is specified by a (not necessarily abelian) subgroup G of the Pauli group, known as the
gauge group. A stabilizer group S for the subsystem code can be defined by choosing any
maximal subgroup of the center Z(G) of the gauge group, such that −1 /∈ S. In other words,
S ∝ Z(G) (in general there are many choices for S obtained by selecting different signs for
generating elements). As usual, the codespace CS is defined as the mutual +1 eigenpsace of all
elements of S.

Information is only encoded into the subsystem of CS that is invariant under all gauge
operators g ∈ G. More precisely, we have CS = Hl ⊗ Hg, where Hl is the state space of logical
degrees of freedom (elements of G act trivially on this space), and Hg is that state space of
the gauge degrees of freedom (elements of G can act nontrivially on this space). There are two
types of Pauli logical operators: bare and dressed. Bare logical operators are elements of C(G);
the centraliser of the gauge group within the Pauli group, meaning they are Pauli operators
that commute with all gauge operators. Dressed logicals are elements of C(S); the centraliser
of the stabilizer group within the Pauli group (meaning they are Pauli operators that commute
with all stabilizer operators). Bare logicals act exclusively on logical degrees of freedom and act
trivially on the gauge degrees of freedom, while dressed logicals can act nontrivially on gauge
degrees of freedom, too. Both types of logicals are identified up to stabilizers (as stabilizers act
trivially on the codespace).

3.4.1 The gauge color code lattice

Gauge color codes are defined on lattices known as 3-colexes [55]. In particular, a 3-colex is the
result of gluing together 3-cells (polyhedra) such that each vertex is 4-valent (meaning each
vertex belongs to 4 edges) and 4-colorable (meaning each polyhedral 3-cell can be given one
of four colors such that neighbouring 3-cells are differently colored). Let these four colors be
labelled r, b, g, and y (for red, blue, green, and yellow).

We note that, similar to the RBH model, the gauge color code must have boundaries in
order to possess a nontrivial codespace. For concreteness, we consider the tetrahedral boundary
conditions of Ref. [76], but one could also consider more general boundary conditions. In the
following, we label the Tetrahedral 3-colex by C3, which is a set of vertices, edges, faces and
3-cells. Tetrahedral 3-colexes C3 are given by cellulations of the 3-ball, whose boundary consists
of four facets, each of which must satisfy a certain coloring requirement. To describe this
requirement, we first note that each non-boundary edge can be given a single color label, where
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Fig. 3.14 (a) The tetrahedral 3-colex. (b) The b boundary of the tetrahedral lattice consists
of faces that are colored uv with u,v ̸= b, which are then relabelled according to gy ↔ A,
ry ↔ B, and rg ↔ C.

the color is determined by that of the two 3-cells that it connects. If an edge terminates on
a boundary (meaning precisely one of its vertices belongs to the boundary) then its color is
determined by unique bulk 3-cell on its other endpoint. Then the boundary coloring requirement
is as follows: for each boundary facet, only edges of one color can terminate on the boundary
and this color is unique for each facet. We therefore color each boundary facet by the color of
the edges that terminate on it.

Similarly, each face f in C3 can be labelled by pairs of colors uv ≡ vu, inherited from the
two neighbouring 3-cells that it belongs to. Namely, each non-boundary face is colored by the
complement of the two colors on the 3-cells the face is incident to (e.g., a face belonging to a r
and b 3-cell is colored gy). Faces on the boundary are colored by the opposite of the color of
the boundary and the color of the unique 3-cell they belong to. As such, the boundary of color
k consists of plaquettes of all colors uv such that u,v ̸= k. We arbitrarily choose one of the
boundary facets, the b facet, and call this the outer colex Cout, which consists of the vertices,
edges and plaquettes strictly contained on the boundary. This outer colex is therefore a 2-colex
(a trivalent and 3-colorable two-dimensional lattice), and can be used to define a 2-dimensional
color code. The remainder of the lattice C3 \ Cout is called the inner colex.

On the outer colex, each plaquette has one of three possible color pairs {gy, ry, rg}, which
we relabel for simplicity according to gy ↔ A, ry ↔ B, rg ↔ C as in Fig. 3.14. Each edge
of the outer colex neighbours two plaquettes of distinct colors, we color each edge the third
remaining color. Moreover, each of the three boundaries of the outer colex can be given a single
color according to what color edges can terminate on them, as depicted in Fig. 3.14.

3.4.2 The 3D gauge color code

To each vertex of the lattice C3 we place a qubit. The gauge color code is specified by the gauge
group G, which is a subgroup of the Pauli group on n qubits (where n is the number of vertices).
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The stabilizer group S is in the center of the gauge group, consisting of elements of the gauge
group that commute with every other element and where the signs are chosen such that −1 /∈ S.
For the gauge color code, we have an X and Z gauge generator for each face of the lattice,

G = {GXf , GZf | f a face of C3} , (3.37)

where GXf =
∏
v∈f Xv and GZf =

∏
v∈f Zv are Pauli operators supported on the face f . The

stabilizers of the code are given by X and Z on the 3-cells of the lattice

S = {SXq , SZq | q a 3-cell of C3} , (3.38)

where SXq =
∏
v∈qXv and SZq =

∏
v∈q Zv are Pauli operators supported on 3-cells. Codestates of

the gauge color code are the states that are in the +1 eigenspace of all elements of the stabilizer
group. With the aforementioned boundary conditions, the code encodes one logical qubit, and
bare logical operators can be taken to be X =

∏
v∈C3 Xv and Z =

∏
v∈C3 Zv, where the products

are over all vertices of the lattice. Importantly, note that equivalent logical operators (i.e.,
up to products of stabilizers) can be found on the outer colex, namely X ∼

∏
v∈Cout Xv and

Z ∼
∏
v∈Cout Zv are valid representatives. One can find dressed versions of these logicals on the

outer colex that are stringlike – we will discuss this in the following subsection. Similarly to
the RBH model, we are therefore justified in viewing the logical information as being encoded
on the boundary.

There are many different Hamiltonians whose ground space contains a representation of the
logical degrees of freedom of the gauge color code (here representation means that one can find
dressed logicals of the gauge color code that are logical operators for the ground space of a
given model). One possible choice of Hamiltonian that represents the GCC logical degrees of
freedom in its ground space is given by the sum of all local gauge terms,

HG = −
∑
f

GXf −
∑
f

GZf , (3.39)

which we refer to as the full GCC Hamiltonian. This Hamiltonian is frustrated, meaning one
cannot exactly satisfy all of the constraints GXf and GZf simultaneously, making it difficult to
study. There are many different Hamiltonians whose ground spaces contain the codespace of
the gauge color code, and in the next subsection we introduce a solvable model, consisting of
mutually commuting terms.

3.4.3 A commuting model

Here we define an exactly solvable model for the gauge color code. The Hamiltonian is given
by a sum of gauge terms that belong to 3-cells of a single color. Without loss of generality, fix



3.4 The gauge color code protected by 1-form symmetry | 117

this color to be b (blue), and take all faces Xf and Zf belonging to the blue 3-cells or blue
boundary facet. That is, all faces f that have color uv with u,v ̸= b. Label the set of these
faces by

Gb = {GXf , GZf | K(f) ∈ {gr,gy, ry}}, (3.40)

where K(f) denotes the color of f . Note that Gb consists of commuting terms, as all terms are
supported on either a bulk 3-cell or the b boundary (which are both 3-colorable and 3-valent
sublattices). Or equivalently, if two faces share a common color then the terms commute. We
can define an exactly solvable Hamiltonian by

HGb = −
∑
G∈Gb

G. (3.41)

This Hamiltonian decomposes into a number of decoupled 2D color codes, one on the b boundary,
and one for each bulk 3-cell of color b. Additionally, every qubit is in the support of at least
one G ∈ Gb.

With the above choice of boundary conditions, the outer colex (the b boundary) encodes
one logical qubit, while the bulk 2D color codes are non-degenerate (as they are each supported
on closed 2-cells). The ground space of the model is the joint +1 eigenspace of all terms G ∈ Gb,
and the ground space degeneracy is two-fold. This choice of Hamiltonian explicitly represents
the gauge color code codespace on the outer colex. This situation is reminiscent of the RBH
model, where quantum information is encoded on the boundary of the 3D bulk. We remark
that the ground state of HGb can be thought of as a gauge fixed version of the gauge color code
G.

Logical operators can be chosen to be string-like operators supported entirely on the outer
colex (the b boundary facet). Recall that edges and plaquettes on the outer colex has one
of three possible colors, A, B, or C, as defined in Fig. 3.14, and the boundaries are given a
single color according to what color edges can terminate on them, as depicted in Fig. 3.15. The
logical operators take the form of strings that connect all three boundaries of the triangular
facet as in Fig. 3.15. Logical Pauli operators are supported on at least d qubits, where d is the
smallest side length of the boundary facet and referred to as the distance of the code.

On the outer colex, a string operator with color k ∈ {A,B,C} will flip the two k coloured
plaquettes on the boundary of the string. In particular, a k-colored X-string will create mk

excitations on its boundary (corresponding to the flipped GZf plaquettes). Similarly, a k-colored
Z-string will create ek excitations on its boundary (corresponding to the flipped GXf plaquettes).
These are depicted in Fig. 3.15. On a k colored boundary, both ek and mk particles can
condense, meaning they can be locally created or destroyed at the boundary as in Fig. 3.15.
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(a)

eA Z ZeA

(b)

Fig. 3.15 (a) A logical string consists of three colored strings extending from their respective
boundary and meeting at a point. The support of the logical X or Z is indicated by the larger
white nodes. (b) eA excitations appear at the ends of a A-colored Z-string. Both eA and mA
excitations can condense on the A-colored boundary (and analogously for other boundaries).

As such, the action of logical X (Z) can then be interpreted as creating three m-type
(e-type) quasiparticles of each color from the vacuum at a point, then moving each colored
excitation to its like-colored boundary where it is destroyed.

Relation to the RBH model

To motivate how the model HGb was constructed, we draw a comparison to the RBH model of
the previous section. In particular, the RBH also has the structure of a subsystem code, that
on a certain lattice is dual to the gauge color code. For the RBH model, one can consider the
gauge group GC is given by

GC = ⟨Kp, Xp | p ∈ E ∪ F ⟩, (3.42)

where Kp are the cluster state stabilizers of Eq. (3.11) and Xp are single qubit Pauli X operators.
The corresponding stabilizer group SC is given by

SC = ⟨Sp | p ∈ Q ∪ V ⟩, (3.43)

where Sp are the 1-form symmetry generators of the RBH model, given by Eq. (3.18). (The
choice of gauge generators Xp stems from the application of the RBH model to fault-tolerant
measurement-based quantum computing, where X-measurements are used to propagate infor-
mation.)

The commuting model describing the RBH model was chosen by selecting a subset G′ of
local, commuting elements of GC to define the Hamiltonian, and imposing symmetries given
by the stabilizer SC . This choice is non-unique, as there are many other subsets G′ of G that
could be used to construct a commuting model. Additionally, to avoid spontaneous symmetry
breaking we choose G′ such that the stabilizer is a subgroup of the group generated by G′, that
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is, SC ≤ ⟨G′⟩. The same construction was also used to generate the commuting GCC model, and
can be used more generally for subsystem codes with a stabilizer group that has the structure
of a Zk2 1-form symmetry for some k. We note however there are many distinct ways generating
such Hamiltonians, and not all of them will be self-correcting under the 1-form symmetry.

3.4.4 1-form symmetry and color flux conservation

The commuting model HGb without any symmetry constraints is easily shown to be disordered
at any non-zero temperature. (It is a collection of uncoupled 2D color codes.) In this section,
we identify a 1-form symmetry of this model that, when enforced, leads to a diverging energy
barrier and therefore self-correction on the boundary code.

The Hamiltonian HGb has a Z2
2 1-form symmetry given by the stabilizer group S of Eq. (3.38).

Recall that S is generated by the stabilizers SXq and SZq on the 3-cells q of the lattice, and
consists of operators supported on closed codimension-1 (contractible) surfaces. The two
copies of Z2 1-form symmetry come from the independent X-type and Z-type operators. The
symmetry S give strong constraints (conservation laws) on the possible excitations in the model:
this is the color flux conservation of Bombin [75]. To discuss the color flux conservation that
arises from the Z2

2 1-form symmetry, let us assume that the system HGb is coupled to a thermal
bath (as in Eq. (3.1)) such that the whole system respects the symmetry S, and discuss what
type of excitations are possible in the model.

The model HGb is a stabilizer Hamiltonian, and so excitations are labelled in the standard
way. Specifically, excited states can be labelled by the set of ‘flipped terms’ Gex ⊆ Gb. Not all
sets Gex can be reached from the ground space in the presence of the symmetry S. Since the
ground space of HGb consists of the states in the +1 eigenspace of all terms in Gb, it follows that
the ground space is also the +1 eigenspace of all operators in S, and since they are conserved,
only the excited states that satisfy color flux conservation on each cell (as we will describe) can
be reached.

In particular, note that for any 3-cell q of color k ̸= b, there is precisely one way of obtaining
the stabilizers SXq and SZq from terms in Gb, while for a 3-cell of color b there are three ways
of obtaining the stabilizers. More precisely, for the X-type stabilizers we have

SXq =
∏
f⊂q

K(f)=uv

GXf , (3.44)
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where

uv ∈



{gy} if K(q) = r

{ry} if K(q) = g

{rg} if K(q) = y

{gy, ry, rg} if K(q) = b.

(3.45)

The above expression holds similarly for the stabilizer SZq . This can be seen as any plaquette
that neighbours a 3-cell of color k must be of color uv with u,v ̸= k, for which there is only
one choice within Gb for k ̸= b, and three choices when k = b. Note that the multiple ways of
forming SXq and SZq on blue 3-cells as per Eq. (3.45) leads to local product constraints on these
blue 3-cells (further constraining the excitations) however this is not important for the present
discussion.

To ensure that an excitation Gex is valid, we must remain in the +1-eigenspace of S. From
Eq. (3.44) we see that every 3-cell q must have an even number of flipped plaquettes belonging to
its boundary. Indeed, a single flipped plaquette GXf of color uv would violate the two stabilizer
operators SXq and SXq′ on the neighbouring u and v colored 3-cells q and q′. This constraint
implies that symmetric excitation configurations consist of collections of closed loop-like sets of
flipped plaquettes.

This can be more easily visualised on the dual lattice, where where 3-cells are replaced by
vertices, faces by edges, edges by faces, and vertices by 3-cells. On the dual lattice, vertices
carry a single color, edges are labelled by pairs of colors, and excitations are therefore given by
sets of edges. We call the edges on the dual lattice that define an excitation a flux string. The
color flux conservation on these closed flux strings is as follows.

To satisfy the constraints of Eqs. (3.44), and (3.45), for each vertex v of color k ∈ {b, r,g,y}
the number of edges in a flux string incident to v must be even. Since the vertices of color
k ∈ {r,g,y} only support terms in Gb on neighbouring edges of a single color type (e.g. a
r vertex only supports terms on its neighbouring gy-colored edges), then the color of the
excitation is conserved at each one of these vertices. Similarly on a b vertex, all pairs of colors
are separately conserved. This means if a uv colored edge excitation enters a vertex, there must
be a uv colored edge excitation leaving the vertex. In summary, bulk excitations must form
closed loops, where the color is conserved at every vertex, and this is illustrated in Fig. 3.16.

Flux loops may terminate on the outer colex. Recall that for a boundary facet of color k,
there are no faces of color uk for any u. In particular, for k ̸= b, there is a unique color u such
that there are terms GXf and GZf of color uk in Gb. Flux loops of color uk can terminate on
this k-colored boundary facet. For the b colored boundary facet (the outer colex), all three
color pairs of flux loops can terminate on the outer colex. Flux loops terminating on the b-facet
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Fig. 3.16 (a) An example of a flux loop, where the corresponding colored strings on the dual
lattice are depicted, the shaded blue spheres represent b colored 3-cells. (The constraint from
Eq. (3.44) requires an even number of flipped rg plaquettes on a y colored 3-cell). (b) A rg
colored flux loop of flipped GZf terms (coming from a string of X operators) terminating with a
pair of eC anyons on the outer colex.

can be viewed as ending in a ek or mk anyonic excitation on the boundary for k ∈ {A,B,C} as
in Fig. 3.16 (recall the colors are relabelled on the outer colex according to gy ↔ A, ry ↔ B,
rg ↔ C). Moreover, in the same way, the only way anyons can exist on the outer colex is at
the ends of a flux loop on the bulk, as stand-alone boundary anyonic excitations violate the
symmetry.

3.4.5 Energy barrier

We are now equipped to calculate the symmetric energy barrier for HGb in the presence of the
symmetry S. Recall that a logical error occurs when a triple of excitations αA, αB, αC, where
α = e or m, are created at a point, and each anyon travels to its like-colored boundary. Put
another way, a logical error occurs if an anyonic excitations αk is created at each boundary,
and the three anyons move and fuse back to the vacuum in the bulk of the outer colex. In any
case, the only way to achieve a logical Pauli error is to create a number of anyonic excitations,
which must move a combined distance of at least d, the side length of the outer colex. In the
symmetric sector, anyonic excitations can only exist on the boundary if they are accompanied
by a bulk flux loop, and so the above creation, movement and fusion process can only occur
when accompanied by bulk flux loops.

Since boundary excitations αk with α ∈ {e,m} and k ∈ {A,B,C} appear on the end of
flux loops (each of which can only terminate on its like-colored boundary) to calculate the
energy barrier we need only track the smallest length flux loops required to move the boundary
anyons to create a logical error. From any point v on the outer colex, let lA(v), lB(v), lC(v) be
the shortest flux loops from a face f on the outer colex containing v, to a face on the A, B,
and C facets, respectively (these flux loops are dual to a closed path on the dual lattice). Let
|lA(v)|, |lB(v)|, |lC(v)| be the lengths of these flux loops (i.e., the number of edges on the dual
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path) and define
d⊥ := min

v∈Cout
(|lA(v)| + |lB(v)| + |lC(v)|) (3.46)

to be the shortest combined distance from any point on the outer colex to all three other facets.
Note that d⊥ grows as all side lengths of the tetrahedral 3-colex are increased.

Then during any anyon creation, movement and annihilation process resulting in a logical
error, the bulk flux loops which accompany the boundary anyons must have a combined length
of at least d⊥. This will incur an energy penalty of ∆E = 2d⊥ since each flux loop consists of a
path of flipped terms Gαf ∈ Gb. As such the energy is proportional to d⊥ which scales linearly
with the minimum side length of the tetrahedral 3-colex. In particular, the model H ′ with
symmetry S has a macroscopic energy barrier, and the boundary information is protected in
the presence of a 3D bulk and symmetry constraint.

We make two remarks. First, the energy barrier and conservation laws in this section
were presented in terms of excitations rather than error operators (as opposed to the operator
approach for the RBH model). For the purposes of calculating the energy barrier these two
pictures are equivalent, since the sequence of local (symmetric) excitations corresponds to a
sequence of local (symmetric) operators, and vice-versa. Second, we remark that a tri-string
logical operator of the above form can be pushed onto a single boundary of the outer colex,
giving rise to a string-like representative. As such, a logical error can arise from a pair of
anyons of the same color being created and moved along the boundary of the outer colex.
Such a process also has an energy lower bounded by ∆E = 2d⊥ since a k-colored string on
the boundary of the outer colex is never adjacent to a boundary where its k-flux loops can
terminate.

The argument from the symmetric energy barrier to self-correction follows identically to
that of the RBH model. That is, provided the temperature is sufficiently low, information can
be stored for a time that grows exponentially with the system size. (Note that the critical
temperature will depend on the specific choice of 3-colex.) As a result, our stabilizer model
based on the 3D gauge color code protected by Z2

2 1-form symmetry provides another example
of a self-correcting quantum memory.

In the RBH model, the fact that the boundary was self-correcting in the presence of 1-form
symmetries could be interpreted as directly resulting from the thermally stable bulk SPT order.
In this stabilizer model of the gauge color code, the boundary stability and bulk SPT (at
nonzero temperature) are also related [229].
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3.5 Emergent 1-form symmetries

As we have shown, SET models protected by a 1-form symmetry can be self-correcting. However,
enforcing such 1-form symmetries is a very strong constraint, and in addition these symmetries
are unusual in physics compared with the more prevalent onsite (0-form) symmetries. Here
we explore the idea that 1-form symmetries may actually appear naturally in 3D topological
models, and not require any sort of external enforcement. We refer to such a symmetry as
emergent. It sounds too good to be true, but note that emergent symmetries in 2D topological
models are ubiquitous (while perhaps poorly understood). In this section, we review emergent
(0-form) symmetries in 2D topological models, as first highlighted by Kitaev [193]; here we
will focus on the 2D color code. We then show that 3D models may possess emergent 1-form
symmetries associated with such emergent 0-form symmetries on closed 2D submanifolds of
the 3D model. We revisit the 3D gauge color code in light of these observations. Finally, we
demonstrate the stability of emergent 1-form symmetries in topologically ordered models, and
discuss the implications for self-correction.

3.5.1 Emergent 0-form symmetries in 2D

Kitaev observed the emergence of symmetry in 2D topological models such as the toric code
and referred to this as a ‘miracle’ [193]. As we now know, emergent symmetries are a generic
property of 2D topologically ordered models. We begin this section by reviewing an instructive
first example: the 2D color code. We demonstrate the emergence of a Z4

2 0-form symmetry in
this 2D code, and how this gives rise to the well known anyonic color conservation (see for
example Ref. [119]). Although we will focus on how global product constraints are helpful to
expose global conservation laws, we emphasise that the more important physical property is
the local conservation law (associated with a 0-form symmetry) that arises in relation to the
modular Gauss law.

We first consider a 2D color code defined on the surface of a sphere (one can equivalently
consider any closed surface for the discussion that follows). Recall, a 2D color code is defined
on a lattice known as a 2-colex, which is a 3-colorable, 3-valent cellulation Λ of a 2-dimensional
surface, which in this case is a sphere. We place a qubit on each vertex of Λ, and define
the familiar X-type and Z-type face operators GXf =

∏
v∈f Xv and GZf =

∏
v∈f Zv for each

face f ⊂ Λ. In particular, since the lattice is 3-colorable and 3-valent, these face operators
GXf and GZf all commute. These operators generate the 2D color code stabilizer group
Scc = ⟨GXf , GZf | f a face of Λ⟩, and define a corresponding Hamiltonian H2D-cc by

H2D-cc = −
∑

faces f

(
GXf +GZf

)
. (3.47)
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This 2D color code differs only from that defined on the outer colex (considered in Sec. 3.4,
Fig. 3.14) by a choice of boundary conditions.

Recall, a generating set for the anyonic excitations of this model can be labelled by mk, and
ek, where k ∈ {A,B} labels a color, e-type anyons corresponds to flipped X-type plaquettes,
and m-type anyons correspond to flipped Z-plaquettes. One can obtain C colored anyons as
the fusion of an A and B colored anyon of the same type. This set of anyons forms a group
under fusion A2D-cc ∼= Z4

2, with the above choice of generators.

However, not all anyonic excitation configurations are possible as there are global constraints
that need to be satisfied in this model. In particular, since our model is defined on a closed
surface, we have the following identities for each α ∈ {X,Z}

∏
f⊂Λ

K(f)=A

Gαf =
∏
f⊂Λ

K(f)=B

Gαf =
∏
f⊂Λ

K(f)=C

Gαf =
∏
v∈Λ

αv. (3.48)

Letting N e
k and Nm

k be the number of ek and mk anyonic excitations respectively, then the
above equation implies the following relation

N e
A = N e

B = N e
C mod 2, (3.49)

and similarly for Nm
k . In particular this means that the number of eA, eB and eC anyons is

conserved mod 2 (and similarly for mA, mB, and mC).

If we regard anyons of color C as being comprised of an A color and a B color anyon, we
can obtain further constraints. Namely, for any two colors, u,v ∈ {A,B,C}, we have a product
constraint ∏

f⊂Λ
K(f)=u

Gαf
∏
f⊂Λ

K(f)=v

Gαf = I. (3.50)

This implies a constraint on the parity of anyons

N e
u +N e

v = 0 mod 2, (3.51)

which along with the fact that we are regarding N e
C = N e

A +N e
B, means that N e

A = N e
B = 0

mod 2 (and similarly for m-type anyons). The product constraint of Eq. (3.50) exists on the
whole 2-dimensional lattice (that is, a codimension-0 surface), and gives rise to 4 independent
anyonic constraints: that the number of eA anyons must be created or destroyed in pairs, and
similarly for eB, mA, and mB. Thus, we refer to it as an emergent Z4

2 0-form symmetry.

The identities of Eq. (3.50) make this emergent symmetry look like a global constraint,
however it is in fact a 0-form symmetry. That is, we can identify an action of this symmetry on
any submanifold, not just the whole lattice. This structure to the symmetry is best seen by
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reformulating it as a type of Gauss’ law for anyonic excitations, detecting the total topological
charge in a region through an observable localized to the boundary of the region. Specifically,
consider submanifolds that are not closed. Let M be a codimension-0 submanifold of the
2-colex (that is, a subset of faces), with boundary. Then for α ∈ {X,Z} it holds that

∏
f⊂M

K(f)=u

Gαf
∏
f⊂M

K(f)=v

Gαf = h∂M , (3.52)

where h∂M =
∏
v∈∂M αv is supported on the boundary of M. (Note that we have assumed the

2-colex is closed, however the above equation also holds when M is disjoint from the boundary
of the 2-colex). Now instead of the global constraint of Eq. (3.51), we get a constraint for every
submanifold M. Namely, the charge within the region M is equal (mod 2) to the eigenvalue of
on the operator h∂M

N e
u +N e

v = ⟨h∂M⟩ mod 2, (3.53)

for any excited state (provided, as is true with this model, that anyons are well-localized).
Choosing v = C lets us determine N e

A and N e
B independently, and similarly for Nm

k . In other
words, one can detect the topological charge within the region M using operators on the
boundary of the region, giving rise to the well-known topological charge conservation law for
anyons in the color code. Thus we have seen that the conservation law applies locally as well
(provided that the length scale is such that anyons remain well-localized), and is not just a
global constraint on the entire manifold.

Importantly, in the above considerations, emergent symmetries were revealed not by elements
of a symmetry group, but rather product constraints amongst the Hamiltonian terms. This is a
result of the stabilizer Hamiltonian models that we have considered as examples. We can now
turn to higher-dimensional examples, again of stabilizer Hamiltonians, where this holds true for
higher-form symmetries, i.e., where emergent q-form symmetries are associated with product
constraints on closed codimension-q submanifolds of the lattice. Ultimately, however, we expect
the symmetry considerations rather than the product constraints to be more fundamental, and
we return to this issue in Sec. 3.5.3. However, first, we will examine the underlying emergent
1-form symmetries in the gauge color code in the next section.

3.5.2 Emergent 1-form symmetries in 3D

Here we demonstrate how emergent 1-form symmetries can arise in a 3D model, in a sense by
bootstrapping from the 2D case.
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Single-sector 3D gauge color code

For illustrative purposes, we first consider a single charge sector of the 3D gauge color code
HG . This single-sector model is not topologically ordered, and so does not possess emergent
symmetries; nonetheless it will be useful to illustrate the connection between 1-form symmetries
in a 3D model and 0-form symmetries in associated 2D models existing across all codimension-1
submanifolds of the 3D model. The 1-form symmetries fix excitations to be 1-dimensional
objects that conserve color flux.

Recall, the gauge color code is defined on a 3-colex C3 (a 4-colorable, 4-valent cellalation)
with a qubit on each vertex. For concreteness, we restrict our discussion to the X-sector of the
gauge color code (the Z-sector follows similarly). That is, we consider the Hamiltonian

HX = −
∑
f

GXf , (3.54)

consisting of the sum of all face terms over a 3-colex. The ground space of HX is the mutual
+1 eigenspace of all terms GXf , and excitations are eigenstates of the Hamiltonian in the −1
eigenspace of some terms (we say these terms are GXf = −1). We can label excited states
uniquely by specifying which terms are GXf = −1, but importantly not all configurations are
allowed, as there are algebraic constraints amongst terms.

Consider any closed codimension-1 submanifold M of the 3-colex that is also a 2-colex,
with the color-pairs AM, BM, and CM selected from the 6 possible color-pairs of faces in
C3. On this sub-2-colex, we have the familiar constraints. Namely, for any 2 color-pairs
u,v ∈ {AM,BM,CM}, we have

∏
f⊂M

K(f)=u

GXf
∏
f⊂M

K(f)=v

GXf = I, (3.55)

mirroring the constraints of Eq. (3.50). In particular, this relation holds in the smallest instance
when M is the boundary of a 3-cell.

The product relations of Eq. (3.55) lead to constraints on excitations. Namely, for each
codimension-1 submanifold (that is a 2-colex), the number of faces f ⊂ q with GXf = −1
carrying a color k must sum to (0 mod 2), and this holds for each (single) color k. This in
turn requires excitations (which carry pairs of colors) to form closed loop-like objects that
conserve color. The dual lattice again provides the visualization, where excitations correspond
to sets of edges and edges carry a pair of colors. At each vertex v of the dual lattice, let Nv

k be
the number of loop excitations carrying the (single) color k that contain v. Then the constraints
of Eq. (3.55) mean that

Nv
k = 0 , ∀ k, v , (3.56)
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which is precisely the color flux conservation discussed in Sec. 3.4.4. In particular, this implies
that excitations must form closed loop-like objects.

Not all excitations are independent. A string excitation of a color xz may branch into a
pair of strings with colors xk and kz for k ̸= x, z. This then means there are three independent
color pairs, such that all loop excitations can be regarded as the fusion of these loops. The flux
conservation can be regarded as three independent constraints on loop-like excitations.

Similar to the 0-form case, 1-form symmetries also imply a constraint (conservation law)
for the loop-like excitations. We can infer a generalization of the law for detecting topological
charge, which in this case applies to color flux, by considering codimension-1 submanifolds that
are not closed. In particular, let M′ be a codimension-1 submanifold with a boundary. Then it
holds that ∏

f⊂M′

K(f)=u

GXf
∏

f⊂M′

K(f)=v

GXf = h∂M ′ , (3.57)

where h∂M ′ is an operator supported on the (1-dimensional) boundary of M (again we are
assuming that M is supported away from any boundary of the 3-colex). This means that the
number (mod 2) of u colored and v colored excitations that thread the region M′ is detected
by an operator h∂M ′ on the boundary of that region. Again, we can use the constraints to
determine this number on each independent color pair.

In summary, we have seen that this model supports three independent types of excitations,
each constrained to form closed loops (with the possibility of branching and fusion). This 3D
example, then, gives the appearance of an emergent Z3

2 1-form symmetry arising from a 0-form
symmetry on codimension-1 submanifolds (where the rank of the 1-form symmetry group is
due to the number of independent excitations that are conserved). We note, however, that by
restricting to the X-sector, we do not have a topologically ordered model; the codimension-1
submanifolds do not have an emergent 0-form symmetry without both sectors, and so an
emergent 1-form symmetry does not appear in the 3D model. Both electric and magnetic
sectors are required simultaneously in order to have the emergent symmetry associated with
either [193]. Regardless, our purpose here was simply illustrative—we are not fundamentally
interested in this single-sector model, but rather a topologically-ordered 3D model with both
sectors such as the gauge color code. We turn to that model now.

The gauge color code and color flux conservation

Does the topologically-ordered 3D gauge color code have an emergent 1-form symmetry associ-
ated with color flux conservation? Each sector of the gauge color code on its own, HX and HZ ,
has loop-like, color-flux-conserving excitations. Proliferation of such excitations is therefore
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suppressed, as they are energetically confined. For the full gauge color code Hamiltonian,

HG = −
∑
f

GXf −
∑
f

GZf , (3.58)

it is tempting to conclude that a Z6
2 1-form symmetry will emerge, and lead to confined errors

and suppression of logical faults. However, the terms of HG are not mutually commuting (and
indeed frustrated), and therefore we cannot immediately label excited states by specifying terms
GXf , G

Z
f = ±1. In other words, this frustrated model’s excitations are not guaranteed to be

well-defined extended objects with well-defined color flux as appear in each sector separately. If
they were, then this would be strong evidence that the model was self-correcting.

Unfortunately, there are few tools available to understand the spectrum of a frustrated
Hamiltonian such as HG , and without such information it is a very difficult task to analyse the
thermal stability and memory time of the code. In this sense, one can view the exactly solvable
model HGb as the result of removing terms from the Hamiltonian until it is commuting, in the
process losing its emergent 1-form symmetries and supplementing them with enforced 1-form
symmetries. Understanding the excitations in HG remains an important problem, to determine
if it is self-correcting.

Higher-dimensional generalizations and emergent q-form symmetries

We briefly generalize the discussion to emergent q-form symmetries in d-dimensional systems
that arise from (product) constraints residing on codimension-q submanifolds. In particular, a
commuting Hamiltonian H =

∑
X⊂Λ hX in d-dimensions has an emergent Z2 q-form symmetry

if for all closed codimension-q submanifolds M, there exists an constraint

∏
X⊂M

hX = I. (3.59)

If there are multiple independent such constraints on the submanifolds, then there are multiple
copies of emergent Z2 q-form symmetries. Importantly, we note that these constraints all
look like emergent Z2 0-form symmetries on codimension-q submanifolds. The generalized
conservation law states that the number (mod 2) of excitations (which must be q-dimensional
objects) threading the codimension-q region M′ can be measured by the operator H∂M ′ on the
codimension-(q+1) boundary of the region. In particular, if H has a q-form emergent symmetry,
let M′ be a codimension-q submanifold with a boundary, then it holds that

∏
i∈M′

hi = h∂M ′ , (3.60)
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where h∂M ′ is an operator supported on a small neighbourhood of the boundary of M. (This
is because if we chose a complementary codimension-q submanifold M′′ such that ∂M ′ = ∂M ′′,
then if M is the result of gluing M and M′ along their boundary, we would have the usual
constraint of Eq. (3.59). Thus

∏
i∈M′ hi can only differ from the identity by an operator

supported on a small neighbourhood of ∂M′.)

Examples of models with emergent higher-form symmetries include toric codes in various
dimensions. For dimensions d ≥ 2, there are d−1 distinct ways of defining a toric code. Namely,
for each k ∈ {1, . . . , d−1}, we define the (k, d−k) toric code that has k-dimensional logical
X operators, and (d−k)-dimensional logical Z operators. One can confirm that these models
have emergent Z2 (k−1)-form and Z2 (d−k−1)-form symmetries. The smallest dimension that
allows for a toric code with emergent Z2

2 1-form symmetries is d = 4, with the (2, 2) toric code,
which is a self-correcting quantum memory.

3.5.3 Stability of emergent symmetries

Our discussion of emergent symmetries has focussed on Hamiltonians with commuting terms.
This property allowed for the simple identification of product constraints. One can ask if the
resulting emergent symmetries are a property of a finely tuned system alone, or if they hold more
generally. In this section, we show that these symmetries are robust features of phases of matter,
that they cannot be broken by local perturbations, irrespective of any symmetry considerations,
provided they are sufficiently small. The argument uses the idea of quasi adiabatic continuation,
following Ref. [93].

Consider a family of local Hamiltonians Hs, labelled by a continuous parameter s ∈ [0, 1],
such that H0 = H is the original Hamiltonian, and Hs remains gapped for all s ∈ [0, 1]. This
family of Hamilonians can be used describe the situation where a perturbation is added to H.
We label ground states of H by |ψi⟩, and groundstates of Hs by |ψsi ⟩. Note that the ground
states can be unitarily related by an adiabatic continuation. Then, following Ref. [93], there
exists a unitary U(s) corresponding to a quasi-adiabatic change of the Hamiltonian with the
following properties. For any operator O, one can find a dressed operator Os = U(s)OU(s)†,
such that Os has approximately the same expectation value in |ψsex⟩ as O does in |ψi⟩ (and
similarly for low-energy states). Moreover, if O is local, then Os is local too. (The support of the
dressed operators increases by a size determined by the choice of quasi-adiabatic continuation
unitary U(s). The approximate ground state expectation values improve exponentially in the
range of increased support of dressed operators.)

Importantly, one can use quasiadiabatic continuation to find dressed versions hX(s) =
U(s)hXU(s)† of the Hamiltonian terms that have approximately the same low-energy expec-
tation values as those in the unperturbed Hamiltonian. These Hamiltonian terms will also
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have the same constraints. In particular, if H had an emergent q-form symmetry arising from
some product constraints amongst Hamiltonian terms, then the dressed Hamiltonian also has
the same local conservation laws. To see this, note that local conservation laws can always be
inferred at low energies, as they involve only Hamiltonian terms in a small neighbourhood. We
needn’t be concerned with the high energy sector as by checking all local conservation laws,
one can establish that the model has an emergent q-form symmetry. Note that the dressed
terms will in general be supported in a larger region, meaning one may need to rescale the
lattice to resolve excitations and faithfully capture the generalized conservation law in the
perturbed Hamiltonian. For example, consider the color code in the presence of perturbations,
then one can renormalize the lattice such that individual excitations are well defined. Then
in the renormalized lattice, these excitations still conserve anyon parity, and they still obey a
conservation law for topological charge.

We remark that we required the gap to remain open in the presence of the perturbations.
This can be guaranteed for any local perturbation (provided it is sufficiently weak), if H satisfies
the conditions of TQO-1 and TQO-2 of Ref. [88]. In particular, the example models we have
considered in Sec. 3.3 and Sec. 3.4 satisfy the conditions.

3.5.4 Duality between emergent and enforceable symmetries

For emergent symmetries, we are faced with the puzzle that we have a conservation law without
any symmetry operator. What is the origin of this symmetry? As pointed out by Kitaev in
the case of the 2D toric code [193], we can always recover symmetry operators by introducing
redundant “unphysical” degrees of freedom, viewed as gauge degrees of freedom. Here we
briefly consider how Kitaev’s approach can be applied to higher-form symmetries. In particular,
for systems with emergent symmetries, we will construct symmetry operators on an enlarged
Hilbert space. This construction provides a duality between systems where the q-form symmetry
is emergent and systems where it is enforced.

We will begin with the color code in 2D, and then show how to lift the construction to
the 1-form case in 3D. We start by introducing new ancillary degrees of freedom—one ancilla
for each term in the Hamiltonian. Label these ancilla by aX(f) and aZ(f) corresponding
to the terms GXf and GZf and fixed them in the +1 eigenspace of Pauli operators X and Z,
respectively. We can now regard the new Hilbert space as H ⊗ A, and states in H are embedded
according to the isometry |ψ⟩ 7→ |ψ⟩ ⊗ |a⟩, where |a⟩ = (⊗aX(f) |+⟩)(⊗aZ(f) |0⟩). We refer to
the (original) degrees of freedom in H as matter, and those in A as gauge. Importantly, not all
states |φ⟩ ∈ H ⊗ A are physical, only the subspace of states satisfying XaX(f) |φ⟩ = |φ⟩ and
ZaZ(f) |φ⟩ = |φ⟩ are physical. At this point, it is clear from the embedding that the physical
state space is the same as the original state space.
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We now couple the matter and gauge degrees of freedom with an entangling unitary. Consider
the mapping of gauge terms and matter Hamiltonian terms

XaX(f) 7→ SXf , GXf 7→ GXf , (3.61)

ZaZ(f) 7→ SZf , GZf 7→ GZf , (3.62)

where SXf = XaX(f)G
X
f and SZf = ZaX(f)G

Z
f . Such a mapping can be achieved with a unitary

U as we show below. In this new Hilbert space, which we label U(H ⊗ A)U †, the physical state
space is the subspace satisfying

SXf |φ⟩ = SZf |φ⟩ = |φ⟩ . (3.63)

The symmetry operators SXf and SZf are known as gauge transformations, and states and
operators that are related by them are thought of as equivalent.

The entangling unitary U that will result in the above mapping can be constructed out of
2-qubit CNOT gates, Ai,j , which act by conjugation on Pauli operators as follows

Xi 7→ XiXj , Zi 7→ Zi (3.64)

Xj 7→ Xj Zj 7→ ZiZj . (3.65)

Then for each face f , we define the following unitaries

UXf =
∏
v∈f

AaX(f),v, UZf =
∏
v∈f

Av,aZ(f). (3.66)

Note that UXf has the following action:

UXf ′XaX(f)U
X†
f ′ =

S
X
f if f = f ′

XaX(f) otherwise.
(3.67)

Moreover, UXf ′ commutes with all Hamiltonian terms GXf and GZf ∀f (this statement only needs
to be verified for terms GZf where f ′ and f are neighbours, where it holds because neighbouring
terms intersect an even number of times – as is always the case for commuting CSS stabilizer
Hamiltonians). A similar calculation gives the action of UZf

UZf ′ZaZ(f)U
Z†
f ′ =

S
Z
f if f = f ′

ZaZ(f) otherwise
(3.68)

where again UZf ′ commutes with all Hamiltonian terms GXf and GZf ∀f . Then the desired
unitary U is given by U =

∏
f U

X
f U

Z
f .
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Since the Hamiltonian is unchanged by U , one can ask what the excitations in the physical
space of U(H ⊗ A)U † look like. Namely, for each flipped term GXf (GZf ) we must also flip the
ancilla aX(f) (aZ(f)). Thus one can equally label excitations by the terms GXf and GZf , or the
terms XaX(f) and ZaZ(f), as the two sets are gauge equivalent. The emergent 0-form symmetry
manifests itself as product constraints amongst Hamiltonian terms (following Eq. (3.50)).
Specifically, it is equivalent to the following constraints, for any color u ̸= v

∏
f |K(f)=u

SXf
∏

f |K(f)=v
SXf =

∏
aX(f)

XaX(f), (3.69)

and similarly for the Z-terms. Here, we see that the operator
∏
aX(f)XaX(f) (which is gauge

equivalent to a product of color code terms GXf ) counts the number of excitations mod 2. As
it is a product of symmetry operators, any physical state must lie in its +1 eigenspace. That
is, we have found a symmetry operator that determines the parity conservation of anyons, by
introducing gauge degrees of freedom.

In the same way, we can perform an analogous procedure for each sector in the 3D gauge
color code. Again, we associate ancilla to each term in the Hamiltonian, and then apply the
unitary U that entangles gauge and matter degrees of freedom. Much like the 2D case, this
leads to symmetry operators constructed on all codimension-1 submanifolds (out of products of
SXf and SZf on these surfaces) and a requirement that the physical states must live in their
common +1 eigenspace (the enforced 1-form symmetry). These symmetry operators mirror the
1-form operators that we have seen in sections 3.3 and 3.4. In fact, this construction works
for any CSS stabilizer code (in any dimension), where the product over v ∈ f in Eq. (3.66) is
replaced by product over the qubits in the support of the stabilizer term.

By introducing redundant degrees of freedom, we have related a model with an emergent
symmetry to one with an enforced symmetry. The duality mapping known as gauging [109, 118,
156, 230–232] formalizes this relationship. Gauging a model with an onsite (0-form) symmetry
produces a model with an emergent 0-form symmetry. Gauging also provides a potential
direction for identifying models with emergent 1-form symmetries. We note that formalisms
for gauging/ungauging more general types of symmetries have been explored by Vijay, Haah,
and Fu [233], Williamson [234], as well as Kubica and Yoshida [229]; these approaches provide
potentially powerful tools to identify self-correcting quantum memories protected by emergent
1-form symmetries.

We also remark on the parallels between this simple duality mapping and error correction.
In fact, the coupling of gauge degrees of freedom is similar to many schemes of syndrome
extraction, where measurement of ancillas is used to infer the eigenvalues of stabilizer terms.
Measurement errors can break this correspondence, however, and result in a misidentification
of errors. This is typically accommodated by requiring many rounds of measurements. For
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single shot error correction (such as in the GCC [48]), only a single round of measurements
is needed, owing to the extensive number of symmetry constraints present, whose violation
indicates a measurement error. In the case of emergent 0-form symmetries, the global constraint
alone cannot provide sufficient information to correct for measurement errors. In a similar
vein to self-correction in 3D, it would be interesting find 2D topological codes (if they exist)
with emergent Z2

2 1-form symmetries, as such codes could in principle admit single-shot error
correction.

3.6 Discussion

We have shown that spin lattice models corresponding to 2D SET ordered boundaries of
thermally-stable 3D SPT ordered phases protected by a suitable 1-form symmetry can be
self-correcting quantum memories. The key features of these 1-form symmetric models are that
the bulk excitations are string-like and confined, and that the symmetry naturally couples bulk
and boundary excitations to confine the later as well.

We have presented two explicit examples of 3D self-correcting quantum memories protected
by 1-form symmetries. The understanding and classification of such 3D models remains largely
unexplored. A natural class of candidates are the (modular) Walker-Wang models [209, 235–
238], which possess many of the desirable properties we seek. In particular, if the input anyon
theory to the Walker-Wang construction is modular, then all bulk excitations are confined,
while the 2D boundary contains a copy of the input anyon theory. One can consider building
1-form symmetries into these types of models, as has been done by Williamson and Wang [239]
for a class of models based on the state sum TQFTs of Ref. [240]. (We note this is similar
to the way that Ref. [209] ‘decorates’ a Walker-Wang model with a 0-form symmetry.) The
2-group construction of Ref. [153] presents another interesting family of models that warrants
further investigation. In the stabilizer case, another possible approach to construct 3D models
with 1-form symmetries is to “foliate” [241, 242] a topological stabilizer code with emergent
0-form symmetries. As an example, foliation of a d-dimensional topological CSS code with
emergent q-form symmetry generates a (d+1)-dimensional generalized RBH-type model with a
(q+1)-form symmetry.

In the examples we have explored, we have seen the necessity of the bulk SPT-ordering in
order to have a self-correcting boundary, and for the bulk SPT-ordering of these models to be
thermally stable. A common viewpoint is that a self-correcting quantum memory should be
topologically ordered at nonzero temperature. While this has not been proven to be strictly
necessary, it has been observed to be true for many examples under Hastings’ definition for
topological order at T ≥ 0 [123]. (For example, 2D commuting projector Hamiltonian models
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and the 3D toric code all lack topological order at T > 0, corresponding to the absence of
self-correction.) Our examples provide further support to this perspective.

We briefly consider what our results imply for self-correction in the 3D gauge color code. As
we have shown in Sec. 3.4, the 3D gauge color code realized as commuting Hamiltonians protected
by an (enforced) 1-form symmetry is self-correcting. If we consider the full Hamiltonian of
Eq. (3.58), the model is frustrated and it is difficult to prove that it possesses the string-like
excitations with well-defined topological charge required for our arguments. We have also
argued that the full model possesses an emergent 1-form symmetry: the color flux conservation
as previously identified by Bombin [75]. This emergent symmetry gives strong supporting
evidence that proving self-correction for the full Hamiltonian of Eq. (3.58) (without enforcing
any symmetry requirement) may be possible. What remains is to understand the spectrum of
the model, and in particular verify whether the energy cost of a loop excitation grows with its
length.

The idea that 1-form symmetries may be emergent in 3D topological models is extremely
intriguing, both from the perspective of self-correction and more generally. We have argued that
1-form symmetries may emerge in 3D models that possess emergent 0-form symmetries on all
codimension-1 submanifolds, which in turn can be guaranteed by topological ordering of these
submanifolds. We can ask whether the 1-form symmetries of the RBH model or commuting GCC
model can be realised in an emergent fashion in a 3D commuting, frustration-free Hamiltonian.
It is not clear if this is possible. The key goal here is to identify models that possess well-defined
bulk excitations together with sufficient emergent 1-form symmetries to guarantee confinement
for all of such excitations. This is in contrast to the 3D toric code, where only one sector
has an emergent 1-form symmetry, and correspondingly only one type of logical operator is
thermally stable (giving rise to a self-correcting classical memory). Topological subsystem
codes, such as the gauge color code, are natural candidates. Along with obviating the need to
enforce symmetries, another advantage of emergent symmetries is that the conservation laws
are manifestly true, without putting any restrictions on the system-bath coupling.

A key open question is how to construct more general families of models with emergent
higher-form symmetries. We have discussed a simple duality between emergent and enforceable
symmetries, that symmetries can be introduced by adding gauge degrees of freedom in systems
with emergent symmetries. In the case of 0-form symmetries, a simple well-known gauging
map [109, 118, 156, 230–232] can be used to obtain a model with emergent Z2 0-form symmetry
from a model with an enforced Z2 0-form symmetry. Investigating this more generally in the
presence of both enforced and emergent higher-form symmetries may lead to interesting new
models, and here we point the interested reader to new results by Kubica and Yoshida on
generalized gauging and ungauging maps [229].
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We have not considered the issue of efficient decoding for these self-correcting quantum
memories. We note that our two examples, the RBH model and the gauge color code, have
efficient decoders with the additional feature of being single-shot [136, 216, 243]. In general,
we note that the string-like nature of the excitations (errors) in these 1-form symmetric
self-correcting quantum memories ensure that efficient decoders exist in general [244].

Finally, there are many avenues for further investigation into the role of symmetry in
self-correcting quantum memories. In particular, one can consider the stability and feasibility of
self-correction in defect-based encodings, for example in twist defects [67, 214] or the “Cheshire
charge” loops of Refs. [140, 245]. Such defects have a rich connection with SPT order, as well
as with both enforced and emergent symmetries. Namely, as shown in Ref. [119], one can view
topological phases with nontrivial domain walls as having SPT ground states protected by
0-form symmetries, where the protecting symmetry comes from the emergent 0-form symmetries
of the topological model. It would be interesting to see if SPTs protected by higher-form
symmetries also arise in this way, that is, from domain walls of topological models with
emergent higher-form symmetries, and whether these associated domain walls (and symmetry
defects that live on their boundaries) can be thermally stable. For example, the SPT order
(at temperature T ≥ 0) in the RBH model manifests as a thermally stable domain wall in the
4D toric code [216]. Whether one can construct similarly stable domain walls in 3D or less is
an open problem. Another direction is to consider more general subsystem symmetries, where
the dimension need not be an integer. For example, fracton topological orders (which can be
partially self-correcting [12]) have been of great interest recently [233, 234, 246].

3.7 Davies Formalism

In this section we briefly review the Davies formalism. Recall the system-bath coupling

Hfull = Hsys +Hbath + λ
∑
α

Sα ⊗Bα, (3.70)

where Sα⊗Bα describe the system-bath interaction for Sα a local operator acting on the system
side, Bα is an operator acting on the bath side, and α is an arbitrary index. It is assumed that
the coupling parameter is small, |λ| ≪ 1. Suppose that the state is initialized in a ground state
ρ(0) of Hsys, then the state evolves under a Markovian master equation

ρ̇(t) = −i[Hsys, ρ(t)] + L(ρ(t)), (3.71)

where L is the Lindblad generator. Then the initial ground state ρ(0) evolves under this master
equation according to

ρ(t) = etL(ρ(0)). (3.72)
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Here, the Lindblad generator is given by

L(ρ) =
∑
α,ω

h(α, ω)
(
Aα,ωρA

†
α,ω − 1

2{ρ,A†
α,ωAα,ω}.

)
(3.73)

In the above, Aα,ω are the Fourier components of Aα(t) = eiHsystAαe
−iHsyst, meaning they

satisfy ∑
ω

e−iωtAα,ω = eiHsystAαe
−iHsyst. (3.74)

One can think of Aα,ω as the component of Aα that transfers energy ω from the system to
the bath. Note that when the Hamiltonian Hsys is comprised of commuting terms, the terms
Aα(t) and therefore also Aα,ω are local operators. The function h(α, ω) can be thought of as
determining the rate of quantum jumps induced by Aα that transfer energy ω from the system
to the bath, and is the only part that depends on the bath temperature. It must satisfy the
detailed balance condition h(α,−ω) = e−βωh(α, ω), which ensures that the Gibbs state

ρβ = e−βHsys/Tr(e−βHsys), (3.75)

at inverse temperature β is a fixed point of the dynamics of Eq. (3.73). That is, ρβ = limt→∞ ρ(t).
Moreover, under natural ergodicity conditions (see [165, 166] for more details), it is the unique
fixed point.

In the case that we have a symmetry ,

[Hfull, S(g)] = 0, (3.76)

then all of the errors that are introduced due to interactions with the bath must be from
processes that conserve S(g). In particular, only excitations that can be created by symmetric
thermal errors will be allowed. Indeed, in the case that Eq. (3.76) holds, we will have that

eLt(S(g)†ρ0S(g)) = S(g)†eLt(ρ0)S(g) (3.77)

which justifies the consideration of the symmetric energy barrier in Eq. (3.9).

We note that the assumptions of this formalism are satisfied for systems where the terms
are comprised of commuting Paulis, as in this case the system Hamiltonian has a discrete
spectrum with well separated eigenvalues. However the formalism will not necessarily work
beyond this exact case, for instance, when perturbations are added and small energy splittings
are introduced between previously degenerate eigenvalues. The study of thermalization times for
many body stabilizer Hamiltonians in the presence of perturbations is an interesting problem.
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3.8 Thermal instability of 0-form SPT ordered memories

In this section we argue that onsite symmetries are insufficient to promote a 2D topological
quantum memory to be self-correcting, even if such a phase lives on the boundary of a 3D
SPT model. We restrict our discussion to the case where the boundary Hamiltonian is an
abelian twisted quantum double. The interesting case is where the boundary symmetry action
is anomalous. (However we don’t allow this boundary symmetry action to permute the anyon
types.)

We will argue that the boundary theory of a 3D SPT ordered bulk phase, if topologically
ordered, will necessarily possess deconfined anyons. That is, the boundary string operators
corresponding to error chains can be deformed while still respecting the symmetry, even with
anomaly. We focus on (twisted) quantum doubles on the boundary of 3D group cohomology
SPTs, and rather than going into the details of their construction, we focus on the key features.
In particular, local degrees of freedom (of both bulk and boundary) for these models are labelled
by group elements, as |g⟩, g ∈ G. The symmetry action of these 2D (boundary) systems takes
the form S(g) = R(g)N(g), where R(g) = ⊗iu(g), with u(g) =

∑
h∈G |gh⟩ ⟨h| and N(g) is

diagonal in the |g⟩ basis and can be represented as a constant depth quantum circuit. One can
think of R(g) as the onsite action, and N(g) as an anomaly. This anomaly must be trivial in a
strictly 2D system, or equivalently if the system is at the boundary of a trivial SPT phase.

There are two types of excitation operators in the (twisted) quantum doubles. One type of
excitation string operator for the boundary system is diagonal in the |g⟩ basis (i.e., it is the
same as in the untwisted theory), so it commutes with N(g). This excitation string operator
commutes with u(g), up to a phase (that is a kth root of unity for some k ∈ N), so to commute
with R(g) we need to consider excitation string operators of certain lengths. In particular, the
process of creating an anyonic excitation at one boundary and dragging it to another boundary
(or creating an anyon pair and dragging one around a nontrivial cycle before annihilating them
again) can be done in a symmetric way. Since such an operation results in a logical error and
only costs a constant amount of energy, we see that the boundary theory is unstable.

Thus we see that the anomaly affords no extra stability, and the model has the same
stability as a topological model with an extra onsite symmetry on top. That is, like genuine 2D
topological models of this type, the model has a constant symmetric energy barrier. Note that
this argument can break down in 4D, where the boundary is a 3D twisted quantum double.

Therefore we see that in the case of onsite (0-form) symmetries, the SPT ordered bulk offers
no additional stability to the boundary theory. Indeed, the symmetric energy barrier for the
abelian twisted quantum double remains the same as the energy barrier without symmetry:
constant in the size of the system. This motivates us to consider the boundaries of SPTs
protected by 1-form (or other higher-form) symmetries.
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3.9 Energy barrier is sufficient

In this section, we consider the timescale for logical faults in the 1-form symmetric RBH
model. We estimate the probability that an excitation loop l of size w emerges within the
Gibbs ensemble at inverse temperature β. We show that large loop errors are quite rare if the
temperature is below a critical temperature Tc, which we lower bound by 2/ log(5).

Recall the symmetric excitations are given by applying operators Z(E′, F ′) =
∏
f∈F ′ Zf

∏
e∈E′ Ze,

where E′ is a cycle (i.e., has no boundary) and F ′ is dual to a cycle on the dual lattice. We will
refer to both such subsets E′ and F ′ as cycles, l = E′ ∪F ′, and the resulting excitation |ψ(l)⟩ as
an excitation loop configuration. Moreover, we will refer to each connected component of l as a
loop (intuitively loops are minimal in that no proper subset of a loop can be a cycle). The energy
E(γ) of such an excitation configuration is given by 2|(E′ ∪ F ′) ∩ Lo| + 2|∂(E′ ∪ F ′) ∩ ∂L|, i.e.,
it is proportional to the length of the bulk cycle plus the number of times a bulk cycle touches
the boundary. Then the Gibbs state ρβ is given by the weighted mixture of all symmetric
excitations, where the weights are given by

Pβ(γ) = 1
Z
e−βE(γ), Z =

∑
γ

Pβ(γ), (3.78)

and γ = (E′, F ′) represents a valid (i.e., symmetric) excitation.

Define d = min{dZ , dX , dsink} from Def. 2. For a logical error to have occurred during the
system-bath interaction, we must pass through an excited state |ψ(c)⟩ such that c contains a
bulk loop with length w ≥ d− r, for some constant r independent of system size. (Here a bulk
loop is one where at least half of its support is away from the boundary). Let us bound the
probability that configurations containing such a loop occurs. Define Bw to be the set of cycles
containing a bulk loop with size at least w. Then

∑
c∈Bw

Pβ(c) ≤
∑

loops l
|l|≥w

∑
cycles c
l⊂c

Pβ(c) (3.79)

≤
∑

loops l
|l|≥w

e−βE(l) ∑
cycles c
l ̸⊂c

Pβ(c) (3.80)

≤
∑

loops l
|l|≥w

e−βE(l), (3.81)

where from the first to the second line we have used that a configuration c containing a loop l

differs in energy from the configuration c \ l by E(c) = e−βE(l)E(c \ l). Now the last line can
be rewritten to give
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∑
c∈Bw

Pβ(c) ≤
∑
k≥w

N(k)e−2βk, (3.82)

where we have ignored contributions to E(l) due to the boundary (these will only decrease
the right hand side of Eq. (3.81)) and N(k) counts the number of loops of size k. Since a loop
l resides on either the primal or dual sublattice, each of which has the structure of a cubic
lattice, we can obtain a crude upper bound on N(k) by considering a loop as a non-backtracking
walk, where at each step one can move in 5 independent directions. This gives the bound
N(k) ≤ p(d)5m = k, where p(d) is a polynomial in d, and is in particular proportional to the
number of qubits.

Then, provided T ≤ 2/ log(5), we have

∑
c∈Bw

Pβ(c) ≤ p(d)
∑
k≥w

ek(log(5)−2β) (3.83)

= p(d) ek(log(5)−2β)

(1 − elog(5)−2β)
(3.84)

which is exponentially decaying in k (again provided T ≤ 2/ log(5)). Since errors can be
achieved only if we pass through a configuration with a bulk loop of length d− r, we have the
contribution of configurations that can cause a logical error is bounded by

poly(d) e−αd

(1 − e−α) (3.85)

where α = 2β − log(5) > 0 is satisfied when the temperature is small enough. One can show
that the decay rate of the logical operators is exponentially long, and therefore the fidelity of
the logical information is exponentially long in the system size (see Proposition 1 of Ref. [62]).
One could perform a more detailed calculation to show that, with a suitable decoder, error
correction succeeds after an evolution time that grows exponentially in the system size (i.e.,
that logical faults are also not introduced during the decoding).

We also note that a similar argument can be made for the commuting gauge color code
model of Sec. 3.4. A different critical temperature will be observed that depends on the choice
of 3-colex.





4 | Universal fault-tolerant
measurement-based quantum
computation

Abstract
Certain physical systems that one might consider for fault-tolerant quantum comput-
ing where qubits do not readily interact, for instance photons, are better suited for
measurement-based quantum-computational protocols. We develop a framework to map
fault-tolerant procedures for quantum computation that have been natively designed for
use with stabilizer codes onto a measurement-based protocol, allowing us to take advan-
tage of the wealth of recent developments from the field of circuit-based fault-tolerant
quantum computation with promising alternative architectures. We derive our framework
by regarding measurement-based quantum computation as a specific case of gauge fixing
where the gauge group of the underlying subsystem code is the union of the stabilizer
group of a resource state and a single-qubit measurement pattern. To demonstrate our
new framework we construct a new model of universal quantum computation based on
the braiding and fusion of foliated topological defects that are akin to Majorana modes.

4.1 Introduction

Candidate quantum computational architectures must be capable of encoding and manipulating
quantum information with its available qubits, while simultaneously identifying errors that may
be introduced to the system as data is processed. The most suitable approach to perform these
tasks should account for the shortcomings of the qubits of the system. Certain architectures
where measurements are most readily performed destructively, for instance linear-optical
quantum systems, are more amenable to measurement-based models of fault-tolerant quantum
computation [26, 247–250]. It is important to support the experimental progress that is being
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made with photonic systems [22, 251–258] by discovering new models of quantum computation
that are suitable for this architecture.

The three-dimensional topological cluster-state model [136] is the prototypical design for
fault-tolerant measurement-based quantum computation [66]. With this model high-threshold
universal quantum computation is achieved [172, 259] by supplementing fault-tolerant Clifford
gates with magic state distillation [260, 261]. In the original proposal [66], which is often
likened to the surface code in a 2+1 dimensional spacetime manifold, logical Clifford operations
are realised by braiding tube-like defects that lie within the cluster-state lattice. Braiding
these defects realise non-trivial topologies in the manifold which correspond to different logical
operations. Notably, photonic implementations of the fault-tolerant cluster-state model are
discussed in Refs. [21, 262–264]. Since the work of Raussendorf et al. it has since been
shown [241], that we can transmit any Calderbank-Shor Steane(CSS) stabilizer code [46, 265]
through a specially chosen resource state using single-qubit measurements and classical post
processing, and, recently, it was shown that sparse codes generated by this method can be
decoded in Ref. [266]. In Ref. [267] it was shown that lattice surgery [70, 71, 73] can be mapped
onto a measurement-based computational model, thus offering an alternative to computation by
braiding defects. See also recent work in Ref. [268] where the topological cluster-state model is
generalised to find robust codes, and Ref. [269] where a new scheme for universal fault-tolerant
measurement-based quantum computation is proposed based on the three-dimensional color
code [56].

Owing to its high threshold error rates [172, 259, 270] and its experimental amenability
the surface code [11, 47] has become the cornerstone of modern designs for fault-tolerant
quantum computation. Recently, there have been a number of proposals [214, 271–273] in the
quantum error-correction literature that show how to deterministically perform the complete
set of Clifford operations with the surface code. However, such schemes make use of twist
defects [67], and to the best of our knowledge, there are no CSS variants of the surface code
where the lattice supports a twist away from the boundary. This motivates the generalisation
of code foliation [241], namely the process of mapping quantum-error correction schemes onto
measurement-based computational models.

In the present work, we show how to propagate an arbitrary stabilizer [42] code through a
resource state onto an output system via a measurement-based scheme. In addition to this we
show how we can compose multiple foliated channels to implement fault-tolerant gates on an
input system. We show that this enables us to realise the full Clifford group via fault-tolerant
measurement-based quantum computation based on the surface code model. Together with
state initialisation that we also discuss, we recover a universal set of quantum computational
operations through magic state distillation.
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Advantageous to our framework for foliation is that we can show that the output system,
which takes the form of a stabilizer code, is determined simply from the input code and a
second stabilizer code upon which we base the resource state we use to propagate the input
system. Our model significantly simplifies the development of fault-tolerant measurement-based
schemes for quantum computation, as we are able to overlook the intricate microscopic details
to find the function of a given channel. Instead, we need only consider two codes that we are
free to draw from the wealth of well-studied models in the quantum error-correction literature
that has accumulated over the last two decades [137, 274, 275] to design new fault-tolerant
measurement-based channels. With this simplification, not only can we show how to foliate
general stabilizer codes, but we can also compose many foliated channels to realise non-trivial
computational operations.

The remainder of this article is organised as follows. We begin by reviewing notation
we use to describe quantum error-correcting codes in Sec. 4.2. After introducing some basic
notation we summarise the results of this Chapter and give a guide to the reader to parse the
different aspects of our model in Sec. 4.3. Then, in Sec. 4.4 develop a microscopic model for the
one-dimensional cluster state model as a simple instance of foliation, and we consider parity
measurements between separate foliated qubits. In Sec. 4.5 we use the microscopic framework
we build to show how a channel system can propagate an input stabilizer code unchanged. We
explicitly demonstrate this by foliating the twisted surface code model. In Sec. 4.7 we go on
to show that we can manipulate input states with a careful choice of channel systems. We
demonstrate this by showing we can perform Clifford gates and prepare noisy magic states with
the foliated surface code before offering some concluding remarks.

4.2 Quantum error correction

Here we introduce the notion of a subsystem code [49] that we use to describe the foliated
systems of interest. A subsystem code is a generalisation of a stabilizer code [42, 276] where not
all of the logical operators of the code are used to encode logical information. The disregarded
logical Pauli operators for each gauge qubit are known as gauge operators which have been
shown to be useful for a number of other purposes [51, 74, 137, 274, 275].

A subsystem code is specified by its gauge group, G ⊆ Pn; a subgroup of the Pauli group
acting on n qubits. The Pauli group is generated by Pauli operators Xj and Zj , together with
the phase i, where the index 1 ≤ j ≤ n denotes the code qubit the operator acts on. More
precisely we have

Pj = 1 ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
j−1

⊗P ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
n−j

, (4.1)

where 1 is the two-by-two identity matrix and P = X,Y, Z is a Pauli matrix.
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The gauge group describes a code space specified by its stabilizer group

S ∝ C(G) ∩ G, (4.2)

where C(G) denotes the centralizer of a group G within Pn which consists of all elements of Pn
that commute with all elements of G. With the stabilizer group defined we specify the code
space as the subspace spanned by a basis of state vectors |ψ⟩ where

S|ψ⟩ = (+1)|ψ⟩. (4.3)

By definition, the stabilizer group must satisfy −1 ̸∈ S.

We also consider a generating set of logical operators L = C(G)\G. The group L is generated
by the logical Pauli operators Xj , Zj with 1 ≤ j ≤ k, such that Xj anti-commutes with Zk if
and only if j = k. Otherwise all logical operators commute with one another.

The logical operators generate rotations within the code space of the stabilizer code. We
will frequently make use of the fact that logical operators L, L′ ∈ L such that L′ = sL with
s ∈ S have an equivalent action on the code space. This follows from the definitions given above.
We thus use the symbol ‘∼’ to denote that two operators are equivalent up to multiplication by
a stabilizer operator. For instance, with the given example we can write L′ ∼ L.

It is finally worth noting that the special Abelian subclass of subsystem codes, namely
stabilizer codes [42, 276], are such that S = G up to phases.

4.2.1 Transformations and compositions of codes

It will be important to make unitary maps between subsystem codes. Given the generating set
of two different stabilizer codes R and S with elements r ∈ R and s ∈ S, the stabilizer group
T = R ⊗ S is generated by elements r ⊗ 1, 1 ⊗ s ∈ T . We also use the shorthand T = US to
define the stabilizer group

T =
{
UsU † : s ∈ S

}
, (4.4)

where U is a Clifford operator. Of course, the commutation relations between two operators
are invariant under conjugation by a unitary operator.

4.2.2 Expressing Pauli operators as vectors

For situations where one is willing to neglect the phases of elements of the stabilizer group, it is
common to write elements of the Pauli group as vectors of a 2n-dimensional vector space over
a binary field with a symplectic form that captures the commutation relations of the different
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elements of the Pauli group [276, 60]. We express Pauli operators in vector notation such that
p = (pX pZ)T where pX(pZ) are vectors from the n-dimensional vector space over the binary
field Z2 and the superscript T denotes the transpose of the vector such that, up to phases, the
Pauli operator P ∈ Pn is expressed P =

∏n
j=1X

pX
j

j Z
pZ

j

j .

We will frequently move between Pauli operators and the vectorised notation. It is thus
helpful to define the function v : Pn → Z2n

2 such that

v(P ) ≡
(
pX pZ

)T
, (4.5)

where vectors pX , pZ ∈ Zn2 are such that

P ∝
∏

j∈|pX |
Xj

∏
j∈|pZ |

Zj , (4.6)

up to a phase factor and we have defined the support of vector p, denoted |p|, as the set of
elements of p that are non-zero.

Using this notation, we additionally have the symplectic form where, for two vectors p and
q specifying two elements of the stabilizer group, we have

Υ(p, q) ≡ pTλnq, with λn =
(

0 1n
1n 0

)
, (4.7)

where the summation is taken modulo 2 and 1n is the n×n identity matrix such that Υ(p, q) = 0
if and only if Pauli operators p and q commute. We also define the inner product

p · q ≡
∑
j

pjqj , (4.8)

where addition is taken modulo 2.

4.3 Foliation

Quantum computation proceeds by using a series of channels where each channel maps its
input nontrivially onto some output state [20]. These channels are commonly known as gates,
and with an appropriate composition of said channels we can realise non-trivial quantum
algorithms. In this work we build a generic model that takes an arbitrary scheme of fault-
tolerant quantum computation based on stabilizer codes, and provides a measurement-based
protocol that performs the same function.
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Channels are readily composed by unifying the output of the last with the input of the next,
so here we focus on developing a model of a single channel with an input and an output and a
single designated function. Most important is that the channel is tolerant to errors, and as
such we show that we can propagate quantum error-correcting codes through a channel in a
fault-tolerant manner. While a foliated system is relatively straight forward to understand in
comparison to its analogous circuit-based counterpart, its microscopic details can become quite
obtuse without subdividing the system into constituent parts that depend on their function.
In what follows is a macroscopic overview for the model of foliation we consider with some
description of the function of each part. We conclude our overview with a reader’s guide
which outlines which subdivisions of the total system each section addresses. Nonetheless, the
reader should bare the macroscopic structure presented in this section in mind throughout our
exposition.

4.3.1 The model

We look to build a foliated system, denoted F . The channel consists of two components; a
resource state, R, and a measurement pattern, M, that propagates the input state that is
encoded within R onto the output system. The union of both M and R can be regarded as
the generating set for subsystem codes.

The resource state is a specially-prepared many-body entangled state known as a graph-state
that we describe in more detail shortly. The measurement pattern is a list of single-qubit
measurements that are performed on the physical qubits not included in the output system. The
measurement pattern is chosen specifically to move the input state through the resource onto
the output system up to the data collected from the single-qubit measurements. In addition to
this, the data obtained form the measurements is used to determine physical qubits that have
experienced errors during the preparation of the resource state or during the readout process.

Abstractly, we can regard the foliation as a gauge-fixing procedure where the foliated system
is described by the gauge group

F = R ∪ M, (4.9)

where we use the symbol · ∪ · to denote the group generated by elements of both R and M.
Foliation then is the procedure of preparing system the system R and subsequently fixing the
gauge of F by measuring M. The preparation of R and choice of M determines the action of
the channel, and the data we obtain to identify the locations of errors.

Advantageous to the model we present here is that, provided we choose a channel that is
consistent with some stabilizer code in a sense we make precise shortly, and that we choose the
graph state of the channel such that it respects some well-motived symmetry, we need only
regard the input and the subsystem code implemented by the channel to understand the logical
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effect of the channel on the input system. The microscopic model we build on the other hand
will indeed become helpful for the development of numerical simulations to test and compare
different foliated systems.

We next briefly elaborate on the resource state R. The resource state can be decomposed
into an entangled channel system K and ancilla qubits A together with a unitary operator UA

which couples the ancilla qubits to the channel

R = UA (K ⊗ A) . (4.10)

Supposing that R = K, the resource state will propagate the input system onto the output
system provided no errors occur once the measurements are performed and interpretted. Once
coupled to the channel, the ancilla qubits perform two roles upon measurement. First of all they
are included to perform check measurements on the channel system to identify errors that may
be introduced to the physical system. Their second role is to modify the input system through
the channel as it progresses to the output system. This modification is analogous to code
deformation in the more familiar circuit-based model of quantum computation [68, 148, 214, 270].
Later we will investigate how different choices of channel affect the transformation made on the
input state.

The microscopic details of the channel system require careful bookkeeping; a system for which
we introduce below, but broadly speaking, the channel system is a series of one-dimensional
cluster states that propagates the input quantum error-correcting code. The one-dimensional
cluster state can be used as a channel for a single physical qubit where a qubit is encoded on
the first site of the system and measurements are performed to move the encoded qubit onto
the last qubit of the chain. The channel system then uses a single one-dimensional cluster
state for each qubit of the input code to move each of the code qubits onto the output system
of each chain. Using a single chain to move each qubit of the input code thus provides a
measurement-based channel for an entire quantum error-correcting code that may consist of
many qubits. We discuss different approaches to for moving information through individual
chains as this determines different ways we might choose to couple ancilla to the different chains
to perform different functions throughout the channel.

4.3.2 A guide for the reader

The following exposition follows a number of avenues to help better understand foliated systems
both at the microscopic and the macroscopic level, but ultimately all the sections have the
model presented above in common. We thus provide a guide to help explain the aspects of the
fault-tolerant measurement-based model we build over the course of this article.



148 | Universal fault-tolerant measurement-based quantum computation

The main results are stated most abstractly in Sec. 4.5. This section states the general
results we obtain, namely, we describe the action a given foliated system will have on an input
code which is manifest at the output system once the data from the single-qubit measurement
pattern has been collected and processed. The section also describes the check observables
that are collected at the microscopic level of the foliated system that are used to identify the
locations of errors. This will become important when discussing the error-correction procedure
for the foliated system.

In order to understand the details of Sec. 4.5 we must first examine closely the one-
dimensional cluster state that propagates qubits through an entangled system of physical qubits
by means of single-qubit measurements. In Sec. 4.4 we study the one-dimensional system and
we build notation to describe parity measurements between qubits propagated through a series
of one-dimensional cluster-states that make up the measurement-based channel for a quantum
error-correcting code. The details presented in this section are necessary to understand the
technical aspects of the proof we give in Sec. 4.5.

Beyond Sec. 4.5 we look at specific instances of the general theory we develop. Indeed,
in Sec. 4.6 we examine the microscopic details of the foliated variant of the twisted surface
code. This presents a non-trivial generalisation of the foliated models considered in Ref. [241]
since there exists no CSS representation of this model. In Sec. 4.7 we show at a logical level
how we can compose different channels to realise fault-tolerant measurement-based quantum
computation. We consider a model based on surface code quantum computation using code
deformations as an example of our framework.

In Fig. 4.1 we show a schematic diagram of how fault-tolerant measurement-based quantum
computation will proceed. The figure shows the composition of three channels, each of which
perform a different operation. The system is measured such that the logical data is mapped from
the input system to the output system, under an operation that is determined by the choice of
different resource states. Each of the sections describe how to produce different channels that
can be composed to realise measurement-based quantum-computational protocols.

4.4 Foliated qubits

Measurement-based quantum computation proceeds by performing single-qubit measurements
on a specially prepared many-body entangled state. We begin by focusing on a one-dimensional
cluster state which propagates a single-qubit along a line.

To foliate a quantum error-correcting code we first encode each of the code qubits of a
quantum error-correcting code onto a separate one-dimensional cluster state. We can propagate
the quantum error-correcting code through this collection of one-dimensional chains from one end
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t

G in

Gout

Fig. 4.1 Three resource states shown in red, blue and green are composed to map an input
state onto the output state under a mapping determined by the different resource states. A
temporal direction can be assigned such that the input system is input at the initial time and
the output system emerges at the final instance.

to the other via single-qubit measurements. To this end we examine here the one-dimensional
cluster state and show how to move quantum information along the chain by making different
types of single-qubit measurements on the physical qubits of the system. We additionally show
how to perform parity measurements between several chains using additional ancilla qubits.

4.4.1 The one-dimensional cluster state

The cluster state is readily described using the stabilizer formalism introduced above. However,
while discussing the cluster-state wire we will denote Pauli matrices acting on the physical qubit
indexed µ with operators σX [µ], σY [µ] and σZ [µ] to discriminate them from Pauli matrices
that act on the code qubits of the input and output quantum error-correcting code. Similarly,
the logical operators of the cluster state are denoted X, Y and Z without the bar notation
for the same reason. The logical qubits of the one-dimensional cluster-state wire will become
the code qubits of foliated stabilizer codes as this discussion progresses. To this end, wherever
there is ambiguity, we will refer to the qubits that lie in a cluster state as ‘physical qubits’.
These qubits are not to be confused with the ‘code qubits’ of a quantum error-correcting code.

To describe the cluster state we first consider the initial product state |ψ⟩1|+⟩2|+⟩3 . . . |+⟩N
where |ψ⟩ is an arbitrary single-qubit state, the states |±⟩ are eigenstates of the Pauli-X matrix,
i.e., σX |±⟩ = (±1)|±⟩. We can express this state with the stabilizer group I =

〈
σX [µ]

〉N
µ=2

whose logical operators are X = σX [1] and Z = σZ [1]. The cluster state, whose stabilizer
group we denote as K = UI, with U defined as

U =
N−1∏
µ=1

UZ [µ, µ+ 1], (4.11)
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Fig. 4.2 The one-dimensional cluster state. Physical qubits are shown as vertices ordered along
a line where the left-most vertex represents the first qubit of the system and edges indicated
pairs of vertices that are entangled via a controlled-phase gate. (a) A stabilizer operator denoted
Cµ shown at an arbitrary point along the lattice. (b) and (c) show, respectively the logical
Pauli-X and Pauli-Z operators once the cluster state is initialised.

where UZ [µ, ν] = (1+σZ [µ]+σZ [ν]−σZ [µ]σZ [ν])/2 is the controlled-phase gate. The unitary
operator U couples nearest-neighbour pairs of physical qubits along the open chain.

The following facts about the controlled-phase gate are helpful throughout our exposition.
We firstly note that operators UZ [µ, ν] and σZ [ρ] commute for an arbitrary choice of µ, ν and
ρ. Moreover, UZ [µ, ν] and UZ [ρ, λ] commute for any µ, ν, ρ and λ. Further, the Hermitian
entangling gate satisfies the relationship

UZ [µ, ν]σX [µ]UZ [µ, ν] = σX [µ]σZ [ν] . (4.12)

We also have that UZ [µ, ν] = UZ [ν, µ] by definition.

With the above definitions it is readily checked that K is generated by operators

C[µ] = σZ [µ− 1]σX [µ]σZ [µ+ 1] , (4.13)

for 2 ≤ µ ≤ N − 1 and the stabilizer

C[N ] = σZ [N − 1]σX [N ] . (4.14)

The logical operators that act on the encoded qubit are

X = σX [1]σZ [2] , Z = σZ [1] . (4.15)

We show examples of a stabilizer operator, and the logical Pauli-X and Pauli-Z operator in
Fig. 4.2. We point out that, as is common when describing cluster states, we use a graphical
notation to describe states of interest. In particular, pairs of qubits that are coupled via a
controlled-phase gate are connected by an edge of a graph where each qubit is represented by
vertex.
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The goal of the one-dimensional cluster state is to transport the logical information along
the chain onto the last qubit, indexed N . To do so we make single qubit measurements on
all of the qubits except qubit N . We study two different types of foliated qubits. The first,
which is already well understood in the literature, transmits information by measuring the
physical qubits in the Pauli-X basis, and the second, which does not appear in the literature
to the best of our knowledge, moves information using Pauli-Y measurements. We refer to
these two foliated qubits as type-I and type-II foliated qubits respectively. While we find that
using type-I qubits is sufficient to realise any foliated system of interest within the scope we set
here, we believe that there may be practical advantages to be gleaned using type-II qubits in a
foliated scheme. As such we dedicate a later section to the type-II foliated qubits in Sec. 4.9.1
and we discuss their potential applications throughout our exposition. For simplicity though
we focus only on type-I foliated qubits in the main text.

4.4.2 Measurement-based qubit transmission

We review here a foliated qubit where the physical qubits of the entangled chain are measured
in the Pauli-X basis whose stabilizer group is K as defined above. We first look at the action
of measuring the first physical qubit of the system. In particular we are interested in the
action of the measurement on the logical operators. This action is easily understood by finding
logical operators that commute with the measurement. We find logical operators that commute
with the measurement operator M1 = σX [1] by multiplying the logical operators by stabilizer
operators. We find that the logical operator

Z ∼ σX [2]σZ [3] , (4.16)

commutes with σX [1]. Similarly X, as defined above, commutes with the measurement operator
M1. After making the measurement we project the code such that we have a new stabilizer
C[1] ∈ K where C[1] ≡ x1M1 = x1σ

X [1]. Multiplying X by C1 we have

X ∼ x1σ
Z [2] . (4.17)

The stabilizer C[2] is removed from K. Having accounted for the measurement outcome we can
also disregard the first qubit of the chain since the projective measurement has disentangled it
from the rest of the system.

It is important to note that the logical operator X, up to the sign determined by the
measurement outcome, is now a single-qubit Pauli-Z operator acting on the second qubit.
In contrast, before the measurement, the logical operator Z that was a single-qubit Pauli-Z
operator acting on the first qubit has now become a weight-two operator acting on the second
and third physical qubits along the chain. We show the logical Pauli-X and Pauli-Z operators
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Fig. 4.3 The logical operators of the one-dimensional cluster state after and before the first
qubit is measured in the Pauli-X basis. In (a) we show the logical Pauli-X operator and in
(b) we show the logical Pauli-Z operator after the first qubit is measured, and the measurement
outcome x1 is returned. Importantly, after the measurement the logical Pauli-X operator is
a single-qubit Pauli-Z operator on the second qubit, whereas the logical Pauli-Z operator is
supported on two physical qubits. In contrast, before the measurement the logical Pauli-Z
operator is supported on a single qubit, where as the logical Pauli-X operator is a weight-two
operator. We show the logical Pauli-X and logical Pauli-Z operator in (c) and (d), respectively.

after the first qubit has been measured in Figs. 4.3(a) and (b). We compare these logical
operators with the same logical operators before the measurement has taken place in Figs. 4.3(c)
and (d), respectively.

The advantage of measurement-based quantum computation lies in the fact that once
the resource state is prepared, quantum information can be transmitted and processed by
performing single-qubit measurements on qubits of the resource state. Supposing then that we
can only make single-qubit measurements, we see that we can measure the logical operator Z
with the single-qubit measurement σZ [1] on the first qubit. Conversely, to infer the value of
X, we measure the first qubit in the Pauli-X basis, and the second qubit in the computational
basis. We thus see that we can learn either the logical Pauli-X or Pauli-Z information from the
cluster state by measuring the appropriate physical qubit in the Pauli-Z basis, and the qubits
that preceded it in the Pauli-X basis. Alternatively, were we to measure both qubit 1 and qubit
2 in the Pauli-X basis, we would have moved the logical information along the chain without
having inferred any logical data.

To find a general expression for the logical operators, suppose we have measured the first
τ − 1 physical qubits in the Pauli-X basis which returned outcomes xµ = ±1 for µ < τ . We
then have that

X ∼

 τ/2∏
µ=1

x2µ−1

σZ [τ ] , (4.18)

Z ∼

 τ/2∏
µ=1

x2µ

σX [τ ]σZ [τ + 1] , (4.19)

for even τ and

X ∼

(τ−1)/2∏
µ=1

x2µ−1

σX [τ ]σZ [τ + 1] , (4.20)
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Z ∼

(τ−1)/2∏
µ=1

x2µ

σZ [τ ] , (4.21)

where τ is odd. With this, we see that we can learn the logical Pauli-X information using
single-qubit measurements on sites where τ is even and logical Pauli-Z information on sites
where τ is odd, given that we have outcomes for the physical Pauli-X measurements made
on the first τ − 1 qubits. To this end, we find that it is particularly convenient to use a new
notation to index the qubits of the chain. We define

X(t) = 2t, Z(t) = 2t− 1, (4.22)

such that now we can rewrite the logical operators of the system such that

X ∼ ΣX(t)σZ [X(t)] , Z ∼ ΣZ(t)σZ [Z(t)] , (4.23)

for any t, where the operators

ΣX(t) ≡
t∏

µ=1
σX [Z(µ)] , ΣZ(t) ≡

t−1∏
µ=1

σX [X(µ)] . (4.24)

Importantly, the operators ΣX(t) and ΣZ(t) are the tensor product of the Pauli-X matrix. This
means these operators are inferred from the single-qubit measurement pattern if all the qubits
along the chain are measured in the Pauli-X basis as is the case for type-I foliated qubits.

The above redefinition of indices is such that at each ‘time’ interval, indexed by t, we can
recover either the logical Pauli-X or Pauli-Z information from the chain with a single-qubit
Pauli-Z measurement provided the previous qubits along the chain have been measured in
the Pauli-X basis. Specifically, each interval contains two adjacent qubits of the chain, the
first, which lies at site τ = 2t − 1, gives access to the Pauli-Z information via a single-qubit
measurement, and at every second site, τ = 2t, we can learn logical Pauli-X information with a
single-qubit Pauli-Z measurement. We show the logical operators at a given time interval in
Fig. 4.4.

4.4.3 Measurements using ancilla

We have thus far imagined replacing the single-qubit Pauli-X measurement on some appropriately
chosen qubit with a Pauli-Z measurement to perform logical measurements on the propagated
information. To develop foliated codes further we will require the ability to perform logical
measurements without adapting the measurement pattern of the foliated qubits. Instead we
couple extra ancilla qubits to the system to learn logical information at a given time interval.
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Fig. 4.4 (a) Logical Pauli-X and (b) logical Pauli-Z operators at time interval t. Each time
interval contains one black vertex and one red vertex. Local to each time interval we can
adjust our single-qubit measurement pattern by measuring the appropriate qubit in the Pauli-Z
operator to measure either the logical Pauli-X or Pauli-Z operator given that the preceeding
qubits of the system are measured in the Pauli-X basis.

To show how to make a logical measurement of a one-dimensional cluster state with an
ancilla we consider the resource state R = UA (K ⊗ A), as we have introduced in Eqn. (4.10),
where the channel K is the one-dimensional cluster state described above and A =

〈
σX [a]

〉
describes the stabilizer group of a single ancilla qubit we couple to K with unitary UA which
we specify shortly. We use the elements of A to measure logical information from K.

We must specify a measurement pattern to carry out the propagation of information, as
well as the single-qubit measurement we make on the ancilla to learn logical information from
the resource state. We write the pattern of measurements

M = MC ∪ MA, (4.25)

where MC(MA) describes the measurements made on subsystem K(A). For the case of type-I
foliated qubits discussed previously we have MC =

〈{
σX [µ]

}N−1

µ=1

〉
. After the measurements

are performed the resulting quantum information is maintained on the output qubit which is
the last qubit of the chain.

Logical operators of the resource state, P ∈ L = C(R)\R, are measured if P ∼ P ′ ∈ M.
For now we choose MA =

〈
σX [a]

〉
to this end. In this example we couple the ancilla to the

target qubit indexed T = P (t) with unitary UA = UZ [T, a] to perform a logical measurement
P ∈ L where P = X, Z is a logical Pauli operator.

We check that P ′ ∈ M by studying the stabilizer group of the resource state R. The state
has stabilizers

C[a] = σX [a]σZ [T ] , (4.26)
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σY

σX σX σX
σX σX

Fig. 4.5 The logical Pauli-Y operator on a type-I foliated qubit where the blue ancilla qubit is
coupled both to qubits Z(t) and X(t) of the chain. The logical operator commutes with the
measurement pattern where all of the qubits along the chain are measured in the Pauli-X basis,
and the ancilla qubit is measured in the Pauli-Y basis, thus allowing us to recover Pauli-Y data
from the foliated qubit.

and
C[T ] = σZ [T − 1]σX [T ]σZ [T + 1]σZ [a] . (4.27)

Now, using that P ∼ P ′ = ΣP (t)σZ [P (t)] we have

P ∼ P ′C[a] = ΣP (t)σX [a] ∈ M, (4.28)

provided MA =
〈
σX [a]

〉
as prescribed, thus giving the desired logical measurement at time

interval t once the resource state is measured with measurement pattern M.

We additionally find that we can measure the logical Pauli-Y information from a type-I
foliated qubit using an ancilla-assisted measurement. We achieve this by coupling the ancilla
to multiple target qubits. To show this we continue with the resource state model R given
in Eqn. (4.10) where again we have A =

〈
σX [a]

〉
and K is a one-dimensional cluster state.

The chain is measured as a type-I foliated qubit such that MC =
〈{
σX [µ]

}N−1

µ=1

〉
, and we

couple the ancialla to the chain with the unitary UA = UZ [Z(t), a] ×UZ [X(t), a]. We find that
Y ∼ Y ′ ∈ M provided MA =

〈
σY [a]

〉
as we show below.

From the discussion given, we have that the operator i
(
ΣX(t)σZ [X(t)]

) (
ΣZ(t)σZ [Z(t)]

)
is a representative of the logical Pauli-Y operator for K. It is then readily checked then that

iXZ ∼ Y ′ = i
(
ΣX(t)σZ [X(t)]

) (
ΣZ(t)σZ [Z(t)]

)
σZ [a] , (4.29)

is a representative of the logical Pauli-Y operator of R using the expressions given in Eqns. (4.12)
and (4.24). Then using the stabilizer C[a] ∈ R where,

C[a] = σX [a]σZ [Z(t)]σZ [X(t)] , (4.30)
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we find that iXZ ∼ Y ′C[a] ∈ M provided MA =
〈
σY [a]

〉
which is depicted in Fig. 4.5,

thus showing we can infer the logical Pauli-Y data of a type-I foliated qubit from M by
coupling to multiple targets. We finally remark that one can show that the resource state with
UA = UZ [T1, a] ×UZ [T2, a] where T1 = X(t1) and T2 = Z(t2) such that t1 ̸= t2, we also recover
encoded Pauli-Y information. We do not require this degree of generality here so we leave the
proof of this fact as an exercise to the reader.

We conclude this subsection by summarising the differences between type-I foliated qubits
considered here and the type-II qubits discussed in Sec. 4.9.1. Indeed, here we have shown
that we can make a Pauli-Y measurement with a foliated qubit by coupling an ancilla to two
target qubits. In contrast, following an argument similar to that given above, by measuring the
physical qubits of a foliated chain in the Pauli-Y basis instead of the Pauli-X basis we find that
we can measure the Pauli-Y operator by coupling an ancilla to a single qubit. This comes at
the expense of including three qubits at each time interval instead of two, as is the case with
type-I foliated qubits. As such, the physicist that is looking to perform a measurement-based
experiment that demands a significant number of Pauli-Y measurements should decide carefully
whether type-I or type-II foliated qubits are the most appropriate depending on whether the
number of physical qubits or generating interactions between pairs of physical qubits is the
most precious commodity of a given laboratory.

4.4.4 Parity measurements with foliated qubits

In general it will be necessary to make parity measurements between several foliated qubits that
are encoded on different chains. We now specify the channel of a resource state consisting of
several foliated qubits, together with its ancilla system to which it is entangled that affects the
obtained logical measurements. More precisely we consider the resource state R = UA (K ⊗ A) ,
of n foliated qubits. As in the previous section, for now we consider a single ancilla prepared in
a known eigenstate of the Pauli-X basis. The channel of the resource state is such that

K =
n⊗
j=1

Kj , (4.31)

and Kj = UjIj is the stabilizer group of the j-th one-dimensional cluster state of length Nj as
defined in Subsec. 4.4.1. It will also become helpful later on to define the unitary operator that
entangles the initial state to give the channel system, namely

UC =
n⊗
j=1

Uj , (4.32)
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where Uj =
∏N−1
µ=1 U

Z
j [µ, µ+ 1]. This will be helpful where we consider variations on the initial

state I =
⊗n

j=1 Ij . One could choose the length of each cluster arbitrarily but for simplicity we
suppose that all the type-I chains have an equal length Nj = 2D + 1 where D is the number of
time intervals and we include an additional qubit at the end of the chain to support the output
of each foliated qubit.

The logical operators of Kj are denoted Xj and Zj , and its physical qubits are indexed
Xj(t) and Zj(t) according to Eqn. (4.22) where indices have been appended. Again, we have
for logical operators Pj = Xj , Zj such that

Pj ∼ ΣP
j (t)σZ [Pj(t)] . (4.33)

with respect to the stabilizer group K. For now we consider the ancilla system that includes
only a single ancilla qubit, i.e., A =

〈
σX [a]

〉
.

The measurement pattern for the foliated system M = MC ⊗ MA is specified

MC =
n⊗
j=1

MC
j , (4.34)

where MC
j is the set of single-qubit measurements acting for the cluster Kj . We have that

MC
j =

〈{
σX [µ]

}Nj−1

µ=1

〉
for type-I foliated qubits. We determine the measurements we make

on the ancilla system, MA, depending on the choice of parity measurement.

We look to prepare R such that we measure the logical Pauli operator P ∈ Pn by measuring
the ancilla qubit in an appropriate basis. We thus couple the ancilla to the channel to construct
R as such with unitary

UA =
∏

j∈|pX |
UZ [Xj(t), a]

∏
j∈|pZ |

UZ [Zj(t), a], (4.35)

where p = (pX pZ)T such that p = v(P ) as defined in Eqn. (4.5). Again, for simplicity, we
have coupled the ancilla to the physical qubits of a common time interval t, but showing our
construction is general beyond this constraint is straight forward. In fact, as we will observe,
we find practical benefits from coupling an ancilla to physical qubits in different time intervals
later in Sec. 4.6.

Upon coupling the ancilla to the channel system to form the resource state will include the
stabilizer C[a] = UAσX [a]UA† ∈ R such that

C[a] = σX [a]
∏

j∈|pX |
σZ [Xj(t)]

∏
j∈|pZ |

σZ [Zj(t)] . (4.36)
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Fig. 4.6 Two type-I foliated qubits where ancillas are coupled to perform X1X2 parity mea-
surements. To the left of the figure we show a logical operator ∼ X1X2 by coupling an ancilla,
shown in blue, to qubits X1(1) and X2(t). To the right of the figure we show an element of the
measurement pattern that is generated by two parity measurements that are made at different
time intervals.

We additionally have logical operators of the resource state

Xj ∼ σZ [a]p
Z
j ΣX

j (t)σZ [Xj(t)] , (4.37)

and
Zj ∼ ΣZ

j (t)σZ [Zj(t)] . (4.38)

which follows from Eqn. (4.12) and the definition of the logical operators of the channel system
K shown in Eqn. (4.33) where pZj is the j-th element of the vector pZ . Combining the above
expressions we find P ′ ∼ P such that

P ′ = σZ [a]p
X ·pZ ∏

j∈|pX |
ΣX
j (t)σZ [Xj(t)] (4.39)

×
∏

j∈|pZ |
ΣZ
j (t)σZ [Zj(t)] .

It follows then that P ∼ P ′C[a] such that

P ′C[a] = σX [a]σZ [a]p
X ·pZ ∏

j∈|pX |
ΣX
j (t)

∏
j∈|pZ |

ΣZ
j (t). (4.40)

We therefore have that P ∼ C[a]P ′ ∈ M provided we choose σX [a]σZ [a]p
X ·pZ

∈ MA, thus
showing we can infer the logical operator P from the measurement data given an appropriate
choice of measurements M. To the left of Fig. 4.6 we show the element P ′ ∈ M with
P ′ ∼ P = X1X2 measured from a pair of type-I foliated qubits. We also show a parity check
P ′ ∈ M in Fig. 4.7 such that we measure P ′ ∼ P = Y1Y2. In this case the ancilla qubit couples
with each foliated qubit twice to include Pauli-Y terms in the check.
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Fig. 4.7 Two type-I foliated qubits where we use the ancilla to measure the parity of the two
foliated qubits in the Pauli-Y basis. The ancilla is coupled to an X(t) and a Z(t) target for
each qubit. We measure the ancilla is the Pauli-X basis, since there are an even number of
Pauli-Y terms in the parity measurement.

4.4.5 The compatibility of parity measurements

Having now discussed how to include a single logical measurement in the foliated system, we
next investigate the conditions under which we can simultaneously measure two degrees of
freedom of the input system, P and Q where P, Q ∈ Pn.

We now consider a resource state R with two ancillas A =
〈
σX [a] , σX [b]

〉
that are coupled

to the channel K =
⊗

j Kj at time intervals t and t′, respectively, via unitary UA = UaUb where

Ua =
∏

j∈|pX |
UZ [Xj(t), a]

∏
j∈|pZ |

UZ [Zj(t), a], (4.41)

and
Ub =

∏
j∈|qX |

UZ [Xj(t′), b]
∏

j∈|qZ |
UZ [Zj(t′), b]. (4.42)

where p = v(P ) and q = v(Q). The measurement pattern is chosen according to the rules above
such that the chosen parity measurements are made correctly. In any case ancillas a and b are
measured in either the Pauli-X or Pauli-Y basis. We first suppose that t′ ̸= t, and afterwards
we look at the more complicated case where t = t′. As we will show, we find that we can can
measure both P and Q simultaneously from the logical space of the channel provided P and
Q commute. While the setup presented above is sufficient if both Ua and Ub are coupled to
the channel at two different time intervals, we find that in certain situations it is necessary to
modify UA in order to measure both P and Q with a coupling at a common time interval.

Without loss of generality we begin with the case where t < t′ such that P ′ as in Eqn.(4.40)
is an element of R since this operator shares no common support with Ub. The resource state
additionally includes the representation of the logical operator Q′ ∼ Q such that

Q′ = Ua

M [b]
∏

j∈|qX |
ΣX
j (t′)

∏
j∈|qZ |

ΣZ
j (t′)

U †
a (4.43)
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where we take M [b] = σX [b]σZ [b]q
X ·qZ

which follows from the inclusion of the term C[b] =
Ubσ

Z [b]U †
b ∈ R. To determine the value of Q′ we are interested in the commutation relations

between the operator Ua and the operators ΣX
j (t′) and ΣZ

j (t′) which share mutual support on
the physical system. Using Eqns. (4.12) and (4.33) it follows that

UaΣX
j (t′)U †

a = ΣX
j (t′)σZ [a]p

Z
j , (4.44)

and
UaΣZ

j (t′)U †
a = ΣZ

j (t′)σZ [a]p
X
j . (4.45)

Given that UbM [a]U †
b = M [b] we thus have that

Q′ = M [b]σZ [a]Υ(p,q) ∏
j∈|qX |

ΣX
j (t′)

∏
j∈|qZ |

ΣZ
j (t′), (4.46)

where Υ(p, q) is given in Eqn. (4.7). In this case, for Υ(p, q) ̸= 0 we must measure ancilla
a in the Pauli-Z basis in order to infer the value of Q from the measurement pattern. On
the other hand, to measure P we must measure ancilla a in either the Pauli-X basis or the
Pauli-Y basis to infer its value from M. The conclusion of this discussion is that we cannot
infer both measurements P and Q from M unless Υ(p, q) = 0 in order for them to be measured
simultaneously from the logical space of the channel. This is consistent with the standard
postulates of quantum mechanics which only permits the simultaneous measurement of both P
and Q provided the operators commute.

We next consider the case that t = t′. In this case we have that

UaΣX
j (t)U †

a = ΣX
j (t)σZ [a]p

Z
j , (4.47)

and
UbΣX

j (t)U †
b = ΣX

j (t)σZ [b]q
Z
j . (4.48)

Unlike the previous case though, Ua and Ub commute with ΣZ
j (t) terms. To this end we find

that
P ∼ M [a]σZ [b]p

X ·qZ ∏
j∈|pX |

ΣX
j (t)

∏
j∈|pZ |

ΣZ
j (t), (4.49)

and
Q ∼ M [b]σZ [a]p

Z ·qX ∏
j∈|qX |

ΣX
j (t′)

∏
j∈|qZ |

ΣZ
j (t′), (4.50)

where M [a] and M [b] are either Pauli-X or Pauli-Y measurements. We thus see that with
the current choice of UA the measurements of both P and Q are incompatible unless both
pX · qZ = 0 and pZ · qX = 0; conditions which ensures that P and Q commute. Indeed, if
PQ = QP then pX · qZ = pZ · qX .
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We also find that is it possible to modify the channel to measure two commuting operators,
P and Q. One approach to deal with this issue, as we have already discovered, is to measure
the two operators at different time intervals. A smaller modification may simply be to change
only a subset of the target qubits of either Ua or Ub onto a different time interval. We present
an example where we use this method to good effect in the following Section. Alternatively, we
can include an additional controlled-phase gate, UZ [a, b], in the entangling circuit UA which
also recovers the compatibility of the two commuting measurements.

4.5 The foliated system

Having discussed how to propagate logical information along a one-dimensional cluster state,
and how to make parity measurements between the logical qubits encoded over several chains,
we are now ready to define the foliated channel; the system that will propagate an input
quantum error-correcting code onto an output state. Further, we will also see that with a
suitable choice of resource state we are able to measure the input state in such a way to deform
the code with the foliated system. In what follows we sketch out the different components we
use to make up a foliated system before presenting two theorems that describe its function.
Specifically, we will require definitions of the initial system, the channel system, the resource
state and the system after the prescribed pattern of measurements is made. Theorem. 1 then
explains the action of the foliated system on the logical input state, and Theorem. 2 describes
stabilizer checks we can use to identify errors that act on the physical qubits of the foliated
system. See Ref. [72] for a related discussion from the perspective of code deformations with
stabilizer codes. The construction is summarised in Fig. 4.8.

As described in Sec. 4.3, the foliated system is defined as

F = R ∪ M, (4.51)

where R is the resource state, and M is the measurement pattern. The system F is jointly
determined by an input code Gin and a channel code Gch. Also to be determined is the length
of the channel D, which, unless otherwise stated, we suppose is large, i.e. comparable to the
distance of the code Gch.. We assume that both codes Gin and Gch. are stabilizer codes and,
moreover, are supported on the same set of qubits that we index 1 ≤ j ≤ n.

The resource state is of the form R = UA (K ⊗ A) where K is the channel system and A is
a set of ancilla qubits prepared in a product state that we couple to the channel with unitary
operator UA. The channel K is specified by Gin. The ancilla system A and the entangling
unitary UA are determined by a generating set of Gch..
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Fig. 4.8 Sketch of the foliation process and construction of the system. Time moves from left to
right across the page in each figure. (a) The initial system, I, consists of an input code, Gin,
shown with green qubits to the left of the figure, and other qubits, shown in black and red
in the figure, prepared in the |+⟩ state. (b) The channel system K is produced by applying
unitary UC to I. The edges in the figure represent controlled phase gates prepared between
pairs of qubits. Effectively, we have concatenated each of the qubits of Gin into the code
space of a one-dimensional cluster state. (c) We produce R by entangling ancilla qubits of the
ancilla system, A, to the channel system. The coupling is specified by the choice of Gch. which
determines the check operators of the foliated system, and the deformation on the input qubit.
(d) The qubits of R are measured according to M. This propagates the input system onto
the output system, Gch., shown in purple to the right of the figure. The measurement pattern
determines the value of stabilizer checks, and in turn the correction that must be applied to
the output system.

We remind the reader that we index the qubits of each chain in terms of time intervals,
indexed 1 ≤ t ≤ D, such that the qubit at the 2τ − 1-th site (2τ -th site) of the j-th chain is
indexed Zj(t) (Xj(t)) and we have that the last qubit of each chain is indexed Zj(D+1) = 2D+1
in the Pauli coordinate system which supports the output state.

Previously we have considered the tensor product of n one-dimensional cluster states,⊗n
j=1 Kj , where Kj = UjIj , to propagate n individual qubits described by logical operators Xj

and Zj for 1 ≤ j ≤ n. In the following definition of the channel system we encode the input
code Gin onto the logical qubits of the n foliated qubits.

Definition 1 (Channel system). The channel system K = UCI is produced by applying unitary
operator UC as defined in Eqn. (4.32) to the initial state I. The stabilizer group I is such that
the stabilizers of Gin are encoded on the qubits indexed Zj(1), and the other qubits are prepared
in a product state. Explicitly, for each G ∈ Gin we have Gin ∈ I with

Gin ≡
∏

j∈|gX |
σX [Zj(1)]

∏
j∈|gZ |

σZ [Zj(1)] , (4.52)
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where (gX gZ)T = v(G). The other qubits of I are encoded in the +1 eigenvalue eigenstate of
the Pauli-X matrix, such that we have

σX [Xj(t)] ∈ I ∀j, t ≤ D, (4.53)

and
σX [Zj(t)] ∈ I ∀j, 2 ≤ t ≤ D + 1. (4.54)

The resource state is generated by coupling ancilla qubits to the channel. Measuring these
qubits in the appropriate basis provides data to identify qubits that have experienced errors.
We couple ancilla to the resource state in a fashion according to a particular generating set GR

of some gauge group Gch.. The generating set GR may be an over complete generating set of
Gch..

Definition 2 (Resource state). For a choice of input code Gin that is implicit in the channel
system K, see Def. 1, and channel code Gch. with a specified generating set GR, we define the
stabilizer group of the resource state by

R = UA (K ⊗ A) , (4.55)

where the ancilla system A and entangling unitary UA are defined as follows. The ancilla
system is in the product state

A =
{
σX [G(t)] : ∀t, G ∈ GR

}
, (4.56)

where the coordinates G(t) uniquely index all the ancillae in the ancilla system at a given time
interval t. The entangling unitary UA is given by

UA = V
∏

G∈GR, t

U [G(t)], (4.57)

where
U [G(t)] =

∏
j∈|gX |

UZ [Xj(t), G(t)]
∏

j∈|gZ |
UZ [Zj(t), G(t)], (4.58)

for (gX gZ)T = v(G) and V =
∏
t V (t) with

V (t) =
∏

G,H∈GR
G ̸=H

UZ [G(t), H(t)]g
X ·hZ

, (4.59)

where (gX gZ)T = v(G) and (hX hZ)T = v(H).
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We remark that in the above, the unitary UA couples the ancilla qubits to the channel
system along with each other. The component V enables the simultaneous measurement of
all commuting measurements of G ∈ GR at common time intervals (as per the discussion in
Sec. 4.4.5).

We specify a measurement pattern that propagates information through the resource state
onto the output system while additionally acquiring data that enables us to identify the locations
of errors.

Definition 3 (Measurement pattern). The measurement pattern is such that

M = MC ∪ MA, (4.60)

where MC and MA denote the measurements on the channel and ancilla system, respectively,
given by

MC =
{
σX [Zj(t)], σX [Xj(t)] ∈ MC : 1 ≤ t ≤ D

}
, (4.61)

and
MA =

{
M [G(t)] ∈ MA : G ∈ GR, 1 ≤ t ≤ D

}
, (4.62)

where (gX gZ)T = v(G) and we have

M [G(t)] = σX [G(t)]
(
iσZ [G(t)]

)gX ·gZ

. (4.63)

It may be helpful to expand Eqn. (4.63) such that

M [G(t)] =

σ
X [G(t)] if gX · gZ = 0,

σY [G(t)] if gX · gZ = 1,
(4.64)

and we remember the inner product is taken modulo 2.

4.5.1 Foliation

With the resource state and measurement pattern defined above we now turn our attention to
the foliated system F . Important properties of the system will be determined from elements in
C(F). While we have introduced the foliated model as a subsystem code, we have included
additional structure to capture the process of foliation, namely, we prepare the system in a
fixed gauge of the resource state, R and we project the system onto a gauge of M. As such,
elements of C(F) have a different role depending on their inclusion in R and M.

Elements C(F) ∩ M are observable degrees of freedom that are measured under projection
by the single-qubit measurement pattern. Among these include stabilizer operators and
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logical operators of the input state that are measured by the resource. On the other hand
elements C(F)\M give rise to the stabilizers and logical operators of the output state which
are propagated or inferred at a later point by taking the output as the input of another channel.
Further, we can also look at elements of C(F) with respect to their membership of R. Indeed,
elements C(F) ∩ R are stabilizers whereas elements C(F)\R are logical degrees of freedom that
are either propagated through the resource state or measured under the projection.

Remarkably, due to the decomposition of the foliated system we have presented here we
can separate error correction, determined by stabilizer group S, and the logical function of
a given channel, Gout, into two separate parts. Let us now characterize the output state of
the foliated system after measurements have been performed, as well as the stabilizers of the
channel responsible for detecting errors.

The output of the channel consists of an encoding, determined by Gout, and a set of logical
operators Lout. The logical function of the channel can be summarised by how it maps input
logical operators to output logical operators. The following theorem describes the output
encoding and logical degrees of freedom.

Theorem 1. For any foliated channel F determined by input code Gin, channel code Gch., the
output state is a codeword of the output code Gout, with

Gout = Gch. ∪ (Gin ∩ C (Gch.)) . (4.65)

The logical operators of Gout are given by

Lout = (C(Gin) ∩ C(Gch.)) \ (Gin ∪ Gch.) . (4.66)

Further, elements of (C(Gin)\Gin) ∩ Gch. are measured.

The two equations given above specify precisely the function of a channel at a macroscopic
level, independent of the foliated system that performs the manipulation of the input state.

For the channel to be fault-tolerant, we need the channel to contain stabilizers that can
check for errors, and these stabilizers need to be able to be inferred from measurements. Recall
the stabilizer of the foliated sytem is given by

S = C(F) ∩ R ∩ M. (4.67)

The following theorem identifies two types of important operators that we call bulk stabilizers
and boundary stabilizers.

Theorem 2. For any foliated channel F specified by input code Gin and GR which generates
Gch., we have
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1. Sbulk[G(t)] ∈ S ∀G ∈ Gch., 2 ≤ t ≤ D,

2. Sbdry.[G(t)] ∈ S ∀G ∈ Gch. ∩ Gin, t ≤ D,

where for v(G) = (gX gZ)T we have

Sbulk[G(t)] = M [G(t)]M [G(t− 1)]
∏

j∈|gX |
ΣX
j (t)ΣX

j (t− 1)
∏

j∈|gZ |
ΣZ
j (t)ΣZ

j (t− 1), (4.68)

and
Sbdry.[G(t)] =

∏
G̃∈ξ(G)

M [G̃(t)]
∏

j∈|gX |
ΣX
j (t)

∏
j∈|gZ |

ΣZ
j (t), (4.69)

where ξ(G) ⊆ GR is defined such that the product of all the terms of ξ(G) give G ∈ Gch..

We remark that the set ξ(G) necessarily exists by definition, since we construct the resource
state with terms GR which generates Gch.. However, ξ(G) is not necessarily unique, in which
case any choice will suffice. We defer the proofs of the above Theorems to Sec. 4.9.2.

It is also worth pointing out that Theorem 2 may not necessarily describe the stabilizer
group of F exhaustively. Indeed, with certain choices of GR we can obtain additional elements of
C(F) ∩ F . For instance, we may choose to foliate a self-correcting stabilizer model [137] such as
the four-dimensional toric code [47]. In which case we have additional checks that are local to a
given time interval due to constraints among the stabilizer group. It is precisely the constraints
that these models present that give rise to single-shot error correction [75, 243, 277–279] which
enable us to identify errors on the ancillary qubits we use to make checks, see also Sec. 4.9.4 for
a discussion on single-shot error correction by foliation of the gauge color code. The stabilizers
we have described in Theorem 2 are generic to all foliated models using the construction we
have presented.

In the following section we apply the above theorems to the twisted surface code model.
This provides an illustrative example that we later use in our model of fault-tolerant quantum
computation. We note that the above construction and theorems are readily generalised to
include other methods of foliation including foliation using type-II qubits as we will see in the
next section and Sec. 4.9.1, and compressed foliation, Sec. 4.9.3. Our scheme for foliation and
related results also generalise to subsystem codes provided they are generated by a group with
particular properties. For instance, our results apply to all CSS subsystem codes. We give a
discussion of this extension in Sec. 4.9.4.



4.6 The twisted surface code | 167

X X

X X

(b)

Z

Z

Z

Z

Z Z

Y X

(a)
X X

Z Z

1 2 L

Fig. 4.9 The twisted surface code model. Examples of star and plaquette operators are shown
explicitly on thick outlined plaquttes on a blue and yellow face respectively. Logical operators
are supported on the qubits followed by the yellow and blue dotted lines. A defect line runs
from the right-hand side of the lattice to its centre. An example of the modified stabilizers that
support the defect line is shown at (a). The green line terminates at the centre of the lattice.
We write the stabilizer where the defect line terminates below the lattice at part (b). We focus
on foliating the stabilizers that lie on the defect line, as such we number them explicitly with
indices shown in black circles on the figure.

4.6 The twisted surface code

The twisted surface code [272] provides an interesting example of a stabilizer code that cannot
be foliated using existing constructions [241]. Moreover this example will be helpful later on
when we consider different schemes for fault-tolerant measurement-based quantum computation.
We will briefly review the stabilizer model before showing resource states for the foliated model.

The stabilizer group for the twisted surface code are closely related to those of the surface
code. However the model has an impressive encoding rate due to a twist defect [67] lying in
the centre of the lattice [214, 272]. Nonetheless, due to the central twist defect we cannot find
a CSS representation of the model, and as such, we require the generalised construction for
foliation given above. We will mostly focus on these stabilizers.

The stabilizer group for twisted surface code Gtwisted is represented on the lattice in Fig. 4.9
where qubits lie on the vertices of the lattice and stabilizers are associated to the faces, indexed
f . On blue(yellow) faces we have the well-known star(plaquette) operators which are the tensor
product of Pauli-X(Pauli-Z) operators lying on the vertices on the corners of their respective
face. The twisted surface code additionally has a defect line running from the right-hand side
of the lattice to the centre, along which, stabilizers are modified. The stabilizers lying along
the defect line, which is marked green in the figure, are weight-four terms that are the tensor
product of Pauli-X(Pauli-Z) stabilizers on the blue(yellow) part of the face. An example of a
modified stabilizer is shown in Fig. 4.9(a). The stabilizer where the defect line terminates also
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Fig. 4.10 A foliation pattern for the defect line of the twisted surface code. The code is
initialised at the bottom of the figure where the lattice that describes the stabilizers of the
code are shown. Qubits that are coupled with a controlled-phase gate are connected by an
edge. Qubits indexed Zj(t)(Xj(t)) are coloured black(red), and ancilla qubits are coloured in
blue(green), depending on whether they are measured in the Pauli-X(Pauli-Y) basis. Example
elements Sbulk (as in Theorem 2) which belong to C(F) ∩ R ∩ M are also shown.

includes a Pauli-Y term as shown in Fig. 4.9(b). Representations of logical operators X(Z) that
act on the one encoded qubit are the tensor product of Pauli-X(Pauli-Z) operators supported
on the dotted blue (yellow) lines on the lattice.

We now consider foliating the twisted surface code with the prescription given in the previous
section where Gch. = Gtwisted. Stabilizers of the form of a CSS code, i.e. stabilizers where either
gX or gZ are the null vector where (gX gZ)T = v(G) for G ∈ Gtwisted, are foliated using the
methods of Ref. [241] and take the form of those in the original works [66, 172, 259], as such
we focus on the terms that lie along the defect line. In Fig. 4.10 we show the resulting graph
where physical qubits indexed Zj(t)(Xj(t)) are coloured black(red) in the figure and time runs
vertically up the page.

We denote the stabilizers lying along the defect line Gf ∈ Gtwisted where we index face terms
1 ≤ f ≤ L as shown in Fig. 4.9. We consider vectors v(Gf ) = (gXf gZf )T . Notably, the stabilizers
that lie along the defect line all have gXf · gZf+1 = 1. As such the operator

V =
∏
f,t

UZ [Sf (t), Sf+1(t)], (4.70)

couples adjacent ancilla qubits. These bonds are shown as horizontal edges connecting adjacent
blue ancilla qubits in Fig. 4.10. Further, the stabilizer G1 is such that gX1 · gZ1 = 1, we therefore
measure these ancillas in the Pauli-Y basis, i.e., σY [G1(t)] ∈ M. We color these ancilla qubits
in green in Fig. 4.10.
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Fig. 4.11 Resource state where we change the time interval of some of the targets of certain
ancilla qubits as is described in the main text. Qubits indexed Xj(t), Yj(t) and Zj(t) are
coloured red, green and black, respectively, and ancilla qubits are shown in blue. We also show
the type-II foliated qubit in blue. No physical qubit has more than four incident edges. Two
elements of C(F) ∩ R ∩ M are shown.

The figure also shows two stabilizers, i.e., elements of S = C(F) ∩ R ∩ M of the form shown
in Eqn. (4.68). The stabilizers are weight six, except the stabilizer at the centre of the lattice
which includes a Pauli-Y term. This operator is weight seven.

We finally remark that the resource state we have thus far considered is by no means
unique, and using the foliation techniques considered in the previous section we can devise
other, arguably favourable, resource states. In Fig 4.11 we show one such alternative. In this
figure, for even values of f we replace the coupling operators with

U [Gf (t)] =
∏

j∈
∣∣gX

f

∣∣UZ [Xj(t), Gf (t)] ×
∏

j∈
∣∣sZ

f

∣∣UZ [Zj(t+ 1), Gf (t)], (4.71)

where now the check couples to targets Zj(t+ 1) instead of Zj(t). With this modification all the
checks are compatible where we set V = 1, thus reducing the valency of the ancilla qubits. We
additionally replace the foliated qubit where the defect terminates with a type-II foliated qubit,
which is coloured by blue edges. This further reduces the valency of ancillas used to measure
operators S1(t) as we need only couple to a single target to measure the Pauli-Y component of
this check. This also reduces the valency of the physical qubits of the type-II foliated chain.
However, this comes at the expense of including an additional physical qubit per time interval
to include a type-II foliated qubit in the system.

To summarise the present discussion we have seen that we can introduce Pauli-Y terms
in stabilizer measurements either by using type-II foliated qubits or by coupling an ancilla
to multiple targets of the same foliated qubit, and we have seen that in general we can
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periodically measure a full set of check measurements by either lifting the targets of selected
check measurements to higher time intervals or by coupling pairs of ancillas where it is
appropriate. The examples of resource states we have considered here are by no means
exhaustive and other variations can be made following the general principles of foliation given
in the previous section, but given the multitude of variations one could come up with we leave
further experimentation to the reader. One variation we have considered [280] is where checks
are made at intermediate time intervals where we couple additional ancilla to physical qubits at
layers indexed Xj(t) and Zj(t+ 1). This increases the number of ancilla qubits required along
the defect line, and increases the valency of the physical qubits along each foliated wire, but in
return we reduce the weight of the check operators and increase the number of available check
operators. We summarise this compressed construction in Sec. 4.9.3.

4.7 Quantum computation with the foliated surface code

In what follows we explore the general theory we have established here by following the
example of the foliated surface code. This model is a CSS stabilizer code and is thus foliated
using the methods in Ref. [241] and has been studied from the perspective of computation
in Refs. [172, 259, 267]. Beyond the work in the literature, using the generalised framework
for foliation we have presented, we can additionally realise a phase gate deterministically
in the foliated picture using ideas from Refs. [214, 272]. In particular, in Ref. [214] it was
shown that the corners of the planar code where two distinct types of boundary meet can
be regarded as a Majorana mode. Throughout the discussion we give here we extend this
analogy [15, 67, 281–283] further.

We see that, in the spacetime picture provided by a foliation, that the corners of the
planar code extend to world lines of Majorana modes. We find that the worldlines of the
Majorana modes that live at the interface of different boundaries follow the trajectories we
would expect if we were to realise fault-tolerant topological quantum computation by braiding
Ising anyons [15, 284–289]. We show this analogy in a macroscopic picture in Fig. 4.12 where
we show the foliated planar code [47, 241]. The planar code has rough boundaries and smooth
boundaries, that appear as faces of the foliated system as they are extended along the time axis.
The figure shows the different boundaries in blue and yellow. At the interface of the different
boundary types we see the world line of a Majorana mode. In this picture the modes move
vertically upwards with no horizontal motion. This is because with this channel we execute an
identity gate. In what follows we show that generalising the picture of foliation allows us to
braid and fuse Majorana modes in the spacetime model. We see this by explicitly considering
the initialisation of arbitrary states, with lattice surgery by foliation, and by performing a
fault-tolerant phase gate.
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Fig. 4.12 The foliated planar code. The code is extended through spacetime where the rough
and smooth boundaries are shown in yellow and blue, and the output is shown in red. At the
interface between the rough and smooth boundaries we see the world lines of Majorana modes,
depicted by thick red lines. The four modes that encode the qubit move directly along the
temporal axis, and as such do not nontrivially manipulate the encoded state over the channel.

Initialisation

In order to realise fault-tolerant universal quantum computation with the surface code we require
the ability to generate eigenstates of non-Pauli matrices for magic state distillation [260]. This
is similarly true for computation with the fault-tolerant cluster state model [172, 259]. State
initialisation by measurements with the surface code has been considered in Refs. [73, 290, 291].
The work on initialisation is readily adapted for the input-output model of fault-tolerant
measurement-based quantum computation we have developed above.

Common to all of the references on initialisation, the qubits that go on to form the surface
code begin in some easily prepared state, such as a product state, which are then measured
with the stabilizers of the desired code. In Fig. 4.13(a) we show the initial state we prepare in
order to initialise the surface code in an arbitrary state as given in Ref. [290]. Qubits in the
green(blue) boxes are initialised in known eigenstates of the Pauli-X(Pauli-Z) basis, and the
central red qubit is prepared in an arbitrary state.

By including this state as the stabilizer group SI of the initial state I, and the stabilizers of
the surface code as the stabilizers measured through the channel, SC , we recover the graph
state shown in Fig. 4.13(b). The figure shows the input state on the layer closest to the reader
and the time axis of the foliated model extends into the page. The qubits are coloured using the
convention in earlier sections where black(red) vertices mark qubits with indices Zj(t)(Xj(t))
and the blue vertices show ancilla qubits. The central green qubit is prepared in an arbitrary
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Fig. 4.13 Preparing an arbitrary state. (a) The initial product state used to initialise the
surface code from Ref. [290]. Qubits lie on the vertices of the graph, and star(plaquette)
operators lie on the blue(yellow) faces of the lattice. The system is initialised in a product state
where all the qubits within the dark green(blue) boxes begin in the +1 eigenvalue eigenstate
of the Pauli-X(Pauli-Z) operator, and the central red qubit is prepared in an arbitrary state.
Measuring the stabilizers shown on the lattice initialise the code in the state of the central qubit.
(b) The graph state showing initialisation where the initial state shown in (a) lies at the front
of the figure, and the time axis of the foliated system extends into the page. Qubits initialised
in an eigenstate of the Pauli-Z operator are not drawn, as these qubits do not entangle with the
resource state. Examples of check operators are shown on the graph. (c) Macroscopic depiction
of the initialisation, showing the creation of two pairs of Majorana modes at the center whose
worldlines extend to the outer edges of the lattice, in between different boundaries.

state. All of the qubits are measured in the Pauli-X basis1. To help the qubits of the input
system stand out we colour the edges that connect them in light blue.

All of the qubits support check operators except the central qubit that is prepared in an
initial state, we show examples of elements of C(G) in the figure. We do not draw qubits that
were initialised in an eigenstate of the Pauli-Z operator. Indeed, these states respond trivially
to the action of the operator U which is diagonal in the computational basis, and as such these
qubits do not entangle nontrivially with the resource state. We are therefore free to neglect
them.

It is interesting to view initialisation from the macroscopic viewpoint. The initial state
shown in Fig. 4.13(a) are chosen such that both a logical Pauli-X and a logical Pauli-Z operator
are supported on the physical qubits initialised in the Pauli-X(Pauli-Z) basis, where both
operators intersect at the central qubit. Both of these logical operators extend along the surface
where the input state is initialised onto the distinct boundaries where the logical operators
terminate. Once the surface code is foliated the respective boundaries of the surface code extend
along the temporal axis of the foliated system, and together with the boundaries extend the

1One could alternatively prepare the green qubit in a known eigenstate of Pauli-X and measure the green
qubit in an arbitrary basis, the output will be the same.
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Fig. 4.14 Macroscopic picture with time moving into the page showing preparation such that the
output is state is a logical Pauli-Z(Pauli-X) state on the left(right) of the figure where the input
system are prepared with the physical qubits rotated into eigenstates of the Pauli-Z(Pauli-X)
basis. The world lines of the Majorana modes that move between the distinct boundaries
emerge in two distinct pair creation operations, which is true to the analogy with fault-tolerant
quantum computation with Ising anyons.

logical operators of the system. In this way we can regard the logical operators that extend to
the output system as two-dimensional surfaces. Logical operators propagated along a boundary
in this way are commonly known as correlation surfaces [66].

In the same way that the different logical operators of the surface code terminate at their
distinct respective boundaries, so too do the correlation surfaces of the foliated surface code
terminate exclusively at their respective boundary. This is similarly true at the different regions
of the surface where the qubits of the input state is initialised differently. In this sense we
can regard the different regions where qubits are prepared in eigenstates of the Pauli-X or
Pauli-Z basis extensions of the other boundaries of the system. In Fig. 4.13(c) we colour code
the boundaries of the foliated lattice according to the correlation surfaces that can terminate
at them. In particular, correlation surfaces corresponding to the propagation of logical Pauli-
X(Pauli-Z) operators of the surface code terminate at the blue(yellow) boundaries of the figure,
respectively.

As discussed, we can regard the interface between the two different boundary types as
worldlines of the Majorana modes. As Fig. 4.13(c) shows, the four red lines meet at the single
point where the nontrivial state is initialised. We thus see that the analogy between the
boundaries of the foliated system and Majorana-based fault-tolerant quantum computation
holds, as in such a system, to prepare an arbitrary state, two pairs of Majorana modes
would need to be prepared simultaneously at a common location and noisily rotated into a
desired state before the modes are separated such that the encoded information is topologically
protected [292, 293].

We can similarly explore this analogy by preparing logical qubits in eigenstates of Pauli
operators. With the surface code, we can prepare a logical qubit in an eigenstate of the Pauli-
X(Pauli-Z) by initialising all of the physical qubits in the Pauli-X(Pauli-Z) basis. Using these
product states at the input states, we can show the boundaries of the system macroscopically
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Fig. 4.15 Two surface code lattices are shown in bold colours to the left and the right of the
figure. To measure the parity of these two logical qubits, we initialise the qubits that separate
the two lattices in known eigenstates of the Pauli-X operator and then begin measuring the
stabilizers of the extended rectangular stabilizers which includes the pale-coloured stabilizers in
between the two lattices.

in Fig. 4.14 where the input state is shown by the boundary on the input face shown closest
to the reader. In this instance, the figure shows two pairs of Majorana modes are prepared
a macroscopic distance from one another. This is similarly true with fault-tolerant quantum
computation with anyons, as these logical states are also prepared robustly in this way.

Fault-tolerant parity measurements

We next investigate the how lattice surgery [70, 71, 73, 214] maps into the measurement-based
picture. Lattice surgery offers a route to performing entangling gates between qubits encoded
with topological codes via fault-tolerant parity measurements. Foliated lattice surgery with the
surface code has already been considered in Ref. [267] but here we revisit this example within
the more general framework we have developed for fault-tolerant measurement-based quantum
computation. We will also witness nontrivial dynamics between the world lines of the Majorana
modes that are present in the foliated surface code.

We briefly review lattice surgery with the surface code before examining it at the macroscopic
level of foliation. To the left and right of Fig. 4.15 we see two surface code lattices in bold
colours. Each of these encodes a single logical qubit. The goal is to make the logical parity
measurement Z1Z2 of these two encoded qubits. The support of the operator we aim to
measure is shown in the figure. To make this logical measurement fault-tolerantly, we begin
measuring the stabilizers of a single extended rectangular surface code, which includes the
pale-coloured stabilizers in between the two codes. Importantly, the logical operator of the two
codes we intended to measure is a member of the stabilizer group of the extended code. As
such, by measuring the stabilizers of the code we additionally recover the value of the parity
measurement.
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Fig. 4.16 Lattice surgery for the parity measurement Z1Z2 in the foliated surface code where
the time axis runs from the bottom of the page to the top. We show two distinct surface
codes at the bottom of the page. At the point where we begin the parity measurement the two
foliated qubits are connected through an extended piece of foliated surface code. We show the
trajectories of the foliated Majorana modes in red. We see that at the connection point two
pairs of Majorana modes are fused, where one mode from each pair are taken from the two
different foliated codes. Once the parity data is collected the connection is broken by inputing
the rectangular lattice into a new channel to separate the two encoded qubits. This is shown at
the top of the figure.

To initialise the extended surface code, each of the physical qubits that lie in between the
two encoded qubits are prepared in a known eigenstate of the Pauli-X operator and we then
measure the stabilizers of the rectangular code. To the best of our knowledge, the literature
thus far has only considered a very narrow separation between the two encoded lattices such
that the number of qubits involved in the procedure is minimal. We know of no practical
advantage of widening this gap but for the purposes of our exposition we find that the wider
gap helps elucidate some of the topological features of lattice surgery.

We now consider lattice surgery within a measurement-based framework. We consider as
an input state included in I two surface code lattices together with some ancillary physical
qubits prepared in the +1 eigenvalue eigenstate of the Pauli-X matrix as shown in bold in
Fig. 4.15, where we might imagine that the two surface code lattices have emerged as the output
of two foliated surface codes. We then append to the resource state the check measurements of
the larger rectangular surface code such that the logical parity measurement is read from the
resource state once the single-qubit measurement outcomes have been collected.

We show this foliated picture macroscopically in Fig. 4.16. The figure shows two foliated
surface codes entering the surgery channel where the two lattices are connected make the parity
check. Once the parity check is completed, we take as an input the output of the channel of the
rectangular code and input it back into the original channel where the two lattices are separated
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and the qubits that connect the two lattices are measured transversally in the Pauli-X basis
which completes the operation.

We next study the trajectories of the Majorana modes while the parity measurement takes
place. Given that the qubits that form the connection between the two codes are initialised
in the Pauli-X basis, the boundary where the connection is formed terminates the correlation
surface that propagates the logical Pauli-X data of the channel. As such, we regard this
boundary as an extension of the blue boundaries in the figure where the correlation surfaces for
the logical Pauli-X operators can terminate. An equivalent argument holds at the moment the
connection is broken. From this we can infer the trajectories of the Majorana modes.

At the point the two codes are connected we observe the world lines of the Majorana modes
that mark the interface between the distinct boundaries fuse. Two pairs of Majorana modes
fuse where each pair takes a single mode from each of the two input codes. The product of
these two fusion operations gives the parity of the two encoded qubits which is consistent with
the topological interpretation of lattice surgery given in Ref. [214].

More precisely, if we consider a system where two qubits are encoded over eight Majorana
modes, γj with 1 ≤ j ≤ 8, and X1 = iγ1γ3, Z1 = iγ3γ4, X2 = iγ6γ8 and Z2 = iγ5γ6, and we
make measurements M1 = iγ3γ5 and M2 = iγ4γ6 we have that Z1Z2 = M1M2. One may worry
that the logical measurement of M1 and M2 may affect encoded information, but in fact this
measurement only disturbs the global charge conservation of the two encoded qubits, γ1γ2γ3γ4

and γ5γ6γ7γ8, which could be regarded as gauge degrees of freedom. It is clear from Fig. 4.16
that lattice surgery is performing an analogous operation with the foliated Majorana modes.

A phase gate

We finally show how to perform a phase gate with a surface code that is propagated through a
resource state. This presents an interesting example as we require the composition of several
channels to complete this operation. Moreover, we will observe a braid in the trajectories of the
foliated Majorana modes which is true to the analogy we have painted alongside fault-tolerant
quantum computation with anyons. The gate we use is based on a method presented with
stabilizer codes in Ref. [272], but we point out that the general theory of foliated quantum
computation is readily adapted to other proposals to realise Clifford gates [271, 214] including
other schemes presented in Ref. [272]. See also recent work in Ref. [73, 294]. As in the previous
Subsection we will present the scheme at the level of stabilizer codes before discussing the
foliated variant of the logical gate.

We first summarise the execution of a phase gate abstractly at the logical level. A phase
gate maps logical operators such that X → Y and Y → X where phases are neglected, and the
logical Pauli-Z operator is invariant under a phase rotation. Using an additional ancillary qubit
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Fig. 4.17 Two surface codes where Pauli-X type stabilizers lie on blue faces and Pauli-Z
stabilizers on yellow faces. A dislocation is shown in green running through the middle of the
right surface code which are the product of two Pauli-X terms and two Pauli-Z terms. An
example of such a stabilizer is shown. The left qubit, qubit 1, is initially encoded in an arbitrary
state, and the right qubit, qubit 2, is prepared in an eigenstate of the logical Pauli-Z operator.
The logical operator whose measurement outcome is inferred from the stabilizer measurements
during lattice surgery with support running from the top to the bottom of the figure is shown
explicitly.

we can achieve this operation by code deformation. If we encode the logical information on
the first logical qubit, and we prepare the second qubit in an eigenstate of the logical Pauli-Z
operator, then one can check that performing the following sequence of measurements; Y 1X2,
Z1, X1X2, Z2 will complete a phase gate up to phases which are determined by the outcomes
of the measurements. In what follows we show how these measurements can be achieved
fault-tolerantly using two surface code models.

We must first measure Y 1X2 where the ancilla qubit is prepared in an eigenstate of the
Pauli-Z operator. We consider the initial system shown in Fig. 4.17 where logical information
is encoded on the lattice shown to the left and the surface code to the right is initialised in
an eigenstate of the logical Pauli-Z operator. An important feature of the surface code at the
right of the figure is that it has a continuous defect line running through the middle of the
lattice, but we remark that the model is locally equivalent to the well-known CSS variant of the
surface code on a rectangular lattice. Once the system is prepared in this state, by measuring
this system with the stabilizers of the twisted surface code as shown in Fig. 4.9, we recover
the value of the desired logical parity measurement. This is because the operator of the initial
system, Y 1X2, is an element of the stabilizer group of the twisted surface code. To make this
clear we show the operator Y 1X2 explicitly on Fig. 4.17.

It is worth pointing out that, similar to the standard surface code which, as explained
above, can be fault-tolerantly initialised in an eigenstate of the Pauli-Z basis, the lattice to the
right is readily initialised in an eigenstate of the Pauli-Z operator by initialising the physical
qubits above(below) the defect line in a known eigenstate of the Pauli-Z(Pauli-X) basis before
measuring the stabilizers of the model to complete the preparation.
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Fig. 4.18 After transversally measuring the qubits below the defect line of the lattice to the
right transversally in the computational basis the right qubit is reduced to a smaller square
lattice. The system to the left is initialised in a logical eigenstate of the Pauli-Z operator. The
support of the logical parity measurement that is made under the surgery is shown.

Once we have performed the first parity measurement the remaining steps to complete the
phase gate have already been well described in the literature, we thus only briefly summarise
the remaining technical steps. We must first measure the first system in the logical Pauli-Z
basis. This is achieved by measuring all of the physical qubits transversally in the Pauli-Z basis,
the outcome of the measurement can be inferred from the single-qubit measurement outcomes.
This leaves the logical information encoded on the second logical qubit on the rectangular
lattice.

To make the final parity measurement, we additionally require that we reduce the length
of the rectangular lattice. This is also achieved by transversally measuring the qubits below
the defect line on the rectangular lattice transversally in the Pauli-Z basis. After we have
completed all of the transversal measurements we reinitialise the first system in an eigenstate
of the logical Pauli-Z operator which is carried out by preparing all of the physical qubits in
the Pauli-Z basis and subsequently measuring standard surface code stabilizers.

Upon completing these three operations, the first two of which could be carried out
simultaneously, we end with the system shown in Fig. 4.18. Finally, to transfer the rotated logical
information back to the first lattice, we perform another logical parity measurement, X1X2

which is carried out using standard lattice surgery that we discussed in the previous subsection
before finally measuring the remaining qubits of the second ancillary system transversally in
the Pauli-Z basis which completes the final logical measurement Z2.

As in the case of lattice surgery, the steps of the code deformation procedure outlined above
are readily mapped onto a foliated system by using each new deformation as the stabilizers
of the channel system of a resource state such that the output is the deformed variant of the
initial state. The phase gate we have presented provides a particularly interesting example
as it shows that certain gates are achieved using several different channels where the input of
the j-th channel is the output of the j − 1-th channel. We also remark that several of these
channels require the general methods of code foliation that we have developed in the earlier
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Fig. 4.19 The sequence of foliated channels that execute a phase gate on a qubit transmitted
with a foliated surface code where time increases up the page. The worldlines of the Majorana
modes are shown in red(green) if they run through the exterior boundary(bulk) of the foliated
system and the boundary of the dislocation of the foliated surface code is shown in pink. One
can track the world lines of the modes from the bottom to the top of the page to see the two
right most world lines exchange.

sections of this work. The channel where we measure the stabilizers of the twisted surface code
for instance can be foliated using the graph states proposed in Sec. 4.6.

We show the series of channels in Fig. 4.19 where the temporal axis increases up the page.
Interestingly, we observe that the two right-most Majorana modes at the bottom of the figure
are exchanged over time, where the right-most mode moves through the interior of the resource
state through the channel that measures the stabilizers of the twisted surface code. The point
where the world line of this mode moves through the interior is highlighted in green. To the
best of our knowledge, this presents the first example of a foliated system where a defect is
moved through the interior of a resource state. While this defect is in the interior of the system,
the other mode involved in the exchange is braided around the exterior of the system before
the exchange is completed thus executing a phase gate. Once again, the analogy with Majorana
modes holds in the model we consider here as, indeed, exchanging a pair of Majorana modes
executes phase gate. This can be seen by considering a qubit encoded with four Majorana
modes such that X = iγ1γ3, Y = iγ2γ3 and Z = iγ1γ2. One can see that up to phases X and Y
differ by the exchange of indices 1 and 2 whereas Z is invariant under the exchange modulo a
negative phase which is equivalent to the exchange of the modes in the foliated channel.
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4.8 Concluding remarks

We have presented a framework that allows us to map quantum computational schemes that
use code deformations on stabilizer codes to schemes of fault-tolerant measurement-based
quantum computation. We have shown how to view each component of the computation as a
‘foliated channel’ as a gauge-fixing process of a subsystem code, from which all properties of
the computation can be inferred. We have used this framework to show we can initialise, fuse
and braid foliated Majorana defects in a three-dimensional fault-tolerant cluster-state model to
carry out universal quantum computation with Clifford operations and magic state distillation.

It remains an important problem to find the most resource efficient models of fault-tolerant
quantum computation, as such it will be fruitful to study the robustness of other foliated
stabilizer codes to experimentally relevant sources of noise. In particular, it will be valuable
to study the tolerance of different models to loss, as foliated models are most applicable to
photonic architectures where this is a dominant source of error [264]. From a condensed matter
perspective, the models we have constructed can be viewed as symmetry-protected topological
phases [119, 134, 135, 156, 216, 295]. Further study of these models may therefore lead to
new phases of matter that are robust resources for quantum information tasks. Finally, one
can readily check that we can foliate the canonical examples of subsystem codes [50–52, 75]
within our framework, by replacing the channel stabilizer group by a generating set of the gauge
group, whereby the foliated system inherits many of the desirable features of the subsystem
code. While the general theory of subsystem code foliation remains to be described explicitly,
we find it exciting to map the advantageous characteristics of these models such as gauge
fixing [74, 75, 296] and single-shot error-correction [48, 243, 278, 279] into foliated systems in
the future.

4.9 Proofs and generalisations

The following sections are dedicated to proving the main Theorems in this chapter, as well
as discussing several generalisations, including type-II foliation, subsystem code foliation and
compressed foliation.

4.9.1 Type-II foliated qubits

In this section we consider a variation of the foliated qubit where we perform single-qubit Pauli-Y
measurements instead of Pauli-X measurements to move information along a one-dimensional
cluster state. We refer to these as type-II foliated qubits. Qubit foliation by this method offers
a natural way to measure the encoded Pauli-Y information by coupling an ancilla to just one
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single qubit of the chain. This may be of practical benefit as it reduces the valency of the graph
of a resource state at the expense of including three qubits in each time interval of the foliated
qubit instead of two in the case of a type-I folated qubit.

One can produce a foliated system F based on type-II qubits, by following the prescription
in Sec. 4.5 where some or all of the foliated qubits in the channel K are replaced by type-II
foliated qubits, and producing a new resource R and measurement pattern M to perform the
required parity measurements. Theorem 1 and Theorem 2 follow analogously.

We begin with the cluster state of length N = 3D + 1 with stabilizer group defined in
Eqns. (4.13) and (4.14) and logical operators defined in Eqn. (4.15) such that we can measure
the logical Pauli-Z information with a single-qubit Pauli-Z measurement on the first qubit.

We notice the difference between type-I and type-II foliated qubits by first looking at what
happens if we make a Pauli-Y measurement instead of a Pauli-X measurement on the first
qubit. We first multiply both logical operators by the stabilizer C2 = σZ [1]σX [2]σZ [3] such
that both logical operators commute with M1 = σY [1]. We have

X ∼ σY [1]σY [2]σZ [3] , Z ∼ σX [2]σZ [3] , (4.72)

With these logical operators it is easily checked that measuring M1 = σY [1], which becomes
the stabilizer C1 = y1σ

Y [1], where y1 = ±1 is the random measurement outcome, that after
the measurement we have the logical operators

X ∼ y1σ
Y [2]σZ [3] , Z ∼ σX [2]σZ [3] . (4.73)

Notably, we also have that
Y = iXZ ∼ y1σ

Z [2] , (4.74)

using the logical operator expressions given in Eqn. (4.73). From this equation it is easily seen
that logical Pauli-Y information can be accessed by making a single-qubit Pauli-Z measurement
on the second qubit provided the first qubit is measured in the Pauli-Y basis.

One can then check that measuring the second qubit in the Pauli-Y basis, whose measurement
outcome is y2 = ±1, we obtain

X ∼ y1y2σ
Z [3] , Z ∼ y2σ

Y [3]σZ [4] , (4.75)

and in turn Y ∼ y1σ
X [3]σZ [4]. With the example of measuring the first two qubits along

the cluster state in the Pauli-Y basis, we see that we cyclicly permute the logical operator
that can be accessed with a single-qubit Pauli-Z measurement as we progress along the chain.
In contrast, the type-I foliated exchanges the information that is accessible by single-qubit
measurements between logical Pauli-X and Pauli-Z data.
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Fig. 4.20 We show the logical Pauli-X, Pauli-Y and Pauli-Z operators in (a), (b) and (c) re-
spectively. From these diagrams we see that by measuring the appropriate qubit within the
time interval in Pauli-Z basis, and otherwise measuring the other qubits of the system in the
Pauli-Y basis, we can measure the logical information of the chain in an arbitrary Pauli basis.

As in the case of the type-I foliated qubit, it is convenient to redefine the indices of the
system in terms of intervals, indexed by t. For type-II foliated qubits we define

X(t) = 3t, Y (t) = 3t− 1, Z(t) = 3t− 2 (4.76)

In this case we have intervals of three adjacent qubits where either the logical Pauli-X, Pauli-Y,
or Pauli-Z measurement information can be accessed via single qubit measurements. Specifically,
we have that

X ∼ ΣX(t)σZ [X(t)] , Y ∼ ΣY (t)σZ [Y (t)] , (4.77)

and
Z ∼ ΣZ(t)σZ [Z(t)] , (4.78)

where we have defined

ΣX(t) =
t∏

µ=1
σY [Y (µ)]σY [Z(µ)] , (4.79)

ΣY (t) = σY [Z(t)]
t−1∏
µ=1

σY [X(µ)]σY [Z(µ)] , (4.80)

and

ΣZ(t) =
t−1∏
µ=1

σY [X(µ)]σY [Y (µ)] . (4.81)

which commute with the measurement pattern of type-II foliated qubits. We show a time
interval for a type-II foliated qubit in Fig. 4.20.



4.9 Proofs and generalisations | 183

σY σY σY σY σY

σX

t

Fig. 4.21 The graph for a type-II foliated qubit where we make non-destructive logical Pauli-Y
measurement at time interval t. The blue ancilla qubit is coupled to the chain element indexed
T = Y (t) via a controlled-phase gate. We show the logical Pauli-Y operator that commutes
with the single-qubit measurement pattern wherethe ancilla is measured in the Pauli-X basis
and otherwise, the qubits in the foliated qubit are measured in the Pauli-Y basis, as prescribed.

We can also perform measurements on the logical qubit propagated along a type-II foliated
qubit. In Fig. 4.21 we show the operator ΣY (t)σX [a] ∈ M where we have the measurement
pattern of a type-II foliated qubit, namely,

MC =
〈{
σY [µ]

}N−1

µ=1

〉
(4.82)

and the blue ancilla qubit which is measured in the Pauli-X basis is coupled to target T = Y (t).

Of course, type-II foliated qubits can support parity measurements in a foliated system of
multiple foliated qubits using the methods specified above by means of an ancilla. One caveat
of which is that we must also modify the measurement basis of the ancilla accordingly. Indeed,
where we previously considered measuring M [a] ∈ MA where we have thus far considered
the case where M [a] = σX [a]σZ [a]p

X ·pZ

to measure P such that p = v(P ) we adapt this
measurement from σX [a] to σY [a] for vice versa for each type-II qubit we replace a Xj(t) and
Zj(t) couplings for a single Yj(t) coupling.

4.9.2 Stabilizers and logical operations of the foliated system

In this section we prove Theorem 1 and 2 of Sec. 4.5. We first define two Pauli operators that
we use throughout this section and we prove two lemmas before moving onto the proofs of the
theorems in the main text.
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We will frequently consider the action of operators RP and R′
P (t) on the resource state

where these operators are defined as follows

RP =
∏

G∈GR

∏
t≤D

σZ [G(t)]Υ(p,g) (4.83)

×
∏

j∈|pX |
ΣX
j (D)σX [Zj(D + 1)]

×
∏

j∈|pZ |
ΣZ
j (D + 1)σZ [Zj(D + 1)] ,

and

R′
P (t) =

∏
G∈GR

σZ [G(t)]p
X ·gZ ∏

t′<t

σZ
[
G(t′)

]Υ(p,g)


×

∏
j∈|pX |

ΣX
j (t)σZ [Xj(t)] (4.84)

×
∏

j∈|pZ |
ΣZ
j (t)σZ [Zj(t)] ,

where P is a Pauli operator with corresponding vector representation (pX pZ)T = v(P ) and
(gX gZ) = v(G) for each G ∈ GR.

Lemma 1. Operators RP and R′
P (t) act on code states of the resource state, R, denoted |ψ⟩,

such that
RP |ψ⟩ = R′

P (t)|ψ⟩ = UAUCIP |φ⟩ (4.85)

for code states |φ⟩ =
(
UAUC

)†
|ψ⟩ of the initial stabilizer code I ⊗ A where

IP =
∏

j∈|pX |
σX [Zj(1)]

∏
j∈|pZ |

σZ [Zj(1)] . (4.86)

Proof. The action of unitary operator UC on IP |φ⟩ gives
(
UCIPU

C†)
UC |φ⟩ = UCIP |φ⟩ where,

written explicitly, we have

UCIPU
C† =

∏
j∈|pX |

σX [Zj(1)]σZ [Xj(1)]
∏

j∈|pZ |
σZ [Zj(1)] , (4.87)

and UC |φ⟩ is a codestate of K. Multiplying by elements of the stabilizer group K we have
KP , K

′
P (t) ∼ UCIPU

C† such that

KP =
∏

j∈|pX |
ΣX
j (D)σX [Zj(D + 1)]

∏
j∈|pZ |

ΣZ
j (D + 1)σZ [Zj(D + 1)] . (4.88)
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and
K ′
P (t) =

∏
j∈|pX |

ΣX
j (t)σZ [Xj(t)]

∏
j∈|pZ |

ΣZ
j (t)σZ [Zj(t)] . (4.89)

By the definition of stabilizer operators, both KP and K ′
P (t) of Eqns. (4.88) and (4.89) acts

equivalently on the codespace of K to UCIPUC
† Eqn. (4.87).

We obtain Eqns. (4.83) and (4.84) by conjugating KP and K ′
P (t) with UA such that

RP = UAKPU
A† and R′

P (t) = UAK ′
P (t)UA†. Lemma 1 holds by the unitarity of UA.

Lemma 2. The stabilizer group of the resource state includes terms C[G(t)] ∈ R for G ∈ GR

such that

C[G(t)] = σX [G(t)]
∏

G̃∈GR,
G̃ ̸=G

σZ
[
G̃(t)

]gX ·g̃Z ∏
j∈gX

σZ [Xj(t)]
∏
j∈gZ

σZ [Zj(t)] , (4.90)

where (gX gZ)T = v(G) and (g̃X g̃Z)T = v(G̃).

Proof. By Def. 2 we have R = UA(K ⊗ A) and σX [G(t)] ∈ K ⊗ A since σX [G(t)] ∈ A. We
obtain Eqn. (4.90) using that C[G(t)] = UAσX [G(t)]UA† which follows from UA given explicitly
in Eqn. (4.57) of Def. 2.

We are also interested in the measurement outcomes of terms P ∈ Gch. of the input data
that are not necessarily included GR. It will be helpful to define the subset ξ(P ) ⊆ GR such
that P =

∏
G∈ξ(P )G. The subset ξ(P ) must exist for any P ∈ Gch. by the definition of GR, i.e.,

GR is a generating set of Gch..

Corollary. The term C[ξ(P )(t)] ≡
∏
G∈ξ(P )C[G(t)] ∈ R where

C[ξ(P )(t)] =
∏

G̃∈GR

σZ
[
G̃(t)

]pX ·g̃Z

(4.91)

×
∏

G∈ξ(P )
σX [G(t)]σZ [G(t)]g

X ·gZ

×
∏

j∈|pX |
σZ [Xj(t)]

∏
j∈|pZ |

σZ [Zj(t)] .

where
(
pX pZ

)T
= v (P ).
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The above corollary is obtained as follows. We have

C[ξ(P )(t)] =
∏

G∈ξ(P )
σX [G(t)] (4.92)

×
∏

G∈ξ(P )

 ∏
G̃∈GR,
G̃ ̸=G

σZ
[
G̃(t)

]gX ·g̃Z


×

∏
j∈|pX |

σZ [Xj(t)]
∏

j∈|pZ |
σZ [Zj(t)] ,

using that C[ξ(P )(t)] =
∏
G∈ξ(P )C[G(t)] and the expression for C[G(t)] given in Eqn. (4.90) in

Lemma 2. We obtain the above expression for C[ξ(P )(t)] then using the following identity

∏
G∈ξ(P )

 ∏
G̃∈GR,
G̃ ̸=G

σZ
[
G̃(t)

]gX ·g̃Z

 =
∏

G∈ξ(P )

σZ [G(t)]g
X ·gZ ∏

G̃∈GR

σZ
[
G̃(t)

]gX ·g̃Z



=
∏

G̃∈GR

σZ
[
G̃(t)

]g̃Z ·
∑

G∈ξ(P ) g
X ∏
G∈ξ(P )

σZ [G(t)]g
X ·gZ

=
∏

G̃∈GR

σZ
[
G̃(t)

]pX ·g̃Z ∏
G∈ξ(P )

σZ [G(t)]g
X ·gZ

.

We are now in a position to prove Theorem 1 and 2.

Proof of Theorem 1. We deal with Eqns. (4.65) and (4.66) separately before finally examining
elements of C(Gin)\Gin that are measured by the foliated system. We begin by determining Gout.

Proof of Eqn. (4.65). For any element of P ∈ Gin with (pX pZ)T = v(P ) we have a stabilizer
of the initial state IP ∈ I ⊗ A of the form Eqn. (4.86) such that we have RP ∈ R defined
according to Eqn. (4.83) by Lemma 1. Then, provided P ∈ C(Gch.) we have that Υ(p, g) = 0 for
all g = v(G) with G ∈ GR. Therefore, we have

RP =
∏

j∈|pX |
ΣX
j (D)σX [Zj(D + 1)]

∏
j∈|pZ |

ΣZ
j (D + 1)σZ [Zj(D + 1)] , (4.93)

for P ∈ Gin ∩ C(Gch.). Given that ΣX
j (D), ΣZ

j (D + 1) ∈ M we have that

∏
j∈|pX |

σX [Zj(D + 1)]
∏

j∈|pZ |
σZ [Zj(D + 1)] ∈ Gout, (4.94)

up to the measurement outcomes inferred from M.



4.9 Proofs and generalisations | 187

We next show elements P ∈ Gch. are elements of Gout. We note that P 2 = 1 ∈ Gin. Likewise,
I2
P ∈ I ⊗ A by unitarity of UC . Therefore, by Lemma 1 we have R′

P (t)RP ∈ R. We write this
explicitly

R′
P (t)RP =

∏
G∈GR

σZ [G(t)]p
X ·gZ

(4.95)

×
∏

j∈|pX |
σZ [Xj(t)]

∏
j∈|pZ |

σZ [Zj(t)]

×
∏

j∈|pX |
ΣX
j (t)ΣX

j (D)σX [Zj(D + 1)]

×
∏

j∈|pZ |
ΣZ
j (t)ΣZ

j (D + 1)σZ [Zj(D + 1)] ,

where Υ(p, g) = 0 since Gch. is Abelian. Now, given that P ∈ Gch. there exists some ξ(P ) such
that we have C[ξ(P )(t)] ∈ R as shown in Eqn. (4.91).

The product of Eqn. (4.91) and (4.95) then gives

C[ξ(P )(t)]R′
P (t)RP =

∏
G∈ξ(P )

σX [G(t)]σZ [G(t)]p
X ·gZ

×
∏

j∈|pX |
ΣX
j (t)ΣX

j (D) (4.96)

×
∏

j∈|pZ |
ΣZ
j (t)ΣZ

j (D + 1)

×
∏

j∈|pX |
σX [Zj(D + 1)]

×
∏

j∈|pZ |
σZ [Zj(D + 1)] .

Since M [G(t)] = σX [G(t)]σZ [G(t)]g
X ·gZ

∈ MA and ΣX
j (t),ΣZ

j (t) ∈ MC we find that their
values are inferred from M. We therefore find the term

∏
j∈|pX |

σX [Zj(D + 1)]
∏

j∈|pZ |
σZ [Zj(D + 1)] ∈ Gout, (4.97)

for P ∈ Gch. up to the measurement outcomes of M. The results of Eqn. (4.94) and Eqn. (4.97)
thus verify Eqn. (4.65).

Proof of Eqn. (4.66). We now turn to the logical operators as determined by Lout = C(Gout)\Gout.
We require that

P ∈ C(Gin)\Gin, (4.98)

such that RP ∈ C(R)\R by Lemma 1.
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We also require that operator RP in Eqn. (4.83) is such that P ∈ C(Gch.) such that
Υ(p, g) = 0. Otherwise, RP ̸∈ C(M) and is therefore not a logical operator of F by the
definition of a subsystem code.

Finally, elements R ∈ Gch. are elements of Gout as we showed above, and are thus not logical
operators. We therefore see that

P ∈ C(Gch.)\Gch.. (4.99)

Combining Eqns. (4.98) and (4.99) verify Eqn. (4.66).

We also have that P ∈ (C(Gin)\Gin) ∩ Gch. are elements of M, and are therefore measured
under the foliation process. We see this by considering R′

P (t) as in Eqn. (4.84). For elements
P ∈ Gch. there exists a ξ(P ) such that R′

P (t)C[ξ(P )(t)] ∈ M.

We require a representative operator RQ ∈ (C(R)\R) ∩ C(M) of the form of Eqn. (4.83) to
propagate the logical information to the output state. It is worthwhile writing this explicitly
as its value needs to be inferred from M at the point of readout. In some cases, it may be
possible to choose

RQ =
∏

j∈|qX |
ΣX
j (D)σX [Zj(D + 1)]

∏
j∈|qZ |

ΣZ
j (D + 1)σZ [Zj(D + 1)] , (4.100)

where, by definition, Υ(q, g) = 0 for all G ∈ GR with (gX gZ)T = v(G). Since ΣX
j (D), ΣZ

j (D +
1) ∈ M we have

RQ ∼
∏

j∈|qX |
σX [Zj(D + 1)]

∏
j∈|qZ |

σZ [Zj(D + 1)] , (4.101)

supported on the output system. Sometimes, however, this operator is not suitable because,
perhaps, some of the qubits that support RQ are not available due to loss, or because we
require the evaluation of an alternative representative at the output system for later information
processing. In which case, we are free to multiply RQ by stabilizer operators of the form of
Eqn. (4.96), C[ξ(P )(t)]R′

P (t)RP ∈ (C(R) ∩ R) ∩ C(M), for an arbitrary choice of t, to change
the support of the surface. We are also, of course, free to multiply the logical operators by any
stabilizers of the foliated system, such as those described in Theorem 2.

Proof of Theorem 2. We next verify the elements of the stabilizer group. We consider the term
R′
P (t) and R′

P (t− 1) in Eqn. (4.84) where P ∈ GR such that Υ(p, g) = 0. We take the product



4.9 Proofs and generalisations | 189

of the two terms to give

R′
p(t)R′

P (t− 1) =
∏

G∈GR

(
σZ [G(t− 1)]σZ [G(t)]

)pX ·gZ

×
∏

j∈|pX |
ΣX
j (t− 1)ΣX

j (t) (4.102)

×
∏

j∈|pZ |
ΣZ
j (t− 1)ΣZ

j (t)

×
∏

j∈|pX |
σZ [Xj(t− 1)]σZ [Xj(t)]

×
∏

j∈|pZ |
σZ [Zj(t− 1)]σZ [Zj(t)] ,

where R′
P (t)R′

P (t − 1) ∈ R. The product of this term with C[P (t)]C[P (t − 1)] ∈ R where
C[P (t)] is defined in Eqn. (4.90) gives Sbulk[G(t)] ∈ R ∩ M of Eqn. (4.68).

We finally show that Sbdry.[G(t)] of Eqn. (4.69) belongs to S. This is shown by considering
again Eqn. (4.83) where P ∈ Gin such that R′

P (t) ∈ R. Then, taking the product of R′
P (t) and

C[ξ(P )(t)] ∈ R as defined in Eqn. (4.91) gives the desired operator which is included in M.

4.9.3 Compressed foliation

In this section we discuss compressed foliation. This method includes additional check measure-
ments of elements of GR in additon to those defined in F in the main text. The construction is
similar to that described in Sec. 4.5, but where additional ancillae and entangling unitaries are
added, as we now describe.

In the construction of the new resource state, R, one begins with a channel system K
according to Def. 1. The ancilla system A is constructed by using two ancillae for each element
of GR and t, giving

A =
{
σX [G(t)], σX [GC(t)] : ∀t, G ∈ GR

}
, (4.103)

where G(t) and GC(t) label the coordinates of ancillae and the superscript C denotes the
additional ancilla for each G and t.

One entangles the ancillae to the channel using the unitary

UA = V
∏

G∈GR, t

U [G(t)]U [GC(t)], (4.104)



190 | Universal fault-tolerant measurement-based quantum computation

where U [G(t)] is defined in the main text and

U [GC(t)] =
∏

j∈|gX |
UZ [Xj(t), GC(t)]

∏
j∈|gZ |

UZ [Zj(t+ 1), GC(t)], (4.105)

for (gX gZ)T = v(G). Moreover, we update the operator V with V =
∏
t V (t)V C(t) such that

V C(t) =
∏

G,H∈GR
G̸=H

UZ
[
GC(t, a), HC(t, a)

]gX ·hZ

(4.106)

with (gX gZ)T = v(G) and (hX hZ)T = v(H), and V (t) is also defined in the main text.

In the case of CSS codes, compressing the foliation does not lead to any novel channels – in
essence, each G ∈ GR is measured twice per time interval. In the non-CSS codes compressed
foliation leads to qualitatively different channels. In particular, compressed foliation results
in resource states with higher degree, but can result in lower weight stabilizers. With a local
basis change, one can always take a CSS code to a non-CSS code [297–299], and foliation of the
two can lead to drastically different resource states. One needs to assess which channel is more
suitable for a given purpose.

4.9.4 Foliating subsystem codes

In the main text we focused on the foliation of stablizer codes. In fact, we find that our method
for foliation extends to certain classes of subsystem codes as well with minor modifications to
the scheme we have given above.

We consider a foliated channel where GR is a non-Abelian generating set for subsystem code
Gch.. The input code Gin may also be a subsystem code. However, we will not be interested in
its gauge degrees of freedom, only its logical operators and its stabilizers. As such, without
loss of generality, we will continue to denote the stabilizers of this system as Gin as before to
maintain consistency with the theorems given above. The gauge and logical degrees of freedom
can both be regarded as logical operators. This simplification allows us to keep our definition
of the channel system, Def. 1, unchanged in our generalisation to subsystem codes.

Further, we keep the ancilla system and the measurement pattern the same following the
prescription set by GR. We index elements of the ancilla system with labels G(t) where G
denotes an element of the non-Abelian generating set GR and t denotes a time interval. We then
define elements of the stablizer group of the ancilla system such that we have σX [G(t)] ∈ A
for all t and gauge generators G ∈ GR. Likewise, we keep our definition of the measurement
pattern, Def. 3, where we use only type I foliated qubits in the channel system2. Explicitly, we

2Though we remark that generalising to make use of type II foliated qubits is straight forward.
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measure all the qubits of the channel system in the Pauli-X basis. Ancilla qubits are measured
in the basis σX [G(t)]σZ [G(t)]g

X ·gZ

∈ M where (gX gZ)T = v(G) for all G ∈ GR.

We modify the definition of the resource state. We modify Def. 2 such that V = 1. We
find that this modification is suitable for a large class of subsystem codes which, among others,
includes CSS subsystem codes such as the Bacon-Shor code [51], the subsystem surface code [50],
the gauge color code [75] and variations of these models [300–304]. Written explicitly, for a
given GR we have

R = UA (K ⊗ A) , (4.107)

where the ancilla system is in the product state

A =
{
σX [G(t)] : ∀t, G ∈ GR

}
, (4.108)

and the entangling unitary UA is given by

UA = V
∏

G∈GR, t

U [G(t)], (4.109)

where now V = 1 and

U [G(t)] =
∏

j∈|gX |
UZ [Xj(t), G(t)]

∏
j∈|gZ |

UZ [Zj(t), G(t)], (4.110)

with (gX gZ)T = v(G) for each G ∈ GR. We leave the V = 1 term in Eqn. (4.109) for a
discussion we give later to generalise beyond the class of subsystem codes we can foliate easily.

Using the definitions given above, we state some facts about elements of F and their
inclusion in R and M without proof. Instead, we only remark that the following statements
are proven using the methodology given above where Gch. is replaced with a non-Abelian group.
To approach this discussion, we consider the following operators for arbitrary Pauli operators
P ∈ C(Gch.) with (pX pZ)T = v(P ). We consider

R′
P (t) =

∏
j∈|pX |

ΣX
j (t)σZ [Xj(t)]

∏
j∈|pZ |

ΣZ
j (t)σZ [Zj(t)]

×
∏

G∈GR

σZ [G(t)]p
X ·gZ ∏

t′<t

σZ
[
G(t′)

]Υ(p,g)

(4.111)

and
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RP =
∏

j∈|pX |
ΣX
j (D)σX [Zj(D + 1)]

×
∏

j∈|pZ |
ΣZ
j (D + 1)σZ [Zj(D + 1)]

∏
G∈GR,
t̸=D+1

σZ [G(t)]Υ(p,g) (4.112)

While we have written the term explicitly here, for P ∈ C(Gch.) we have Υ(p, g) = 0 for all
g = v(G) and G ∈ GR by the definition of a subsystem code. We therefore neglect terms with
exponents of Υ(p, q) from the above two equations hereon. We also consider the operator

C[ξ(P )(t)] =
∏

G∈ξ(P )
C[G(t)] (4.113)

=
∏

G∈ξ(P )
σX [G(t)]σZ [G(t)]g

X ·gZ

×
∏

j∈|pX |
σZ [Xj(t)]

∏
j∈|pZ |

σZ [Zj(t)]

which exists only for elements P ∈ Gch..

The product of these two terms gives us a stabilizer element of R

C[ξ(P )(t)]R′
P (t) =

∏
G̃∈ξ(P )

σX
[
G̃(t)

]
σZ
[
G̃(t)

]g̃X ·g̃Z

×
∏

j∈|pX |
ΣX
j (t)

∏
j∈|pZ |

ΣZ
j (t) (4.114)

×
∏

G∈GR

σZ [G(t)]p
X ·gZ

.

Likewise, for P ∈ C(Gch.) ∩ Gch.\Gin we have stabilizer generators

C[ξ(P )(t− 1)]R′
P (t− 1)C[ξ(P )(t)]R′

P (t) ∈ R. (4.115)

In Eqn. (4.114) lies the issue with the foliation of general subsystem codes. In particular,
it is not clear in general if C[ξ(P )(t)]R′

P (t) lies in M due to the term on the third line of
Eqn. (4.114) ∏

G∈GR

σZ [G(t)]p
X ·gZ

= σZ [G(t)]p
X ·
∑

G∈GR
gZ

. (4.116)

Since σZ [G(t)] ̸∈ M for any G or t, we rely on pX ·
∑
G∈GR

gZ = 0 for all P ∈ C(GR) ∩ GR and
G ∈ GR.
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(a)

(c)

(d)

(b)

Fig. 4.22 The gauge color code lattice arranged with the qubits lying on the vertices of a cubic
lattice. (a) The stabilizers are supported on cells of the lattice which are eight and thirty-two
body terms living on the cuboidal cells of the lattice. (b) The cells are separated to better
reveal the structure of the lattice. The gauge terms lie on faces where pairs of cells share
common support. (c) A two dimensional representation of how cells lying on the layer above,
marked with bold outlines, lie atop the layer below, where the cells are filled with pale colors.

This issue was easily dealt with in the case of stabilizer codes with inclusion of the V
operator. Indeed, for the case where GR is Abelian we had that ξ(P ) = {P} for all stabilizers
P ∈ GR, and P and Q ∈ GR commuted such that pX · qZ = qX · pZ . We were therefore able to
eliminate all the spurious Pauli-Z terms in the stabilizer group of R by simply coupling the
ancillas with the controlled phase gate UZ [P (t), Q(t)] for all P, Q ∈ GR such that pX · qZ = 1.
However, in the case of subsystem codes, where we use multiple ancilla qubits to infer the value
of a stabilizer, so it is not clear which ancilla qubits we should couple to nullify the spurious
Pauli-Z terms. We leave the general solution to this problem to future work.

Provided the Pauli-Z terms of the resource state can be cancelled out we can use the
operators in Eqns. (4.112) and (4.114) to infer the stabilizers of the foliated system, as in
Theorem 2, and we can determine the output stabilizer group as in Theorem. 1. We finally
remark that the logical degrees of freedom, P ∈ (C(Gin)\Gin)∩ (C(Gch.)\Gch.), propagate through
the foliated channel, and elements P ∈ (C(Gin)\Gin) can be measured by the channel using the
operator shown in Eqn. (4.114), again, provided σZ [G(t)]p

X ·
∑

G∈GR
gZ

= 0. This allows us to
generalise Theorem 1 for subsystem codes where σZ [G(t)]p

X ·
∑

G∈GR
gZ

= 0 for all P .
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Fig. 4.23 The stabilizers of a single cell of the resource state for the gauge color code on qubits
indexed X(t). Measuring the face terms of the gauge color code infers the value of the stabilizer
three times. Taking the product of pairs of these measurements gives additional stabilizer data.

There are many subsystem codes that can be foliated without choosing a nontrivial V
operator. The CSS codes are natural candidates since

σZ [G(t)]p
X ·
∑

G∈GR
gZ

= σZ [G(t)]p·
∑

G∈GR
g = 0, (4.117)

by the definition of a CSS code. We therefore find that V = 1 is suitable to learn stabilizer
data. We also find that the subsystem color code [52] can be foliated with our prescription.

It is interesting to study subsystem codes that we can foliate, as they give us another
perspective on fault-tolerant quantum error correction. As an example, we consider single-shot
error correction with the gauge color code [75, 48, 243]. We give an alternative representation
of the lattice of the gauge color code in Fig. 4.22 where the qubits lie on the vertices of a cubic
lattice.

The gauge group of the gauge color code has elements BX
f =

∏
j∈∂f Xj and BZ

f =
∏
j∈∂f Zj

for all the faces of the lattice f , where ∂f are the set of qubits that touch the face, and the
product of a subset of the faces living on the boundary of a cell give a cell stabilizer. Specifically,
the faces surrounding the cube are three-coloured, see Fig. 4.22(b). The product of the face
terms of all of the faces of one particular colour of a cells gives the value of a stabilizer for the
corresponding cell. However, as we measure all of the faces, we redundantly learn the value of
cell stabilizers three times. This redundancy enables us to predict the locations of measurement
errors more reliably as each stabilizer is constrained to give the same value.

We now briefly look at these constraints from the perspective of foliation. In Fig. 4.23 we
show a single cubic cell of the gauge color code on the qubits indexed X(t). It is readily checked
that the operators shown in the figure that are the product of the face operators on two of
the different colours of each cell are stabilizers of the foliated system. These stabilizers are
unlike the stabilizers discussed in the main text where, if we exclude boundary stabilizers, we
require measurements from qubits in different time intervals to learn the value of a stabilizer.
We therefore find we have additional stabilizer data for error correction with foliated single-
shot codes within each time interval. Indeed, a natural extension of our model of quantum
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computation is to perform gauge fixing between the three-dimensional color code and the
gauge color code [74, 75] via foliated channels. Moreover, unlike many of the examples we
have considered where we have assumed a large number of time intervals, due to its single-shot
nature [48] this can be achieved with just a single time interval.





5 | Conclusion

In this thesis we investigated the role of symmetry-protected topological phases in quantum
computation. We focussed on the question of how topological phases with symmetry can
be utilised for storage, error correction and robust processing of quantum information. An
important component of this question was to characterise what types of quantum phases can
exist in equilibrium, and in particular, at nonzero temperature.

The first question that was addressed was whether SPT phases can persist at nonzero
temperature. We formalised a definition for symmetry-protected topological order at nonzero
temperature, determined by the circuit depth required to prepare the Gibbs ensemble from a
classical ensemble. It was then proven that many models describing nontrivial SPT orders with
onsite symmetries are thermally fragile, meaning their Gibbs states can be prepared by low
depth (symmetric) circuits. We discovered that nontrivial SPT phases can exist at nonzero
temperature, when protected by more general symmetries. In particular, the three-dimensional
cluster state model of Raussendorf, Bravyi and Harrington [136] retains nontrivial SPT order
at nonzero temperature when protected by a Z2

2 1-form symmetry. This thermally-stable SPT
order is fundamentally connected to fault-tolerance in the scheme of topological MBQC based
on the 3D cluster state.

We then considered the feasibility of symmetry-protected topological phases as self-correcting
quantum memories – where quantum information can be stored and protected for arbitrarily
long times, without the need for resource-expensive error correction schemes. We found that
3D SPT phases protected by 1-form symmetries can be self-correcting. These phases are also
thermally stable, in that their bulk SPT order persists at nonzero temperature (in terms of
circuit complexity). This connection between thermal stability (an equilibrium property of a
system) and self-correction (a dynamic property) is perhaps fundamental, and we hope that it
provides a principle for investigating further candidate self-correcting quantum memories.

Finally, we developed new protocols to achieve fault-tolerant universality within measurement-
based quantum computation. Motivated by recent advances fault-tolerance, we constructed a
framework that allows computational protocols designed in the circuit model to be implemented
within the setting of MBQC (with single qubit measurements on a cluster state). By expressing
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MBQC as gauge fixing of a particular subsystem code, we highlighted the similarities between
MBQC and more traditional approaches to quantum computing. As a concrete example, we
focussed on constructing a MBQC scheme based on the braiding and fusion of symmetry
defects (twists) in the surface code – the basis of many of the most promising and low-overhead
approaches to quantum computation. These protocols are well-suited for optical architectures
that are currently being actively perused.

Looking forward, there are a number of open directions to investigate.

Quantum computation in thermal equilibrium.

Is quantum computation possible in thermal equilibrium? The conventional model of quantum
computation requires systems that are approximately in their ground space, maintained by
frequent rounds of error-correction. If thermal computation were possible, it would profoundly
impact the way we think about quantum computing. A first feasible step toward answering
this question is to establish whether perturbatively stable quantum wires can exist at nonzero
temperature (in the context of computational phases). Due to the fault-tolerance of models
presented in Chapter 4, we expect their corresponding Hamiltonian realisations to be thermally
stable, in terms of SPT-order, for sufficiently low temperatures. Perhaps these models, along
with the machinery of code deformation, lattice surgery and gauge fixing can then be utilized
to find universal computational phases that are thermally robust (while avoiding the Eastin
and Knill [63] result). Obtaining a more precise understanding of this thermal stability for
various parts of the computation, particularly for the magic state distillation protocols is an
interesting facet of this broader goal.

As a complementary goal, understanding if thermally stable, universal computational phases
of matter can exist would also sharpen our understanding of single-shot error-correction. Is
single shot error correction possible in 2D topological codes, and can thermally stable SPT
phases exist in 2D? Such questions are deeply related to the potential for quantum computation
in thermal equilibrium.

Self-correction and quantum phases beyond commuting projector models.

Whether self-correcting quantum memories can exist in three-dimensions or less is one of the
central unsolved questions in quantum information theory. One direction is to utilize the
symmetry-first approach and search for models that exhibit emergent 1-form symmetries. A
tantalising hint is provided by the existence of emergent symmetries in several well studied
topological models, including the toric code and color codes. If one is to find a self-correcting
phase in 3D, it is clear that we must move beyond local commuting projector Hamiltonians.
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A promising direction is to analyse the potential of subsystem code Hamiltonians in
3D [51, 49]. These models are highly symmetric and enjoy many of the nice properties of
commuting stabilizer models, but exhibit substantially richer physics and importantly can lie
outside the assumptions of the many no-go theorems. The difficulty in studying these models
comes from the lack of general tools to solve Hamiltonians with non-commuting terms to
obtain their spectrum. A notable model in this class is the gauge-color code, which exhibits
many promising features for self-correction, including single-shot error-correction (a necessary
condition for self-correction [48]). Very little is known about the possible quantum phases of the
gauge color code – as unlike stabilizer codes, for subsystem codes there is no ‘preferred’ choice
of Hamiltonian1. Indeed there are a wide variety of inequivalent choices of Hamiltonians that
contain the codespace as their groundspace, and there is no guarantee that distinct Hamiltonians
will belong to the same phase.

Complementary to this, is the question of whether self-correcting classical memories can
exist in 2D or less. The 2D Ising model does not meet the conditions of a self-correcting
classical memory due to its lack of perturbative stability. It has recently been shown that
classical self-correction is possible in 3D with a classical Hamiltonian [305]. Previously, the 3D
toric code, a quantum model, was the canonical example of a self-correcting classical memory.
Perhaps self correcting classical memories are possible in 2D using a quantum Hamiltonian.

Improving resource overheads for quantum computation.

A crucial problem in the field of quantum information is to improve resource overheads of
quantum computation, and finding more efficient avenues to fault-tolerance. Recently, novel
computational protocols have come from the utilization of defects in topological phases. While
in 2D, these defects have been systematically understood [112, 113, 118, 306], they are substan-
tially richer in three dimensions and higher. In particular, symmetry defects in 3D phases can
form codimension 1 or 2 objects, with interesting interplay [119, 245]. What are the logical gates
that can be realised by their braiding and fusion? In order to understand the computational
utility of these defects, one can use the theory of symmetry-protected topological (SPT) phases
and their boundaries, along with the duality known as gauging to study these defects. For
example, braiding processes in 3D can be very complicated, but can be captured by the more
amenable three-loop braiding statistics which, in turn are inferable from an underlying SPT
phase. By understanding defects in this way, we can discover new routes to fault-tolerant
logical gates, with the potential to improve (or even transcend) magic state distillation schemes
– whose resource costs dominate all other in quantum computation.

1Recall for stabilizer codes, the Hamiltonian is given by the negative sum of a local, generating set of the
stabilizer group. Different local generating sets do not lead to different physics as they can be adiabatically
connected.
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Contextuality of computational phases of matter.

An important goal is to understand the structures that underpin quantum computation, and
the resource that powers it. One interesting aspect of this would be to investigate the role
of contextuality [307–310] (a proposed resource for quantum computation [311–315]) in the
context of computational phases of matter. That is, whether there is a relationship between
contextuality and SPT order, both having been shown to be resources for MBQC. A tantalising
hint comes from the perspective that (group) cohomology has been used to classify both
contextuality [316–319] and SPT phases [111, 129, 116].

Concluding remark

The exciting field of quantum information is rapidly changing. Initially propelled by the
challenges posed by decoherence, the tools of quantum error-correction and fault-tolerance are
now being used to refine our approach to fundamental physics. The application of these tools in
foreign contexts, such as high-energy physics, have already led to profound physical insights. It
is an inspiring time to be working in this field, and I look forward to its promising and diverse
future.
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