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Abstract

Despite the high interest of scholars in identifying successful inventions, little attention has been
devoted to investigate how (fast) the novel ideas embodied in original inventions are re-used in
follow-on inventions. We overcome this limitation by empirically mapping and characterizing the
trajectory of novel technologies’ re-use in follow-on inventions. Specifically, we consider the factors
affecting the time needed for a novel technology to be legitimated as well as to reach its full
technological impact. We analyze how these diffusion dynamics are affected by the antecedent
characteristics of the novel technology. We characterize novel technologies as those that make
new combinations with existing technological components and trace these new combinations in
follow-on inventions. We find that novel technologies combining for the first time technological
components which are similar and which are familiar to the inventors’ community require a short
time to be legitimated but show a low technological impact. In contrast, combining for the first time
technological components with a science-based nature generates technologies with a long
legitimation time but also high technological impact. 
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1. INTRODUCTION 

Ever since the disappointing productivity growth in the West has been related to the failure of 

non-frontier firms to catch up (e.g. Andrews et al. 2015), improving the diffusion of novel 

technologies has become a more central issue in the policy discussion on stimulating economic 

growth. Yet, diffusion of novel technologies is a less well studied phenomenon within the 

innovation literature, which concentrates mostly on understanding the generation rather than the 

diffusion of inventions (Arts et al. 2013). Nevertheless, several studies of the diffusion of a single 

industrial application of a novel technology exist (see Stoneman and Battisti (2010), Hall (2004), 

Geroski (2000) or Rogers (1983) for a review of this literature).  Perhaps the most known and 

seminal one, is Griliches’ 1957study of the diffusion of hybrid corn seeds in the Midwestern United 

States.   A common finding in these studies is that the diffusion process usually starts out slowly 

among pioneering adopters, reaching "take-off" when the effects of peer influence kick in and a 

growing community of adopters is established, to then level-off as the population of potential 

adopters becomes exhausted, thus leading to an "S-shaped" cumulative adoption curve.  

Despite the commonly found S-shape of diffusion, there is nevertheless a wide variation 

across different inventions in the time to take-off and to reaching full impact (Rosenberg 1976).  

In order to explain these differences, the literature so far has looked at the characteristics of the 

demand side for explaining different adoption rates of “users” over time,  such as changing cost 

and benefits to adopting the new technology and social network factors (such as information 

sharing, connectivity). Being constrained by samples of individual or small sets of inventions to 

trace their diffusion, the empirical literature has so far not been able to look in a systematic fashion 

at the characteristics of the initial inventions that embed the novel technology as explanatory 

factors for differences in diffusion patterns.   



3 

 

Another neglected issue in the diffusion literature is the improvements and new inventions 

that may emerge along and through its diffusion.  Most of the literature typically treats the focal 

innovation as given when following its diffusion path and the users as passive adopters. Yet, 

Rosenberg (1982) and Dosi (1991), among others, have emphasized that the diffusion of 

innovations is often accompanied by applications in different environments and learning about 

their use which in turn leads to improvements to the original innovation. Although many studies 

have described this process of innovation enhancement during its diffusion qualitatively, there has 

been relatively little systematic collection of data or explicit modeling of this process (Hall, 2004).  

Follow-on inventions have been studied in the evolutionary economics literature on 

technology trajectories, initiated by Dosi (1982). Dosi (1982) makes a distinction between 

technological progress along a defined path or trajectory on the one hand and the process of search 

and selection on new technological paradigms, shifting the incumbent trajectories, on the other 

hand. There are however few empirical studies that try to measure and compare these trajectories 

for various technologies.  Andersen (1999) using patent stock data between 1920 and 1990, studies 

the technology growth patterns across technology classes. She confirms that the S-shaped growth 

form is an appropriate and good approximation to describe the paths of evolution, but that there is 

a lot of cross-technology differences in takeoffs and periodicity of the time span of each cycle. 

This literature looks at the evolution of all patents within a technology class. The link between the 

patents belonging to the same trajectory is thus their joint belonging to the same technology class. 

It does not look explicitly at the relationship between the initial patent and the follow-on patents 

as re-users of the novel idea embedded in the initial patent.  It can therefore not be used to 

understand differences in diffusion patterns of novel technologies.  
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Our contribution aims to improve our understanding of the differences in diffusion patterns 

of novel technologies.  Using large scale patent data, we identify the follow-on inventions “using” 

the novel ideas embedded in original inventions. By looking at all the patented inventions that 

build on that novel technology, we can characterize the diffusion dynamics and analyze how these 

are affected by the antecedent characteristics of the novel technology.  

We consider a novel technology as the result of a new combination of already existing 

components (Schumpeter 1939; Nelson and Winter 1982; Arthur 2009). Following Fleming 

(2001), Strumsky and Lobo (2015), Verhoeven et al. (2016), we take the technological classes 

used in the European Patent Office classification as representing technological components and 

novel technologies as patents with a combination of technological classes which is unprecedented 

in the history of patented inventions. For these novel technologies, we trace their diffusion into 

follow-on inventions. Follow-on inventions are identified as those patented inventions that re-use 

the new combination introduced by an initial invention which embedded for the first time the novel 

combination. We validate our set of follow-on inventions as reflecting a relevant technology link, 

by applying a text analysis technique.   

We identify 10,782 novel technologies in the patent data that have a sufficient number of 

follow-on inventions to be traced over time. Looking at the diffusion curve of each of these novel 

technologies, we test an S-shaped curve, as commonly found in the diffusion literature.  We are 

particularly interested in identifying the parameters of the curve that measure the time that a novel 

technology needs to be legitimated within the inventors’ community and its maximum 

technological impact defined as the total number of follow-on inventions that the novel technology 

generates. We next look at what can explain any differences in diffusion patterns across the novel 

technologies. For explanatory factors, we focus on the ex-ante characteristics of the novel 
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technology, particularly on the characteristics of the components combined for the first time in the 

initial invention. By investigating how the characteristics of the combined components affect the 

legitimation time and the technological impact, we identify the antecedent characteristics of the 

initial invention predicting a “fast” diffusion and a “hit” technology.   

Controlling for other technology, applicant, inventor’s characteristics and time effects and 

testing for selection biases into successful diffusion, we find that combining for the first time 

technological components which are similar and which are familiar to the inventors’ community 

generates a novel technology that requires a short time to be legitimated but with a low 

technological impact. Combining for the first time technological components with a science-based 

nature generates technologies with a higher technological impact, but with a longer legitimation 

time. Our results, suggesting a trade-off between technological impact and legitimation time, thus 

provide new insights for the economics of innovation literature that is interested in identifying the 

key drivers of technological diffusion.   

The remaining of the paper is organized as follow. Section 2 develops the hypothesis on 

how the characteristics of the newly recombined technological components affect the diffusion of 

the resulting novel technology. Section 3 describes the data and methods used. Section 4 presents 

the results. Section 5 concludes. 

2. NOVEL TECHNOLOGY DIFFUSION AND ITS ANTECEDENTS 

While a large number of studies has investigated the diffusion of an innovation looking at 

its use by the relevant population of potential adopters (Hall 2004), a limited number of studies 

has investigated the diffusion path of a novel technology in the follow-on pool of inventions. 

Previous works rely on case studies developed for specific technologies. For instance, Achilladelis 
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(1993) follows the diffusion of the novel technology related to Sulpholamide antibacterial drugs 

by tracing all the patented drugs based on Sulpholamide which appeared over 70 years after its 

introduction. 

Differently from this literature, our study adopts a systematic large scale quantitative 

approach that allows us (i) to identify the introduction of a novel technology, (ii) to trace its 

diffusion pattern in follow-on inventions, and (iii) to assess the antecedent characteristics of the 

initial novel technology impacting on its diffusion pattern. 

2.1. Identifying a novel technology 

The first step in our analysis is to define a novel technology. In his seminal work on the 

origins of innovation, Schumpeter claimed that “innovation combines components in a new way, 

or that it consists in carrying out a new combination” (1939, pp. 88, Schumpeter 1939). Fleming 

(2001) elaborated on the concept of invention as a process of “recombinant search” (pp. 118) by 

arguing that inventors search among existing technological components and recombine them to 

realize something new. In the same vein, Arthur (2009) states that novel technologies are the result 

of the combination of existing components and that these existing components are themselves 

technologies. According to this “recombinant search” approach, we consider a novel technology 

as the result of pre-existing technological components that are combined for the first time 

(Verhoeven et al. 2016).  

 2.2. Tracing novel technology diffusion 

Having identified the novel technologies, the next step in the analysis is to trace their 

diffusion in follow-on inventions, i.e. identifying how many other inventions make “use” of the 

novel technology. However, not all novel technologies diffuse.  As the aim of our study is to 
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analyze the diffusion of successful technologies, we consider those novel technologies that 

recombine existing technological components and reach a minimum level of diffusion. Following 

Amabile (1996) and Fleming and co-authors (2007), we require the result of creative efforts to be 

both novel and useful. Novel technologies that do not show a minimum number of follow-ons are 

excluded from our analysis. We check for any possible bias from selecting only successful novel 

technologies (cf. Section 4.4 and Appendix E).  

When characterizing the diffusion pattern of novel technologies, we follow the literature 

and look for S-shaped diffusion patterns (Griliches 1957; Dosi 1991). Initially, a technology 

diffuses slowly since it needs time to gain legitimation within the inventors’ community. Inventors 

using the novel technology for their follow-on inventions need time to learn and familiarize with 

the novel technology and to abandon the established competing technologies. Once legitimated, 

the diffusion of the novel technology accelerates. The asymptotical convergence to a ceiling level 

reflects the full impact of a technology. Two different forces can lead a technology to reach its 

ceiling. First, all the possible applications of the technology have been implemented exhausting 

the inventive opportunities. Second, the technology loses its appeal in favor of emerging 

alternative technologies. A set of simple assumptions on the cost and benefits of adopting generates 

such an S-shaped curve. If the distribution of the benefits of adopting over its users is distributed 

approximately normally and the cost of adopting is constant or declines monotonically over time, 

the diffusion curve will have the familiar S-shape (Hall 2004).  

An insightful example of technology experiencing a first phase of legitimation followed by 

a second phase of convergence to its full technological impact is represented by the Sulpholamide 

drugs. The Sulpholamide is a class of synthetic antibacterial drugs introduced in 1935. The first 

Sulpholamide-based drug, Prontosil, was developed and launched by Bayer. In the next 10 years 
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following the Prontosil introduction, other companies and public research laboratories gradually 

developed and marketed more than 5,000 innovative Sulpholamide-based drugs. The success of 

Sulpholamide-based drugs was exhausted by the mid- ‘50s for two reasons. First, additional 

improvements of the therapeutic benefits of this class of drugs become more difficult reducing the 

opportunities to generate other inventions. Second, new antibiotics substituting the Sulpholamide-

based drugs appeared (for details on the case, see Achilladelis 1993). 

The values of the length of the legitimation period combined with the level of full 

technological impact define the shape of the S-curve of the novel technology. The shape of the S-

curve can, however, look considerably different for different inventions. Differences in time to 

legitimation and in the maximum level of technological impact will generate different diffusion 

patterns. Figure 1 compares the diffusion curves of a technology having a long legitimation phase 

and a high technological impact with another technology having a short legitimation phase but a 

low technological impact. 

Figure 1: Comparison between different S-shaped diffusion curves 
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2.3. Characteristics of the initial invention as predictors for its diffusion pattern 

What explains the speed and extent of diffusion of a novel technology? Why does one 

novel technology take a long time before take-off while others take-off very quickly? Why do 

some novel technologies impact a large total number of follow-on inventions, while others only a 

few? Unlike most of the diffusion literature, we will not look at the characteristics of the “users” 

to explain differences in diffusion patterns but, taking advantage of observing a large set of 

technologies at the time of their appearance, we look at the antecedent characteristics of the novel 

technologies as predictors for their diffusion pattern. 

Rogers in his review of diffusion studies (1983) provides a useful characterization of the 

attributes of the initial invention embedding the novel technology that influences its potential 

adoption: the complexity of the invention, the uncertainty surrounding the evaluation of the novel 

invention assessment, the compatibility with the potential adopter’s current way of doing things 

and the relative advantage of the novel invention over currently available alternatives. 

To focus our search for antecedent characteristics, we assume that the characteristics of the 

components combined for the first time in the initial invention are critical features affecting the 

diffusion of the embedded novel technology (Fleming 2001). Recent studies look at these 

antecedents for explaining the probability of observing those new combinations in the first place 

(Curran 2013; Caviggioli 2016). Nevertheless, none of the previous studies consider these 

antecedents as predictors of diffusion of the novel technology. 

We focus on the technological and cognitive characteristics of the newly combined 

components as relevant for the diffusion of the novel technology. Technological characteristics are 

those related exclusively to the technological aspects of the newly combined components. As 
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technological characteristics, we consider both the technological similarity and science-based 

nature of the newly combined components. Cognitive characteristics are those related to the ease 

of understanding of the newly combined components by the follow-on inventors’ community. As 

cognitive characteristic, we consider the familiarity of the inventors’ community with the newly 

combined components.  

Newly combining similar technologies 

Novel technologies can result from the combination of components that differ substantially 

or that are similar to each other. When the initial invention is for the first time combining similar 

components, it will have lower levels of uncertainty on the costs and benefits from making this 

new match, compared to those initial inventions that combine for the first time components that 

are dissimilar. Lower uncertainty decreases the cost of re-using,  leading to shorter legitimation 

times. In addition, the adoption of a novel technology which combines dissimilar components 

requires cross-field competence.  Inventors may need to set up new teams to be able to re-use the 

novel technology. Since teaming-up and acquiring new competences are time consuming 

activities, we expect that a novel technology resulting from the new combination of similar 

components is legitimated earlier than a novel technology resulting from the new combination of 

dissimilar components.   Although the higher risk associated with combining dissimilar   

components may also reduce full technological impact,  we expect that the combination of 

components that are based on dissimilar technological principles entail a higher potential for 

substantial new added value compared to alternatives, boosting their technological impact once 

the novel technology has passed the legitimation hurdle (Verhoeven et al. 2016).  
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Hypothesis 1 (newly combining similar components): A novel technology resulting from the 

new combination of two similar components (a) requires a shorter time to be legitimated and 

(b) has a lower technological impact. 

Newly combining science-based components 

Novel technologies can result from the new combination of components, which have a 

close science base. Science-based components are those components using basic research 

knowledge which has abstract content, in contrast with applied components where specialized 

knowledge is used for specific applications (Breschi et al. 2000). Novel technology newly 

combining more science-based components are more likely to be complex. The population of 

potential follow-on inventors needs to have the scientific knowledge to absorb the advancements 

embedded in the novel technology. This requires education and training of cohorts of inventors 

employed in industrial R&D (Klevorick et al. 1995). On the contrary,  when newly combining 

applied components, the inventors rely on a stable set of knowledge that is immediately available, 

needs less knowledge updating and carries less uncertainty. In view of the higher complexity and 

uncertainty, we expected that a novel technology resulting from the combination of science-based 

components takes more time to be legitimated in the users-inventors’ community. This higher 

uncertainty surrounding more science-based inventions may reduce the likelihood with which the 

maximum potential of inventor-users is reached. At the same time, the generality of the scientific 

knowledge used in science-based components is expected to open up a broader set of technological 

opportunities (Klevorick et al. 1995). Novel technologies relying on applied components are 

expected to have a more certain, but limited set of possible technological applications. For these 

reasons, we expect that a novel technology resulting from the combination of science-based 
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components has a higher expected technological impact while the combination of applied 

components has lower technological impact.  

Hypothesis 2 (newly combining science-based components): A novel technology resulting 

from the combination of science-based components (a) requires a longer time to be 

legitimated and (b) has a higher technological impact. 

Newly combining familiar components  

Cognitive characteristics are relevant since novel technologies are adopted by follow-on 

inventors who need to receive and interpret information before being able to use it in a creative 

way (Cohen and Levinthal 1990). Re-use is more likely when the novel technology is compatible 

with the potential adopter’s current way of doing things (Rogers 1983). For these reasons, we look 

at how familiar the inventors’ community is with the components of the novel technology. A novel 

technology can result from the new combination of components that have been frequently or rarely 

used within the user-inventors’ community. A component frequently used is well-known and can 

be readily exploited, while a component rarely used is unknown and still has to be explored (March 

1991). Following Fleming’s argument (2001), we assume that there is a greater chance that 

inventors build their inventions using components they are familiar with and can do this faster. 

Exploiting familiar components reduces the risks for unexpected results and facilitates the 

legitimation of the resulting novel technology. However, familiar components have been already 

largely exploited in the past so the novel technology resulting from their new combination is 

expected to have a lower technological impact.  
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Hypothesis 3 (newly combining familiar components): A novel technology resulting from the 

combination of familiar components (a) requires a shorter time to be legitimated and (b) has 

a lower technological impact. 

All three hypotheses predict a trade-off between technological impact and legitimation: novel 

technologies which have characteristics that can ensure a high potential are more likely to have a 

longer legitimation time.   

3. DATA AND METHODS 

3.1. Identification of novel technologies 

Our analysis relies on a sample including all the patents filed to the European Patent Office 

(EPO) in the period 1985-2015. Following Fleming and his coauthors (2007), we consider the 

technology classes in which a patent is classified (International Patent Classification -IPC- codes) 

as a proxy for the technological components which the patent uses (Schmoch 2008). We mark the 

appearance of a novel technology as the first time ever4 appearance of a combination of IPC codes 

in a patent. Limiting our definition of novel technology to the first time ever appearance of a 

combination, we ignore novel inventions arising within a given component, not from 

combinations. We also exclude as novel technologies, pairs of IPC codes that appear for the first 

time but that are not re-used after their appearance5. Following Amabile (1996) and Fleming and 

co-authors (2007), we require the novel technology to be useful, as we need a sufficient number 

                                                 

4 To flag a technology as novel, we need the complete history of its component to be able to evaluate when a pair of 

components appear together for the first time. We use the first available data period at EPO, 1978-1984, as a buffer 

period to capture the history of our components and we track novel combinations starting from 1985. 
5 The generation of pairs of IPC codes that are not re-used might be the result of some random error, for instance from 

the mechanical merge of all IPC codes included in all the EPO patent applications. 
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of followers to trace robust diffusion paths. Therefore, we restrict our novel technology definition 

only to those novel combinations re-used in at least 20 patents in the 20 years following the novel 

technology appearance. As noted by Jaffe (2002), “such selection does not create any selectivity 

bias” (pp. 25), as we are estimating the effects of our main variables of interest for successful novel 

technologies.  

3.2. Identification of follow-on inventions  

We trace the diffusion of a novel technology through its re-use by follow-on patents. To 

this end, we identify the pool of follow-on inventions as those later patents which also use the new 

combination of technology classes, introduced by the initial patent. Interestingly, many of the re-

users are not necessarily citing the initial invention, reminiscent of the patent citation link to be an 

imperfect proxy of technology relatedness (cf. Appendix A).  

A possible concern with our identification of a “technological trajectory” of a novel 

technology by tracing a new combination of two different components (represented by the 

combination of two IPC codes) is that there is no guarantee that the resulting combination’s re-use 

is meaningful. It could be that the novel combination is a mere artifact of our way of identifying 

novel technologies without any relevant content and that linking patents through a common use of 

a new combination is meaningless. To investigate the existence of a meaningful content, we 

implement a topic modelling analysis that verifies the coherence of the content of the patents 

embedding the same novel technology. If the patents associated to the same novel technology are 

coherent in terms of content, we can assume that they embed a meaningful common content, 

validating our approach for identifying the technology diffusion curves of a novel technology. In 

Appendix B we discuss how we validate our novel technology measure by applying a topic 
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modelling algorithm.  The results confirm that our method applied to identify the group of patents 

(re-)using a novel technology seems to link patents with coherent contents. 

3.3. Characterizing the diffusion pattern of novel technologies 

To represent the diffusion curves of each novel technology we proceed in two steps. First, 

we count the yearly number of patents that re-use the novel technology (yt). We construct the actual 

cumulated distribution over a window-period of 20 years (𝑌𝑡 = ∑ 𝑦𝑝
𝑡
𝑝=1 ) following the appearance 

of the novel technology6. Second, we use the actual cumulated distribution of each novel 

technology to fit the corresponding trend function. The trend function represents an algebraic 

approximation of the diffusion curve of the technology. Following the literature, we opt for an S-

curve characterized by a slow initial growth and by an asymptotic convergence to a ceiling level 

(Griliches 1957; Geroski 2000). The use of an estimated diffusion curve, instead of using the actual 

diffusion data, allows us to obtain a ceiling and legitimation period also for those technologies that 

do not exhaust their innovative potential during the observation period of 20 years. In fact, 

technologies with particularly slow legitimation might not show any asymptotic convergence to a 

ceiling level after the 20 years covered by the observed data. One example of a technology with a 

particularly long diffusion process is the light bulb that was introduced in 1909 and that continued 

to generate additional patented inventions until 1955 (Abernathy and Utterback 1978). 

Nevertheless, more than two third, sixty-eight percent, of the novel technologies included in our 

sample reaches the estimated ceiling level after 20 years7.  Appendix C provides further evidence 

                                                 

6 We consider all the novel technologies until the patent cohort of 1996 to leave a 20-year window forward to this last 

cohort. 
7 We consider a novel technology reaching the ceiling level if the difference between the actual cumulated number of 

patents after 20 years and the estimated value of the ceiling is less than 15% of the ceiling value. 
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on how well the S-shaped curve fits our actual data. We also check robustness of our results using 

the actual diffusion data in Appendix E.  

The technological diffusion S-curve can be expressed by the following equation and 

identified by three parameters, i.e, Midpoint, Alpha and Ceiling: 

𝑌̂𝑡 =
𝐶𝑒𝑖𝑙𝑖𝑛𝑔

1+𝑒
(−
(𝑡−𝑀𝑖𝑑𝑝𝑜𝑖𝑛𝑡)

𝐴𝑙𝑝ℎ𝑎
)
   (Equation 1) 

where 𝑌̂𝑡 is the cumulated number of re-using patents predicted at time t; t is the number of years 

elapsed since the appearance of the novel technology; the parameter Ceiling is defined as the upper 

asymptote of the S-curve; Midpoint is the required time to reach the fifty percent of the ceiling; 

and Alpha is the inverse of the curve slope at the Midpoint. An increase of the value of Alpha leads 

to flatter diffusion curves while a decrease of the value of Alpha leads to steeper diffusion curves.  

We use the three parameters describing the S-curve as proxies of the concept of 

Legitimation and Technological impact. We consider a technology to be legitimated when the 

technology reaches the ten percent of its ceiling (Griliches 1957). Legitimation can be calculated 

as a linear combination of Midpoint and Alpha, Midpoint-ln(9)*Alpha (See Equation 1 and 

Appendix D for the mathematical details). It is expressed in number of years since the appearance 

of the novel technology until its legitimation (Griliches 1957). We measure the full impact of a 

technology as the maximum number of inventions that the novel technology is expected to 

generate. The value of the full technological impact is captured by the ceiling parameter. While 

our main results concentrate on Legitimation and Technological Impact, we extend our discussion 

of the characterization of the S-curve in section 4.3 when we also present results on Alpha and 

Midpoint, which allows to check further characteristics of the diffusion curve.   
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3.4. Determinants of the diffusion curve of novel technologies 

We conduct a set of regression exercises aiming to estimate the two critical parameters 

characterizing the diffusion curve of our sample of novel technologies: Legitimation and 

Technological Impact. As pivotal determinants of these parameters, we look at the characteristics 

of the novel technology which is being re-used, more particularly the technological and cognitive 

characteristics of the newly combined components. Specifically, we estimate with an Ordinary 

Least Squares (OLS) the following two equations8: 

Legitimation =β0+ Component characteristics*β1 + Inventors’ characteristics*β2 + 

Applicants’ characteristics*β3 + Other controls* β4 + ε           

(Equation 2) 

Technological impact =β0+ Component characteristics*β1 + Inventors’ 

characteristics*β2 + Applicants’ characteristics*β3 + Other controls*β4 +ε   

(Equation 3) 

Component characteristics is a vector of variables that includes the characteristics of the 

components in the new combination characterizing the novel technology. We consider the 

technological Similarity and Science-based nature of the newly combined components as well as 

the Familiarity of the follow-on inventors’ community with the newly combined components. All 

                                                 

8 We run also a set of regressions where we estimate Equation 2 and 3 simultaneously using a Seemingly 

Unrelated Regressions (SUR) method. However, having the same set of regressors in the two equations guarantees 

estimates that are as consistent and efficient as the estimation equation-by-equation using a standard OLS (Davidson 

and MacKinnon; 1993). 
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of these characteristics are measured at the time of the initial patent which introduces the new 

combination for the first time ever. 

To measure Similarity between the newly combined components, we exploit the 

hierarchical structure of the IPC code classification where each additional digit denotes a higher 

degree of refinement of the technological classification. More precisely, we define two 

components as being similar when they have the first three digits of their IPC codes in common. 

To construct the variable Science-based content, we consider the patent applications which include 

any of the two combined components over a rolling time window from t-1 to t-4. For each 

component, we compute the average number of references to the non-patent literature per patent 

application (Meyer-Krahmer and Schmoch 1998). We calculate the Science-based content variable 

as the average number of references per patent for the two components. We use Fleming (2001) to 

construct our measure for Familiarity. We count the number of patent applications in a four-year 

rolling window for each of the two combined components and calculate the average number of 

patents of the two components. In the regression model, we consider the logarithm transformation 

of the variables Science-based content and Familiarity, to interpret the estimated effects as semi-

elasticities. 

Several characteristics of the components might bias our estimations of the technological 

and cognitive characteristics. To correct for this, we include a series of controls. To control for 

time-invariant and technology specific unobserved characteristics of the components such as the 

unmeasurable propensity of the component to generate additional inventions and its technological 

complexity, we include as controls a set of three-digit technological class dummies referring to the 

combined components (Dummy Technology class). A technology class dummy equals one if the 

first three digits of the IPC codes of at least one of the two combined components equal to the 
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three-digit identifying the technological class dummy, zero otherwise. We also include a set of 

time-dummies representing the calendar year when the novel technology appeared (Technology 

entry year). 

Other characteristics that may influence the diffusion pattern of the novel technology relate 

to the characteristics of the applicants and/or inventors of the initial patent. As applicants’ 

characteristics, we consider applicants’ experience, type (university or public research center 

versus private company), being a single applicant, and location country9. The applicants’ 

experience is computed as a count variable that records applicants’ previous patented inventions. 

University applicant is a dummy that equals one if at least one of the applicant is a university or a 

research center, zero otherwise. More than one applicant is a dummy that equals one if there is 

more than one applicant, zero otherwise. Applicant’s country is a set of dummies, one for each 

applicant’s country reported on the patent documents, that identifies the geographical location of 

the applicant(s). As controls for inventors’ characteristics, we consider inventors’ team size. The 

team size is the number of inventors appearing in the patent filed during the first year when the 

novel technology appears, i.e. the initial patent. 

4. DATA AND RESULTS 

Before we present the descriptive results on our full sample in section 4.2 and the 

econometric results in 4.3, we illustrate the main idea of our paper through the case of a renowned 

invention and the diffusion of its embodied novel idea: the ‘onco-mouse’ embodying the new 

‘transgenic mammal technology’. The ‘onco-mouse’ provides an illustrative example of how we 

                                                 

9 If there are multiple patents embodying the novel technology the first year when it appears, we aggregate the 

characteristics of these patents in a representative unique initial patent.  
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identify the diffusion curve of a novel technology and of how we calculate the characteristics of 

the combined components. 

4.1 A first illustrative case: the “onco-mouse”  

The “onco-mouse’’, a mouse widely used in laboratory cancer research, is an example of 

a well-recognized breakthrough invention embodying a novel technology. In the mid-80s, Philip 

Leder and Timothy Steward at Harvard laboratories had the revolutionary idea of isolating cancer-

related genes and injecting them into a mouse egg transplanted into a female mouse generating the 

first transgenic mammal likely to develop a specific disease (Murray 2010). The novel technology 

to mimic diseases (transgenic mammal technology) uses an unprecedented combination of two 

existing technological components: “Gene isolation” and “Injection of material into animals”. The 

“onco-mouse” was the first patented invention embodying the novel technology for cancer, but a 

variety of follow-on inventions followed, represented by other transgenic mammals used in labs 

to experiment treatments for a variety of diseases. Geneticists patented at least 110 transgenic 

mammals designed to develop diseases from Alzheimer to cystic fibrosis (Murray 2010). For 

instance, the “diabetic mouse” created in 1996 by Seo Jeon Sun, a professor from Seoul National 

University is a follow-on patented invention building up on the novel transgenic mammal 

technology.  

We look at the patents’ technological content and we mark as transgenic mammal novel 

technology the combination of the IPC codes “Introducing […] material into […] the body of 

animals” (IPC code A01K67) and “[…] DNA or RNA concerning genetic engineering […]” (IPC 

code C07H21) that appeared for the first time in the onco-mouse patent, characterizing its novelty. 

We reconstruct the diffusion curve of the transgenic mammal technology to mimic diseases, by 

tracing the re-use of the novel combination “Injection of material into animals” A01K67 and 
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C07H21 “Gene isolation” in follow-on patents. We observe the novel transgenic mammal 

technology for a 20-year window. After 20 years, we observe 220 patents re-using the A01K67- 

C07H21 novel combination of IPC classes introduced by the onco-mouse patent. It is interesting 

to note that among these 220 patents only six cite the original patent and only 34.5% cite at least 

another patent belonging to the same novel technology. 

Figure 2 shows the actual cumulated distribution (Yt) of the user patents embodying the 

combinations of the IPC codes A01K67-C07H21 (dotted line). Referring to the patent distribution, 

we estimate the three parameters of the corresponding S-curve by using a maximum likelihood 

estimation methodology. The solid line in Figure 2 represents the fitted S-curve curve (𝑌̂𝑡). This 

curve is identified by an estimated Ceiling equal to 267.38 patents, a Midpoint of 15.49 years, and 

an Alpha of 3.45.  

Figure 2: Diffusion curve of the novel onco-mouse technology

 

The use of a specific functional form allows us to predict the diffusion of a novel 

technology at any point in time by means of the three estimated parameters. The ceiling parameter 
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of 267.38 patents corresponds to the full technological impact reachable by the technology. The 

legitimation of the “transgenic mammal technology, reaching the acceptance rate of 10% of its 

ceiling, is reached after 7.91 years since its appearance. In our example, by substituting the 

estimated parameters in Equation 1, we can predict that, after 10 years since the transgenic 

mammal technology appearance (𝑌̂10), the cumulated number of re-user patents embodying the 

transgenic mammal technology equals 45.24 (
267.38

1+𝑒
(−
(10−15.49)

3.45
)
=45.24). In the same way, we can 

predict that after 30 years from its appearance (𝑌̂30), the cumulated number of user patents 

embodying the transgenic mammal technology would be equal to 263.45 (
267.38

1+𝑒
(−

(30−15.49)
3.45

)
=263.45).  

The transgenic mammal technology is thus an example of a breakthrough novel technology with 

a high technological impact, but which took a rather long time for legitimation.   

To explain this diffusion pattern of the transgenic mammal technology, our main 

hypotheses develop around the characteristics of the two technological components combined to 

generate the novel technology. Concerning the characteristics of the combined components 

generating the transgenic mammal technology, these components where strongly science-based 

(Science-based content = 9.51, almost 3 times higher than our sample average). Furthermore, the 

two components combined for the first time belong to two different technological domains, making 

them dissimilar. And finally, the “Gene isolation” component was rather new within the 

technological community, as well as the “Injection of material into animals” component at the time 

when they were recombined for the first time in the “onco-mouse” (Familiarity=160.5, which is 

less than half the sample average value). The transgenic mammal technology being a science-

based, dissimilar and unfamiliar novel technology has a high technological impact and a long time 

to legitimation, confirming our hypotheses. 
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4.2. Some first descriptive results.  

Our study sample includes 10,782 successful novel technologies (i.e. novel technologies 

with at least 20 follow-on patents in the following 20 years) which generated 249,103 distinct 

follow-on patents. We first present some descriptive results on the diffusion patterns for these 

10,782 observations. Figure 3 plots all the estimated diffusion curves of the novel technologies in 

our sample. The black line highlights the “transgenic mammal technology” diffusion curve. Table 

1 reports the descriptive statistics on the estimated parameters of the diffusion curves.  

Figure 3: Novel technologies’ estimated diffusion curves. 

 

Note: The black curve identifies the onco-mouse technology 

Table 1: Descriptive statistics on the estimated diffusion curves. 

  Obs. Mean Sd Median Min Max 

Estimated parameters:       

Dependent variables            

Technological impact/Ceiling [# patents] 10,782 66.95 94.58 38.2 20 998.29 

Legitimation (10%) [# years] 10,782 5.91 3.13 5.67 0 16.78 



24 

 

Other sigmoid parameters       

Midpoint (50%) [# years] 10,782 12.45 3.29 12.39 1.53 24.89 

Alpha  10,782 2.98 1.16 2.88 0.21 7.47 

 

Both Figure 3 and Table 1 illustrate the heterogeneity in diffusion patterns of novel technologies 

in our sample. On average, a typical diffusion pattern of novel technologies is one of a modest 

technological impact, as the median Ceiling is about 38 follow-on patents in a 20-year window 

and the average Ceiling for a novel technology about 67 patents. However, the sample contains a 

high variance on technological impact, with a right skew and substantial outlier cases, as Figure 3 

shows. With its 267 patents at Ceiling, the transgenic mammal technology is one such clear outlier. 

At the same time, the average/median Legitimation is less than 6 years to reach the 10% threshold, 

substantially lower than the 8 years for the transgenic mammal case. The variables Ceiling and 

Legitimation are positively correlated (0.37) meaning that on average a higher technological 

impact (Ceiling) tends to correspond with a longer Legitimation time.    

Table 2: Descriptive statistics on the component characteristics curves. 

  Obs. Mean Sd Median Min Max 

Component characteristics       

Similarity 3 digits (dummy) 10,782 0.33 0.47 0 0 1 

Science-based content 10,782 3.5 7.45 2.25 0.02 283.99 

Familiarity 10,782 347.02 429.17 208.5 0.5 5,490.5 

Inventor’s characterisics       

Inventors' team size 10,782 3.36 2.9 3 1 55 

Applicant characteristics       

Applicants' experience 10,782 638.2 1,502.61 33 0 17,279 

University applicant (dummy) 10,782 0.05 0.22 0 0 1 

More than one applicant (dummy) 10,782 0.25 0.43 0 0 1 

 

Table 2 shows the component characteristics of the novel technology. About one third of 

our sample of novel technologies newly combines similar components. On “familiarity”, the 
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sample displays a left skew with most observations having a lower than average familiarity of its 

newly combined components (median smaller than mean). For “science-based content”, the 

sample contains substantial heterogeneity (high standard deviation), also with a left skewed 

distribution: most observations have a relatively low science-based content of its newly combined 

components, while there are a few outliers with high science-based content (median smaller than 

mean).  

 4.3. Main econometric results 

Table 3 shows the results of our econometric exercise, estimating equations 1 and 2. 

Columns 1 and 2 report the estimation of a baseline model including only the component 

characteristics and technology entry year dummies. Columns 3 and 4 add as controls the inventors’ 

and applicants’ characteristics. Columns 5 and 6 add the technological class dummies. Comparing 

columns 3 and 4 with columns 5 and 6 shows the importance of adding technology classes as 

controls. According to our most complete model specification, estimated in columns 5 and 6, we 

find that combining two similar components reduces significantly the legitimation time. 

Specifically, a novel technology resulting from the new combination of two similar components 

has a legitimation time which is 14.4 months10 shorter than a novel technology resulting from the 

new combination of two dissimilar components. Compared to the average sample legitimation 

time of 5.91 years, this implies a 20% longer legitimation time. Component similarity also 

significantly affects the ceiling, leading to lower levels of full technological impact. Having similar 

components decreases the ceiling by 8.58 patents. Compared to the sample average of 67 ceiling 

                                                 

10 14.4 is obtained multiplying the coefficient of Similarity in the regression with Legitimation as dependent variable 

(-1.20) by the number of months in a year (12).  
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patents, this is a 13% difference. With both results, our first hypothesis on similarity is confirmed, 

with sizeable effects.  

Newly combining components with a higher science-based content generates a novel 

technology that requires more time to be legitimated. This effect is significant, but not substantial: 

novel technologies with a 50% higher score on science-based content, have a 0.96 months longer 

legitimation time (1.4% difference relative to sample average). At the same time, novel 

technologies combining science-based components have a significantly higher ceiling. A 50% 

higher score on science-based content increases the ceiling by 8.3 patents, all else equal. These 

results confirm our second hypothesis on combining science-based components. 

A novel technology resulting from the new combination of two familiar components 

requires a shorter time to be legitimated. Increasing the level of familiarity by 50% decreases the 

time needed for a novel technology to be legitimated by 1.2 months. The same technology has 

lower technology impact, with a ceiling smaller by 4.6 patents. These results are in line with our 

third hypothesis, combining familiar components, be it with small sized effects.  

Concerning the controls, we find that the inventors’ team size, as well as the experience of 

the applicants, having multiple applicants, and the presence of a university among the applicants 

lead to a novel technology with a higher ceiling. The legitimation time is negatively affected by 

the presence of multiple applicants.  
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Table 3: Regression results. OLS estimations for Equation 1 and 2. 

  (1) (2) (3) (4) (5) (6) 

VARIABLES 
Legitimation 

(10%) 
Technological 
Impact/Ceiling 

Legitimation 
(10%) 

Technological 
Impact/Ceiling 

Legitimation 
(10%) 

Technological 
Impact/Ceiling 

Component characteristics       

Similarity 3 digits (dummy) 0.066 19.1*** 0.11* 18.6*** -1.20*** -8.58*** 

 (0.066) (2.00) (0.065) (2.00) (0.10) (3.22) 

log(Science-based content) 0.24*** 19.9*** 0.30*** 18.6*** 0.16*** 16.6*** 

 (0.032) (0.98) (0.034) (1.03) (0.048) (1.54) 

log(Familiarity) -0.27*** -9.25*** -0.25*** -9.43*** -0.20*** -9.13*** 

 (0.029) (0.88) (0.029) (0.88) (0.029) (0.92) 

Inventor’s characterisics       

log(Inventors' team size)   -0.32*** 1.14 -0.12*** 5.19*** 

   (0.047) (1.45) (0.045) (1.43) 

Applicant characteristics       

log(Applicants' experience)   -0.026** 0.40 -0.014 0.80** 

   (0.011) (0.35) (0.011) (0.35) 

University applicant (dummy)   -0.047 3.79 0.12 8.60** 

   (0.13) (4.14) (0.13) (4.08) 

More than one applicant (dummy)   -0.75*** 8.17*** -0.87*** 5.43* 

   (0.095) (2.90) (0.088) (2.83) 

Dummy Technology class (3 digits) No No No No Yes Yes 

Dummy Applicant’s country No No Yes Yes Yes Yes 

Dummy Technology entry year Yes Yes Yes Yes Yes Yes 

Constant 7.61*** 117*** 8.34*** 99.6*** 10.6*** 146*** 

 (0.17) (5.10) (0.19) (5.78) (0.25) (7.90) 

       

Observations 10,782 10,782 10,782 10,782 10,782 10,782 

R-squared 0.062 0.060 0.099 0.076 0.240 0.148 

 

In Table 4 we further characterize the diffusion curves of novel technologies, reporting a 

set of regressions with Midpoint and Alpha as dependent variables. While full technology impact 

has a direct correspondence to the ceiling parameter of a sigmoid curve, legitimation is a linear 

combination of the remaining two parameters, Midpoint, and Alpha. The coefficients estimated for 

each variable can be calculated as follow (cf. Appendix B): 

𝛽̂𝐿𝑒𝑔𝑖𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 𝛽̂𝑀𝑖𝑑𝑝𝑜𝑖𝑛𝑡 − 𝛽̂𝐴𝑙𝑝ℎ𝑎 ∗ 2.2                            (Equation 4) 
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Two novel technologies with a similar time to legitimation (reaching 10% of their ceiling) 

can have different times to midpoint (reaching 50% of their ceiling) when they have a different 

Alpha (i.e. the inverse of the slope at midpoint). The Alpha parameter reflects the time it takes 

from legitimation to midpoint, i.e. to go from 10% to 50% of the ceiling. Looking at Equation 4, 

we can see that a higher Alpha leads to a higher difference in time from legitimation to midpoint 

and therefore a slower diffusion between legitimation and midpoint. The Midpoint results in Table 

4 allow to check our results for sensitivity in the time to various shares of the ceiling value reached 

(10% versus 50%) while the Alpha results allow to look at the time from Legitimation (10%) to 

Midpoint (50%).   

Table 4: OLS estimation using as dependent variables Midpoint and Alpha and adopting 

the same specifications reported in Equation 1 and Equation 2. 

  (1) (2) 

VARIABLES Midpoint (50%) Alpha 

Technological component characteristics   

Similarity 3 digits (dummy) -0.47*** 0.33*** 

 (0.098) (0.037) 

log(Science-based content) -0.26*** -0.19*** 
 (0.047) (0.018) 

log(Familiarity) -0.14*** 0.028*** 

 (0.028) (0.011) 
Inventor’s characterisics   

log(Inventors' team size) -0.11*** 0.00032 

 (0.044) (0.016) 
Applicant characteristics   

log(Applicants' experience) -0.033*** -0.0087** 

 (0.011) (0.0040) 
University applicant (dummy) -0.31** -0.20*** 

 (0.12) (0.047) 

More than one applicant (dummy) -0.29*** 0.26*** 
 (0.086) (0.032) 

Dummy Applicant’s country Yes Yes 
Dummy technology entry year Yes Yes 

Dummy Technology Class (3 digits) Yes Yes 

Constant 16.7*** 2.76*** 
 (0.24) (0.090) 
   

Observations 10,782 10,782 

R-squared 0.342 0.262 

 

The results concerning Legitimation (time to reach 10%) and Midpoint (time to reach 50%), 

appear consistent (see Table 3 column 5 versus Table 4 column 1). Indeed, “Similarity” and 



29 

 

“Familiarity” show qualitatively the same impact on Legitimation and Midpoint with less time 

needed to reach not only 10% (legitimation), but also 50% (midpoint) of the ceiling. Their 

significant positive effect on Alpha signals that similar or familiar novel technologies, take a longer 

time to go from Legitimation to Midpoint as compared to dissimilar or non-familiar novel 

technologies. This suggests that the speed advantage associated with similarity or familiarity 

matters particularly in the initial phase of diffusion, i.e. before Legitimation. But after legitimation, 

dissimilar and familiar novelty are able to catch up, but only to a limited extent. For “Science-

based content”, we find different results for Legitimation and Midpoint. While a higher science-

based content of the combined components slightly increases the legitimation time, it decreases 

the time needed to reach the Midpoint. The results on the parameter Alpha explains this finding. A 

high science-based content of the combined components leads to a diffusion curve that grows 

slowly in its very first part (as shown by the positive coefficient in the Legitimation regression), 

but after this first part, catches up quickly, due to its steepness (as shown by the negative coefficient 

in the Alpha regression), thus reaching the midpoint faster (as shown by the negative coefficient 

in the Midpoint regression). These results, therefore, show that the science-based content of the 

novel technology retards only the very initial diffusion speed before legitimation.  

To visualize the impact of the component characteristics on the novel technology diffusion, 

we consider in Figures 4 and 5 three cases of novel technologies, which we compare with a baseline 

novel technology characterized by dissimilar components, a low science-based content (equivalent 

to the first quartile (Q1) value in our study sample), and a low familiarity value (Q1 value in our 

study sample)11. The three cases are: 1) the novel technology differs from the baseline for having 

                                                 

11To characterize the baseline technology, we assign to the remaining control variables some representative 

values as follow: log(Inventors' team size)=log(3); log(Applicants' experience)=log(38); University applicant=0; 
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similar components; 2) the novel technology differs for being highly science-based (Q3 value); 

and 3) the novel technology differs for having a high familiarity (Q3 value). The three cases show 

a trade-off when changing the values of each component characteristics (Similarity, Science-based 

content, Familiarity). In building the different cases, we use the estimated coefficients of Table 3, 

columns 5 and 6.  

Looking at Figure 4, we observe that by augmenting the value of the variable “Science-

based content” from Q1 to Q3, the corresponding novel technology will have a higher ceiling. 

However, it will require a longer time to be legitimated. On the contrary, augmenting the value of 

“Familiarity” from Q1 to Q3 or having a “similar” novel technology leads to a shorter legitimation 

time, but, as a drawback, leads to a lower ceiling.   

Although each component characteristic shows a trade-off, the direction and the magnitude 

of these trade-offs differs significantly according to the characteristic considered. Augmenting the 

“Science-based content” increases to a considerable extent the ceiling, while augmenting the 

legitimation time, but only slightly. Both “Familiarity” and “Similarity” reduce the legitimation 

time, but at a cost of a lower ceiling.  While for “Familiarity” the gain in legitimation time is only 

modest and the loss in ceiling is substantial, the gain in legitimation time for “Similarity” is much 

more substantial, while its loss in ceiling is more modest.  

 

 

                                                 

More than one applicant=0; Dummy Applicant’s country (US=1, zero all the other country dummies); Dummy 

Technology class (A01=1 and C07=1, zero all the other technology class dummies); Dummy technology entry year 

(Dummy 1985=1). 
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Figure 4: Variation in novel technologies’ legitimation time and ceiling when changing the 

values of the technological component characteristics. 

  

    

The legitimation time of the baseline technology equals to 5.56 years; The average number of ceiling patents is 

45.70 

 

4.4. Robustness checks 

To test the reliability of our results we implemented a set of robustness checks which are 

reported in Appendixes E - H. 

The assumption that the diffusion process follows an S-curve might raise concerns.   We 

report in Appendix E a variant of the econometric exercise of Table 3, using as dependent variables 

the actual Legitimation time and the actual Technological Impact, rather than the estimated values 

from fitting an S-curve. Specifically, we calculate the legitimation time as the time required to 

reach the ten percent of the actual Ceiling. We define the actual Ceiling, as the cumulated number 

of patented inventions using the novel technology 20 years after its appearance. Results are 

consistent with those reported in Table 3 when using actual Legitimation time and actual 

Technological Impact. 
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Another concern with our S-curve approach is that we force the diffusion pattern into a 20-

year window. For those novel technologies which peak after 20 years, the maximum value within 

the 20-year window will not coincide with their true ceiling. Figure F1 in Appendix F plots the 

actual cumulated number of patents at the end of our observation period (20 years) against the 

estimated technological impact (the Ceiling of the S-curve). It shows that although about 32% of 

the cases do not reach their Ceiling (+/- 15%) at the end of the 20-year period, most of the 

deviations are small in size.  Overall, the 10,782 novel technologies considered in our study are at 

88.5% of their ceiling value at the year 20.  Nevertheless, in Appendix F we rerun our econometric 

exercises on two sub-samples. The first sample includes only novel technologies reaching their 

full technological impact within the 20 years observed, while the second sample includes the 

technologies not reaching their full technological impact within the 20-year period. Results from 

both sub-samples are similar and consistent with those obtained in Table 3. Only for Similarity the 

negative effect on Technological Impact disappears in the second subsample.  

In the main analysis, reported in Table 3, we consider the diffusion of successful novel 

technologies and, as a consequence, we limit our observations to all the novel combinations that 

reach at least 20 follow-on inventions within the 20-year window considered. Excluding novel 

technologies that do not or only marginally diffuse may generate a selection bias problem. To 

correct for this selection bias we adopt a 2-step Heckman estimation strategy. Appendix G reports 

the results of our estimations without and with the correction for the selection bias. We find a 

substantial coherence between both results. This allows us to claim that analyzing successful 

novelty and restricting our sample to 10,782 novel combinations does not introduce any serious 

selection bias in the estimated impact of the characteristics of the combined components on 

diffusion. 
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5. Conclusion  

Despite the high interest of scholars in identifying successful inventions and their diffusion, little 

attention has been devoted to investigate how the novel ideas embodied in original inventions are 

re-used in follow-on inventions and how these diffusion patterns are affected by the antecedent 

characteristics of the novel technology.  

We address these limitations by using patent data to empirically map and characterize the 

trajectory of novel technologies’ re-use in follow-on inventions on a large scale. We identify a 

novel technology as an unprecedented combination of existing technological components and trace 

all the patents who are re-using this new combination in their follow-on inventions. We analyze 

how the full technological impact reached by the novel technologies and the time needed to be 

legitimated, are affected by the antecedent characteristics of the novel technology, more 

specifically, the science-based nature and similarity of the newly combined components as well as 

the familiarity of the follow-on inventors’ community with the newly combined components. 

Our large scale empirical study, using patent data from 1985 till 2015, allows to trace the 

diffusion of 10,782 successful novel technologies which generated 249,103 distinct follow-on 

patents. Using the common S-shaped diffusion curve, we obtain an estimated ceiling and 

legitimation period for each novel technology. Our results suggest a typical diffusion pattern of 

relatively fast legitimation but modest technological impact.  However, the sample contains a high 

variance on technological impact, with a right skew and substantial outlier cases, the “onco-

mouse” being one such example. Most high outliers have a longer than average legitimation time, 

like the transgenic mammal technology.  In general, we find that higher ceiling values are 

positively correlated with longer legitimation time.  
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Our analysis on antecedent characteristics of the novel technology associated with 

differences in diffusion patterns shows that a high degree of similarity between the newly 

combined components and a high familiarity of inventors with the newly combined components 

shorten the legitimation time, but also reduce the technological impact. The science-based nature 

of the combined components plays an opposite role, increasing the technological impact of a novel 

technology, but extending the legitimation time. Although each component characteristic shows a 

trade-off between legitimation time and technological impact, the direction and the magnitude of 

these trade-offs differs significantly according to the characteristic considered. Augmenting the 

science-based content of the newly combined components improves to a considerable extent the 

full technological impact, at a cost of only slightly augmenting the legitimation time.  In fact, soon 

after the legitimation time, the speed of diffusion takes up, such that mid-term is reached faster 

than for non-science based novel technologies. Augmenting familiarity leaves only a modest gain 

in legitimation time, while the loss in technological impact is substantial. Newly combining similar 

rather than dissimilar components leaves a substantial gain in legitimation time, while the loss in 

technological impact is more modest.  

Our analysis contributes in several ways to the literature, improving our understanding of the 

diffusion trajectory of novel technologies.  First, we identify the diffusion trajectory of novel 

technologies carefully. Rather than using the classification in the same technology class as link 

between the users, or a patent citation link, we identify “users” as those follow-on inventions which 

are re-using the new combination which characterized the initial novel technology.  A topic 

modelling validation analysis confirmed that this re-use link captures a content link, while it poorly 

correlates with patent citation links.  Second, as we are using patent information, we can identify 

diffusion trajectories for a large sample of novel technologies. While the literature so far has mostly 
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looked at the diffusion of specific cases of technologies and concentrated on characterizing the 

adopters, our large scale approach allows to identify the characteristics of the novel technologies 

as determinants of the diffusion patterns.   

Our approach leaves some important findings. Perhaps the finding with the most important 

implications is the apparent trade-off between legitimation time and technological impact. Those 

novel technologies with bigger technological impact seem to need a longer time before they are 

legitimatized.  Particularly the riskier types of novel inventions, i.e. those that newly combine 

dissimilar, unfamiliar and science-based components, while having a larger technological impact, 

require a longer legitimation time. This raises questions for further analysis on whether the higher 

technological impact that these riskier novel inventions generate, could have been reached with 

shorter legitimation.  What causes a longer legitimation time for bigger impact novel inventions?  

Can re-use be speeded up for these “hits”? And what kind of policy intervention could help?  Could 

we learn from the exceptional cases in the sample that became big hits fast?  

Our research opens up other areas of future research. Other determinants of the diffusion 

patterns could be looked at, such as the characteristics of the incumbent technology areas affected 

by the novel technology. Our current analysis showed the importance of controlling for technology 

areas, but we would like to know which characteristics matter, such as its concentration in few 

incumbent users or its diversity of different types of incumbent users. Characterizing the “re-users” 

is another interesting area of further research.  Who are the applicants and inventors in the follow-

on inventions and how close are they to the original novel technology and to each other? And 

finally, although the S-shaped diffusion pattern fitted well the sample of novel technology 

diffusion trajectories on average, there are nevertheless outlier cases which could be interesting to 

study in more detail.  
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Appendix A: Cross-patent citations in the same novel technology diffusion curves 

Table A1 and A2 show how patents belonging to the same novel technology diffusion 

curve cite each other. On average, a negligible share of patents in the diffusion curve, 2.7%, cites 

the first patent including novelty. Only 27% of the patents cite other patents in the same 

diffusion curve, while 29% are cited by other patents. The limited number of cross-citations 

among patents in the same diffusion curve shows that citations capture only partially the re-use 

of a specific technology by technologically related inventions.  

Table A1: Descriptive statistics. 

  Obs Mean Sd Min Q1 Q2 Q3 Max 

Patents in the diffusion curve 10,782 57.4 80.78 20 25 33 55 1004 

Patents in the diffusion curve citing the first patent 

including the novelty 
10,782 1.13 2.63 0 0 0 1 48 

Patents in the diffusion curve cited by other patents in the 

diffusion curve 
10,782 16.61 27.91 0 5 9 16 454 

Patents in the diffusion curve citing other patents in the 

diffusion curve 
10,782 18.3 32.07 0 5 9 18 516 

Share of patents in the diffusion curve citing the first 

patent including the novelty 
10,782 0.027 0.06 0 0 0 0.03 0.68 

Share of patents in the diffusion curve cited by other 

patents in the diffusion curve 
10,782 0.27 0.13 0 0.17 0.25 0.35 0.85 

Share of patents in the diffusion curve citing other patents 

in the diffusion curve 
10,782 0.29 0.15 0 0.18 0.27 0.38 0.92 

 

 

  



40 

 

Appendix B: Validation of the novel technology measure with topic modelling 

A possible concern with the identification of a novel technology as the combination of two 

different components (represented by the combination of two IPC codes) is that there is no proof 

that the resulting combination is meaningful. It could be that the novel combination is a mere 

artifact of our way of identifying novel technologies without any meaningful content. To 

investigate the existence of a meaningful content, we implement a topic modelling analysis that 

verifies the coherence of the content of the patents embedding the same novel technology. If the 

patents associated with the same novel technology are coherent in terms of content, we can assume 

that they embed a meaningful common content, i.e. the novel technology. 

First, we collected the titles of all the patents included in our study sample (250,979 patents.  

We inferred the topics of each patent by using the Latent Dirichler Allocation (LDA) method. The 

idea behind LDA is that each document is the results of a set of (latent) topics. Topics contain 

words with a probability distribution (Griffiths and Steyvers, 2007). For example, for a document 

on the topic “transgenic modification methods”, the words that are likely to appear in the document 

will be “protein”, “human”, “dna”, “transgenic”. We used Gibbs’s algorithm to estimate the LDA 

parameters and to classify each patent according to 20 topics. We chose the number of topics 

according to the optimization method proposed by Griffiths and Steyvers (2007) which aims at 

finding the number of topics that maximizes the log-likelihood value of Gibb’s estimation of the 

LDA parameters. The results of this optimization method are reported in Figure B1. Figure B1 

shows that the maximum value of log-likelihood is obtained for 20 topics. Figure B2 illustrates the 

most likely four words generated by each of the 20 topics. 
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Figure B1. Optimal topic selection number of topics identifying the patent titles text in our 

sample. 

  

Figure B2: The most likely four words generated by each topic. 

1 2 3 4 5 

circuit control material light communication 

machine vehicle producing electronic mobile 

integrated power materials devices wireless 

printing motor product unit radio      
6 7 8 9 10 

treatment transmission process systems network 

treating data metal devices service 

agent signal production monitoring management 

delivery digital producing medical providing      
11 12 13 14 15 

engine process optical based display 

combustion surface sensor detection manufacturing 

internal water antenna detecting structure 

protein producing component determining element      
16 17 18 19 20 

compositions information composition cell derivatives 

comprising processing film fuel compounds 

preparation data coating type acid 

active image forming heat inhibitors 

Once the 20 topics have been identified, we redefined each patent as a combination of these 

20 topics. Figure B3 shows an illustration of how topics contribute to the patent titled “Method 

and device for preparing fibrous plant bodies.”. The patent is characterized by topic 3 and 12 that 

have the highest shares. 
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Figure B3: Share contribution of topics in patent titles. 

Ttitle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Method and 

device for 

preparing 

fibrous 

plant 

bodies. 

5% 5% 8% 5% 5% 6% 5% 5% 5% 5% 5% 6% 5% 5% 5% 5% 5% 5% 5% 5% 

 

Next, to confirm that each novel technology and its re-users have a meaningful relationship, 

we need to show that patents belonging to the same group are homogenous in terms of topic 

content. To do that, we grouped the patents belonging to the same novel technology according to 

our definition reported in section 2: a patent is assigned to a novel technology if it has a specific 

new pair of IPC codes in its IPC classification list. Then, we evaluated the level of homogeneity 

of each topic within the group of patents embedding the same novel technology. To do so, we 

calculated the standard deviation of each topic share (see Figure B4). Then, we calculated the 

average of those standard deviations by group (novel technology) (see Figure B5). 

Figure B4: Standard deviation of each topic share by novel technology. A patent is assigned 

to a technology if it has a specific pair of IPC codes in its IPC classification list. 

IPC class IPC class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 #patents 

A01D45 A01D43 2.8% 0.6% 1.0% 0.8% 0.6% 0.6% 0.6% 0.6% 1.3% 0.7% 1.1% 0.8% 0.3% 0.1% 0.8% 0.5% 0.5% 0.4% 0.6% 0.4% 26 

 

Figure B5: Average standard deviation of topics shares by novel technology. A patent is 

assigned to a technology if it has a specific pair of IPC codes in its IPC classification list. 

PC class IPC class 
Average 
standard 

devation 

#patents 

A01D45 A01D43 0.76% 26 

To assess if topics are homogeneous or not within each group, as represented by the average 

standard deviation calculated in Figure B5, we need to have a comparison value. We constructed 

a comparison sample where each patent is assigned randomly to a group (and not grouped 

according to its IPC codes). Each group maintains the same number of patents as in our original 
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classification. We computed the average standard deviation of topics shares of each of those groups 

where patents are randomly assigned (see Figure B6). 

Figure B6: Average standard deviation of topics shares by novel technology. A patent 

is assigned randomly to a technology. 

PC class IPC class 
Average 

standard 

devation 

#patents 

A01D45 A01D43 1.02% 26 

 

Finally, we test if the average standard deviations in the two samples, i.e. the original 

sample and the one with patent randomly assigned to technologies, are statistically different. We 

find that the average standard deviation of the topics share in the original sample is significantly 

lower than in the sample with randomly assigned patents (0.008 vs. 0.012, P-value 0.000). This 

result confirms that topics are more homogeneous in a sample where patents are assigned to the 

novel technology according to the IPC code combinations rather than when they are assigned 

randomly. In other words, the method applied to identify the group of patents (re-)using a novel 

technology seems to link patents with coherent contents. 
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Appendix C: S-curve fitting 

A good fit between the actual data and the estimated S-curve is crucial in our empirics. To 

test the quality of our estimated curve within our observation period as well as the quality of our 

predictions after the 20-year window, we extract the cohort of novel technologies who appeared 

in 1985. The 1985 technology cohort allows us to observe 20 years of actual data on which we 

estimate our S-curve leaving a buffer of 10 additional years of actual data to use as a benchmark 

for our predictions. To evaluate the fit of the S-curve to our data, we replicate the idea of the R-

squared index in an OLS regression, where the fitting index is 1 minus the ratio of the residual 

variation (SSR) compared to the total variation (SST). To implement this approach, we first 

compute the difference between the real cumulated number of patents for the technology i in year 

t (𝑦𝑖𝑡) and the value predicted by the S-curve 𝑦𝑖𝑡̂. Then, we square and sum the values to obtain 

SSR=∑ ∑ (𝑦𝑖𝑡 − 𝑦𝑖𝑡̂)
𝐼
𝑖=1

2𝑇
𝑡=1  where T is the time span considered and I is the total number of novel 

technologies. We calculate the total variation as SST=∑ ∑ (𝑦𝑖𝑡 − 𝑦̅)𝐼
𝑖=1

2𝑇
𝑡=1  where 𝑦̅ =

∑ ∑ 𝑦𝑖𝑡
𝐼
𝑖=1

𝑇
𝑡=1

𝑇∗𝐼
. 

We are interested in evaluating the goodness of the fitting in three window-period of 10 years 

(T=10), i.e. 1-10, 11-20, and 21-30, for all the technologies who appeared in 1985 (I=1,461). 

Table C1 shows that our curves have a good fit within each 10-year window. The fitting 

index ranges from 0.926 to 0.973. Although the values of the last period (21-30), not included in 

the S-curve estimation, are the lowest, their fitting is not significantly different for the other two 

periods. This implies that overall the quality of our predictions after the 20th year declines only 

marginally (7% = 0.997-0.926 in ten years) and that our predictions of the unobserved part of the 

S-curve, i.e. the cumulate until the Ceiling, are reliable. 
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Table C1: Goodness of fitting for the S-curve technologies of the cohort 1985 

 Period SSR SST 
Fitting  

(1-SSR/SST) 

1-10 96,842 3,529,687 0.973 

11-20 140,488 41,473,820 0.997 

21-30 (predictions) 1,232,1082 167,500,000 0.926 

    

 

As a graphical example of fitting, figure C1 shows the actual cumulated number of patents 

re-using the transgenic mammal technology embedded for the first time in the onco-mouse patent 

in 1985 (dots). In the same figure we draw the estimated S-curve distinguishing the predicted 

values within the 20-year period (solid line) from the predicted values for an additional 10 years 

(dashed line).  

Figure C1: Graphical representation of the goodness of fitting for the mammal technology 

curve 
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Appendix D: Legitimation as a linear combination of midpoint and alpha of an S-curve 

technology diffusion curve 

The mathematical formulation relating legitimation (defined as the time needed for 

diffusion curve to reach the 10% of its ceiling point) to the midpoint and alpha can be shown as 

follows. Starting from Equation 1, we first extract t : 

𝑌̂𝑡 =
𝐶𝑒𝑖𝑙𝑖𝑛𝑔

1 + 𝑒
(−
(𝑡−𝑀𝑖𝑑𝑝𝑜𝑖𝑛𝑡)

𝐴𝑙𝑝ℎ𝑎
)
 

1 + 𝑒
(−
(𝑡−𝑀𝑖𝑑𝑝𝑜𝑖𝑛𝑡)

𝐴𝑙𝑝ℎ𝑎
)
=
𝐶𝑒𝑖𝑙𝑖𝑛𝑔

𝑌̂𝑡
 

−
(𝑡 − 𝑀𝑖𝑑𝑝𝑜𝑖𝑛𝑡)

𝐴𝑙𝑝ℎ𝑎
= ln⁡(

𝐶𝑒𝑖𝑙𝑖𝑛𝑔

𝑌̂𝑡
− 1) 

−𝑡 +𝑀𝑖𝑑𝑝𝑜𝑖𝑛𝑡 = 𝐴𝑙𝑝ℎ𝑎 ∗ ln⁡(
𝐶𝑒𝑖𝑙𝑖𝑛𝑔

𝑌̂𝑡
− 1) 

𝑡 = 𝑀𝑖𝑑𝑝𝑜𝑖𝑛𝑡 − 𝐴𝑙𝑝ℎ𝑎 ∗ ln (
𝐶𝑒𝑖𝑙𝑖𝑛𝑔

𝑌̂𝑡
− 1) 

Next, we set the 10% of the ceiling point, 
𝑌̂𝑡

𝐶𝑒𝑖𝑙𝑖𝑛𝑔
=

1

10
 and compute the corresponding t  

𝑡10% = 𝑀𝑖𝑑𝑝𝑜𝑖𝑛𝑡 − 𝐴𝑙𝑝ℎ𝑎 ∗ ln(10 − 1) 

𝑡10% = 𝑀𝑖𝑑𝑝𝑜𝑖𝑛𝑡 − 𝐴𝑙𝑝ℎ𝑎 ∗ 2.2 
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Appendix E: OLS estimation using actual data 

  (1) (2) 

VARIABLES Actual Legitimation time Actual Technological Impact 

Technological component characteristics   

Similarity 3 digits (dummy) -0.79*** -7.59*** 

log(Science-based content) 0.25*** 15.4*** 

log(Familiarity) -0.27*** -6.81*** 

Inventor’s characterisics   

log(Inventors' team size) -0.14*** 4.24*** 

Applicant characteristics   

log(Applicants' experience) -0.010 0.80*** 

University applicant (dummy) -0.032 8.50** 

More than one applicant (dummy) -0.97*** 4.90** 

Dummy Technology class (3 digits) Yes Yes 

Dummy Applicant’s country Yes Yes 

Dummy technology entry year Yes Yes 

Constant 9.30*** 109*** 

   

Observations 10,782 10,782 

R-squared 0.226 0.135 
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Appendix F: Splitting the sample between technologies that reach their ceiling within the 

first 20 years from their appearance and the others 

In Figure F1, we plot the actual cumulated number of patents at the end of our observation 

period (20 years) against the estimated full technological impact (the ceiling of the s-curve). The 

plot should be interpreted as follows: 

- The closeness of the points to the diagonal indicate that the estimated ceiling is close to 

the actual number of patents; 

- Staying on the diagonal means that the technology reaches its ceiling within 20 years. 

Figure F1: Actual cumulated number of patents at the end of the observation period 

(when t=20 years) against the estimated full technological impact (the ceiling of the s-

curve) 

 

Table F1 apply the regression model reported in Table 2 to two different subsamples of 

novel technologies. Subsample A includes the technologies reaching their ceiling within the first 
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20 years (+/-15%), while subsample B includes technologies not reaching their ceiling within the 

first 20 years. 

Table F1: Legitimation and technological impact estimations on two subsamples 

  (1) (2) (3) (4) 

 Subsample A: Technologies reaching their 

ceiling within the first 20 years 

Subsample B: Technologies NOT reaching their 

ceiling within the first 20 years 

 
68% of the cases 32% of the cases 

  Legitimation (10%) 
Technological  

Impact 
Legitimation (10%) 

Technological  
Impact 

Component characteristics     

Similarity 3 digits (dummy) -1.28*** -11.8*** -0.77*** 1.50 

log(Science-based content) 0.16*** 16.2*** 0.25*** 17.0*** 

log(Familiarity) -0.11*** -5.45*** -0.37*** -15.2*** 

Inventor’s characterisics     

log(Inventors' team size) -0.14*** 4.98*** -0.082 4.81* 

Applicant characteristics     

log(Applicants' experience) -0.014 0.76* 0.0091 1.39* 

University applicant (dummy) 0.17 7.58* 0.071 10.7 

More than one applicant (dummy) -0.81*** 4.08 -0.96*** 6.15 

     

Dummy Technology class (3 digits) Yes Yes Yes Yes 

Dummy Applicant’s country Yes Yes Yes Yes 

Dummy technology entry year Yes Yes Yes Yes 

Constant 8.63*** 106*** 11.7*** 172*** 

     

Observations 7,329 7,329 3,453 3,453 

R-squared 0.260 0.131 0.256 0.238 
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Appendix G: 2-step Heckman selection model 

To correct for the selection bias associated with the restriction to successful novelty, i.e. 

with a minimum level of adoption, we adopt a 2-step Heckman estimation strategy. In the first 

step, we use all the novel technologies in our sample without any restriction. These cover 191,400 

observations. In table G1, we estimate a Probit model where the dependent variable is a dummy 

that equals 1 if the novel technology diffuses, 0 otherwise. Zero reflects the case of a novel 

technology with less than 20 re-using patents in our 20-year window.  We assume that the 

probability to diffuse or not depends only on the characteristics of the patented inventions 

embedding the novel technology in the first year of their appearance. In the second step, we return 

to our sample of 10,782 successful novel technologies and estimate a model explaining 

legitimation and technological impact including as explanatory variables the characteristics of the 

combined technological components and add the Inverse Mill’s ratio to correct for the selection 

bias. Table E2 reports the results of our estimations without and with the correction for the 

selection bias, respectively columns 1-2 and 3-4.  
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Table G1: Heckman first step, the probability of a novel technology diffusion 

  (1) 

 Probit 

VARIABLES Diffusion 

    

log(Inventors' team size) 0.086*** 

log(Applicants' experience) 0.013*** 

University applicant (dummy) 0.23*** 

More than one applicant (dummy) 0.14*** 

Constant -1.82*** 

  

Observations 191,400 

Dummy application year Yes 

Dummy technology class (3 digits) Yes 

Dummy applicant's country Yes 

Pseudo-R2 0.035 

  

Table G2: Heckman second step, estimation of legitimation and technological impact 

equations correcting for selection bias 

  (1) (2) (3) (4) 

 OLS OLS OLS OLS 

VARIABLES 
Legitimation 

(10%) 
Technological  

Impact 
Legitimation 

(10%) 
Technological  

Impact 

          

Similarity 3 digits (dummy) -1.23*** -7.74** -1.19*** -8.77*** 

log(Science-based content) 0.14*** 18.2*** 0.19*** 16.7*** 

log(Familiarity) -0.21*** -8.98*** -0.20*** -9.12*** 

Inverse Mill's ratio 

(nonselection hazard) 
  2.01*** -52.4*** 

Constant 10.1*** 166*** 6.29*** 263*** 

 
    

Observations 10,782 10,782 10,781 10,781 

R-squared 0.214 0.132 0.229 0.143 

Dummy application year Yes Yes Yes Yes 

Dummy technology class (3 digits) Yes Yes Yes Yes 

 

We find a substantial coherence between the results reported in Table G2, columns 3 and 

4 and the results reported in the main text in Table 2, columns 5 and 6. This allows us to claim that 

restricting our sample to successful novel combinations does not introduce any serious selection 

bias on the estimated impact of the characteristics of the combined components on diffusion. 


