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Abstract
For the same BMI, South Asians have a higher body fat percentage than Caucasians. There might be differences in the fatty acid (FA) handling in
adipose tissue when both ethnicities are exposed to high-fat overfeeding. The objective of the present study was to investigate the molecular
adaptation in relation to FA metabolism in response to overfeeding with a high-fat diet (OHFD) in South Asian and Caucasian men. Ten South
Asian men (BMI 18–29 kg/m2) and ten Caucasian men (BMI 22–33 kg/m2), matched for body fat percentage, aged 20–40 years were included.
A weight-maintenance diet (30 % fat, 55 % carbohydrate and 15 % protein) was given for 3 d followed by 3 d of overfeeding (150 % energy
requirement) with a high-fat diet (60 % fat, 25 % carbohydrate and 15 % protein) while staying in a respiration chamber. Before and after over-
feeding, abdominal subcutaneous fat biopsies were taken. Proteins were isolated, analysed and quantified for short-chain 3-hydroxyacyl-CoA
dehydrogenase (HADH), carnitine palmitoyl-transferase 1α (CPT1a), adipose TAG lipase, perilipin A (PLINA), perilipin B, lipoprotein lipase and
fatty acid binding protein 4 usingWestern blotting. OHFDdecreased the HADH level (P< 0·05) in Caucasiansmore than in Asians (P< 0·05), but
the baseline and after intervention HADH level was relatively higher in Caucasians. The level of CPT1a decreased in South
Asians and increased in Caucasians (P< 0·05). PLINA did not change with diet but the level was higher in South Asians (P< 0·05). The observed
differences in HADH and PLINA levels as well as in CPT1a response may be important for differences in the long-term regulation of energy (fat)
metabolism in these populations.

Key words: Molecular adaptation: Overfeeding: High-fat diet: South Asian men: Caucasian men

In contrast to people in Western countries, people from South
Asian countries (Indian sub-continents) were reported to develop
metabolic diseases such as diabetes at a younger age and at a
lower BMI(1). The prevalence of type 2 diabetes is extremely high
and continues to rise in both native and migrant South Asians(2).
South Asian Indians also have earlier onset, more severe andmore
prevalent CVD than many other ethnic groups(3).

Previous epidemiological studies(3,4) reported a direct corre-
lation between a Western dietary pattern, but not with eastern
(vegetarian) and mixed dietary pattern, and overall risk of the
metabolic syndrome in migrant South Asians in the UK(4) and
in the USA(3). It has been suggested that gene–environment

interaction may be the cause of the rapid increase of the preva-
lence of diabetes and CVD in South Asians(5). A number of com-
parative studies supported this hypothesis, as South Asians were
found to have a higher body fat % for the same BMI as compared
with Caucasians(6–9). The unfavourable body composition may
contribute to the susceptibility of South Asians to the negative
effect of the current lifestyle in Asia and Western countries,
where consumption of high-fat foods increases and physical
activity decreases. Alternatively, the inability of South Asians
to cope with an obesogenic environment may initiate the devel-
opment of an unfavourable body composition and obesity-asso-
ciated metabolic diseases.

Abbreviations: ATGL, adipose TAG lipase; CPT1a, carnitine palmitoyl-transferase 1α; FA, fatty acid; FABP4, fatty acid binding protein; FFM, fat-free mass; FM, fat
mass; HADH, short-chain 3-hydroxyacyl-CoA dehydrogenase; LPL, lipoprotein lipase; OHFD, overfeeding with a high-fat diet; PAL, physical activity level; PLINA,
perilipin A; PLINB, perilipin B; TBST, Tris-buffered saline containing 0·1 % Tween 20; TEE, total energy expenditure.

* Corresponding author: S. N. Wulan, fax +62 341-569214, email wulan_thpub@ub.ac.id
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In Caucasian populations, a large inter individual variation
was reported in the susceptibility to weight gain under similar
external influences such as decreased physical activity or exces-
sive energy intake(10,11) suggesting genetic predisposition(12). In
response to changes in energy intake, either energy restriction or
overfeeding(13), alterations in body weight were found to be pre-
ceded by changes in adipocyte gene expression involved in lipo-
genesis, protein synthesis, β-oxidation and insulin resistance. In
South Asians, reduced oxidative capacity and capacity for fatty
acid (FA) utilisation at the whole body level (measured as
VO2 max and fat oxidation during sub-maximal exercise) were
reported to be associatedwith insulin resistance but were not the
consequences of reduced skeletal muscle expression of oxida-
tive and lipid metabolism genes(14). In that study, South Asians
exhibited significantly higher skeletal muscle gene expression
of carnitine palmitoyl-transferase 1α (CPT1a) and fatty acid syn-
thase and significantly lower skeletal muscle protein expression
of phosphoinositide 3-kinase (PI3K) and protein kinase B (PKB)
Ser473 phosphorylation compared with Caucasians(14). Little is
known about the molecular adaptation in the adipose tissue
when South Asians are exposed to an obesogenic environment
that favours fat storage rather than oxidation.

In the present study, we introduced a 3-d stay under seden-
tary conditions in a respiration chamber while overfeeding
young South Asian and Caucasian men with a high-fat diet. To
avoid potential confounders, South Asians and Caucasians were
matched for body fat percentage. The objectives of the present
study were (1) to investigate the molecular adaptation focusing
on proteins involved in FA metabolism in the adipose tissue in
response to overfeeding with a high-fat diet (OHFD) and (2)
to test whether the molecular adaptations differ between
South Asians and Caucasians.

For that purpose, seven proteins involved in FA metabolism
were selected and measured in adipose tissue by Western blot-
ting. Those proteins represent different processes of FA metabo-
lism(15): lipoprotein lipase (LPL) and fatty acid binding protein
(FABP4) are responsible for FA uptake and transport inside
the adipocyte, respectively; adipose TAG lipase (ATGL) and per-
ilipin A and B (PLINA and PLINB) are responsible for FA release
(lipolysis) and fat droplet turnover, respectively; short-chain
3-hydroxyacyl-CoA dehydrogenase (HADH) and CPT1a are
crucial enzymes for mitochondrial β-oxidation.

Subjects and methods

Subjects

Subjects were ten healthy adult non-diabetic South Asian and ten
Caucasian men. They were matched for body fat percentage.
Subject characteristics are presented in Table 1. Asian subjects
had four grandparents from South Asia, while Caucasian subjects
were European Caucasians. Subjects were selected based on the
following inclusion criteria: healthy, not having metabolic dis-
eases (diabetes or CVD), not using medication, aged between
20 and 40 years old with BMI (in kg/m2) between 18 and 29
for South Asians and 22 and 33 for Caucasians, having a stable
body weight for the last 3 months, not being on a diet and not
being an athlete. All subjects received verbal and written

information before giving their consent. The study was con-
ducted according to the guidelines laid down in the
Declaration of Helsinki. All procedures involving human sub-
jects were approved by The Medical Ethics Committee of
Maastricht University, MEC no. 10-3-013 and registered in the
public trial registry www.ccmo.nl no. NL31217.068.10.

Experimental design

The study was a diet-intervention study under sedentary condi-
tions in a respiration chamber. Body composition was measured
before the start of the intervention to match body fat percentage
between the two ethnic groups. Energy requirements for a
weight-maintenance diet for 3 d preceding the intervention were
calculated based on fat-free mass (FFM) and the daily physical
activity level (PAL) of each subject as measured for 7 consecutive
dayswith an accelerometer. On the third day of theweight-main-
tenance diet, subjects came to the university in the morning in
the fasting state; abdominal subcutaneous fat biopsies were
taken for baseline measurement. On the same day, after having
dinner, subjects entered the respiration chamber and stayed for
the next 3 d. During this period, subjects were overfed with a
high-fat diet while no exercise or strenuous physical activity
was allowed in the respiration chamber. The second fat biopsies
were taken in the morning after the subjects left the chamber.

Body composition

Body composition was determined according to a three-com-
partment model based on body weight, body volume and total
body water. Body weight and body volume were determined in
the morning, in a fasted state. Body volume was determined by
hydro-densitometry with simultaneous measurement of residual
lung volume using the helium dilution technique. Total body
water was determined with 2H dilution according to the
Maastricht protocol(16). Body composition was calculated from
body density and total body water using the equation of Siri(17).

Daily physical activity level

The daily PALwasmeasuredusing aDirect Life triaxial accelerom-
eter for movement registration (Tracmor-D, Philips NewWellness
Solutions; http://www.directlife.philips.com). The device is a
small (3·2× 3·2× 0·5 cm), light-weight (12·5 g) instrument. The
accelerometer was attached to the lower back by means of an
elastic belt. It registered accelerations minute by minute, in the
mediolateral (x-axis), longitudinal (y-axis) and anterioposterior
(z-axis) direction of the trunk as described elsewhere(18).

Subjects were instructed to wear the accelerometer for 7
consecutive days, during waking hours except during water
activities. Subjects were advised to maintain their habitual PAL
during the diet intervention. Accelerometer output was
expressed as activity counts per minute. The activity counts
per minute were summed over the entire monitoring period
and divided by the number of monitoring days to determine
the average counts per d.

Daily PAL was calculated based on the activity counts per d
with the formula, PAL= 1·354 þ 256 × 10−9 × counts/d(18). Total
energy expenditure (TEE) was calculated with the formula of
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Bonomi et al., TEE accelerometer (MJ/d)= 0·04þ 0·17 FFM (kg)
þ 1·67 × 10−6 × counts/d(18), where counts/d are activity counts
from the accelerometer.

Energy intake

The weight-maintenance diet to be consumed at home for 3 d
before the intervention was calculated on the basis of TEE as
shown above. The energy contribution of macronutrients of
the weight-maintenance diet prior to the baseline measurement
was 30 % fat, 55 % carbohydrate and 15 % protein.

A written instruction was given to prepare the weight-main-
tenance diet at home. During the weight-maintenance diet, sub-
jects were provided with the diet in an excess amount than TEE
and were allowed to eat more or less from the prescribed diet
according to what they needed (ad libitum). Any additional
intake from those prescribed foods was recorded. All unfinished
foods were collected and returned to the university to calculate
actual energy intake as described previously(19,20).

The OHFDwas givenwith 50 % excess energy above the TEE
of the weight-maintenance diet(21). The energy contribution of
macronutrients of the high-fat diet was 60 % from fat, 25 % from
carbohydrate and 15 % from protein(22,23). FA composition of the
diet was 40 % SFA and 60 % unsaturated FA.

During overfeeding, subjects stayed in the respiration cham-
ber. They were asked to eat all the foods prepared, but on failing
to do so, the leftovers were weighed. The diet consisted of nor-
mal ready-to-eat foods combining a typical Western and Asian
diet. Foods were selected by reviewing the ingredients content
to ensure there was no (or only aminimal) effect of certain ingre-
dients on fat oxidation (such as spices). During overfeeding, the
subjects were also provided with decaffeinated coffee and fruit
tea, as caffeine-containing coffee and tea have also been
reported to increase fat oxidation. Alcohol was not allowed
to be consumed in the respiration chamber. Meal time was
adjusted as follows: breakfast (at 08.00 hours), morning snacks
(at 10.30 hours), lunch (at 12.30 hours), afternoon snacks (at
15.30 hours), dinner (at 18.30 hours) and evening snacks
(at 20.00 hours). At 21.00 hours, the remaining foods from the
last meal (if any) were collected.

Fat biopsies and Western blot analysis

Abdominal subcutaneous adipose tissue biopsies (approxi-
mately 1·5 g) were obtained by needle liposuction under local
anaesthesia (2 % lidocaine, Fresenius Kabi BV) after an overnight
fast, at 08.00 hours in the morning before and after OHFD. The
fat tissues were rinsed in sterile cold saline, frozen in liquid N2

and stored at −80°C until protein isolation.
About 200 mg frozen fat tissue was grinded in a mortar. The

powder was dissolved in 200 μl of 8 M urea, 2 % (w/v) CHAPS
(3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate),
65 mM dithiothreitol per 100 mg biopsy. The homogenate was
vortexed for 5 min and centrifuged at 14000 rpm and at 10°C
for 30 min. The supernatant containing the adipose tissue pro-
teome was carefully collected and aliquots were stored at
−80°C. Protein concentrations were determined by a Biorad
Bradford-based protein assay(24).

Samples with an equal amount of protein were run on a 12 %
denaturing polyacrylamide gel (180 V, Criterion Cell; Bio-Rad).
After electrophoresis, proteins were transferred (90 min, 100 V,
Criterion blotter; Bio-Rad) to 0·45-mm nitrocellulosemembranes.
After Ponceau S staining and destaining, membranes were
blocked for 1 h in 5 % non-fat dry milk powder (NFDM; Bio-
Rad) in Tris-buffered saline containing 0·1 % Tween 20 (TBST)
or 5 % bovine serum albumin (BSA)-TBST depending on the pri-
mary antibody. Thereafter, the blots were incubated, respec-
tively, with antibodies against LPL (1:1000 dilution, Santa Cruz
sc-58780), FABP4 (1:1000 dilution, Cayman 10004944), ATGL
(1:1000 dilution, Cell Signaling 2138), PLIN 1 A/B (1:5000 dilu-
tion, ProGen GP33), HADH (1:500 dilution, Santa Cruz
sc-74650) in 5 % NFDM-TBST overnight at 4°C on a shaker.
For CPT1a (1:500 dilution, Abgent AP2524b) blots were incu-
bated with the primary antibody in 5 % BSA-TBST overnight at
4°C on a shaker. Thereafter, the blots were washed three times
for 10 min in TBST, and then incubated with 1:10 000 dilution
of horseradish peroxidase-conjugated secondary antibody
(DAKO) in 5 % BSA-TBST or 5 % NFDM-TBST for 1 h. The blots
were washed three times for 10 min in TBST. A CCD (charge-
coupled device) camera (XRS-system, Bio-Rad) was used to
detect immunoreactive bands using chemiluminescent substrate
(SuperSignal CL; Pierce). The quantification was performed with

Table 1. Subjects’ characteristics
(Mean values, standard deviations and ranges)

Characteristics

South Asian (n 10) Caucasian (n 10)

P*Mean SD Range Mean SD Range

Age (years) 26 4 21–34 23 2 20–27 0·048
Body weight (kg) 69·2 7·3 62–82 81·9 13·6 70–112 0·035
Body height (m) 1·72 7·9 1·53–1·8 1·81 6·2 1·7–1·9 0·015
BMI (kg/m2) 23·5 2·8 20–28 24·8 3·3 20–32 0·36
FM (%) 22·0 5·1 16–29 22·8 7·2 10–38 0·78
FFM (kg) 53·7 4·3 47–60 61·9 6·4 52–72 0·005
FM:FFM ratio 0·29 0·1 0·19–0·42 0·31 0·1 0·11–0·62 0·71
Waist circumference (cm) 85·1 6·5 77–98 88·2 8·6 77–108 0·37
Hip circumference (cm) 97·7 5·8 90–108 102 9·9 92–126 0·25
Waist:hip ratio 0·87 0·03 0·82–0·9 0·87 0·03 0·82–0·92 0·68
Physical activity accelerometer (103 counts/d) 1254 395 1032–2208 1271 243 1033–2603 0·91

FM, fat mass; FFM, fat-free mass.
*Differences between groups in normally distributed data and non-normally distributed data were assessed using the independent-samples t test and the non-parametric
Mann–Whitney U test, respectively.
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the program Quantity One version 4.6.5 (Bio-Rad). Blots were
normalised to β-actin (1:1000 dilution, Santa Cruz sc-47778) to
correct for differences in protein loading and between runs.

Statistical analysis

Data of subject characteristics and macronutrient intake were
first tested for normal distribution by using the Kolmogorov–
Smirnov and Shapiro–Wilk normality tests. When normality was
met, statistical comparison was assessed using the independent-
samples t test. Non-normally distributed datawere compared using
the non-parametric Mann–Whitney U test. Repeated-measures
ANOVA was used to assess differences in protein-relative abun-
dance before and after OHFD within groups (the effect of diet),
between the groups (the effect of ethnicity) and the interaction
between diet and ethnicity by including body fat percentage as
a covariate. Spearman’s rho correlation was applied to assess the
correlation between changes in proteins. Spearman’s rho correla-
tion was also used to assess the correlation between baseline pro-
tein levels and adiposity measures. The SPSS statistic program
version 16 (SPSS) was used for statistical analysis, and statistical sig-
nificance was set as P< 0·05.

Results

Subject characteristics

South Asian subjects were Indian (n 7), Pakistani (n 1) and
Nepali (n 2). White subjects were Dutch (n 2), German
(n 1), Irish (n 1), Italians (n 2), British (n 1), Portuguese
(n 1) and Polish (n 2). South Asians were measured within
3 years (n 2) and within 1 year (n 8) of their stay in The
Netherlands. Subjects’ characteristics are presented in Table 1.
Subjects were matched for body fat percentage individually.
As a group, average body fat percentage did not differ between
ethnicities (P= 0·78), South Asians (22·0 (SD 5·1) %) and
Caucasians (22·8 (SD 7·2) %). Although absolute FFM was

significantly higher in Caucasians (P= 0·005), the fat mass
(FM):FFM ratio did not differ between groups (P= 0·71).

Waist circumference as a proxy of subcutaneous abdominal fat
volume did not differ between ethnicities (P= 0·37) with the range
in South Asians being 77–98 cm and 77–108 cm in Caucasians.

Energy intake and macronutrient composition during the
dietary intervention

Caucasians had a higher energy need due to a higher FFM, hence
the energy intake was higher than South Asians. During the
weight-maintenance period, the actual energy intake was 11·5
(SD 1·0) MJ/d for South Asians and 12·2 (SD 2·1) MJ/d
(P= 0·39) for Caucasians, where the energy contribution of
the macronutrients was: fat, 29·3 (SD 0·8) % and 28·8 (SD 1·1) %
(P= 0·13); carbohydrate, 55·2 (SD 1·1) % and 56·0 (SD1·5) %
(P= 0·21); protein, 15·5 (SD 0·5) % and 15·4 (SD 0·6) %
(P= 0·70), respectively.

During the period of OHFD under sedentary conditions,
South Asians and Caucasians consumed 150 (SD 13) % and
161 (SD 27) % (P= 0·28) of weight-maintenance requirements,
respectively, resulting in a positive energy balance of 8·0
(SD 1·2) MJ/d in South Asians and 8·5 (SD 1·7) MJ/d in
Caucasians (P= 0·32). The macronutrient composition was
59·4 (SD 0·6) % and 59·0 (SD 0·6) % fat (P= 0·21), 26·3 (SD 0·8) %
and 26·4 (SD 0·7) % carbohydrate (P= 0·77) and 14·3 (SD 0·3) %
and 14·5 (SD 0·4) % protein (P= 0·14) for South Asians and
Caucasians, respectively. The energy intake, energy balance
and macronutrient composition information is provided in the
supplementary material.

The relative abundance and the change of the proteins
responsible in fat metabolism

The change in relative abundance of proteins before and after
OHFD was analysed by correcting body fat percentage
(Table 2). This was done because of a wide range in body
fat percentage in each group, that is from lean to obese. In line

Table 2. Relative abundance and the change of proteins responsible in fat metabolism
(Mean values and standard deviations, South Asians n 10, Caucasians n 10)

Process Protein

Relative abundance of baseline
proteins (before OHFD)

Relative abundance of proteins
after OHFD Change§ (Δ)

South Asian Caucasian South Asian Caucasian South Asian Caucasian

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Mitochondrial β-oxidation HADH 0·114 0·160 0·347 0·486 0·094 0·088 0·231 0·274 −0·020*† 0·116 −0·116*† 0·438
CPT1a 0·054 0·058 0·018 0·023 0·033 0·051 0·059 0·140 −0·021*‡ 0·049 0·041*‡ 0·146

FA storage and release ATGL 0·015 0·018 0·012 0·017 0·029 0·048 0·005 0·005 0·014 0·040 −0·007 0·017
PLINA 0·618 0·420 0·326 0·424 0·502 0·326 0·198 0·194 −0·116† 0·328 −0·128† 0·284
PLINB 0·068 0·072 0·061 0·068 0·123 0·160 0·072 0·141 0·055 0·162 0·010 0·158

FA uptake and handling FABP4 0·298 0·191 0·370 0·322 0·310 0·129 0·423 0·342 0·012 0·187 0·053 0·456
LPL 0·127 0·145 0·302 0·668 0·152 0·158 0·111 0·051 0·025 0·177 −0·191 0·660

OHFD, overfeedingwith a high-fat diet; FA, fatty acids; HADH, short-chain 3-hydroxyacyl-CoAdehydrogenase; CPT1a, carnitine palmitoyl-transferase 1α; ATGL, adipose TAG lipase;
PLINA, perilipin A; PLINB, perilipin B; FABP4, fatty acid binding protein; LPL, lipoprotein lipase.
* P < 0·05 for the effect of diet.
† P < 0·05 for the effect of ethnicity.
‡ P < 0·05 for interaction (diet × body fat).
§ Repeated-measures ANOVA was used to assess differences in the changes in proteins relative abundance within the groups (effect of diet*) and between the groups (effect of
ethnicity†) by including body fat as a covariate (correcting for differences in body fat) and the interaction between diet and ethnicity (Pdiet × ethnicity), as well as the interaction between
diet and body fat.
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with Table 2, a schematic figure to describe the different proc-
esses regulated by the proteins involved in fat metabolism is
shown in Fig. 1. An example of Western blots of perilipin is also
presented in Fig. 2.

Mitochondrial β-oxidation

The relative abundance of HADH was significantly decreased
(P< 0·05) in both South Asians and Caucasians as a response to
OHFD. The decrease was greater (P< 0·05) in Caucasians than
in South Asians; however, HADH level at baseline and after over-
feeding was relatively higher in Caucasians than in South Asians.

The protein CPT1a located in the mitochondrial membrane
decreased significantly with diet in South Asians (P< 0·05),
whereas in Caucasians, CPT1a increased with diet (P< 0·05).
There was an interaction between diet and body fat percentage
(P< 0·05).

Fatty acids release and storage

Protein involved in lipolysis, ATGL, did not change significantly
with diet, although there was an indication to be up-regulated in
South Asians and down-regulated in Caucasians. Proteins
responsible for lipid droplet turnover, PLINA and PLINB, did
not change with diet, although there was an indication for
PLINA to be down-regulated and PLINB to be up-regulated in
both ethnic groups (not statistically significant). The decrease
in PLINA differed between ethnicities; it was greater in
Caucasians (P< 0·05). However, PLINA level at baseline and
after the intervention was relatively higher in South Asians.

Fatty acids uptake and handling

FABP4 and LPL did not change with diet and did not differ
between ethnicities. There was a trend for FABP4, involved in
FA handling within adipocytes, to be up-regulated in both

Fig. 2. Example of Western blots of perilipin. (a) A: Asian (b) C: Caucasian, 1: before overfeeding with a high-fat diet (OHFD), 2: after OHFD. A1-1: Asian subject no. 1
before OHFD; C1-2: Caucasian subject no. 1 after OHFD.

Fig. 1. Coordinated regulation of different process in fat metabolism in the fat cell. Black arrow, South Asians; white arrow, Caucasians; up arrow, up-regulation; down
arrow, down-regulation. LPL, lipoprotein lipase; PLINB, perilipin B; L.c, long-chain; FABP4, fatty acid binding protein; ATGL, adipose TAG lipase; CPT1a, carnitine
palmitoyl-transferase 1α; HADH, short-chain 3-hydroxyacyl-CoA dehydrogenase; PLINA, perilipin A. * P< 0·05 for the effect of diet. † P< 0·05 for the effect of ethnicity.

Molecular adaptation following overfeeding 245

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core . U

niversiteit M
aastricht , on 13 O

ct 2020 at 11:17:25 , subject to the Cam
bridge Core term

s of use, available at https://w
w

w
.cam

bridge.org/core/term
s . https://doi.org/10.1017/S0007114519001260

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0007114519001260


Table 3. Spearman’s rho correlation coefficients of the changes in protein levels with each other (South Asians n 10, Caucasians n 10)

Process Proteins

Mitochondrial β-oxidation FA release and storage FA uptake and handling

CPT1a HADH ATGL PLINA PLINB LPL FABP4

SA Cau All SA Cau All SA Cau All SA Cau All SA Cau All SA Cau All SA Cau All

Mitochondrial β-oxidation CPT1a SA
Cau
All

HADH SA
Cau
All

FA release and storage ATGL SA
Cau
All

PLINA SA 0·73*
Cau 0·67*
All 0·65**

PLINB SA –0·70*
Cau 0·68*
All –0·50*

FA uptake and handling LPL SA 0·75*
Cau 0·68* 0·75*
All 0·58* 0·84**

FABP4 SA 0·73* 0·67*
Cau
All

FA, fatty acids; CPT1a, carnitine palmitoyl-transferase 1α; HADH, short-chain 3-hydroxyacyl-CoA dehydrogenase; ATGL, adipose TAG lipase; PLINA, perilipin A; PLINB, perilipin B; LPL, lipoprotein lipase; FABP4, fatty acid binding protein;
SA, South Asian; Cau, Caucasian.
*P< 0·05, ** P < 0·01
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Table 4. Spearman’s rho correlation coefficients between baseline proteins and adiposity measures (South Asians n 10, Caucasians n 10)

Process Proteins

BMI Percent body fat Absolute FM FM index FM:FFM ratio Waist circumference Hip circumference

SA Cau All SA Cau All SA Cau All SA Cau All SA Cau All SA Cau All SA Cau All

Mitochondrial
β-oxidation

CPT1a SA
Cau
All

HADH SA
Cau −0·71* −0·67* −0·76* −0·73* −0·67* −0·69* −0·72*
All

FA release and
storage

ATGL SA
Cau −0·75* −0·65* −0·66* −0·69* −0·65* −0·67*
All

PLINA SA
Cau
All

PLINB SA
Cau
All

FA uptake and
handling

LPL SA
Cau
All

FABP4 SA
Cau −0·65*
All

FM, fat mass; FFM, fat-free mass; SA, South Asian; Cau, Caucasian; CPT1a, carnitine palmitoyl-transferase 1α; HADH, short-chain 3-hydroxyacyl-CoA dehydrogenase; FA, fatty acids; ATGL, adipose TAG lipase; PLINA, perilipin A; PLINB,
perilipin B; LPL, lipoprotein lipase; FABP4, fatty acid binding protein.
*P< 0·05.
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groups (NS). LPL, involved in FA uptake appeared to be up-regu-
lated in South Asians and down-regulated in Caucasians but did
not reach statistical significance.

Correlation between protein changes

The correlation between protein changes indicates a coordi-
nated regulation of the proteins in fat metabolism as shown in
Table 3. Changes in CPT1a were negatively correlated with
changes in PLINB (P< 0·05) in South Asians and in the combined
group, whereas changes in HADH were positively correlated
with changes in PLINA in South Asians (P< 0·05), Caucasians
(P< 0·05) and the combined group (P< 0·01). Changes in
HADH were positively correlated with changes in LPL in the
combined group (P< 0·05) and with changes in marker of FA
handling FABP4 in South Asians (P< 0·05).

In Caucasians, changes in PLINA were positively correlated
with changes in PLINB (P< 0·05). In addition, changes in
PLINA were positively correlated with changes in LPL in South
Asians (P< 0·05), Caucasians (P< 0·05) and the combined
group (P< 0·01). Changes in PLINB were also shown to be pos-
itively correlated with changes in LPL in Caucasians (P< 0·05),
whereas in South Asians, PLINB was positively correlated with
changes in FABP4 (P< 0·05).

Correlation between baseline proteins and adiposity
measures

Correlations between proteins at baseline with adiposity mea-
sures were only found in Caucasians (Table 4). In this regard,
baseline HADH was negatively correlated (P< 0·05) with BMI,
body fat percentage, absolute FM, FM index, FM:FFM ratio, waist
circumference and hip circumference. Baseline ATGL was neg-
atively correlated (P< 0·05) with all adiposity measures men-
tioned above except with hip circumference, whereas
baseline FABP was negatively correlated (P< 0·05) with abso-
lute FM.

Discussion

Our study demonstrated that the response to OHFD varied
largely between individuals among both South Asian men and
Caucasian men. In addition, proteins involved in mitochondrial
β-oxidation changed significantly with diet. HADH level was
decreased in both ethnicities, whereas CPT1a was decreased
in South Asians and increased in Caucasians. The decrease in
HADH was greater in Caucasians; however, the HADH level
at baseline and after intervention was relatively higher in
Caucasians. PLINA did not change with diet, although there
was an indication towards a decrease and the decrease differed
between ethnicities. The level of PLINA at baseline and after
intervention was relatively higher in South Asians. Other pro-
teins were unaffected by diet, and no ethnic difference
was found.

The large variation in protein abundance at baseline as well
as in the response to overfeeding may be a consequence of the
large variation of subject’s body fat percentage in each group.
Therefore, to assess the changes in protein abundance, we cor-
rected for body fat percentage.

A crucial enzyme for mitochondrial β-oxidation involved in
the rate-limiting acyl-CoA dehydrogenase step(25), HADH, sig-
nificantly decreased in both groups. OHFD for 3 d under seden-
tary condition in a respiration chamber led to a massively
positive energy balance in both groups. In this state, glycogen
stores in the body are maintained(26) and glucose is oxidised
to match carbohydrate intake(27). On the other hand, fat is oxi-
dised to a lesser extent to meet energy requirement. This was
supported by our data from a similar study as presented here(28)

that an extended meal consumption due to overfeeding pro-
longed the postprandial state and prolonged high insulin levels,
which in turn favours fat storage rather than oxidation. Previous
studies by us(20) and others(29,30) have shown higher insulin lev-
els as a response to overfeeding. Moreover, Schmidt et al.(31)

reported a decrease in postabsorptive 24-h fat oxidation follow-
ing 3 d of overfeeding in obesity-resistant subjects but not
changed in obesity-prone subjects (presumably due to a higher
NEFA level from the enlarged FM). Therefore, a decrease in
HADH level as a crucial enzyme in mitochondrial β-oxidation
was as expected. Studies on energy restriction showed the oppo-
site effect in HADH response, where there was an increase after
the intervention(15,32). Interestingly, although the decrease in
HADH was greater in Caucasians, this ethnic group had a rela-
tively higher HADH level at baseline and while decreasing, the
HADH level remained relatively higher after the intervention as
compared with that in South Asians. This may have implication
in the long-term fat metabolism and energy balance mainte-
nance in these ethnicities.

CPT1a, a protein in the mitochondrial membrane, catalyses
the conversion of cytoplasmic long-chain fatty acyl-CoA to acyl-
carnitine, which then enters the mitochondria(15). It changed sig-
nificantly with diet, decreasing in South Asians, but increasing in
Caucasians. This enzyme is a rate-limiting enzyme for mitochon-
drial FA uptake, suggesting that Caucasians may have a higher
ability for mitochondrial FA uptake.

The ATGL abundance was unaffected by overfeeding.
Although there was an indication towards a 2-fold increase
of ATGL in South Asians, whereas about 50 % decrease in
Caucasians, it did not reach statistical significance. ATGL
performs the initial step of TAG hydrolysis, releasing FA and
producing diacyl glycerol; diacyl glycerol is hydrolysed by hor-
mone-sensitive lipase (HSL) resulting a second FA and mono-
acyl glycerol, which is subsequently hydrolysed by monoacyl
glycerol lipase generating glycerol and a final FA. The FA pro-
motes utilisation within the adipocytes or release into the circu-
lation(33). It has been suggested that HSL is the major rate-
limiting enzyme in human lipolysis that regulates both basal
(fed state) and stimulated lipolysis, whereas ATGL plays a role
in the regulation of basal lipolysis(34). The anti-lipolytic effect of
insulin during the postprandial (fed) state is mediated primarily
through phosphorylation or activation of phosphodiesterase
3B which decreases cAMP; subsequently, protein kinase A(35)

activity is inhibited, causing reduced HSL phosphorylation;
accordingly, the HSL translocation from cytosol to the lipid
droplet is inhibited and lipolysis is decreased(33). Thus, high
insulin levels during overfeeding may have a direct impact
on HSL activity as a major rate-limiting enzyme rather than
on ATGL.
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PLINA is the most abundant protein associated with lipid
droplets(36) and in the mouse is able to maintain numerous
and tightly clustered lipid droplets(37). PLINA increases TAG stor-
age by decreasing the rate of basal and stimulated lipolysis(36,37).
The action of PLINA, like the action of HSL, is maintained under
tight hormonal regulation. Catecholamines initiate the activation
of cAMP-dependent protein kinase(35) causing increased PLINA
phosphorylation translocating PLINA away from the lipid drop-
lets to the cytosol. This facilitates accessibility of the degrading
enzyme HSL to the lipid droplets(36). Under high insulin levels,
where cAMP-dependent PKA is inhibited, PLINA is not phospho-
rylated and remains bound to lipid droplets. In the present study
we observed a decrease in PLINA in both groups although not
significant. Of note, the technique that we used (extracting pro-
tein from fat tissue) may limit the observation to unbound PLINA
only. Thus, a decrease in unbound PLINA (less phosphorylated
PLINA) may indirectly reflect more bound PLINA protecting
lipid droplets from lipolysis during overfeeding. An opposite
effect is shown in the energy-restriction study, where PLINA
increases(15). In the present study, the decrease of PLINA was
greater in Caucasians; in addition, PLINA at baseline and after
intervention was relatively higher in South Asians. The relatively
higher PLINA levels in South Asians that play an important role in
the turnover of stored TAG may influence the long-term energy
utilisation in this population.

Another perilipin isoform, PLINB, did not change with diet.
There was an increase in both ethnicities but not statistically sig-
nificant. Insulin was reported to stimulate the accumulation of
PLINB at the plasma membrane to protect newly synthesised
TAG as a product of reesterification of exogenous FA(38).
Others suggested increased PLINB was associated with the for-
mation of small lipid droplets(15). In Caucasians, PLINB showed a
positive correlation with PLINA and LPL, suggesting coordinated
regulation between FA uptake, the formation of small lipid
droplets, and of the larger lipid droplets. In South Asians and
the combined group, PLINB showed a negative correlation with
CPT1a.

The process of FA uptake by adipocytes occurs in two
stages, hydrolysis of circulating TAG by LPL bound to the capil-
lary endothelium, followed by tissue uptake of the resultant
FA(39). Surprisingly, LPL did not change with overfeeding.
Although there was an indication towards an increase in
South Asians and a decrease in Caucasians, it did not reach stat-
istical significance. Our explanation is that as previously
reported in a tracer study(39), entrapment of FA in adipose tissue
during the postprandial period varies markedly with time. After
the meal, TAG extraction increases reflecting an increased LPL
activity. Entrapment of FA (tracers) is approximately 100 % at
60 min and falls during the 6-h postprandial period to approx-
imately 10–30 % at 360 min suggesting a highly regulated proc-
ess. The up-regulation of FA entrapment in adipose tissue
follows a time course similar to that of the increase in insulin
concentration(39). Thus, it seems that time course of observation
for LPL activity (or content) may be important, as LPL is higher
at the postprandial period and lower at the postabsorptive
period when the fat biopsy samples were taken. In our study,
the last meal (evening snacks) was given at 20.00 hours and fat

biopsy samples were taken at 08.00 hours in the morning in
fasting condition both before and after OHFD. Presumably,
the LPL activity (or content) has decreased due to a decrease
in substrate (TAG) load during the postabsorptive period.
Hence, a small difference in LPL levels before and after over-
feeding might not be detected.

Despite unaffected LPL level by the diet, LPL consistently
showed a significant positive correlation with PLINA in South
Asians and Caucasians, and the correlation became stronger in
the combined groups. This suggests a coordinated regulation
between FA uptake and storage. In Caucasians, LPL also showed
a significant positive correlation with PLINB, indicating an
increased protection of newly synthesised TAG or small fat drop-
lets made from exogenous FA (re-esterification)(15).

We did correlation analysis between baseline protein
expression and adiposity measures. Interestingly, significant
correlations between some proteins and indexes of adiposity
were found in Caucasians but not in South Asians. HADH
showed a significant negative correlation with adiposity mea-
sures such as BMI, body fat percentage, absolute FM, FM index,
FM:FFM ratio, waist circumference and hip circumference.
This is in line with a study by Marrades et al.(12) showing that
several transcripts encoding key enzymes in the β-oxidation
cycle including sc-HADH were down-regulated in obese sub-
jects as compared with lean subjects when consuming a
high-fat diet. In addition, a protein responsible for lipolysis
(ATGL) showed a negative correlation with all adiposity
indexes mentioned above, except with hip circumference.
Bouwman et al.(15) reported an up-regulated ATGL protein
upon weight loss (after energy restriction) and reduced body
FM, thus supporting this finding. In contrast, Mairal et al.(40)

found that the ATGL mRNA levels were unaffected by obesity
and weight reduction.

A limitation of the present study was the small sample size
and perhaps the wide range in body fat percentage due to diffi-
culty in finding subjects for a labour-intensive study. Thus, future
comparative proteomic studies between South Asians and
Caucasians may have to observe subjects with matched body
fat percentage, but preferably with a more homogenous (within
a narrow range of) body fat percentage; that is a study on lean
South Asians and Caucasians or a study on overweight
South Asians and Caucasians. In addition, analysing FA profiles
of adipose tissue in both ethnicities before and after OHFD
may be useful to understand the adaptation occurs in adipose
tissue.

In summary, we observed a significant decrease in HADH as
a crucial enzyme in mitochondrial β-oxidation in South Asians
and Caucasians as a response to OHFD. Although the decrease
was larger in Caucasians, this group had a relatively higher
HADH level at baseline and remained higher after decreasing
as compared with South Asians. CPT1a decreased in South
Asians but increased in Caucasians in response to a high-fat over-
feeding. On the other hand, South Asians had a relatively higher
PLINA level. The differences in HADH and PLINA levels as well
as in the response of CPT1a between ethnicities may be impor-
tant for the long-term regulation of energy (fat) metabolism in
these populations.
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