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Abstract
In vivo experiments are accompanied by ethical issues, including sacrificing a large number of animals as well as large costs.
A new in vivo 3D screening system was developed to reduce the number of required animals without compromising the
results. The present pilot study examined a multiwell array system in combination with three different collagen-based
biomaterials (A, B and C) using subcutaneous implantation for 10 days and histological and histomorphometrical
evaluations. The tissue reaction towards the device itself was dominated by mononuclear cells. However, three independent
biomaterial-specific tissue reactions were observed in three chambers. The results showed a mononuclear cell-based tissue
reaction in one chamber (A) and foreign body reaction by multinucleated giant cells in the other two chambers (B and C).
Statistical analysis showed a significantly higher number of multinucleated giant cells in cases B and C than in case A (A vs.
B; ***P < 0.001), (A vs. C; P < 0.01). These outcomes were comparable to previously published observations with
conventional biomaterial implantation. The present data lead to the conclusion that this 3D screening system could be an
alternative tool to enhance the effectiveness of in vivo experiments, thus offering a more economic strategy to screen
biomaterial-related cellular reactions, while saving animals, without influencing the final outcome.

Graphical Abstract

1 Introduction

The rapid development of biomaterials introduces many
different bone and soft-tissue substitutes, which increase the
need for preclinical in vivo studies to achieve the translation
of such materials. Previous publications have underlined the
efficiency of animal experiments in subcutaneous implan-
tation models [1–3]. In this context, various large and small
animal models have been established to evaluate the tissue
response to biomaterials, as well as their regenerative
potential [4, 5]. Recently, our group systematically investi-
gated tissue reaction to different collagen membranes using
standardized subcutaneous implantation [6–8]. A large
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number of animals was required to understand the inflam-
matory pattern induced by various collagen membranes.
Mainly, two different cellular reactions were observed [4].
The first type of tissue response was a mononuclear cell-
based inflammatory response leading to biomaterial inte-
gration, as shown in a bilayered collagen matrix, which
could be successfully translated to clinical cases [6]. The
analysis of another bilayered collagen also showed a
mononuclear reaction, resulting in its integration within the
peri-implantation bed [6, 8, 9]. The second type of tissue
response was represented by the formation of multinucleated
giant cells (MNGCs) as a sign of a foreign body reaction,
leading to the disintegration of the evaluated biomaterials
[10–12]. This conventional in vivo concept implicates the
need to sacrifice a large number of animals, which is
accompanied by ethical and cost problems. These concerns
also influence the in vivo experimental capacity. Although
continuing efforts have attempted to optimize the in vitro
models and build complex 3D systems to imitate the in vivo
tissue reaction, there is still no acceptable way to replace
animal models [13, 14]. Therefore, the development of
in vivo techniques is desired to reduce the number of
required animals and simultaneously enhance the effective-
ness of the chosen animal experiments. One such innovation
is the concept of a multiwell array system that allows the
examination of different materials and conditions in one
same animal. This system previously succeeded in analyzing
pre-cultured cells under 36 different conditions by direct
implantation in one animal, showing comparable outcomes
to the conventional in vivo methods. The present pilot study
was aimed to evaluate such an array device in combination
with three collagen-based biomaterials. The principal focus
was placed on the tissue reaction toward the multiwell
device itself and the cellular reaction induced by the three
collagen-based biomaterials within the device. Additionally,
the effectiveness of this system was determined by com-
paring the present tissue response to previously observed
results after implantation of the same biomaterials using
conventional techniques [6, 10].

2 Materials and methods

The three-dimensional master device with a size of 8 ×
8 × 1.9 mm comprising nine wells with dimensions of
1.1 × 1.1 × 1.6 mm was produced by means of stereo-
lithography (EnvisionTec Perfactory, Germany). The
device was designed in Rhinoceros 3D (McNeel Europe)
and consists of a poly(ethylene oxide terephthalate)/poly
(butylene terephthalate) (PEOT/PBT) copolymer (Poly-
Vation BV, Groningen, The Netherlands) [13]. The Com-
mittee on the Use of Live Animals in Teaching and Research
of the State of Rhineland-Palatinate, Germany, approved the

implementation of this study. Subcutaneous implantation
was performed according to previously described techniques
[15]. In summary, the multiwell system was loaded as fol-
lows. The first row included three chambers and was filled
with three different collagen-based biomaterials: collagen A,
a non-cross-linked bilayered collagen matrix of porcine
origin (Mucograft®, Geistlich Biomaterials, Wolhousen,
Switzerland); collagen B, a non-cross-linked membrane of
collagen and elastin obtained from the porcine dermis
(Mucoderm®, Botiss Biomaterials, Berlin, Germany); and
collagen C, a non-cross-linked, bilayered collagen-based
biomaterial derived from the porcine dermis (BEGO Col-
lagen Fleece®, BEGO Implant Systems, Bremen, Germany).
The middle row had three wells that were kept empty to be
used as a control. The last row was again loaded with the
same three biomaterials as the first row (Fig. 1a). After
intraperitoneal anesthesia of four CD-1 mice (Charles River
Laboratories, Germany), the loaded device was implanted in
the prepared pocket (n= 4 mice). Ten days after implan-
tation, animals were sacrificed by an overdose of ketamine
and xylazine, and the screening device was explanted along
the peri-implant tissue and was fixed in 4% formalin for
24 h [16]. Tissue preparation for the histological analysis
followed previously established standard methods [10, 17].
Briefly, the specimen were stained with hematoxylin and
eosin (H&E), Azan and Movat Pentachrome. Histological
evaluation was performed using an ECLIPSE 80i micro-
scope (Nikon, Tokyo, Japan) connected to a DS-Fi1/digital
camera (Nikon) on an automatic scanning table (Prior,
Rockland, Mass) to present the tissue response and
inflammatory pattern as previously described [18]. For
histomorphometry, the total scan, which is a digitalizing
method of the histological slide by automatically assem-
bling 100–200 images of the implantation area was used.
The number of multinucleated giant cells (MNGCs) and
area of each membrane chamber were determined using the
“annotation and measurement” options in the software NIS
Elements [19]. The data are expressed as the means and
average in MNGCs per mm2. The graphical illustration and
statistical analysis were performed using version 7
(GraphPad Software Inc., LaJolla, USA) and one-way
analysis of variance (ANOVA) with Tukey’s multiple
comparisons test (α2= 0.05) according to the following p
values (*P < 0.05), (**P < 0.01), (***P < 0.001) or (****P
< 0.0001).

3 Results

Particular interest was directed to the inflammatory pattern of
the multiwell device itself as well as three different collagen
biomaterials with a known inflammatory reaction to compare
the outcomes with already published results from
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conventional in vivo methods. All animals survived implan-
tation, and no signs of necrosis or hemorrhage were observed
within the implantation site. The screening device allowed the
observation of three specific tissue reactions according to the
different biomaterials (Fig. 1a, b). The margin of the device,
which was used as an additional control for the tissue
response to the device itself, revealed no evidence of a foreign
body reaction. The device was surrounded by host connective
tissue containing mononuclear cells (Fig. 1c). Host tissue
appeared to grow slowly into the empty chambers (Fig. 1d).
The first chamber with collagen A exhibited a tissue response
typified by mononuclear cells only. These cells were adherent
to the surface of the collagen matrix, and single mononuclear
cells were found between the collagen fibers of the membrane
(Fig. 2a1–a3). The second chamber with collagen B showed a
different tissue reaction. In this case, mononuclear cells were
detectable on the upper part of the biomaterial and multi-
nucleated giant cells, as a sign of a foreign body reaction,
were visible on the surface (3.3 ± 0.65 MNGCs/mm2) (Fig.
2b1–b3). In the third chamber, where collagen C was located,
a larger number of mononuclear cells was observed, most of

them in the form of macrophages. Additionally, multi-
nucleated giant cells were identified on the surface of the
membrane (2.8 ± 0.54 MNGCs/mm2) (Fig. 2c1–c3). Statis-
tical analysis showed that the number of MNGCs found
within the implantation region of collagen B, as well as the
number of MNGCs within collagen C, was significantly
higher than that within collagen A (A vs. B; ***P < 0.001),
(A vs. C; P < 0.01). However, no statistically significant dif-
ference was detected comparing collagen B and collagen C
(Fig. 3).

4 Discussion

Animal experiments are widely used to examine different
drugs, enhance the development of biomaterials and help
validate the safety of novel therapies [20]. However, in vivo
experiments are also associated with ethical issues and large
costs. Accordingly, this pilot study introduced a new in vivo
3D screening system that enables the implantation of
numerous materials into one animal. In this regard, the

Fig. 1 a The multiwell 3D
screening system. b Total scan
picture demonstrates the well
system on one slide including
collagen (a–c). The margins of
the device were used to evaluate
the tissue reaction to the device
itself. Host connective tissue
(CT) surrounded the device and
contained few mononuclear
cells, Azan staining ×100
magnification. c The marginal
area (MAD=multiwall Array
Device) showing connective
tissue (CT) with single
mononuclear cells (blue arrows),
H and E staining, ×100
magnification, Scale bar=
200 µm. d The tissue reaction
toward the multiwell screening
device (MAD) in the empty
implanted chamber. Tissue
ingrowth into the well system
was observed. This host
connective tissue (CT) exhibited
few mononuclear cells (blue
arrows), H and E staining, ×100
magnification, Scale bar=
200 µm. e High magnification of
the connective tissue (CT) inside
the empty chamber including
only mononuclear cells (blue
arrows), H and E staining, ×400
magnification, Scale bar=
50 µm
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device allows the implantation of up to 9 different materials
or conditions in one small animals. Furthermore, ongoing
development of the device may allow the evaluation of up
to 100 different materials in one large animal. The present
pilot study evaluated the application of only one device
(3 × 3 wells). It is conceivable, that it is possible to implant
more than one device in different localization in for
example in rats. However, more investigations are needed to
validate these approaches. Although the device accom-
modates different materials within a minimal space, differ-
entiation between the tissue reaction based on mononuclear
cells and a foreign body reaction by multinucleated giant
cells within the adjacent chambers was possible. Thus, the

observed reactions were localized in a particular interaction
region with the specific collagenous biomaterials within
their implantation zone. The cellular reactions to the bio-
materials within the screening device correspond to the
previously seen tissue responses using conventional sub-
cutaneous implantation. Accordingly, collagen (A) i.e., the
non-cross-linked collagen matrix Mucograft® has been
previously investigated in the conventional subcutaneous
animal model [6]. The results also indicated a reaction
based on only mononuclear cells, similar to the reaction
observed in the present study. Moreover, presence of mul-
tinucleated giant cells in the case of collagen (B) i.e., the
thick collagen matrix Mucoderm® and collagen (C) i.e., the

Fig. 2 a1–3 The reaction in the first well. a1 The host forms cell-rich
connective tissue on the surface of the collagen membrane (CM) and
includes mononuclear cells (blue arrow heads), (Azan staining, ×10
magnification, 200-µm scale bar). a2 Mononuclear cells in Movat
Pentachrome staining (×200 magnification, 200-µm scale bar). a3 the
central region of collagen A was penetrated by mononuclear cells only
(blue arrow heads). b1–3 The second chamber. b1 overview of the
implantation region of chamber b showing the collagen membrane B
(CM) under the epithelium (EP), Azan staining, ×10 magnification,
200-µm scale bar). b2 single multinucleated giant cells (red arrows) are
detectable on the surface of the membrane in chamber B, Movat

Pentachrome staining (×200 magnification, 200-µm scale bar). b3
Multinucleated giant cells (red arrows) are clearly visible in the second
well in H&E staining (×400 magnification, 50-µm scale bar). c1–3 The
third chamber. c1 overview of the implantation region of chamber c
showing the collagen membrane C (CM) under the epithelium (EP),
Azan staining, ×10magnification, 200-µm scale bar). b2 single mul-
tinucleated giant cells (red arrows) are detectable on the surface of the
membrane in chamber B, Movat Pentachrome staining (×200 magni-
fication, 200-µm scale bar). c3 Multinucleated giant cells (red arrows)
are clearly visible in the second well in H&E staining (×400 magni-
fication, 50-µm scale bar)

61 Page 4 of 6 Journal of Materials Science: Materials in Medicine (2019) 30:61



BEGO collagen Fleece was previously observed in a con-
ventional subcutaneous implantation model at the corre-
sponding time points [7, 10]. These outcomes highlight that
the screening device did not influence the tissue reaction
with the collagen-based biomaterials, underlining the ade-
quate bioinert character of this system. In this context, it is
hardly possible to perform similar surgical implantation by
preparing multiple pockets without connection in the same
small animal. However, within the limitation of the present
pilot study this approach was not tested. These findings lead
to the conclusion that the implantation of more than one
biomaterial in one animal allows for observation of different
material-specific tissue reactions within a compromised
space in the same animal. In the present study each well of
the device served as a separated pocket. No interaction or
crosstalk was observed. However, when implanting differ-
ent biomaterials within the same animal without separation,
it is very likely assumable that a crosstalk would take place
and the biomaterial-induced cellular reaction may not be
evaluated accurately. Using this type of system offers new
strategies for biomaterial research and tissue engineering
[13, 14]. The benefits are not only the implantation of
diverse materials into one animal but also the possibility of
a direct histological comparison of the results on one slide,
as is shown (Fig. 2b). Another feature of this device is its
combined in vitro and in vivo application, indicating that
this system is valuable for use for cell culture and further
in vivo implantation of pre-cultured materials [13, 14].
Additionally, the multiwell 3D system could serve as a tool
to assess proof of concept. When comparing the number of
animals used with this multiwell device to the number of
animals that would otherwise be used for conventional
methods, it is obvious that the application of the multiwell
screening system significantly reduces the number of
required animals without affecting the results (Table 1).
This represents a large saving in the number of required
animals. These approaches represent a responsible means of
dealing with animal experiments according to the principles

of the 3Rs (Replacement, Reduction and Refinement) to
enhance the effectiveness of animal experiments and also
combines a more economical and ethically acceptable path
for future research [21–23].

5 Conclusion

The present pilot study evaluated a novel in vivo 3D
screening system, which allows the implantation of
numerous materials into one animal. The application of the
multiwell screening device enabled the observation of two
biomaterial-specific cellular reactions (mononuclear trig-
gered vs multinucleated giant cells triggered reaction)
within the same animal without interference. The outcomes
were identical to the previously observed cellular reaction
by conventional implantation. This 3D screening system
leads to a significant reduction of the required number of
animals and promotes the effectiveness of in vivo experi-
ments, offering new possibilities for research in biomater-
ials and tissue engineering.
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