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RESEARCH ARTICLE Open Access

Preclinical pharmacokinetic evaluation to
facilitate repurposing of tyrosine kinase
inhibitors nilotinib and imatinib as antiviral
agents
Hari Krishna Ananthula1, Scott Parker2, Erin Touchette2, R. Mark Buller2ˆ, Gopi Patel3, Daniel Kalman3,
Johanna S. Salzer4, Nadia Gallardo-Romero4, Victoria Olson4, Inger K. Damon4, Tessa Moir-Savitz5, Larry Sallans6,
Milton H. Werner7, Catherine M. Sherwin8 and Pankaj B. Desai1*

Abstract

Background: Several tyrosine kinase inhibitors (TKIs) developed as anti-cancer drugs, also have anti-viral activity
due to their ability to disrupt productive replication and dissemination in infected cells. Consequently, such drugs
are attractive candidates for “repurposing” as anti-viral agents. However, clinical evaluation of therapeutics against
infectious agents associated with high mortality, but low or infrequent incidence, is often unfeasible. The United
States Food and Drug Administration formulated the “Animal Rule” to facilitate use of validated animal models for
conducting anti-viral efficacy studies.

Methods: To enable such efficacy studies of two clinically approved TKIs, nilotinib, and imatinib, we first conducted
comprehensive pharmacokinetic (PK) studies in relevant rodent and non-rodent animal models. PK of these agents
following intravenous and oral dosing were evaluated in C57BL/6 mice, prairie dogs, guinea pigs and Cynomolgus
monkeys. Plasma samples were analyzed using an LC-MS/MS method. Secondarily, we evaluated the utility of
allometry-based inter-species scaling derived from previously published data to predict the PK parameters, systemic
clearance (CL) and the steady state volume of distribution (Vss) of these two drugs in prairie dogs, an animal model
not tested thus far.

Results: Marked inter-species variability in PK parameters and resulting oral bioavailability was observed. In general,
elimination half-lives of these agents in mice and guinea pigs were much shorter (1–3 h) relative to those in larger
species such as prairie dogs and monkeys. The longer nilotinib elimination half-life in prairie dogs (i.v., 6.5 h and
oral, 7.5 h), facilitated multiple dosing PK and safety assessment. The allometry-based predicted values of the Vss
and CL were within 2.0 and 2.5-fold, respectively, of the observed values.

Conclusions: Our results suggest that prairie dogs and monkeys may be suitable rodent and non-rodent species to
perform further efficacy testing of these TKIs against orthopoxvirus infections. The use of rodent models such as
C57BL/6 mice and guinea pigs for assessing pre-clinical anti-viral efficacy of these two TKIs may be limited due to
short elimination and/or low oral bioavailability. Allometry-based correlations, derived from existing literature data,
may provide initial estimates, which may serve as a useful guide for pre-clinical PK studies in untested animal
models.
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Background
Recent reports suggest that tyrosine kinase inhibitors
(TKIs), which are extensively used as targeted anti-cancer
agents, may also have anti-viral applications. As a conse-
quence of their ability to inhibit the activity of cellular
Abelson tyrosine kinases (c-Abl1 and c-Abl2), viral egress
from infected cells is impeded preventing further spread
of disease [1–3]. Accordingly, these agents are being in-
vestigated to assess their efficacy against viral pathogens
such as monkeypox virus, variola virus (the causative
agent of smallpox), and filoviruses (Ebola and Marburg).
The potential use of such agents as anti-viral therapeutics
represents an attractive strategy for repositioning drugs
approved by US Food and Drug Administration (FDA) as
readily available medical countermeasures (MCMs) a
gainst such biological threats. Given that the therapeutic
window and critical aspects of the clinical pharmacology
of such compounds are well delineated, these agents can
be readily deployed if efficacy can be established and regu-
latory approval is achieved.
A major challenge in the development of effective thera-

peutics against highly pathogenic viral diseases is the eth-
ical constraint that prohibits human trials and the
pragmatic issues associated with conducting field efficacy
studies during a sporadic outbreak and identifying asymp-
tomatic patients who might benefit from therapy [4]. In
these situations, efficacy assessments require the use of
appropriate pre-clinical approaches that employ both in
vitro assays and animal models, which are best suited for
viral replication and recapitulate human disease. Animal
models provide insights beyond what can be gained from
in vitro evaluation of the antiviral activity. An ideal model
is one which utilizes a human equivalent infectious dose
and a route of infection that mimics natural transmission
of the pathogen and exhibits a disease course, morbidity,
and mortality similar to human disease [5]. To provide a
regulatory framework for this purpose, the FDA devised
the “Animal Efficacy Rule” (a.k.a ‘Animal Rule’), directing
the use of appropriate animal models to demonstrate the
effectiveness of MCMs [4].
A critical issue, however, is that PK information on test

agents is not routinely available in the specific animal
models necessary for evaluating efficacy against patho-
gens. Thus, an important prerequisite is to determine key
PK parameters of test agents in these animal species so
anti-viral effectiveness can be assessed with dosing regi-
mens likely to yield plasma drug levels within the estab-
lished therapeutic range. Eventually, such studies can then
help derive pharmacokinetic-pharmacodynamic (PK-PD)
correlations so that appropriate doses may be employed to
yield the systemic exposure necessary of anti-viral activity
in humans.
Some of the animal models that are used for anti-viral

testing include susceptible strains of mice, guinea pigs,

prairie dogs and monkeys [6, 7]. Due to their sensitivity
to most inoculation routes, mice have been widely used
to study various pathogens. In the case of monkeypox
virus, prairie dog has been shown to be a suitable animal
model [8]. For instance, the efficacy of oral administra-
tion of ST-246 against a lethal respiratory challenge with
monkeypox virus was tested in prairie dogs [9]. Finally,
non-human primates have also been used to evaluate an-
tivirals against orthopoxviruses, particularly monkeypox
virus and variola virus [10, 11]. Efficacy of several inves-
tigational agents against filoviruses has also been carried
out in guinea pigs, and non-human primates with the
postulation as basic disease manifestation are similar to
that seen in humans [7, 12].
Efforts are currently in progress to investigate the use

of nilotinib and imatinib, two marketed TKIs, as antiviral
agents employing the above-indicated animal species. As
an important first step, we evaluated the PK and abso-
lute oral bioavailability of these agents in mice, prairie
dogs, guinea pigs and Cynomolgus monkeys. The pri-
mary objective was to use these results to optimize the
dosing regimen to attain a systemic exposure within the
clinical therapeutic range to facilitate efficacy testing
against the challenge virus. Secondarily, we assessed the
utility of allometry-based inter-species PK modeling as a
predictive tool for PK parameters including clearance
and volume of distribution in animal species such as
prairie dogs typically not used in pre-clinical drug devel-
opment stages.

Methods
Materials
Nilotinib and imatinib were purchased from Selleck
Chemicals (Houston, TX). HPMC (hydroxypropyl meth-
ylcellulose, a.k.a. Methocel E6) was provided as a re-
search sample from Dupont Chemicals and Kolliphor®
EL (a.k.a. Cremophor EL; polyoxyl castor oil) was pur-
chased from Sigma-Aldrich. Ethyl acetate, methanol,
acetonitrile and all other analytical grade reagents were
purchased from Fisher Scientific.

Formulations
Imatinib was formulated as a solution in sterile water for
both intravenous (IV) and oral administration in all spe-
cies. Nilotinib was formulated in ethanol: PEG300: Kolli-
phor EL (1.5:4.5:20, v/v/v) in 3.7% dextrose solution for
intravenous administration in all species. For oral ad-
ministration, nilotinib was formulated as nilotinib/NMP
(1-methyl-2-pyrrolidinone) (20 mg/ml) in PEG 300
(1:10) for mice and initial prairie dog studies. For oral
administration in guinea pigs, monkeys and subsequent
studies in prairie dogs, nilotinib was formulated as a sus-
pension consisting of 1.5% Avicel®-RC 591 and 0.3%
HPMC.
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Animal studies
PK studies in animals were approved by the Institutional
Animal Care and Use Committee (IACUC) of the institu-
tion performing the study. Mouse studies were conducted
at Emory University (C57BL/6, IACUC # 2003021).
C57BL/6 mice (20 g) were obtained from Jackson Labora-
tory. Twenty-four animals were used for each route of ad-
ministration and both the genders were randomly
included (n = 3 mice per time point). The intravenous
dose was administered via tail vein injection at an injec-
tion volume of 5ml/kg, and the oral dose was given via
gavage at a dose volume of 10ml/kg. The blood samples
(0.5–1ml) were withdrawn from the submandibular vein
and collected into EDTA tubes at pre-dose and at 0.5, 1, 2,
4, 8, 12 and 24-h post-dose. Mice were sacrificed with car-
bon dioxide asphyxiation following bleeds. Plasma was
prepared and stored at -80o C until bioanalysis.
Prairie dog PK studies were performed at Centers

for Disease Control and Prevention (CDC, Atlanta).
Twenty-six wild-caught male black-tailed prairie dogs
(Cynomys ludovicianus) aged 1–2 years were used in
this study in accordance with CDC IACUC policies
and procedures under an approved animal protocol
(IACUC # 2450SALPRAC). The prairie dogs were ob-
tained from a provider regulated and licensed by
United States Department of Agriculture (dealer’s li-
cense number: 74-B-0638 and wildlife permit number
6523). The animals were collected in Lubbock, TX.
All animals are given full physical examination by a
veterinarian prior to being shipped to CDC. Prairie
dogs were individually housed for the 24-h period for
each study. The animals received a single oral dose of
nilotinib prepared as either NMP/PEG 300 formula-
tion (n = 5) or Avicel/HPMC formulation (n = 6) or
intravenous dose (n = 5). Another set of animals re-
ceived a single oral dose (n = 5) or intravenous dose
(n = 5) of imatinib. Serial blood samples (~ 200–
400 μl) were taken pre-dose and at 0.5, 1, 2, 4, 8, 12
and 24 h following oral administration at a dose vol-
ume of 2 ml/kg or intravenous administration at an
injection volume of 1 ml/kg. For each blood sample
collection, prairie dogs were anesthetized with 5% iso-
flurane gas and maintained with 1–3% isoflurane dur-
ing sample collection through peripheral veins.
Plasma was prepared and stored at -70o C until bioa-
nalysis. Additionally, multiple dose PK study of niloti-
nib was performed in prairie dogs at three different
dosage regimens, 7 mg twice-daily, 20 mg once-daily,
and 20 mg twice-daily for 7 days using NMP/PEG 300
formulation. Blood samples were collected immedi-
ately after nilotinib administration on Days 1 and 7
(to represent peak drug levels) and pre-dose sample
on Day 7 to reflect steady-state trough drug level,
during the seven-day drug administration.

PK study of nilotinib in guinea pigs upon intravenous
or oral routes was conducted at University of Cincinnati
(IACUC # 13–09–03-01). Male Hartley guinea pigs
(450–650 g) were procured from Charles River. Nine an-
imals were used, three (n = 3) for each route of adminis-
tration. The intravenous dose was given via jugular vein
cannula, and the oral dose was given via gavage. The
volume of dose administration was 1 mg/kg for both
routes of administration. Blood samples (200–250 μl)
were collected by serial sampling through saphenous or
femoral veins into EDTA tubes at pre-dose and at 0.25,
0.5, 1, 2, 4, 8, 12 and 24 h after administration. Add-
itional samples were collected at 0.033 and 0.083 h after
intravenous dosing. Plasma was prepared and stored at
-80o C until bioanalysis.
The oral and intravenous PK study of nilotinib in

Cynomolgus monkeys was performed at Battelle Me-
morial Institute, Columbus, Ohio (IACUC # 38020).
Six Animals (3.5 kg) were procured from Charles
River, three (n = 3) for each route of administration.
Animals were fasted overnight before dosing and at
least 1 h following dose administration. The intraven-
ous dose was given via a saphenous vein at an injec-
tion volume of 1 ml/kg, and oral dosing was
performed via gavage at a dose volume of 5 ml/kg.
The blood samples (~ 1 ml) were collected through
saphenous or femoral veins into tubes containing
K2·EDTA at pre-dose and at approximately 0.083,
0.25, 0.5, 1, 2, 4, 8, 12 and 24 h. post-dose. Plasma
was prepared and stored at-70o C until bioanalysis.

Bioanalysis
Sample preparation and bioanalysis was performed at
the University of Cincinnati. For extraction, 50 μl of
plasma samples were transferred to glass tubes. Plasma
samples containing nilotinib were first acidified with
10 μl formic acid. Subsequently, 10 μl of internal stand-
ard was added (d3-nilotinib or d8-imatinib) to the sam-
ples and mixed. Ethyl acetate and methylene chloride
(1000 μl) were employed as extraction solvents for niloti-
nib and imatinib, respectively. The extraction solvent
was separated by centrifugation. For nilotinib samples,
800 μl of the supernatant organic fraction was collected.
For imatinib samples, 800 μl of the bottom organic layer
was collected. Collected fractions were evaporated using
centrifugal evaporator. Nilotinib samples were then
reconstituted in 100 μl acetonitrile containing 0.2% for-
mic acid, and imatinib samples were reconstituted in
100 μl methanol: water (60%:40%).
Analysis of extracted samples was performed by an

LC-MS/MS method. For imatinib, mobile phase con-
sisted of an isocratic solvent: 71.75%: 15.00%: 13.25%
(water: methanol: acetonitrile) containing 0.2% formic
acid. For nilotinib, mobile phase consisted of a 30%:70%
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solution of acetonitrile with 0.2% formic acid and 10
mM ammonium formate with 0.2% formic acid. The col-
umn was Synergi™ 4 μm Polar-RP 50 × 2.00 mm (Phe-
nomenex) run at a flow rate of 400 μl/min with an
injection volume of 5 μl (partial loop). The retention
time was 6.2 mins for nilotinib and 2.3 mins for ima-
tinib. The analysis was performed using a Thermo Scien-
tific LTQ-FT™ mass spectrometer operated in
positive-ion electrospray mode. The source voltage was
held at 5 kV, with a capillary temperature of 275 °C. The
product ion scans were acquired in profile mode using
an isolation width of 2 and a normalized collision energy
of 20 for nilotinib and 25 for imatinib. The following ion
chromatograms were acquired and quantified: for niloti-
nib, the m/z 530 parent ion producing the m/z 289
product ion; for d3-nilotinib (internal standard), the m/z
533 parent producing the m/z 289 product ion; for ima-
tinib, the m/z 494 parent ion producing the m/z 394
product ion; for d8-imatinib (internal standard), the m/z
502 parent producing the m/z 394 product ion. The cali-
bration curves ranging from 10 ng/ml to 10 μg/ml were
generated from plasma-extracted standards immediately
preceding and following the sequence of samples. A
comparison between the two curves ensured experimen-
tal integrity.

Pharmacokinetic analysis and interspecies correlation
Pharmacokinetic analysis was performed on either mean
plasma concentration-time data (mouse) or on the indi-
vidual plasma concentration-time data (prairie dog, guinea
pig, and monkey) employing Phoenix® WinNonlin 6.4®. PK
parameters such as maximum plasma concentration
(Cmax), the time corresponding to Cmax (Tmax), terminal
half-life (T1/2), the volume of distribution (Vd) and clear-
ance (CL) were calculated by non-compartmental
methods and presented as the arithmetic mean ± standard
deviation (SD). The bioavailability (F) was estimated by
dividing the mean dose-normalized area under the plasma
concentration-time curve from time 0 extrapolated to in-
finity (AUCinf ) upon oral dose by the mean dose-normal-
ized AUCinf upon intravenous dose.
Allometric correlation between body weight (BW) and

CL or volume of distribution at steady state (Vss) was in-
vestigated as a first step followed by a prediction of CL
and Vss in prairie dogs. Intravenous PK parameters pre-
viously reported in literature in mice, monkeys, rats and
beagle dogs [13] were used for allometric correlation of
nilotinib. For imatinib, PK parameters reported in mouse
[14], rats [15], rhesus monkeys [16] and beagle dogs [17]
were used. Pharmacokinetic information from literature
enabled allometric correlation to predict PK parameters
in prairie dogs. The following allometric methods were
investigated for CL prediction. Simple allometry (SA)
(Eq. 1); SA with fup (fraction unbound in plasma)

correction (Eq. 2) and rule of exponents (ROE) (Eqs. 3
or 4). Based on the ROE, if exponent (b) is within 0.55
to 0.70, SA without any correction was used to predict
CL. If, b ≥ 0.71 and < 1, CL was corrected by maximum
lifespan potential (MLP, Eq. 5) for each species and the
allometric correlation was performed between CL ×MLP
vs. BW to predict CL. If, b ≥ 1 and < 1.3, CL was cor-
rected by brain weight (BrW) for each species and the
allometric correlation was performed between CL × BrW
vs. BW to predict CL. The following allometric methods
were investigated for Vss prediction. SA-Vss (Eq. 6);
SA-fup-Vss (Eq. 7); The detailed explanation of all these
methods was reported earlier by the PhRMA CPCDC
initiative on predictive models of human PK prediction
[18]. The protein binding of nilotinib was reported to be
greater than 97% (fup ranged from 0.009 to 0.026) within
all the preclinical species and humans [13]. Likewise,
protein binding of imatinib was between 81 to 97% in
preclinical species and humans [16, 19]. The following
equations describe the allometric correlations.

CL ¼ a� BWb ð1Þ
CL
fuP

¼ a� BWb ð2Þ

CL�MLP or CL� BrW ¼ a� BWb ð3Þ
CL
fuP

�MLP or
CL
fuP

� BrW ¼ a� BWb ð4Þ

MLP ¼ 10:839� BrW0:636 � BW−0:225 ð5Þ
Vss ¼ a� BWb ð6Þ
Vss

fuP
¼ a� BWb ð7Þ

Results
Pharmacokinetics of nilotinib
The plasma concentration-time profiles of nilotinib in
C57BL/6 mice, prairie dogs, guinea pigs and monkeys
are plotted in semilog scale in Fig. 1. The PK param-
eters calculated from measured nilotinib plasma levels
after a single intravenous or oral dose are summa-
rized in Table 1.
In C57BL/6 mice (n = 3 per time point), the oral ter-

minal half-life of nilotinib was 2.94 h. With a 10mg/kg
oral dose, the Cmax of around 18 μg/ml was achieved in
30min after dosing. Oral bioavailability in C57BL/6 mice
was 50%. In prairie dogs (n = 5) administered a 20mg/kg
oral dose of nilotinib formulated in NMP and PEG 300, a
longer terminal half-life of 7.57 h was observed, which was
similar to half-life upon 10mg/kg intravenous dose. The
drug absorption was delayed with an average peak plasma
concentration of 1673 ng/ml appearing 7.2 h post-dose.
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Further, there was large variability in plasma concentra-
tions between animals at all time points with a coefficient
of variation (% CV) ranging from 18 to 91%. The absolute
oral bioavailability was low, approximately 24%. Based on
this single dose PK data, we recommended employing
three dosing regimens, 7 mg twice-daily, 20mg once-daily

and 20mg twice-daily, to evaluate multiple dose tolerance
and determine steady-state plasma nilotinib levels. The
previously obtained single dose PK data were used for pre-
dicting steady-state drug levels following multiple dose ad-
ministration using the principle of superposition. As part
of the multiple dose study, nilotinib plasma levels were

Fig. 1 Plasma Concentration-time plots of nilotinib in (a) C57BL/6 mice, (b) prairie dogs, (c) monkeys, (d) guinea pigs after a single intravenous or
oral dose. Solid line represents IV administration and dotted line represents oral administration. Oral PK profile in guinea pigs was not presented
as the plasma levels were below the lower limit of quantification

Table 1 Summary of preclinical PK parameters of nilotinib after a single intravenous or oral dose in preclinical species. Data, mean ±
SD

PK parameter C57BL/6 mice Prairie dogs Cynomolgus monkeys

IV Dose (mg/kg) 10 10 10

No. of animals 3a 5 3

T1/2 (h) 1.81 6.51 ± 2.97 7.79 ± 0.71

MRT (h) 2.21 6.7 ± 2.9 8.9 ± 1.1

CL (ml/hr./kg) 131.14 190 ± 77 639 ± 141

Vss (ml/kg) 289.77 1157 ± 326 5737 ± 1783

AUC0-inf (ng.hr./ml) 76,252 57,551 ± 15,508 16,135 ± 3296

Oral Dose (mg/kg) 10b 20b 10c 10c

No. of animals 3a 5 6 3

Tmax (h) 0.50 7.2 ± 1.79 5.6 ± 2.19 1.67 ± 0.58

Cmax (ng/ml) 17,979 1673 ± 315 951 ± 255 410 ± 46

Apparent T1/2 (h) 2.94 7.57 ± 2.01 3.5 ± 0.6 5.16 ± 0.52

AUC0-inf (ng.hr./ml) 38,366 27,991 ± 6842 9329 ± 3630 2103 ± 468

Bioavailability (%) 50 24 16 13
aper time point; boral dose prepared in NMP/PEG 300; coral dose prepared in Avicel/HPMC
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measured at the time points corresponding to peak levels
on days 1 and 7 and pre-dose level on day 7, which corre-
sponds to steady state trough level. The predicted multiple
dosing profiles for the three dosing regimens and the ob-
served plasma concentration data are shown in Fig. 2.
Overall, the predicted peak and trough levels on Days 1
and 7 are within the ±25% of reported levels seen upon
each dosage regimen. Our approach facilitated prediction
of plasma nilotinib levels in prairie dogs upon multiple
doses, using prior knowledge of single dose PK profile.
When nilotinib was given orally (n = 6) at 10mg/kg dose
formulated in Avicel/HPMC as a suspension, a terminal
half-life of 3.5 h was observed. The bioavailability of niloti-
nib suspension formulation was found to be 16%.
In guinea pigs (n = 3), nilotinib extensively distributed

into tissues with a Vz of 37.64 L/kg followed by high CL
(11.9 L/hr./kg). Elimination half-life was short (2.1 h), and
systemic nilotinib levels rapidly declined within 1 h of 10
mg/kg intravenous administration. Upon 10mg/kg oral
dose in guinea pigs, nilotinib plasma concentrations were
found to be below 10 ng/ml at all the sampling times.
In Cynomolgus monkeys (n = 3), the oral terminal half-life

was found to be 5.16 h. A maximum plasma level (mean
Cmax) of 410 ng/ml was observed at 1.67 h (mean Tmax)
upon 10mg/kg oral dose. Drug absorption was incomplete
with an absolute oral bioavailability estimated as 13%.

Pharmacokinetics of imatinib
PK of imatinib was investigated in C57BL/6 mice and
prairie dogs. The plasma concentration-time profiles of
imatinib are shown in Fig. 3. PK parameters calculated
from measured imatinib plasma levels after a single intra-
venous or oral dose are indicated in Table 2. C57BL/6
mice exhibited complete imatinib absorption with a

maximum plasma concentration of 1468 ng/ml achieved
1 h after the 10mg/kg oral dose. The half-life of imatinib
was 0.84 h. In prairie dogs, upon 30mg/kg dose, the oral
terminal half-life was 2.2 h (n = 4) and was similar to
intravenous route (n = 5). A maximum plasma concentra-
tion (Cmax) of 1677 ng/ml was achieved, 3 h after the drug
administration. The plasma levels were highly variable be-
tween prairie dogs with high % CV (greater than 50%) at
all time points. One animal was excluded from PK analysis
due to relatively low drug levels and much longer Tmax of
12 h upon oral dose. Overall, imatinib oral bioavailability
value in prairie dogs was low (~ 22%).

Prediction of clearance and volume of distribution in
prairie dogs
Using the proportionality equations by allometric ap-
proaches as described in the methods section, we assessed
the usefulness of interspecies scaling to predict PK param-
eters in prairie dogs, a species that was not previously
employed in PK studies of TKIs. Interspecies scaling using
data from four preclinical species indicated a correlation
between nilotinib PK parameters (CL or Vss) and body
weight (R2 > 0.9) with and without correction for plasma
protein binding. The exponent of CL correlation plot was
1.13, and Vss correlation plot was 1.12. After simple allom-
etry, nilotinib CL in preclinical species was corrected with
brain weight (BrW) to predict CL in and prairie dogs by
the rule of exponents (ROE). The allometry plots are
shown in Fig. 4. The predicted prairie dog CL, Vss and pre-
diction errors by these methods are listed in Table 3. The
predicted prairie dog CL, Vss and prediction errors by
these methods are listed in Table 4. Fold error in prairie
dog CL prediction was 2.24 to 2.5-fold, whereas fold error
in Vss prediction was under 2-fold. For imatinib,

Fig. 2 Prediction of nilotinib peak and trough plasma levels in prairie dogs upon multiple dosing. The dose groups include 7 mg/kg twice-daily,
20 mg/kg once-daily and 20 mg/kg twice-daily. Sold or dotted lines represent predicted profiles and the dots represented observed data
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interspecies scaling using data from four preclinical spe-
cies indicated a correlation between PK parameters (CL or
Vss) and body weight (R2 > 0.9). The exponent of imatinib
CL correlation plot was 0.91 indicating that MLP correc-
tion is needed for CL prediction, as per ROE. The expo-
nent of imatinib Vss correlation was 1.01. The allometry
plots are shown in Fig. 5. The fold error in predicted
prairie dog CL ranged from 1.07 to 2.24-fold of the ob-
served value. The predicted Vss of imatinib in prairie dogs
was greater about 2.25 fold when simple allometry cor-
rected for unbound plasma protein fraction was
employed.

Discussion
Clinical approval of antiviral drugs/biologics as poten-
tial countermeasures to some highly lethal viral

pathogens is not akin to the approval process in other
therapeutic areas either because there are not reliable
sources of patients available for clinical trials or be-
cause it would be unethical to infect humans to con-
duct clinical trials. In these situations, by USFDA’s
‘Animal Efficacy Rule,’ first issued in 2002, the

Fig. 3 Plasma Concentration-time plots of imatinib in (a) C57BL/6 mice, (b) prairie dogs after a single intravenous or oral dose. Solid line
represents IV administration and dotted line represents oral administration

Table 2 Summary of preclinical PK parameters of imatinib
(mean) after a single intravenous or oral dose in preclinical
species. Data, mean values

PK parameter C57BL/6 mice Prairie dogs

IV Dose (mg/kg) 10 10

No. of animals 3a 5

T1/2 (h) 0.88 2.8 ± 1

MRT (h) 0.77 2.02 ± 0.24

CL (ml/hr./kg) 2212 821 ± 179

Vss (ml/kg) 1697 1666 ± 464

AUC0-inf (ng.hr./ml) 4522 12,558 ± 2189

Oral Dose (mg/kg) 10 30

No. of animals 3a 4

Tmax (h) 1 3 ± 1.15

Cmax (ng/ml) 1468 1677 ± 834

Apparent T1/2 (h) 0.84 2.2 ± 0.6

AUC0-inf (ng.hr./ml) 4852 8092 ± 3012

Bioavailability (%) 107 22
aper time point

A

B

Fig. 4 Allometric correlation plots of nilotinib (a) Simple allometry,
(b) Simple allometry with ROE correction. The solid triangle symbol
(▲) represents observed volume of distribution and solid square
symbol (■) represents observed clearance. The open symbols
represent predicted values.
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regulatory approval is based on demonstration of effi-
cacy in appropriate animal models and the utilization
of these models to construct PK assessments to sup-
port the human dose and the course of therapy [4].
The first drug approved under Animal Rule was pyri-
dostigmine bromide, which is indicated for use after
exposure to a nerve agent, Soman. The first biologic
approved under this rule was raxibacumab, a mono-
clonal antibody intended to treat anthrax. To date, 12
products have been approved utilizing the Animal
Rule, with more than half of them in the last
three-four years, while several others such as the anti-
viral agents, tecovirimat (ST-246) and brincidofovir
(CMX001) are under development indicating the in-
creasing utility of this regulatory pathway [20–22].
Recent evidence indicates that TKIs, primarily devel-

oped as targeted anti-cancer drugs, exhibit antiviral ac-
tivity, which is appealing in the context of their potential
use as countermeasures against orthopoxviruses such as
variola and monkeypox viruses [1]. Thus, in this study,
we sought to characterize the PK of TKIs in various ani-
mal models to facilitate appropriate species selection for
efficacy studies under the Animal Rule. A major
pre-requisite for conducting non-clinical efficacy trials is
to determine appropriate dosing regimens that would re-
sult in systemic exposure obtained clinically. However,
these studies may use animal species, such as the prairie
dog, that are necessary because of the specific viral
model needed for efficacy testing. Since such animal
models are not routinely used in early drug development

stage, PK studies, as well as modification in the formula-
tion due to inter-species physiological differences are
often warranted before the efficacy assessments for FDA
approval. Here approaches such as allometry based
inter-species scaling, that are typically used for predict-
ing human PK as an aid to first-in-human dose deter-
mination, may also be used to gain some insights a
priori into clearance and Vss. Thus, as an overall second-
ary objective, we tested the predictability of PK data in
animal models such as prairie dogs, heretofore not uti-
lized for drug development, by interpolation of PK data
across animal species.
Small animal models employed in our PK studies in-

cluded C57BL/6 mice and guinea pigs. As indicated earl-
ier, the oral bioavailability of these two drugs in C57BL/
6 mice was quite high (50 and 100% for nilotinib and
imatinib, respectively). However, the elimination
half-lives were quite short (1–2 h). Thus, further testing
of these agents in C57BL/6 mice is feasible but may

Table 3 CL and Vss prediction of nilotinib in prairie dogs

S. No. Method Predicted Value Fold Error

CL(L/hr./kg)

1 SA (CL vs. BW) 0.42 2.24

2 SA (CL/fup vs. BW) 0.47 2.5

3 ROE (CL × BrW vs. BW) 0.44 2.32

Vss (L/kg)

1 SA (Vss vs. BW) 1.45 1.25

2 SA (Vss/fup vs. BW) 1.62 1.40

SA simple allometry, ROE rule of exponents, SSS single species scaling

Table 4 CL and Vss prediction of imatinib in prairie dogs

S. No. Method Value Fold error

CL (L/hr./kg)

1 SA (CL vs. BW) 1.41 1.78

2 SA (CL/fup vs. BW) 0.85 1.07

3 ROE (CL × MLP vs. BW) 1.78 2.24

Vss (L/kg)

1 SA (Vss vs. BW) 7.18 4.43

2 SA (Vss/fup vs. BW) 3.65 2.25

SA simple allometry, ROE rule of exponents, SSS single species scaling

A

B

Fig. 5 Allometric correlation plots of imatinib a) Simple allometry,
(b) Simple allometry with ROE correction. The solid triangle symbol
(▲) represents observed volume of distribution and solid square
symbol (■) represents observed clearance. The open symbols
represent predicted values.
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require a continuous delivery system such as an Alzet®
mini pump. Likewise, the elimination half-lives of these
two compounds in guinea pigs were also quite short and
oral bioavailability was poor. The reasons for the ob-
served low oral bioavailability following extravascular dos-
ing in guinea pigs are not apparent but may be a result of
either incomplete absorption from the suspension formu-
lation used and/or or extensive hepatic first pass metabol-
ism in these species. Previously published data from
studies employing CD-1 mice and Wistar-Hannover rats
suggest that nilotinib is a low blood clearance compound
in rodents as the systemic clearance only accounted for
less than 25% of the hepatic blood flow (CL/QH = hepatic
extraction ratio, CD-mice: 6.7%; Wistar-Hannover rats:
10.0%) [13]. This suggests that the contribution of hepatic
first-pass metabolism to the observed poor oral bioavail-
ability is likely to be low. Nilotinib is a drug with low
water solubility and poor to moderate permeability and as
such it can be considered as a Biopharmaceutics Classifi-
cation System class II/IV compound. In fact, niliotinib ex-
hibits pH-dependent solubility and has on oral absorption
of 30% in the fasted state in humans. At fed state, the ab-
sorption drastically increases probably due to mechanisms
such as increased solubility in the presence of bile salts
and longer gastric emptying time. Thus, solubility limited
absorption may be a primary factor restricting the oral
bioavailability of the drug. Overall, it appears that the use
of small rodents for anti-viral efficacy testing may be lim-
ited due to unfavorable PK properties such as poor oral
availability and/or short elimination half- life.
The prairie dog is another rodent surrogate system for

studying human orthopoxviruses [9] due to their high
susceptibility to monkeypox virus via multiple routes
such as intradermal [23] intranasal, [24] and intraperito-
neal [25]. In single-oral dose PK study, mean terminal
half-life of nilotinib was 3.5 h. or 7.5 h depending on the
formulation, whereas the mean half-life of imatinib was
2.2 h. Bioavailability of both drugs in prairie dogs was
similar when prepared in NMP/PEG 300. However, nilo-
tinib exhibited lower oral bioavailability when prepared
as Avicel/HPMC suspension formulation compared to
soluble NMP/PEG 300 formulation. Large intra-species
variability in plasma levels of both drugs in prairie dogs
was possibly due to the outbred nature, wild-caught
source, and genetic variability. The longer half-life of
nilotinib in prairie dog makes it a suitable larger rodent
model for conducting multiple dose PK and efficacy
assessments.
Single dose PK of nilotinib was also investigated in Cy-

nomolgus monkeys, which serve as a large animal
non-rodent species for antiviral drug testing. This study
was performed to find the systemic drug levels and bio-
availability upon administration of nilotinib suspension
formulation and to design a dosage regimen for

conducting subsequent tolerability studies. The oral ter-
minal half-life of nilotinib in monkeys was found to be
5.2 h compared to 7.8 h for intravenous administration.
Oral bioavailability was estimated to be 13%. Overall,
these PK observations are consistent with an earlier re-
port by Xia et al. [13], employing a different oral and
intravenous formulation. Following intravenous dose,
nilotinib half-life and Vss in monkeys in our studies were
higher than the Xia et al. study possibly due to differ-
ences in the formulation.
Another impact of the aforementioned limited and

pH-dependent aqueous solubility of nilotinib was the
need to modify the formulation we employed during the
course of this study. Nilotinib, while soluble in an acidic
environment, is poorly soluble at pH above 4.5 [13].
There is a lack of suitable intravenous nilotinib formula-
tion in humans. The formulation used in previously re-
ported PK studies have varied based on the animal
model. Xia et al. employed 0.5% HPMC suspension for
oral PK studies in CD-1 mice, rats, beagle dogs, and
monkeys while for intravenous formulation, nilotinib
was prepared in cremophor:dimethylacetamide:5% dex-
trose (20:10:70, v/v/v). For their intravenous PK study in
dogs, Solutol® HS 15 was used instead of cremophor
[13]. In our oral single dose PK studies, we initially
employed a formulation of nilotinib/NMP (20mg/ml) in
PEG 300 (1:10). However, in subsequent tolerability
studies, toxicity such as bone marrow suppression was
noticeable even in the vehicle-treated mice, which was
attributable to NMP co-solvent used (D.K., data not
shown). Further, this formulation was not tolerated in
prairie dog multi-dose studies (J.S., data not shown) with
side effects such as weight loss, severe diarrhea, and ele-
vated liver enzymes in both drug formulation treated
and vehicle-treated animals. Hence, the formulation was
modified for all further prairie dog and mouse studies,
along with studies in guinea pigs and monkeys to an oral
suspension consisting of Avicel®-RC 591 and HPMC.
This formulation was found to be tolerable for multiple
dose PK studies in prairie dogs.
One limitation in our studies is that the experiments

in nilotinib and imatinib are not balanced since imatinib
experiments involved only two species. However, our
findings add to the existing information on the PK of
this drug by providing insights into its disposition in ani-
mal models not employed heretofore. PK results in these
preclinical species are now being utilized for designing
dosage regimes to simulate human-relevant systemic ex-
posure upon single and multiple dose studies and facili-
tate antiviral efficacy assessments. As indicated earlier,
for chronic dosing C57BL/6 mice may be used if these
two drugs are provided via a continuous input mechan-
ism in order to to deliver doses sufficient to counter
poxvirus infections. To achieve a human-relevant steady
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state nilotinib concentration of around 1000 ng/ml in
prairie dogs and monkeys, a twice-daily oral dosage regi-
men is being employed in further studies for antiviral ef-
ficacy testing.
As a secondary objective, we evaluated if PK data from

previously published animal studies can be utilized to
predict PK of nilotinib and imatinib in previously un-
tested species such as prairie dogs, using the allometric
approach of inter-species scaling. To this end, allometric
correlation of PK parameters (CL and Vss) with body
weight was performed utilizing previously reported CL
and Vss values in other species. There was a good correl-
ation between CL and Vss with the body weight (R2 >
0.9) among the four preclinical species used. For niloti-
nib, interspecies scaling indicated that the fold error in
prairie dog CL prediction was greater than 2-fold
whereas fold error in prairie dog Vss prediction was
under 2-fold. While imatinib CL prediction in prairie
dogs was within 2-fold and about 2.25-fold for Vss when
using simple allometry method with fraction unbound to
plasma protein correction. Thus, it appears that the al-
lometry approaches represent a good starting point and
provide preliminary insights in predicting PK parameters
and designing dosage regimen in heretofore untested
species to facilitate Animal Rule. However, they may not
substitute initial dose-finding PK studies due to associ-
ated prediction errors attributable to inter-species and
intra-species variability in drug disposition. The limita-
tions are largely due to the empirical nature of the allo-
metric approaches which do not incorporate physio
logical differences across species.

Conclusions
In summary, pharmacokinetic studies were conducted to
facilitate the use of Animal Rule for the potential repur-
posing of TKIs, nilotinib and imatinib, as antiviral agents.
Based on the overall oral bioavailability and systemic ex-
posure achieved, prairie dogs and monkeys may be suit-
able rodent and non-rodent species to perform further
efficacy testing of TKIs against orthopoxvirus infections.
Although rodents such as mice and guinea pigs represent
an important tool for initial antiviral efficacy testing of
TKIs, inadequate PK attributes such as short half-life and/
or low oral bioavailability may limit their utility for further
PK-PD investigations. Allometry-based inter-species
interpolation of data appears to be an useful tool for a
priori initial prediction of PK parameters in animal species
not tested heretofore.
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