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A B S T R A C T

The endocannabinoids anandamide (AEA) and 2-arachidonoylglyerol (2-AG) are endogenous lipid mediators
that exert protective roles in pathophysiological conditions, including cardiovascular diseases. In this brief re-
view, we provide a conceptual framework linking endocannabinoid signaling to the control of the cellular and
molecular hallmarks, and categorize the key components of endocannabinoid signaling that may serve as targets
for novel therapeutics. The emerging picture not only reinforces endocannabinoids as potent regulators of cel-
lular metabolism but also reveals that endocannabinoid signaling is mechanistically more complex and diverse
than originally thought.

1. Introduction

In ancient times, the depression-pain comorbidity was treated
through the use of extracts of the Cannabis sativa plant, commonly
known today as marijuana. Humans and animals alike naturally syn-
thesize endogenous cannabinoids, chemical compounds that activate
the same receptors as Δ9-tetrahydrocannabinol (Δ9-THC), the active
component of marijuana. Use of marijuana for addressing pain due to
various reasons has become a topic of concern in terms of possible
addiction, drug abuse as well as regulatory issues. Although histori-
cally, the use of marijuana dates back to over 2000 BCE, the biological
action of Δ9-THC remained elusive until recently. The biological re-
ceptor of Δ9-THC on the cell surface has been previously identified and
described [1,2]. Characterization of this receptor led to understanding
of the mode of action of Δ9-THC that underlies its wide spectrum of
pharmacological effects, which encompass euphoria, calmness, appetite
stimulation, sensory alterations and analgesia [1,2].

Identification in the late 1980s of the first endogenous cannabinoid-
like substance, anandamide (AEA), in pig brain reiterated the sig-
nificance of the so-called cannabinoid receptor and its endogenous li-
gands in the control of a wide variety of biological activities [1,2]. The
name 'anandamide', derived from Sanskrit ('ananda' meaning bliss) is
given to N-arachidonoylethanolamine, for its cannabinomimetic effects.

Subsequently, another endogenous cannabinoid compound known as 2-
arachidonoylglycerol (2-AG) was identified [3,4]. Of note, the two
endocannabinoids were derivatives of arachidonic acid. Considering
that these compounds are endogenous and cannabinomimetic, acting
on the cannabinoid receptors, they were termed as endocannabinoids
(ECs).

In this article we present a brief overview of the endocannabinoid
system, including the physiological and pathophysiological roles of the
endocannabinoid receptors, and discuss the application of ECs as potent
regulators of cellular metabolism.

2. The endocannabinoid system at a glance

Although the first EC to be identified was AEA, 2-AG is the most
abundant in the brain [5]. Over the past few decades several en-
dogenous fatty acid amides and monoacylglycerols have been dis-
covered and extensively studied, providing with a compelling evidence
that these compounds serve as a new and additional class of en-
dogenous signaling molecules involved in a plethora of physiological
function. These molecules, and their physiological function and sig-
nificance, has been extensively documented and discussed in details by
Ezzili et al. [6,7]. Multiple human and animal studies support that
endocannabinoids play a key role in memory, mood, brain reward
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systems, drug addiction, and metabolic processes, such as lipolysis,
glucose metabolism, and energy balance [6].

Several competing pathways for AEA biosynthesis have been de-
scribed. AEA biosynthesis is initiated following a postsynaptic neuronal
depolarization and an influx of calcium. The calcium then activates.N-
acylphosphatidylethanolamine-hydrolyzing phospholipase D (NAPE-
PLD) and diacylglycerol (DAG) lipase, each of which forms AEA and 2-
AG, respectively [5,7]..The anterograde neurotransmitter transmission
and retrograde EC modulation form the closed signaling loop.

The biological effects of endocannabinoids are mediated by two
members of the G-protein coupled receptor (GPCR) family, cannabinoid
receptors 1 (CB1R) and 2 (CB2R). The CB1R is the prominent subtype in
the central nervous system (CNS) and has drawn great attention as a
potential therapeutic avenue in several pathological conditions, in-
cluding neuropsychological disorders and neurodegenerative diseases.
Furthermore, endocannabinoids also modulate signal transduction
pathways and exert profound effects at various peripheral tissues.
Although cannabinoids have therapeutic potential, at present, their
psychoactive effects have largely limited their use in clinical practice.

Owing to the lipophilic nature of endocannabinoids, it was initially
thought that these compounds exert various biological effects by dis-
rupting the cell membrane nonspecifically. However, following the
discovery of THC and subsequent emerging of several chemically syn-
thesized cannabinoids, the successful mapping and the pharmacological
characterization of cannabinoid binding sites in the brain revealed the
existence of a putative CBR and its similarity to GPCR nature, which
was matched with the properties of an orphan GPCR, now known as
CB1R.

3. Tissue distribution of cannabinoid receptors

Recently, the differential expression pattern of CB1R has been
characterized at the mRNA level in human brain, skeletal muscle, liver,
heart and pancreatic islet [8,9] The full-length CB1R dominates in the
brain and skeletal muscle, whereas the CB1Rb (having a 33 amino acid
deletion at the N-terminus) shows a higher expression level in the liver
and pancreatic islet cells where it is involved in metabolic regulation
[8,9].

CB1R is particularly concentrated on both γ-aminobutyric acid
(GABA)–releasing neurons (inhibitory neurons) and glutamatergic-re-
leasing neurons (excitatory). Hence, activation of CB1R leads to retro-
grade suppression of neurotransmitter release, which may be excitatory
or inhibitory depending on the location in the brain [10–12]. Inter-
estingly,.Cb1r.gene polymorphisms have been described but their
functional effects are not well-characterized. Some polymorphisms are
associated with anxiety and depression. Additionally, CB1R is also ex-
pressed in some non-neuronal cells, including immune cells [13].

The central distribution pattern of CB1R is heterogeneous and ac-
counts for several prominent pharmacological properties of CB1R
agonists, for example their ability to impair cognition and memory and
to alter the control of motor function. Thus the cerebral cortex, hip-
pocampus, lateral caudate putamen, substantia nigra pars reticulata,
globus pallidus, entopeduncular nucleus and the molecular layer of the
cerebellum all are populated with particularly high concentrations of
CB1R [14,15]. In line with the analgesic properties of cannabinoid re-
ceptor agonists, CB1R is also found on pain pathways in the brain and
spinal cord and at the peripheral terminals of primary sensory neurons
[16,17]. Although the concentration of CB1R is considerably less in
peripheral tissues than in the central nervous system, this does not
mean that peripheral CB1R are unimportant. Thus in some peripheral
tissues, discrete regions such as nerve terminals that form only a small
part of the total tissue mass are known to be densely populated with
CB1R. Peripheral tissues in which CB1R is expressed on neurons include
the heart, vas deferens, urinary bladder and small intestine [15,18,19].

CB2R is encoded by the gene Cnr2, and shares only 44% sequence
homology with CB1R at the protein level. The CB2R exhibits greater

species differences among humans and rodents in comparison to CB1R,
as the amino acid sequence homology is ∼80% between humans and
rodents [20,21]. CB2R is located peripherally, with a high density on
immune-modulating cells, including microglia in the brain, the function
of this receptor including modulation of cytokine release and of im-
mune cell migration. In humans, two isoforms of the CB2R have been
identified, with one predominantly expressed in testis and at lower
levels in brain reward regions, whereas the other is mainly expressed in
the spleen and at lower levels in the brain [21]. The testis isoform has a
promoter that is 45 kb upstream from the spleen isoform [21]. Thus far,
four rat CB2R isoforms and two mouse isoforms have been discovered
[20,21].

4. Endocannabinoid signaling:.physiological and
pathophysiological.roles

4.1. Chronic stress

Although stress responses can be life-saving in the face of a threat,
chronic stress often has negative health effects. The EC system is the
central mediator of the stress response. The EC system regulates the
release of stress-induced neurotransmitters including the systemic re-
lease of norepinephrine and cortisol, and thus plays a role in the stress
alterations of mood, cognition, and activation of the hypothalamic-pi-
tuitary-adrenal axis [23]. The EC system may also mediate some of the
metabolic effects that glucocorticoids exhibit on lipid metabolism,
leading to hepatic steatosis and potentially contributing to the meta-
bolic syndrome [24]..Therefore, the EC system is an important control
point and therapeutic target to reduce the deleterious effects of chronic
stress [25].

4.2. Obesity

CB1R is important for energy balance in the body [26]. With fasting
or starvation, AEA and 2-AG levels increase in the limbic forebrain and,
to a less significant extent, in the hypothalamus. CB1R activation in-
creases food intake and effects whole-body energy metabolism through
coordination of the mesolimbic reward system and the hypothalamus’
appetite control pathway [12,26]..This receptor also promotes food
intake by increasing odor detection via stronger odor processing in the
olfactory bulb [27]. Some obese individuals may have excess CB1R
activation. Obese and overweight individuals may have a mutation in
fatty acid amide hydrolase (FAAH), the enzyme that degrades AEA. This
can lead to increased levels of AEA (∼15-fold increase in FAAH null
mice) and stimulation of the hypothalamic appetite control center [26].

It is uncertain if there is a regulatory feedback loop between the EC
system and obesity. Wild-type mice that develop diet-induced obesity
have a hyperactive EC system, with an increase in receptor availability
and an increase in circulating ECs. In pre-satiated mice, an intra-hy-
pothalamic injection of AEA induced substantial hyperphagia.
Inactivation of CB1-R receptors decreases plasma insulin and leptin
levels, ultimately leading to a more efficient energy metabolism
[27,28].

4.3. Nervous system

The EC system obviously plays a significant role in the normal
functioning of the brain, spinal cord, and peripheral nervous system.
Therefore, the EC system can either cause or become altered by diseases
of the neurologic system. For example, hyperactivity of the EC system
reduces dopaminergic tone in the basal ganglia, contributing to the
pathophysiology of Parkinson disease [29]..Other diseases with poten-
tially significant EC system interactions include multiple sclerosis, sei-
zure disorders, Alzheimer's disease, Huntington disease, amyotrophic
lateral sclerosis, and psychiatric diseases such as schizophrenia [30,31].
CB2Rs may have some relationship to depression based on animal
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studies and the finding of a high-incidence of Cb2r polymorphisms in a
depressed Japanese population [13].

4.4. Pain

Pain is already a well-established and important therapeutic appli-
cation for ECs. CB1R agonists act on nociceptive interneurons in the
dorsal horn of the spinal cord to alleviate pain. In addition, CB2R-se-
lective agonists have proven to be helpful in reducing inflammation and
undoing established inflammation hypersensitivity involved in periph-
eral pain and skin disorders [22,32]. It is believed the CB2Rs may have
a protective effect on inflammation and autoimmunity [13,22].

4.5. Heart and blood vessels

CB1R activation aids in vasodilation and cardiac contractility, reg-
ulating blood pressure and improving left-sided heart function. CB2R
has been implicated in the inflammation in atherosclerotic plaques. In
this regard, CB2R activation is a therapeutic strategy for reducing
atherosclerotic plaque inflammation and reducing vulnerability to
rupture and thrombosis [33]. Previously, several studies have linked
impaired glucose uptake and insulin resistance (IR) to functional im-
pairment of the heart. Additionally, endocannabinoids have also been
implicated in cardiovascular disease. However, the mechanisms invol-
ving endocannabinoid signaling, glucose uptake, and IR in cardio-
myocytes were understudied..Addressing this gap in knowledge, re-
cently, we have demonstrated that CB1R activation stimulates the
energy-sensing AMP-activated protein kinase (AMPK) to inhibit in-
flammation and subsequently ameliorate cardiomyocyte insulin re-
sistance [34]. In fact, beneficial effects of AMPK activation in the heart
and vessel wall are widely known [35,36] suggesting that a greater part
of the established EC effects in the cardiovascular system are mediated
by downstream AMPK activation. Therefore, this recent finding pro-
vides an important basis towards the understanding and furthering of
the concept that CB1R can be considered as a potential therapeutic
alternative in cardiac diseases such as ischemia-reperfusion injury or
myocarditis [37], where immediate energy flux to the tissue is of ut-
most importance (Fig. 1). Future investigations and clinical trials are
warranted in this regard and will lead to a better understanding, uti-
lization and application of cannabinoid signaling in a tissue-specific
manner.

4.6. Cancer

Both marijuana and ECs are anti-inflammatory, anti-proliferative,
anti-invasive, anti-metastatic, and pro-apoptotic in most cancers, both
in vitro and in vivo, in animals. In some cancers, ECs are pro-pro-
liferative and anti-apoptotic, but in the majority they show cell cycle
arrest, autophagy, apoptosis, and tumor inhibition. At present, canna-
binoid cancer therapy is limited to nausea and pain, but future studies
are needed to determine its full chemotherapeutic potential
[32,38–40].

4.7. Gastrointestinal system

Activation of CB1R and, to a lesser extent, CB2R, by AEA also re-
duces gastrointestinal motility and secretions. Activation of CB1R in-
hibits pro-inflammatory responses in the colon [41,42].

4.8. Liver

CB1R receptors aid in modulating hepatic metabolism, including
gluconeogenesis [43], lipogenesis [44,45] and bile acid synthesis [46].
Activation of CB1R in the liver stimulates fatty acid synthesis, causing
hepatic steatosis and diet-induced.obesity [44]. In addition, CB1R
promotes hepatic fibrosis and contributes to the hemodynamic

abnormalities seen in cirrhosis. By reducing inflammatory cell in-
filtration and lipid peroxidation, CB2R activation is protective against
hepatic ischemia–reperfusion injury. Targeting the hepatic EC system
may have therapeutic potential in a variety of liver diseases (reviewed
in ref. 26).

4.9. Reproductive system

The EC system has a role in reproduction [47]. CB1R is found in the
male (Leydig cells) and the female (ovary, ducts, uterus). Furthermore,
normal folliculogenesis and spermatogenesis may require the EC
system. CB1R is also present in the placenta and is necessary for embryo
implantation [37]..The use of cannabis is associated with implantation
failure, spontaneous miscarriage, fetal growth restriction, and pre-
mature birth in humans. Future research efforts will be needed to un-
ravel the full complexity of the EC system involvement in the process of
reproduction.

4.10. Skeletal system

In addition to immunomodulatory pathways, CB2R is involved in
maintaining proper bone mass..CB2R is abundant in osteocytes, osteo-
clasts, and osteoblasts. CB2R agonists enhance endocortical osteoblast
reproduction and activation, while inhibiting osteoclastogenesis [48].
Owing to the lack of detailed research, extensive future efforts will be
needed to unravel the underlying significance of the EC system in-
volvement in the process of osteogenesis.

Table 1 summarizes the potential avenues of therapeutic interven-
tion by targeting/utilizing the endocannabinoid system.

5. Endocannabinoid degradation

Endocannabinoids have a short life span. AEA and 2-AG are quickly
degraded through transport protein-mediated reuptake and hydro-
lyzation by either FAAH or MAG lipase, respectively [5,7]..Degradation
may be an important regulatory control point, since inactivation of

Fig. 1. Schematic presentation of the proposed therapeutic application of 2-AG
in cardiovascular disease. 2-AG has a beneficial effect on the insulin signaling
pathway in dysregulated cardio-metabolic conditions. In addition, 2-AG may
also exert anti-inflammatory effects via activation of AMPK signaling pathway
in cardiomyocytes. Abbreviations: AMPK, AMP-activated kinase; CaMKK,
Ca2+/calmodulin-dependent protein kinase; DCM, diabetic cardiomyopathy.
Reproduced, with permission, from ref. 34.
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FAAH results in 15-fold elevated AEA levels in genetic FAAH knock-out
mouse brains. Furthermore, these enzymes, FAAH and MGL, have be-
come therapeutic targets for pharmacologic interventions of the EC
system. FAAH inhibition has shown the advantages of a lack of abuse
potential or physical dependence compared with MGL [7,13].

Regrettably, however, in early 2016, the exceptional occurrence of
serious adverse events (SAEs) in a phase I clinical trial conducted by the
Biotrial Pharmacology Center (Rennes, France) on behalf of Bial-Portela
& Ca. SA (São Mamede do Coronado, Portugal) came into limelight. The
trial involved the compound BIA 10-2474, a drug designed to inhibit
FAAH. The most serious symptoms had central neurological features,
the worst being those associated with a single case of coma which ra-
pidly lead to brain death. Of the other 5 hospitalized participants, 2 had
serious neurological damage (with clinical improvement apparently
occurring within a few days). Because of these events, the trial was
immediately suspended [49]. Other less important enzymatic pathways
exist, demonstrating redundancy in EC degradation. Interestingly, the
catabolite arachidonic acid is a precursor for the cyclooxygenase
(COX)–2 enzyme, leading to a number of bioactive eicosanoids (e.g.,
prostaglandins, prostacyclin, thromboxane, leukotrienes). The sig-
nificance of the EC–COX-2 eicosanoid pathway is under investigation
[50,51].

6. Pharmacologic therapy

6.1. Cannabinoid receptor agonists

FAAH inhibitors/inactivators are continuously under investigation
because of their ability to increase the concentration of en-
docannabinoids. Endocannabinoids are lipid mediators released on
demand from membrane phospholipid precursors. Their targets are the
CBRs, but other receptors can be involved in their action, such as
GPR55, peroxisome proliferator-activated receptors (PPARs) and va-
nilloid receptors (TRPV1). The endocannabinoid system has been im-
plicated in a wide range of physiological processes such as those asso-
ciated with chronic pain, metabolic disorders, psychoses, nausea and
vomiting, depression, and anxiety disorders [reviewed in ref. 52–56].
Some exogenous cannabinoids acting on CBRs.are currently used in
therapeutics (e.g., Bedrocan®, Bedrobinol®, Bediol®, Bedica®, Cesamet®,
Marinol®, Sativex®) involving a variety of indications such as anorexia,
neuropathic pain and multiple sclerosis, depending on the country in
which the drugs are marketed (Table 2). However, such treatments may
have neurological side effects (including impairment of cognition and
motor functions and a predisposition to psychoses), notably when these
agents are used for long-term treatment [57,58].

THC and cannabidiol (which together make up the drug SativexR)

are active components of.Cannabis sativa that bind to CB1R and CB2R.
Their bioavailability is unknown. A buccal spray is approved for use for
neuropathic pain associated with multiple sclerosis in Canada only
[59–61].

Dronabinol.(MarinolR), a synthetic THC, is a CB1R and CB2R ago-
nist that has been approved by the US Food and Drug Administration
(FDA) for use as an antiemetic for chemotherapy and an appetite sti-
mulant for persons with acquired immunodeficiency syndrome (AIDS).
Its bioavailability is 10% [61]. Significant adverse effects have been
reported particularly central nervous system toxicity [62].

Nabilone.(CesametR) is a synthetic analogue of THC; it is a CB1R
and CB2R agonist that has been FDA approved as an anti-emetic in
chemotherapy patients in whom all other therapy has failed.
Unapproved use is employed in patients with upper motor neuron
syndrome who have spasticity-related pain not controlled by conven-
tional treatment [63].

6.2. CB1 receptor antagonists

CB1Rs activate the dopaminergic reward system. Commonly abused
drugs, such as nicotine, opiates, THC, and alcohol, share a common
pathway, the dopaminergic surge in the nucleus accumbens. Independent
studies involving humans and mice, respectively, reported an increase
in smoking cessation rates, decreased alcohol intake, and a reduction in
cocaine-seeking behavior with CB1-R antagonism. Rimonabant
(AcompliaR or ZimultiR) is a selective CB1R antagonist, SR141716, with
an affinity to centrally acting CB1R. Rimonabant was sold in Europe for
the treatment of obesity. It was not approved in the United States and
later withdrawn because of psychiatric effects, especially depression
[64–67]. Nevertheless, the EC system is a ubiquitous regulator of cel-
lular function in both health and diseases, which offers many potential
therapeutic targets. Table 2 provides a listing of EC system agonist and
antagonist interventions with therapeutic potential [68].

6.3. CB2 receptor antagonists/ inverse agonists

The most notable CB2R-selective antagonists/inverse agonists are
the Sanofi-Aventis diarylpyrazole, SR144528 [69] and 6-iodopravado-
line (AM 630) [70]. Both compounds bind with much higher affinity to
CB2R than to CB1R, exhibit marked potency as CB2R antagonists and
behave as inverse agonists that can by themselves produce inverse
cannabimimetic effects at CB2R [14,71]. For example, AM 630 has been
reported to reverse CP 55,940-induced inhibition of forskolin-stimu-
lated cyclic AMP production by human CB2R-transfected CHO cell
preparations at concentrations in the nanomolar range
(EC50= 129 nM) and to enhance forskolin-stimulated cyclic AMP
production by the same cell line when administered by itself
(EC50= 230 nM) [70], albeit with an efficacy that appears to be
somewhat less than the inverse efficacy displayed by SR144528 in this
bioassay [72]. At the CB1R, AM 630 has been found to behave in some
investigations as a low potency partial agonist [70,73] but in others as a
low potency inverse agonist [74,75].

7. Further investigation

Endocannabinoids are crucial to bioregulation. Their main role is in
cell-signaling, and, because of their hydrophobic nature, their main
actions are limited to paracrine (cell-to-cell) or autocrine (same cell)
signaling, rather than systemic effects. Unique characteristics of the EC
system include (i) the lipid structure of the endocannabinoids, formed
from the internal lipid constituents of cellular membrane, making them
hydrophobic with limited mobility in an aqueous environment, (ii) their
synthesis ‘on demand’ (no storage) with a very short half-life, (iii) the
local cell-signaling action (paracrine or autocrine), (iv) the retrograde
transmission in the brain; travels backward from postsynaptic to pre-
synaptic cells, (v) the presence of two distinct G-protein–coupled

Table 1
Potential therapeutic applications for cannabinoid pharmacologic intervention.

• Pain
• Anti-nausea
• Glaucoma
• Cachexia
• Neurologic diseases: Parkinson disease, Huntington disease, amyotrophic lateral

sclerosis, multiple sclerosis, alcohol-induced neuro-inflammation/
neurodegeneration, traumatic brain injury, stroke, seizures

• Autoimmune diseases: Autoimmune uveitis, systemic sclerosis, inflammatory bowel
disease

• Infection: HIV-1 brain infection
• Psychiatric disorders: Anxiety-related disorders, impulsivity, bipolar disorder,

personality disorders, attention-deficit/hyperactivity disorder, substance abuse
and addictive disorders, anorexia nervosa

• Cardiovascular diseases: Atherosclerosis
• Gastrointestinal diseases: Gut motility disorders, inflammatory bowel syndrome,

chronic liver diseases, alcoholic liver disease
• Diabetic nephropathy
• Osteoporosis
• Cancer: Breast, prostate, skin, pancreatic, colon, and lymphatic, among others
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receptors in brain (CB1R) and immune system (CB2R), and (vi) the
regulation of the EC system bioactivity through degradation of en-
docannabinoids by FAAH.

With scientific evidence suggesting their role in inflammation, in-
sulin sensitivity, and fat and energy metabolism, it has been suggested
that inhibition of endocannabinoids [26] or augmenting EC signaling
by local application of ECs [34] may be effective approaches for re-
ducing the prevalence of the metabolic syndrome and augmenting the
benefits of physical exercise..Furthermore, modulation of the EC system
may be a cure for more chronic neurologic and immune conditions.
Research in animal models suggests the possible use of cannabinoids as
anticancer drugs [32,37,38]. Many questions are left unanswered about
this relatively newly discovered regulatory system. Further investiga-
tion into this exciting field promises to shed insights into the mechan-
isms of health and disease and provide new therapeutic options.

8. Conclusion

In summary, the EC system is a unique and ubiquitous cell-signaling
system that is just beginning to be understood. The biochemistry of EC
synthesis, metabolism, and bioactivity has been difficult to study in the
past. Newer techniques such as genetically modified animals, pharma-
cologic probes, and molecular biological tools promise to reveal some of
these mysteries in the near future. The greater promise is that with this
understanding, the EC system will yield an important therapeutic target
for future pharmacologic therapy. Keeping in mind the potential pitfalls
of ubiquitously activating this delicately balanced signaling network,
with measured approaches- like targeted, tissue-specific delivery, we
are not far away from unravelling the previously unexplored benefits of
this elixir.
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