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Life expectancy has increased globally over the past 
decades, which implies that an increasing number of 

individuals will face cognitive difficulties or even dementia 
because of aging.1,2 It is, therefore, important to identify po-
tential modifiable causes of cognitive impairment to prevent 
cognitive decline. We hypothesize that greater very short- to 
mid-term blood pressure variability (BPV) may be a modifi-
able3 risk factor.

Greater BPV may contribute to lower cognitive per-
formance by 2 mechanisms. First, the brain microvascula-
ture has a relatively low microvascular impedance. Greater 
pulsatile pressure loads (ie, greater BPV) may, therefore, 
penetrate deeply into the vasculature, and hence lead to mi-
crovascular damage.4,5 Second, decreased perfusion may 
occur with (excessive) falls in blood pressure (BP), espe-
cially when cerebral autoregulation is impaired.6 Cerebral 
microvascular damage and falls in BP may, in turn, lead 

to ischemia, structural brain abnormalities, and ultimately 
lower cognitive performance.

Indeed, previous studies have suggested that greater BPV 
and lower cognitive performance are associated.7–16 However, 
these studies have focused mainly on long-term (ie, visit-to-
visit) BPV,7–12 have targeted old to very old individuals,11–14 
have evaluated cognitive performance by only a single, global 
test (eg, Mini-Mental State Examination),15–17 or did not adjust 
for important confounders, such as mean BP and use of anti-
hypertensive medication.18,19

To address the issues stated above, we investigated the 
association between BPV along the very short- to mid-term 
range (ie, within-visit, 24-hour, and 7-day) BPV and 3 domains 
of cognitive performance (ie, memory function [MF], infor-
mation processing speed [IPS], and executive function [EF]) 
in 40- to 75-year-old participants from the population-based 
Maastricht Study.

Received October 26, 2018; first decision November 5, 2018; revision accepted January 15, 2019.
From the Department of Internal Medicine (T.L.Z., A.A.K., M.T.S., C.D.A.S., R.M.A.H.), Department of Psychiatry and Neuropsychology, Alzheimer 

Centre Limburg (M.P.J.v.B., F.R.J.V., S.K.), and Heart and Vascular Centre (M.T.S., R.M.A.H.), Maastricht University Medical Centre, the Netherlands; 
CARIM School for Cardiovascular Diseases (T.L.Z., A.A.K., T.T.v.S., M.T.S., C.D.A.S., R.M.A.H.) and MHeNs School for Mental Health and Neuroscience 
(M.P.J.v.B., F.R.J.V., S.K.), Maastricht University, the Netherlands; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, France (T.T.v.S.); 
and Department of Epidemiology and Department of Arterial Mechanics, INSERM, UMR-S970, Paris Cardiovascular Research Center, France (T.T.v.S.).

The online-only Data Supplement is available with this article at https://www.ahajournals.org/doi/suppl/10.1161/HYPERTENSIONAHA.118.12305.
Correspondence to Ronald M.A. Henry, Department of Internal Medicine, Maastricht University Medical Centre, P. Debyelaan 25, PO Box 5800, 6202 

AZ, Maastricht, the Netherlands. Email rma.henry@mumc.nl

Abstract—An increasing number of individuals will face age-related cognitive difficulties because life expectancy has 
increased. It is, therefore, important to identify modifiable risk factors for cognitive impairment. Very short–term to 
mid-term blood pressure variability (BPV) may be such a factor because it may cause cerebral ischemia. To this end, we 
investigated whether greater systolic and diastolic BPV are cross-sectionally associated with memory function (n=1804), 
information processing speed (n=1793), and executive function (n=1780) in 40- to 75-year-old individuals from The 
Maastricht Study. A composite BPV-index was derived by standardizing within-visit, 24-hour, and 7-day BPV. We 
performed linear regression with adjustments for age, sex, educational level, 24-hour systolic or diastolic pressure, and 
cardiovascular risk factors. We found that a 1-SD greater systolic BPV was not associated with information processing 
speed (β [SD difference], −0.10; 95% CI, −0.14 to 0.06), or executive function (−0.09; 95% CI, −0.20 to 0.02) but 
was marginally associated with lower memory function (−0.11; 95% CI, −0.21 to 0.00). A 1-SD greater diastolic 
BPV was associated with lower information processing speed (−0.10; 95% CI, −0.20 to −0.00) and executive function 
(−0.12; 95% CI, −0.22 to −0.01) and marginally associated with lower memory function (−0.09; 95% CI, −0.20 to 
0.01). These effects on cognitive performance are equivalent to ≈3 additional years of aging. In conclusion, greater 
very short-term to mid-term diastolic and, to a lesser extent, systolic BPV may be a modifiable risk factor for cognitive 
deterioration in 40- to 75-year-old, community-dwelling individuals.   (Hypertension. 2019;73:803-811. DOI: 10.1161/
HYPERTENSIONAHA.118.12305.) • Online Data Supplement
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Methods
The Maastricht Study
We used data from The Maastricht Study, an observational prospective 
population-based cohort study. The rationale and methodology have 
been described previously.20 In brief, the study focuses on the etiology, 
pathophysiology, complications, and comorbidities of type 2 diabetes 
mellitus (T2DM) and is characterized by an extensive phenotyping 
approach. Eligible for participation were all individuals aged between 
40 and 75 years and living in the southern part of the Netherlands. 
Participants were recruited through mass media campaigns and from 
the municipal registries and participants with T2DM through the re-
gional Diabetes Patient Registry via mailings. Recruitment was strat-
ified according to known T2DM status, with an oversampling of 
individuals with T2DM, for reasons of statistical efficiency. The pre-
sent report includes cross-sectional data from the first 3451 partici-
pants. The examinations of each participant were performed within a 
time window of 3 months. The study has been approved by the institu-
tional medical ethical committee (NL31329.068.10) and the Minister 
of Health, Welfare, and Sports of the Netherlands (Permit 131088-
105234-PG). All participants gave written informed consent. Data are 
available from The Maastricht Study for any researcher who meets the 
criteria for access to confidential data, and the corresponding author 
may be contacted to request data.

Data collection

BP Measurements and BPV
A detailed description of the office, 24-hour ambulatory, and 7-day 
home BP measurements and variability have been reported previ-
ously.21 Briefly, within-visit BPV was calculated as the SD of 3 con-
secutive office BP measurements, with a 1-minute interval, after 10 
minutes of rest. Twenty-four hour BPV was calculated as the average 
real variability of BP readings taken every 15 minutes between 08:00 
am to 23:00 pm, and every 30 minutes between 23:00 pm to 08.00 
am, 7-day BPV was calculated as the SD of home BP measurements 
taken twice, with a 1-minute interval, each morning, and evening, 
for 7 consecutive days. We calculated a composite index of BPV 
of within-visit, 24-hour, and 7-day BPV, for reasons of statistical 
efficiency: first, it reduces the biological variability of each indi-
vidual measure,22 as we hypothesize that the (patho)physiological 

mechanisms underlying the association between greater BPV and 
worse cognitive performance overlap. Second, it reduces the chance 
of a type I error. This approach is justified when the individual meas-
ures within a composite index all associate in the same direction 
with the outcome.23 The individual measures were standardized into 
Z scores (individual value/population mean/population SD). The in-
dividual measures were then summed and averaged into the com-
posite index of systolic and diastolic BPV.

Cognitive Performance
Cognitive performance was assessed by a concise (30-minute) neu-
ropsychological test battery.20 For conceptual clarity, test scores were 
standardized and divided into 3 cognitive domains (ie, MF, IPS, and 
EF). A detailed description of neuropsychological tests and methods 
used to calculate domain scores is provided in the Methods in the 
online-only Data Supplement. Briefly, MF was evaluated using the 
Verbal Learning Test24 by calculating the standardized average of 
total immediate and delayed recall scores. The composite score for 
IPS was derived from the Stroop Color-Word Test Part I and II,25 the 
Concept Shifting Test Part A and B,26 and the Letter-Digit Substitution 
Test.27 EF was assessed by the Stroop Color-Word Test Part III and the 
Concept Shifting Test Part C. If necessary, individual test scores were 
log-transformed to fulfill the normality assumption or inverted so that 
higher scores indicated better cognitive performance. After selection 
of the final study population, cognitive performance test scores were 
standardized again to maintain a mean of zero and SD of 1.

Covariates
Alcohol consumption, smoking status, educational level, history of 
cardiovascular disease (CVD), and moderate-to-vigorous physical 
activity were assessed by questionnaire. Alcohol consumption was 
defined as nonconsumer, low-consumer (≤7 alcoholic drinks/wk for 
women; ≤14 alcoholic drinks/wk for men), and high-consumer (>7 
alcoholic drinks/wk for women; >14 alcohol drinks/wk for men). 
Smoking status was categorized into never, former, and current 
smoker. Educational level was classified into 3 groups: low (none, 
primary or lower vocational education only), intermediate (interme-
diate general secondary, intermediate vocational or higher general 
secondary education), and high (higher vocational education or uni-
versity level of education). Body mass index (BMI), waist circumfer-
ence, total cholesterol, HDL (high-density lipoprotein) cholesterol, 

Figure 1.  Flow diagram delineating the 
selection of the final study populations. 
BMI, body mass index; BPV, blood pressure 
variability; CVD, cardiovascular disease; EF, 
executive functioning; GFR, glomerular filtration 
rate; MF, memory function; IPS, information 
processing speed; and T2DM, type 2 diabetes 
mellitus. *Not mutually exclusive.

D
ow

nloaded from
 http://ahajournals.org by on N

ovem
ber 3, 2020



Zhou et al    Blood Pressure Variability and Cognitive Performance    805

Table 1.  Clinical Characteristics of the Study Population (With Complete Memory Function) According to Tertiles of Systolic Blood Pressure Variability

Characteristic

Memory Function Tertiles of Composite Systolic Blood Pressure Variability

Population, n=1804 Tertile 1 (Low), n=601 Tertile 2 (Middle), n=602 Tertile 3 (High), n=601

Demographics

 ������� Age, y 59.8±8.0 57.7±8.6 60.1±7.6 61.5±7.6

 ������� Men 936 (51.9%) 323 (53.7%) 311 (51.7%) 302 (50.2%)

Educational level

 ������� Low 287 (15.9%) 84 (14.0%) 105 (17.4%) 98 (16.3%)

 ������� Intermediate 786 (43.6%) 260 (43.3%) 249 (41.4%) 277 (46.1%)

 ������� High 731 (40.5%) 257 (42.8%) 248 (41.2%) 226 (37.6%)

Cardiovascular risk factors

 ������� BMI, kg/m2 27.0±4.3 26.3±4.2 26.9±4.1 27.7±4.4

 ������� Glucose metabolism status

  �������  Normal glucose metabolism 1025 (56.8%) 395 (65.7%) 354 (58.8%) 276 (45.9%)

  �������  Prediabetes 269 (14.9%) 84 (14.0%) 89 (14.8%) 96 (16.0%)

  �������  Type 2 diabetes mellitus 510 (28.3%) 122 (20.3%) 159 (26.4%) 229 (38.1%)

 ������� Triglycerides, mmol/l 1.2 [0.88–1.71] 1.1 [0.8–1.5] 1.2 [0.9–1.7] 1.3 [1.0–1.9]

 ������� Total-to-HDL cholesterol ratio 3.7±1.2 3.7±1.2 3.7±1.1 3.8±1.2

 ������� History of cardiovascular disease 303 (16.8%) 85 (14.1%) 109 (18.1%) 109 (18.1%)

 ������� eGFR, ml/(min·1.73m2) 88.4±14.6 90.6±14.4 87.8±14.1 86.6±15.1

Lifestyle variables

 ������� Smoking behavior

  �������  Never 646 (35.8%) 247 (41.1%) 186 (30.9%) 213 (35.4%)

  �������  Former 937 (51.9%) 286 (47.6%) 336 (55.8%) 315 (52.4%)

  �������  Current 221 (12.3%) 68 (11.3%) 80 (13.3%) 73 (12.1%)

 ������� Alcohol consumption

  �������  None 342 (19.0%) 93 (15.5%) 116 (19.3%) 133 (22.1%)

  �������  Low 993 (55.0%) 377 (62.7%) 329 (54.7%) 287 (47.8%)

  �������  High 469 (26.0%) 131 (21.8%) 157 (26.1%) 181 (30.1%)

Medication

 ������� Use of antihypertensive medication 706 (39.1%) 183 (30.4%) 229 (38.0%) 294 (48.9%)

  �  β-Blockers 309 (17.1%) 91 (13.5%) 99 (15.8%) 133 (22.1%)

  �������  Calcium channel blockers 163 (9.0%) 49 (8.2%) 57 (9.5%) 57 (9.5%)

  �������  ACE inhibitors 224 (12.4%) 40 (6.7%) 69 (11.5%) 115 (19.1%)

  �������  Angiotensin II receptor blockers 315 (17.5%) 86 (14.3%) 112 (18.6%) 117 (19.5%)

  �������  Diuretics 285 (15.8%) 68 (11.3%) 98 (16.3%) 119 (19.8%)

 ������� Lipid-modifying medication 651 (36.1%) 186 (30.9%) 205 (34.1%) 260 (43.3%)

 ������� 24-hour SBP, mm Hg 120.0±11.6 116.1±9.3 119.6±11.1 124.4±12.8

 ������� 24-hour DBP, mm Hg 74.3±7.1 72.8±6.3 74.2±6.9 76.0±7.7

BPV parameters

 ������� Within-visit systolic BPV, mm Hg 4.6±2.8 2.8±1.5 4.4±2.0 6.6±3.1

 ������� Within-visit diastolic BPV, mm Hg 2.5±1.7 2.1±1.3 2.4±1.5 2.9±2.1

 ������� 24-hour systolic BPV, mm Hg 10.0±2.5 8.2±1.4 9.9±1.5 12.0±2.7

 ������� 24-hour diastolic BPV, mm Hg 6.9±1.8 6.2±1.4 6.8±1.6 7.8 ±2.1

 ������� 7-day systolic BPV, mm Hg 9.2±3.8 6.9±1.7 8.7±2.2 12.0±4.7

(Continued )
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LDL (low-density lipoprotein) cholesterol, triglycerides, fasting 
glucose, postload glucose, and glycosylated hemoglobin were de-
termined as described elsewhere.20 Glucose metabolism status was 
categorized into normal glucose metabolism, prediabetes (impaired 
fasting glucose or impaired glucose tolerance), and T2DM, accord-
ing to the World Health Organization 2006 criteria.28 Estimated glo-
merular filtration rate was computed with the CKD-EPI (Chronic 
Kidney Disease Epidemiology Collaboration) formula, using serum 
creatinine and cystatin C.29 Information on the use of lipid-modifying 
and antihypertensive medication were collected during an interview. 
A current major depressive episode was assessed by the Mini-
International Neuropsychiatric Interview.30

Statistical Analysis
All data were analyzed using IBM SPSS software version 23.0 for 
Windows (IBM Corp, Somers, NY). Data are presented as n (%), 
mean±SD, or median (interquartile range). We constructed tertiles 
of composite systolic and diastolic BPV. Associations between com-
posite systolic and diastolic BPV and the composite scores of cog-
nitive performance domains were examined with the use of multiple 
linear regression (lowest BPV tertile: reference category). Model 1 
was adjusted for age, sex, and glucose metabolism status. Model 2 
was additionally adjusted for 24-hour mean systolic or diastolic BP 
(where appropriate). Model 3 was additionally adjusted for lifestyle 
factors (ie, BMI, alcohol consumption, smoking status, and educa-
tional level). Model 4 was additionally adjusted for CVD risk fac-
tors (ie, estimated glomerular filtration rate, total-to-high density 
lipoprotein cholesterol ratio, triglycerides, lipid-modifying, and 
antihypertensive medication classes [β-blockers, calcium channel 
blockers, ACE (angiotensin-converting enzyme) inhibitors, angio-
tensin II receptor blockers, and diuretics separately]). Model 5 was 
additionally adjusted for prior CVD and current major depressive 
episode. Several additional analyses were performed. First, we in-
cluded interaction terms in model 5 to examine whether any asso-
ciations were modified by age, sex, or glucose metabolism status. 
Second, we additionally adjusted for moderate-to-vigorous phys-
ical activity and waist circumference or waist-to-hip ratio instead of 
BMI. Third, we evaluated the association between each individual 
BPV-index (ie, within-visit, 24-hour and 7-day BPV) and the cogni-
tive performance domains separately. A 2-sided P value of <0.05 was 
considered statistically significant, except for the interaction analy-
ses, where we used P<0.10.

Results

Study Population
Figure  1 shows the delineation of our study population. 
Participants with missing data had a higher BMI, lower total 

cholesterol levels, higher 7-day systolic BPV, and higher 
24-hour and 7-day diastolic BPV, and lower MF scores, and 
IPS than those with complete data (Table S1 in the online-only 
Data Supplement).

Table 1 shows the characteristics of the study population 
with complete MF data according to tertiles of composite 
BPV (tertile 1: lowest BPV). In general, participants with 
the highest as compared to the lowest BPV were older, more 
often women, received lower education more often, had a 
worse CVD risk profile, and more often used antihyperten-
sive medication. In addition, participants with the highest as 
compared to the lowest BPV had lower scores on cognitive 
performance.

Systolic BPV and Cognitive Performance
After adjustment for age, sex, glucose metabolism status 
(model 1), and 24-hour mean systolic BP (model 2), high 
systolic BPV was statistically significantly associated with 
a lower MF as compared to the lowest tertile of systolic 
BPV (regression coefficient [β, as SD difference] and 95% 
CI, −0.118; −0.226 to −0.010; Table 2; Figure 2). No sta-
tistically significant associations were observed with IPS 
(−0.045; 95% CI, −0.519 to 0.062) and EF (−0.082; 95% 
CI, −0.195 to 0.030). After further adjustment for esti-
mated glomerular filtration rate, total-to-HDL cholesterol 
ratio, triglycerides, antihypertensive and lipid-modifying 
medication (model 4), prior CVD, and current depression 
(model 5), the associations attenuated and MF was lower in 
individuals with a high systolic BPV as compared to those 
with low systolic BPV, but did not reach statistical signifi-
cance (−0.106; 95% CI, −0.213 to 0.001). In addition, sys-
tolic BPV was not statistically significantly associated with 
IPS (−0.039; 95% CI, −0.142 to 0.064) and EF (−0.087; 
95% CI, −0.195 to 0.022).

Diastolic BPV and Cognitive Performance
After adjustment for the covariates of model 2, and with the 
lowest tertile of diastolic BPV as reference category, high 
diastolic BPV was statistically significantly associated with 
lower performance in all cognitive domains: MF (−0.123; 
95% CI, −0.226 to −0.019), IPS (−0.137; 95% CI, −0.239 to 

 ������� 7-day diastolic BPV, mm Hg 5.7±2.9 4.8±1.7 5.4±1.8 7.1±4.1

Mental health and cognitive performance

 ������� Current major depressive episode 64 (3.6%) 22 (3.7%) 16 (2.7%) 26 (4.4%)

 ������� Memory function 0.00±1.00* 0.11±0.93 0.03±0.98 −0.13±1.03

 ������� Information processing speed† 0.00±1.00* 0.13±0.99 −0.01±0.97 −0.13±1.02

 ������� Executive function‡ 0.00±1.00* 0.17±1.04 −0.03±0.96 −0.13±0.98

Data are presented as n (%), mean±SD, or median (interquartile range). ACE indicates angiotensin-converting enzyme; BMI, body mass index; BPV, 
blood pressure variability; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; HDL, high-density lipoprotein; and SBP, systolic 
blood pressure.

*Mean of zero and SD of 1 by definition, see Methods section.
†Value shown for individuals with complete information processing speed data.
‡Value shown for individuals with complete executive function data.

Table 1.  Continued

Characteristic

Memory Function Tertiles of Composite Systolic Blood Pressure Variability

Population, n=1804 Tertile 1 (Low), n=601 Tertile 2 (Middle), n=602 Tertile 3 (High), n=601
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−0.035]), and EF (−0.128; 95% CI, −0.235 to −0.021; Table 2; 
Figure 3). After adjustment for the covariates of model 5, the 
associations attenuated but remained statistically significant 
for IPS (−0.101; 95% CI, −0.200 to −0.002) and EF (−0.115; 
95% CI, −0.220 to −0.011). In addition, MF was lower in indi-
viduals with high diastolic BPV as compared to those with 
low diastolic BPV but did not reach statistical significance 
(−0.094; 95% CI, −0.197 to 0.009).

Additional Analyses
Age, sex, and glucose metabolism did modify some associa-
tions between systolic or diastolic BPV and cognitive perfor-
mance (Table S2). We did not detect a consistent interaction 
pattern over the domains of cognitive performance and, there-
fore, did not stratify the analyses.

After additional adjustment for moderate-to-vigorous 
physical activity, and waist circumference or waist-to-hip 

ratio instead of BMI, the associations between systolic or 
diastolic BPV and cognitive performance did not materially 
change (Tables S3–S9).

When we analyzed the individual systolic BPV-indices 
separately, within-visit and 24-hour systolic BPV and cog-
nitive performance were not statistically significantly asso-
ciated, whereas a high 7-day systolic BPV was statistically 
significantly associated with a lower performance in all cogni-
tive domains as compared to the lowest tertile of 7-day systolic 
BPV. When we analyzed the individual diastolic BPV-indices 
separately, middle within-visit diastolic BPV was statistically 
significantly associated with lower EF as compared to the 
lowest tertile of within-visit diastolic BPV, high 24-hour dias-
tolic BPV was statistically significantly associated with lower 
performance in all cognitive domains as compared to the low-
est tertile of 24-hour diastolic BPV, and middle and high 7-day 
diastolic BPV was statistically significantly associated with 

Table 2.  Associations Between Systolic Blood Pressure Variability and Various Domains of Cognitive Performance

Model Composite sBPV

Cognitive Performance Domains

Memory Function Information Processing Speed Executive Function

β (95% CI) P Value β (95% CI) P Value β (95% CI) P Value

Crude

Low Reference Reference Reference

 Middle −0.084 (−0.197 to 0.029) 0.15 −0.134 (−0.247 to −0.022) 0.019 −0.195 (−0.308 to −0.082) 0.001

 High −0.234 (−0.347 to −0.121) <0.001 −0.271 (−0.383 to −0.158) <0.001 −0.287 (−0.400 to −0.174) <0.001

1

Low Reference Reference Reference

 Middle −0.005 (−0.106 to 0.097) 0.93 0.002 (−0.099 to 0.102) 0.98 −0.076 (−0.181 to 0.029) 0.16

 High −0.092 (−0.196 to 0.011) 0.08 −0.021 (−0.123 to 0.081) 0.69 −0.069 (−0.177 to 0.038) 0.21

2

 Low Reference Reference Reference

Middle −0.016 (−0.118 to 0.086) 0.76 −0.009 (−0.110 to 0.092) 0.86 −0.082 (−0.188 to 0.024) 0.13

 High −0.118 (−0.226 to −0.010) 0.033 −0.045 (−0.151 to 0.062) 0.41 −0.082 (−0.195 to 0.030) 0.15

3

Low Reference Reference Reference

 Middle −0.004 (−0.098 to 0.096) 0.94 0.010 (−0.087 to 0.107) 0.84 −0.064 (−0.165 to 0.038) 0.22

 High −0.117 (−0.210 to −0.011) 0.030 −0.040 (−0.143 to 0.062) 0.44 −0.085 (−0.192 to 0.023) 0.12

4

 Low Reference Reference Reference

 Middle 0.002 (−0.099 to 0.102) 0.97 0.010 (−0.086 to 0.107) 0.83 −0.066 (−0.168 to 0.036) 0.20

High −0.105 (−0.212 to 0.002) 0.06 −0.036 (−0.139 to 0.067) 0.49 −0.084 (−0.193 to 0.025) 0.13

5

Low Reference Reference Reference

 Middle 0.000 (−0.094 to 0.098) 0.97 0.006 (−0.091 to 0.102) 0.91 −0.072 (−0.174 to 0.030) 0.16

 High −0.106 (−0.213 to 0.001) 0.05 −0.039 (−0.142 to 0.064) 0.46 −0.087 (−0.195 to 0.022) 0.11

Regression coefficients (β) represent the SD difference in the cognitive domain scores as compared with participants with a low systolic BPV (lowest tertile of 
BPV). Model 1: age, sex, glucose metabolism status. Model 2: model 1+mean 24-h systolic blood pressure. Model 3: model 2+BMI, smoking behavior, alcohol use, 
educational level. Model 4: model 3+eGFR, total-to-high density lipoprotein cholesterol ratio, triglycerides, (individual classes of) antihypertensive medication, lipid-
modifying medication. Model 5: model 4+prior cardiovascular disease, current depression. BMI indicates body mass index; BPV, blood pressure variability; eGFR, 
estimated glomerular filtration rate; and sBPV, systolic blood pressure variability.
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lower IPS and EF as compared to the lowest tertile of 7-day 
diastolic BPV (Tables S9–S14).

Discussion
Our study, performed in 40- to 75-year-old individuals, 
showed that greater very short–term to mid-term systolic and 
diastolic BPV differentially affects various domains of cogni-
tive performance. First, greater diastolic BPV was associated 
with both lower IPS and EF and was marginally associated 
with lower MF. Second, greater systolic BPV was only mar-
ginally associated with a lower MF. All these associations 
were independent of mean systolic or diastolic BP, lifestyle 
factors, educational level, and cardiovascular risk factors. The 
observed effects are equivalent to ≈3 additional years of ge-
neral aging. In terms of risk factors, in the light of previous 
studies performed in The Maastricht Study, the detrimental 

effects of greater systolic and diastolic BPV on cognitive per-
formance are similar to the effects of the presence of microal-
buminuria31 and greater carotid arterial stiffness.32

Our findings are largely in line with previous studies, 
where greater systolic or diastolic BPV were associated with 
lower cognitive performance. However, previous studies have 
assessed only global cognitive performance, such as the Mini-
Mental State Exam15 or tested only one domain of cognitive 
performance.19 Other studies have investigated specific study 
populations, such as individuals who already had dementia10 or 
old to very old individuals.11–14 In addition, many studies have 
investigated whether long-term BPV (ie, visit-to-visit) affects 
cognitive performance.7–9,12,33 Our study thereby adds novelty 
to the literature, as our study was performed in community-
dwelling individuals and applied an extensive cognitive test 
battery. In addition, we have shown that not only greater long-
term BPV affects cognitive performance, but greater very 
short-term to mid-term diastolic BPV does so as well.

Interestingly, we observed a more pronounced effect of 
greater diastolic BPV on lower cognitive performance than 
systolic BPV. This may be explained by several mechanisms. 
First, diastolic BP is the main determinant of mean arterial 
pressure, and as such, excessive variation in diastolic BP may 
hamper perfusion and induce cerebral ischemia. Indeed, pre-
vious studies have shown that impaired cerebral blood flow 
may play a role in the progression of cerebral small vessel 
disease,34 and impaired cerebral blood flow itself has been 
strongly associated with incident dementia.35 Second, in a 
previous report, we observed that greater systolic BPV was 
associated with arterial stiffening, whereas diastolic BPV 
was not.36 Indeed, it has been reported that arterial stiffening 
(carotid-to-femoral, brachial-to-ankle, and local carotid) was 
associated with cerebral small vessel disease, potentially via 
an increased pulsatile pressure load. However, associations 
between arterial stiffening and cognitive impairment were rel-
atively weak, which suggests that additional factors other than 
cerebral small vessel disease alone may explain the mecha-
nisms underlying cognitive impairment.37

We, therefore, speculate that greater systolic BPV may 
specifically cause more macrovascular damage (eg, aortic 
stiffening), whereas diastolic BPV is causing more microvas-
cular damage (eg, cerebral small vessel disease).

We observed that greater systolic BPV was only margin-
ally associated with MF, but not with IPS and EF, as opposed 
to diastolic BPV, which had an effect on all cognitive domains. 
We hypothesize that this might be because of the increased 
vulnerability to ischemia of watershed areas (eg, the parieto-
temporal area), where perfusion is already poor.38 Peaks in 
systolic BP may then induce autoregulatory vasoconstriction6 
and may lead to ischemia preferentially in the temporal areas, 
such as the hippocampus, which is an important brain region 
for memory consolidation.39 Greater diastolic BPV, however, 
may reduce cerebral perfusion pressure in many brain regions 
and may, therefore, affect multiple cognitive functions.

The strengths of our study include the use of multiple BPV-
indices and the well-characterized, large study population, 
which allowed us to adjust for a large series of confounders. 
In fact, model 5 may represent an overadjusted model, as de-
pression, for instance, may lie in the causal pathway between 

Figure 2.  Estimated means of cognitive performance domains according 
to tertiles of systolic blood pressure variability (sBPV) after adjustment 
for the covariates of model 2. T1, T2, and T3 indicate tertiles with low, 
middle and high sBPV respectively. EF indicates executive functioning; 
IPS, information processing speed; and MF, memory function. Error bars 
represent 95% CI. *Statistically significant difference as compared to the 
lowest tertile (T1). 

Figure 3.  Estimated means of cognitive performance domains according to 
tertiles of diastolic blood pressure variability (dBPV) after adjustment for the 
covariates of model 2. T1, T2, and T3 indicate tertiles with low, middle and 
high dBPV respectively. EF indicates executive functioning; IPS, information 
processing speed; and MF, memory function. Error bars represent 95% CI. 
*Statistically significant difference as compared to the lowest tertile (T1).
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greater BPV and lower cognitive performance. Nonetheless, 
the effects of BPV on cognitive performance changed mini-
mally after model 3 and 4.

There were several limitations of this study. First, the 
cross-sectional nature of this study implies that any causal in-
ference should be made with caution. The reverse association 
may hold true as well, as it can be hypothesized that lower 
cognitive performance could lead to worse medication adher-
ence, which may then cause greater BPV.40 Second, the de-
sign of this study required the population to be enriched with 
T2DM, and it might be argued that adjustment for glucose 
metabolism status may then not be sufficient. However, there 
was no consistent interaction pattern with glucose metabo-
lism status, age, or sex. Third, participants with and without 
missing data differed. This may have led to an underestima-
tion of our effect, as participants with missing data had a 
more adverse (cardiovascular) risk profile. Fourth, we cannot 

exclude the possibility of residual confounding, as, for ex-
ample, family history of dementia41,42 was not available. Fifth, 
the use of a composite BPV-index assumes that the individual 
BPV-indices share the same underlying pathophysiological 
mechanisms in lowering cognitive performance. Our results 
have shown that all individual BPV-indices were direction-
ally similarly associated with cognitive performance, which 
implies that excessive BPV measured in any time frame, de-
spite its different determinants, may damage the brain via 
similar mechanisms leading to lower cognitive performance. 
This justifies our approach with regard to the construction of a 
composite BPV-index.

Perspectives
Greater very short-term to mid-term diastolic and, to a lesser 
extent, systolic BPV may be a modifiable risk factor for cog-
nitive deterioration in 40- to 75-year old, community-dwelling 

Table 3.  Associations Between Diastolic Blood Pressure Variability and Various Domains of Cognitive Performance

Model Composite dBPV

Cognitive Performance Domains

Memory Function Information Processing Speed Executive Function

β (95% CI) P Value β (95% CI) P Value β (95% CI) P Value

Crude

Low Reference Reference Reference

 Middle −0.084 (−0.197 to 0.029) 0.15 −0.046 (−0.159 to 0.067) 0.42 −0.110 (−0.223 to 0.004) 0.06

 High −0.219 (−0.332 to −0.106) <0.001 −0.269 (−0.382 to −0.156) <0.001 −0.226 (−0.379 to −0.153) <0.001

1

Low Reference Reference Reference

 Middle −0.040 (−0.140 to 0.060) 0.44 0.017 (−0.083 to 0.116) 0.74 −0.054 (−0.158 to 0.051) 0.31

 High −0.111 (−0.212 to −0.009) 0.032 −0.108 (−0.209 to −0.008) 0.034 −0.121 (−0.227 to −0.016) 0.024

2

Low Reference Reference Reference

 Middle −0.047 (−0.149 to 0.054) 0.36 −0.001 (−0.101 to 0.099) 0.98 −0.058 (−0.163 to 0.047) 0.28

 High −0.123 (−0.226 to −0.019) 0.020 −0.137 (−0.239 to −0.035) 0.009 −0.128 (−0.235 to −0.021) 0.019

3

Low Reference Reference Reference

 Middle −0.036 (−0.135 to 0.063) 0.48 0.019 (−0.077 to 0.114) 0.70 −0.040 (−0.141 to 0.060) 0.43

 High −0.109 (−0.211 to −0.007) 0.036 −0.111 (−0.210 to −0.013) 0.026 −0.114 (−0.217 to −0.010) 0.031

4

Low Reference Reference Reference

 Middle −0.037 (−0.137 to 0.062) 0.46 0.015 (−0.081 to 0.111) 0.76 −0.048 (−0.148 to 0.053) 0.35

 High −0.095 (−0.198 to 0.008) 0.07 −0.101 (−0.200 to −0.002) 0.046 −0.113 (−0.217 to −0.009) 0.033

5

Low Reference Reference Reference

 Middle −0.037 (−0.136 to 0.063) 0.47 0.016 (−0.079 to 0.112) 0.74 −0.048 (−0.149 to 0.052) 0.35

 High −0.094 (−0.197 to 0.009) 0.07 −0.101 (−0.200 to −0.002) 0.046 −0.115 (−0.220 to −0.011) 0.030

Regression coefficients (β) represent the SD difference in the cognitive domain scores as compared with participants with a low diastolic BPV (lowest tertile of 
BPV). Model 1: age, sex, glucose metabolism status. Model 2: model 1+mean 24-h diastolic blood pressure. Model 3: model 2+BMI, smoking behavior, alcohol use, 
educational level. Model 4: model 3+eGFR, total-to-high density lipoprotein cholesterol ratio, triglycerides, (individual classes of) antihypertensive medication, lipid-
modifying medication. Model 5: model 4+prior cardiovascular disease, current depression. BMI indicates body mass index; BPV, blood pressure variability; dBPV, 
diastolic blood pressure variability; and eGFR, estimated glomerular filtration rate.
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individuals. The effects of greater BPV on cognitive perfor-
mance were equivalent to 3 additional years of aging. In terms 
of risk factors, these effects were similar to the presence of 
microalbuminuria and carotid stiffness. Future research 
should focus on intervention trials dedicated to lowering BPV, 
and investigate whether it has a positive effect on preserving 
cognitive performance. If lowering BPV would indeed be ben-
eficial, it could delay, or even prevent, cognitive decline in mid 
to later life.
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What Is New?
•	An important consequence of the globally increasing life expectancy 

will be that an increasing number of individuals will face age-related 
health problems, of which cognitive impairment is a major problem. To 
delay or prevent cognitive impairment, we investigated the association 
between very short- to mid-term blood pressure variability and cogni-
tive performance.

What Is Relevant?
•	Greater very short- to mid-term systolic and diastolic blood pressure var-

iability (BPV) were differentially associated with lower cognitive perfor-
mance, specifically:

––  � Greater diastolic BPV was associated with both lower information 
processing speed and executive function and was marginally asso-
ciated with lower memory function.

––  � Greater systolic BPV was only marginally associated with a lower 
memory function.

Summary

Greater very short-term to mid-term diastolic, and to a lesser ex-
tent, systolic BPV are associated with lower cognitive performance. 
These effects were comparable to 3 additional years of aging. In 
short, these findings suggest that very short- to mid-term BPV may 
be a modifiable risk factor for cognitive impairment.

Novelty and Significance
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