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CHAPTER 1

General introduction
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The beauty and the tragedy of a single nucleotide polymor-

phism

The beauty

Humans (Homo sapiens) have 99.5% to 99.8% of their genome essentially identical in
everyone [19]. However, there is a large variety of different types of humans in the
world. For example, it is generally not common to find two people that look exactly
alike. These differences are even greater in the molecular and physiological mecha-
nisms of the inner body. The actual human DNA variability is estimated from 0.2% to
0.5% of 3 billion nucleotides, but this small percentage reflects a very large number of
variations in the DNA, from 6 to 15 million nucleotides. Part of these variations, both
common and rare ones, are in the category of the Single Nucleotide Variants (SNVs)
[19], in which are included the Single Nucleotide Polymorphisms (SNPs). A SNP is a
DNA sequence variant, occurring when a single nucleotide (adenine, guanine, thymine,
or cytosine) differs between members of a species or paired chromosomes in an indi-
vidual. Thus, the beauty (Figure 1.1) of roughly 10 million variants is that they can
potentially occur in numerous different combinations in various individuals. This is
vastly more than enough to ensure individual uniqueness at the DNA level, while still
representing a very small fraction of the total genome. Even in monozygotic twins, that
essentially have the same chromosomal DNA sequence, it is possible to find differences
in their physical characteristics. These differences reflect a DNA variability originating
from somatic mutations, caused by small errors in DNA replication after the four- to
eight-cell zygote stage; and from the action of the epigenetic mechanisms that play a
role in the DNA plasticity and availability for the transcription process [6].

The tragedy

In general, the majority of the human SNPs are located between genes and often they do
not have any deleterious effects on the functionality of the gene or its encoded proteins.
The tragedy (Figure 1.1) occurs when the SNPs located in the coding area or those
placed in the regulatory regions of a gene, such as promoter or splicing sites, show a
deleterious impact on the transcription of the gene or the protein activity, for instance.
When this happens in a gene that plays a key role in a biological pathway, serious dis-
eases such as the Rett syndrome for the monogenic X-dominant MECP2 gene [23] can
occur. The scenario becomes convoluted in complex diseases such as: diabetes, obesity,
and chronic obstructive pulmonary disease (COPD), to name a few, where the genetic
background of the disease is most likely characterized by a combination of variations
occurring in an unknown number of genes, usually interacting with various environ-
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Fig. 1.1 Representation of the beauty and the tragedy of SNPs consequence.

mental factors [9]. Although complex disorders often cluster in families, they do not
have a clear pattern of inheritance. For this reason, it is difficult to determine a person’s
risk of inheriting or passing on these disorders. Since 2005, population genetics has
accelerated with the use of Genome Wide Association Study (GWAS) and the ability
to examine the genotype-phenotype relationship with at first 100,000 genetic variants
and now routinely 1 million (or more). Population genetic studies have been ongoing
for decades but with much slower and less precise methods. These studies have been
used to investigate the genetic background of individuals with complex diseases, and
they are performed comparing the DNA sequences of genetically similar individuals
(from the same population origin) with (cases) and without (controls) specific pheno-
typic traits [10]. In particular, the comparison is performed between the alleles of cases
and controls that have been detected through the whole genome, resulting in a list of
SNPs significantly associated with the specific trait or disease. The core data analyzed
in the different chapters of this thesis are SNPs detected with GWAS studies and as-
sociated with different types of complex diseases and traits such as: Type 2 diabetes
mellitus (T2DM) and obesity.
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Genome-wide association studies as a tool to unravel com-

plex diseases

GWAS studies are the first step, followed by functional genomics studies, that can be
used either to identify causal or predictive factors for a given trait or to investigate the
genetic architecture of that trait. For example, the genetic risk factors identified from
the list of SNPs associated with a complex disease, allows development of susceptibil-
ity testing for disease prediction [16]. For clinicians, knowing the genetic susceptibility
of a patient especially for complex diseases can improve the diagnosis and inform the
choice of treatment [22]. Because these diseases have a strong environmental com-
ponent, the correction of the lifestyle is considered both a form of prevention and a
treatment. Indeed, the environmental changes could help to balance the genetic predis-
position. In this regard, obtaining genetic information can launch a warning message
to take action. On the other hand, from the researchers perspective GWAS studies are
extensively used to identify the genetic factors contributing to disease phenotypes and
to elucidate the extent to which those genetic factors affect the pathophysiology of a
disease. This type of fundamental knowledge is at the base of drug design, especially
in relation of pharmacogenetics. Inherited genetic variations present in drug targets or
in enzymes that metabolize a drug [4] can affect the individual responses both in terms
of adverse effects and therapeutic effects. Knowing the existence and the role of these
variations (Figure 1.2) for specific diseases enables the design or selection of drugs
for a personalized treatment [25]. After more than a decade of GWAS experience, re-
searchers have recognized that the power of GWAS to identify within a population a
true association between a SNP and a trait is dependent on the phenotypic variance ex-
plained by the SNP [24]. The phenotypic variance is determined by how strongly the
two allelic variants differ in their phenotypic effect (the effect size or beta coefficient),
and the allele frequency in the sample. However, in complex diseases some causal SNPs
[10] are common variants with a small effect size. Specific considerations need to be
included in the GWAS design in order to incorporate the causal allele. Some of the is-
sues to tackle in a GWAS study design, in order to increase statistical power and enable
the detection of more meaningful associations are: i) sample size, ii) incomplete geno-
typing, iii) genetic heritability and iv) confounding factors [13]. Finally, an unsolved
problem in GWAS is to identify the causative gene that is influenced by the GWAS
variants detected, which often is not the closest gene mapped to the variant. Consider-
ing properly those issues of GWAS study design and output, facilitates obtaining high
quality results and true associations.

5



Fig. 1.2 Consequences of SNPs located inside and outside a gene region that is indicated
in orange. Some of the consequences reflect the name of the genetic region, such as 3
prime UTR.

Data integration: Key to characterizing the effects of genetic

variants

When the GWAS study is designed and performed according to the standards, a chal-
lenge remains to delineate the role of the significantly associated SNPs in the molecular
scenario of a complex disease [24]. In order to achieve this goal Bioinformatics and
System Biology approaches are needed, because these fields promote methodologies
that facilitate the analysis and integration of multiple and disparate data types. The rea-
son for data integration, related to significant SNPs identified in GWAS studies, is to
enable the exploration of the biological meaning of the SNPs. In this regard, the com-
bination of other biological data can enrich the description of the context in which the
SNPs act. Integrating such multiple data types is a crucial aspect in the Bioinformatics
and System Biology fields, but because biological data are diverse, complex and dis-
tributed in many different resources, this can be a challenge. This thesis will show how
to link SNPs with various data from a diversity of resources, aiming to a meaningful
description of the SNPs biological role especially in complex diseases. The data inte-
grated with the GWAS data and presented in the following chapters are: i) biological
pathways (containing gene products, metabolites and their interactions), ii) expression
quantitative trait loci (eQTLs), iii) gene-environment interactions, iv) epigenetics and
v) literature sources, see figure 1.3 .

Biological pathways

A biological pathway is a series of interactions between genes, proteins and metabo-
lites in a cell. For many years, pathway diagrams helped researchers to illustrate and
understand in which way molecular interactions of small molecules and proteins occur
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in cells. This in turn supported an understanding of how cells influence each other.
Pathway diagrams provide a description of the gene’s interactions, with the potential
to explore the consequences of genetic variations within the pathway’s entities, such
as an enzyme with altered kinetics. Currently, pathway representations are collected
in databases such as: WikiPathways, KEGG and Reactome [8, 20, 21], and are linked
to the biological knowledge related to genes and metabolites stored in other digital
sources. Moreover, tools that perform integration and visualization of multiple data
types on the pathway diagram are available, aiming to evaluate biological scenario in
the context of processes described in pathway [11]. These data analysis and visual-
ization automation advancements are applicable for genetic variation data as well. In
addition, a specific methodology called pathway analysis is used to analyze the enrich-
ment of the biological data in the pathway collections [14]. Meaning that a given dataset
has (statistically) significantly more or fewer members of that pathway than expected.
An example of a tool that performs such an analysis is PathVisio [11]. Pathway analy-
sis enables the detection of relevant groups of related genes in case samples compared
to controls, and the interaction between genes/proteins and metabolites. Recently, the
GWAS data have been integrated in pathway analysis approaches [14, 15, 30, 31]. Cur-
rently the methodology has been perfected to obtain relevant pathway results based on
the associations of SNPs to a disease [17]. However, pathway analysis has also lim-
itations such as: knowledge biases and methodological challenges [32], but the field
is developing to reduce such constraints. In this thesis the pathway context and the
methodology are extensively used to better characterize the effect of the SNPs from
the GWAS studies, with the aim of extending the initial GWAS results from individual
genes to biological processes involved in the disease phenotype(s).

Expression quantitative trait loci

The fundamental challenge of SNP investigation is to understand how the variant exerts
an effect on the phenotype. The mapping of eQTLs is an approach used to clarify if a
variant has an influence on gene expression in a specific tissue [26]. The eQTL variants
are assessed by looking at gene expression panels of genotyped individuals, and several
statistical analyses have been developed since 2001 to refine this detection, combining
genomics and transcriptomics data [27]. Currently, different online eQTL catalogues
covering multiple tissues are available to facilitate researchers in this type of genetic
analysis. In this thesis such resources are used and integrated with SNPs from GWAS,
in order to elucidate the effect of variants that are located in non-coding regions of
genes, in order to ascertain a potential regulatory role on transcription.
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Epigenetics

Epigenetics is the study of heritable changes in the genome that do not involve modifi-
cations in the underlying DNA sequence. There are several types of epigenetic mecha-
nisms that affect the modeling processes of the DNA structure such as DNA methyla-
tion [28], and histone modification [29]. Additionally, epigenetics involves microRNAs
and control of translation of mRNA into protein [2]. Structural epigenetic DNA rear-
rangements like histone modifications, coordinate the accessibility of the DNA, open-
ing functional regions to proteins and molecules that regulate the gene transcription.
Variants located in these regulatory regions could disturb the regular functionality of
the epigenetic mechanism [5]. For example, if a variant has an impact on the DNA
sequence, that prevents the correct opening of the histones, this could prevent the tran-
scription of the closes genes. Overall, the effect of these modifications: DNA methyla-
tion, histone acetylation and methylation among others, are strictly connected with the
transcriptional control of the genes. In this thesis several databases with epigenetic data
are consulted to investigate if a non-coding variants is located in regions with epige-
netic activity. This information is used in combination with the eQTL data, because the
variants that can exert an eQTL function are often located in epigenetically active areas.

Gene-environment interactions

Cells evolved mechanisms in response to environmental and external stimuli. They ad-
just their biochemistry in different ways such as: changes in the activities of preexisting
enzyme molecules, changes in the rates of synthesis of new enzyme molecules, and
changes in membrane-transport processes. The core of this response is related to the
genetic control. For this reason, interactions between genes and environmental factors
are measured to improve the assessment of both genotype and environmental influence
on the phenotype [18]. Gene-environment (GxE) interactions describe a modifiable re-
lationship between genetic variation and changes in phenotype due to external factors
such as: diet, physical activity, smoking, sleep, alcohol intake, etc. This information
can be applied in the clinic to take action in the health of the individual, especially if
the aim is to modulate the adverse effects of a risk allele that participates in a genotype-
phenotype relationship whereby risk is increased [12]. For this reason online resource
of GxE interactions was used, in one of the chapter of this thesis, to delineate the influ-
ence of certain SNPs in a biological process after a specific dietary or physical activity.

Literature sources

Literature always has been the main resource of accumulated knowledge from where
to start to formulate a scientific hypothesis or look for confirmatory or refuting evi-
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dence. Nowadays, several databases such as PubMed Central https://www.ncbi.
nlm.nih.gov/pmc/ and journal websites provide in most cases free access to ar-
ticles. Moreover, with the advent of the semantic web field, the literature informa-
tion is directly linked with the description of the biological entities placed in other
databases like NCBI https://www.ncbi.nlm.nih.gov/ and Ensembl http:
//www.ensembl.org. These connections enable a quick consultation of the prior
knowledge related to the biological entity that generally concerns wet or in silico labo-
ratory experiments to confirm its existence and/or biological function. In the method-
ology presented in several thesis chapters, the literature knowledge is extensively used.
In particular, a better description is presented of the role of genetic variants along with
reports of any experimental validation of the variant effect.

Fig. 1.3 Representation of the different types of data integrated in the analysis presented
in this thesis. The data types include: gene-environment interactions, epigenetics mech-
anisms in particular histones modification, eQTLs in which SNPs influence the gene
expression and biological pathways.

Visualizing the complexity with network analysis

The results from biological data analysis are extensively visualized with different types
of representations such as graphs, plots, images, and animation [3]. Computer-based
visualization tools are developing rapidly to facilitate data interpretation by using ad-
vanced data representation. Pathway analysis tools are an example in this regard. In
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addition, those applications also support data analysis relying on proper statistical and
computational methods. In order to implement a data analysis algorithm in a tool, it
is essential to understand how the data are obtained. This is an aspect strictly related
to the technologies used to generate the data. In this thesis the focus is on GWAS
SNPs, obtained from DNA analysis. Although there is a variety of chemical, enzymatic
or technological procedures used for determining the sequence of nucleotide bases in
DNA [1], currently a big distinction is made between the platforms used such as: mi-
croarrays and next generation sequencing (NGS). The microarrays are also called DNA
chip or biochip and it is a collection of microscopic DNA spots, called probes, attached
to a solid surface that can hybridize a cDNA sample called target, under high-stringency
conditions. The probe-target hybridization is detected and quantified by a fluorophore-,
silver-, or chemo-luminescence-labeled target. The NGS uses different types of chem-
ical or enzymatic approaches to obtain the sequences, the major differences with the
microarrays are NGS technologies can sequence the entire human genome faster be-
cause of the massive parallel sequencing and NGS has the capacity for greater accuracy
of the sequence, for which this technology is sometimes known as ”deep sequencing”.
Despite these advantages, microarrays are still widely adopted for genotyping studies
as they are substantially less expensive and require less complicated and less labor-
intensive sample preparation than NGS. Moreover, for the detection of specifc well
known variants SNP arrays are very useful because they give a precise yes/no signal
even on a single array. These are practical advantages considering the processing of
thousands of samples required for typical GWAS studies. The data from GWAS studies
considered in the thesis were all obtained using microarrays. This choice influences not
only the type of statistical analysis required in the computational tools, but also the way
that the data are visualized as reported in the first part of the thesis.
Finally, network analysis is used as the primary methodology to support the data in-
tegration considered in this thesis and the resulting visualization. The biological data
previously mentioned can be connected with the genes that carry the SNPs and their
relationships can be displayed as a network. The interactions between the different bi-
ological entities can be represented either as nodes or edges that connect the nodes [7].
The network resulting from the data connection requires interpretation and this is the
major focus of the second half of the thesis.

Outline of the thesis

The aim of the thesis is to investigate how SNPs from GWAS study can be analyzed to-
wards the understanding of their role in pathways, and how extending the data pathway
analysis and visualization can support this understanding. The biological scenarios, in
which the role of SNPs is explored, are described for two related complex phenotypes:
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T2DM and obesity.
In Chapter 2 a review about how genetic variants are visualized and analyzed in path-
way context is presented. In particular, several software packages that perform pathway
analysis are evaluated and a variant use case of these tools is shown. We identified
strengths and limitations of the technology for the researchers that want to use it or im-
prove it. Then, in Chapter 3 a gene to variant and variant to gene mapping database
that can be used with the mapping tool BridgeDb is introduced. Such mapping tool
is essential to enable the analysis and visualization of a variant in the pathways, since
these are composed of genes and not variants, and more in general it facilitates the as-
sociation of thousands of SNPs from the GWAS study to their genes. The rest of the
thesis focuses on the development and application of workflows, in which SNPs from
GWAS studies are re-analyzed in combination of several other biological data, in order
to capture a better interpretation of the variants role. In this regard Chapter 4 presents
the design of a workflow based on pathway and network analysis, in which SNPs as-
sociated with T2DM are integrated with eQTLs and GxE interactions data. Chapter 5
shows the same workflow applied to another GWAS study related to BMI, but in this
case the data integrated are: eQTLs and epigenetic data. This data combination enabled
capture of the biological interpretation of non-coding variants that have a regulatory
role in the transcription process of a gene. Chapter 6, shows how SNPs associated
with T2DM can be mapped together in a biological pathway, built based on literature
information regarding a specific organ condition of T2DM individuals. The additional
value is that these genes acting in the same pathway and presenting relevant T2DM ge-
netic variations, are also detected as differentially co-expressed genes from a different
transcriptomics study.
Finally, the General Discussion presents the significance of the results obtained apply-
ing pathway and network methods to SNPs from GWAS studies. In particular, what
challenges in data integration methodologies still exist, and need to be solved in order
to better describe the biological effect of the SNPs using existing data, and how this
approach can help to support the development of precision medicine.
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Abstract

Pathway analysis is a powerful method for data analysis in genomics, most often ap-
plied to gene expression analysis. It is also promising for genetic data analysis, includ-
ing Genome Wide Association Study (GWAS) data, because it allows the interpretation
of variants with respect to the biological processes in which the affected genes and
proteins are involved. Such analyses support an interactive evaluation of the possible
effects of variations on function, regulation or interaction of gene products. Current
pathway analysis software often does not support variants data visualization in path-
ways as an alternate method to interpret GWAS results, nor specific statistical methods
to facilitate GWAS analysis. In this review we first describe the visualization options
of the tools that were identified by a literature review, in order to provide insight for
improvements in this developing field. Tool evaluation was performed using a compu-
tational epistatic dataset of gene-gene interactions for obesity risk. Next, we report the
necessity to include in these tools statistical methods for the pathway-based analysis
in GWAS, expressly aiming to define features for more comprehensive pathway-based
analysis tools. We conclude by recognizing that pathway analysis of GWAS data re-
quires a sophisticated combination of the most useful and informative visual aspects of
the various tools evaluated.

Introduction

Pathway analysis for Genome Wide Association Study data

Today, pathway analysis is routine with software or web services that accept and anal-
yse different omics data, transcriptomics, proteomics with protein-protein interactions,
and metabolomics. Methods and tools used to visualise and analyse these three main
kinds of high-throughput data have been reviewed [27]. Moreover, a decade ago ge-
netic variation data, originating from analyses of Genome Wide Association Studies
(GWAS), began to be incorporated into pathway analysis [4]. Recently, several step by
step guides [3, 5, 31, 33] were published as reviews, describing and providing recom-
mendations on how to use different pathway analysis methodologies, which are appli-
cable to GWAS data. The main features to consider are: (i) make certain that GWAS
analysis is performed according to standard guidelines; (ii) choose curated and up-to-
date pathway collections; (iii) filter the list of gene sets to avoid bias related to size,
a common limit is between 10 and 200 genes, and map the SNPs to genes based on
location or linkage disequilibrium; (iv) choose the method according to the statistical
hypothesis to be tested; (iv) report the results and if applicable visualise them in order
to improve comprehension. Although genetic association research is advancing rapidly,
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biological interpretation remains a challenge, especially when interpretation concerns
connecting genetic findings with known biological processes [8]. Application of path-
way analysis to GWAS data is a valid approach to meet this challenge for different
reasons: first, because of the polygenic nature of complex diseases, such an approach
held the promise to contextualize better the GWAS data and to suggest novel interpre-
tations of the results based on prior knowledge of genes and pathways [31]. Second,
a typical display of GWAS results consists of the few SNPs showing strong evidence
for disease or phenotype association (generally p-value minor 1e-8), but it is also well-
known that these few associated SNPs often have only a modest effect on disease risk
[17]. Thus, examining the cumulative effects of numerous variants can empower de-
tection of genetic risk factors for complex diseases [8]. Finally, genetic heterogeneity
within an affected population is another well-known issue in GWAS. If sufficient loci
exerting small effects are present in the same gene set, it may be possible to detect their
cumulative effect by testing for associations at the pathway level [33].In general im-
proving and standardizing the practice of this methodology not only will improve the
comparability of the results of gene set analysis, but also will allow a better evalua-
tion of related polymorphisms both in the same and in different but functionally related
genes. This step potentially would increase the power to detect causal pathways and
disease mechanisms, using SNPs with significant associations and those in linkage dis-
equilibrium (LD) with functional variants. Moreover, it can point towards integration
of omics data, where the additional molecular information could verify or predict the
functional effects of the associating SNP [31].
We identified two shortcomings concerning pathway analysis for GWAS data: statistical
methods for genetic variation analysis have not been combined commonly in pathway
analysis tools, and visualization of genetic association data such as GWAS is missing
in pathways analysis. Regarding the first shortcoming, Wang and colleagues [4] were
among the first to publish a pathway-based GWAS analysis using a statistical method
adapted for genetic variation data. The authors modified a Gene Set Enrichment Anal-
ysis (GSEA) algorithm, initially designed for pathway analysis of gene expression data
[15]. Since the adaptation of GSEA by Wang, researchers have developed other sta-
tistical methods for pathway-focused analysis of associating SNPs. Currently, existing
methodologies for the analysis of GWAS gene sets are based on over-representation
analysis, enrichment analysis, functional class score, and pathway-topology [3, 5, 33].
The recommendation is to apply multiple methods to capture different genetic effects
and identify robust gene set associations [33]. However, only a few of these new al-
gorithms were implemented in user-friendly tools, possibly because pathway-based ap-
proaches still have many technical challenges to overcome [31].
With regard to the second shortcoming, we believe that visualization enhances interpre-
tation of scientific data, understanding the conclusions drawn, and discussing follow-

18



up research questions [30]. Thus, interpretation of GWAS data would benefit from
pathway-based approaches accepting of genetic variation so that allele-specific rela-
tionships are displayed. For example, one allele of a pathway entity might allow the
bioprocess to continue while a second allele curtails pathway flux. Thus, interpreta-
tion of GWAS data would benefit from pathway-based approaches accepting of genetic
variation so that allele-specific relationships are displayed. Then, visualising on a path-
way map the effect of variants associated with elevated risk of disease, can indicate
biological and biochemical insufficiencies (and/or vulnerabilities), which then can be
made more informative if placed within depictions of the affected cell or organ. Lastly,
there is epistasis, where two alleles mapping to different loci associate in concert with
a phenotype, but where those two alleles individually show no phenotype association
[13, 40]. Epistasis or a gene-gene interaction is yet another manner in which connec-
tions within a pathway are different in different individuals. Consider, for example,
that pathway endpoints are a phenotype, clinical indicator of health or disease status, or
disease itself. Then, the epistatic relationships can be indicated by epistatic- or e-edges
that serve to connect distinct pathways or different nodes within a single pathway in
this conditional relationship. The pathways linked by such e-edges would give support
to co-function and/or co-regulation with regard to the given phenotype of interest. In
addition, the nodes within the GWAS-identified pathways, i.e. the main effect associa-
tions, can be used to focus the genetic landscape in the search for epistatic relationships
as opposed to searching for epistasis across the entire genome.
However, genetic variants currently cannot be combined easily in pathway representa-
tions because it is not clear how to visualise and interpret variation data once connected
programmatically to pathway content. In this review we sought to investigate the at-
tempts to find solutions for the second shortcoming: visualising genetic variations in
a pathway context. First, we performed a systematic review of articles that analysed
genetic variants using pathway based methods in order to identify and describe the
visualization options of the tools resulting from this literature review. Secondly, we
performed a use case in the tools identified, testing a computational derived epistatic
dataset of gene-gene interactions for twelve candidate genes in obesity risk, in order
to evaluate how genetic variant analysis of epistasis is tackled by the tools. Taking
a visualisation point of view, we report the features and the potential of the different
software. Reviewing the articles, we also collected current statistical methodologies
that have been applied in pathway-based analysis of GWAS data, and we report those
without discussing in detail.

Methods and Materials

This review follows criteria developed by the PRISMA statement (Moher et al., 2009).
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Search strategy

In order to assemble an overview of visualization approaches used in studies that ap-
plied pathway-based analysis to genetic association studies fully reflecting current prac-
tices, a keyword search for Pathway Analysis in PubMed and Medline (July 2014)
was conducted. The literature research was performed using EndNote X7. The search
yielded 2,231 articles from January 2005 through August 2014, 2,184 remained after
removing duplicates, 15 others were added based on suggestions by experts in the field.
Subsequently, these articles were screened manually by reading title and abstract. We
retained only those 264 articles describing pathway-based analysis with genetic varia-
tion, and these articles were studied in detail. Retaining the 65 most relevant papers, all
from 2007 through 2014, we aggregated the results with key features of the analysis,
summarized in Table 1 in the supplemental material. In order to update the manuscript
with additional visualization tool for GWAS pathway analysis, we performed a second
PubMed search in January 2017 using the keyword Pathway Analysis for title and ab-
stract, and date of publication from August 2014 to present. We obtained 2,774 articles
that were scanned by title. Several articles describing GWAS pathway analysis tools
were found, but only one [1] presented visualization features. This one was included
and described in the tool paragraph, and reported in Table 2.1 together with the other
four tools previously identified. Details of the 65 relevant articles selected with the
literature search are given in Table 1 of the supplemental material. Columns describe
specific features extracted from each study: type of data and variants, algorithm used,
and bioinformatics tools used with visualizations. Because we did not select the articles
based on the type of variants utilised, but on the type of analysis performed (keyword
used: Pathway Analysis), we also identified articles where the variants participating in
the genotype-phenotype association originated from sources other than SNParrays. In
the 65 articles: 57 were based only on GWAS data, 4 on GWAS plus expression data,
1 on GWAS plus epigenetic data, 2 used known somatic mutations, and 1 using Next
Generation Sequencing data. In all studies the resulting SNPs were investigated using
pathway-based analysis, and only 3 studies also analysed copy number variants and/or
indels [6, 14, 35].
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Overview of pathway analysis tools for genetic variation data

Although some algorithms are available as web services or installable software, no gen-
erally accepted implementation for visualising results exists. From the literature search
we found the following bioinformatics tools able to visualise the significant variants in a
pathway: IPATM of QIAGENs Ingenuity Pathway Analysis (QIAGEN Redwood City,
http://www.qiagen.com/ingenuity) [28, 42, 43], MetaCoreTM from Thom-
son Reuters (http://www.thomsonreuters.com/metacore ) [16], Path
(http://www.genapha.icapture.ubc.ca/ ) [18, 41], and Pathvisio 3 [1]. In
general, very few tools support pathway visualization of genetic variants. In addition,
the Gehlenborg et al. (2010) [27] review mentions a visualization tool not found in the
articles reviewed. This tool is called Caleydo (http://www.caleydo.org/) and
it depicts only CNVs. We describe in the Results section the five tools mentioned here
with a specific focus on the visualization options for the genetic variants. However,
some relevant command line tools were also detected in the literature search, but we do
not describe these because of the absence of user-friendly visualization features.
We also evaluate three of the five tools selected from the literature search, using an
available epistatic dataset [40]. Because the tools do not only require different formats,
but also have different features, we could not use this dataset for Caleydo and Path.
For these tools the evaluation of the visualization was assessed using the default dataset
provided by the software and the tutorials.

Dataset of epistatic interaction

An epistatic dataset from De et al. (2015) [40] is chosen to evaluate the SNP visuali-
sation in the biological pathways of three tools retrieved from a literature search: IPA,
MetaCore and PathVisio. The dataset consists of a list of SNPs with significant epistasis
interactions (SNP-SNP connections) calculated from a gene-gene interaction epistasis
network of twelve candidate genes for obesity risk (BDNF, ETV5, FAIM2, FTO, GN-

PDA2, KTCD15, MC4R, MTCH2, NEGR1, SEC16B, SH2B1, TMEM18). SNPs were
extracted from the twelve genes following specific criteria: 500kb window around the
gene UTR, exclusion of SNP with minor frequency allele below 0.05, exclusion of SNP
that shows linkage disequilibrium of r2 above 0.8, and imputation of missing genotypes.
The resulting SNP dataset in the study was 1,191 SNPs with genotype data available
for 1,141 obese individuals (Body Mass Index above 30 kg/m2). A Statistical Epista-
sis Network [36] was utilized to characterize the interactions between genetic variants
from the twelve obesity genes, resulting in a list of 58 SNPs with significant mutual
information. This value is a measure of the independent or main effect of a SNP on
a phenotype. It can be used to study the interaction effect between pairs of SNPs and
the degree to which phenotypic variance can be understood when both genotypes are
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combined. We used the 58 SNPs as input to the three tools selected for the visualisation
evaluation. Describing the advantages and disadvantages of the tool features, we try
to understand which tool can facilitate the interpretation of the SNPs in the pathway
context.

Results

Pathway-based analysis tools with visualization options

The evaluation of five pathway-based analysis tools Caleydo, IPA, MetaCore, Path and
PathVisio that support incorporation of genetic association data demonstrates: first,
how polymorphism data can be visualised and analysed in a pathway-based environ-
ment, and second, how different information and experimental data can be combined
for analysis and visualization. The purposes of evaluation relate directly to the need to
combine GWAS results with biological context in order to better understand results in
a disease context. Pathway content provides the biological processes in which GWAS-
identified genes are known to be involved and shows other genes related by common
function that may not pass GWAS significance thresholds. Integration of other types
of genomics data as accepted by these tools, often in combination with bioinformatic
pipelines for data processing, permit evaluation of different transcriptomics outcomes
in subjects with a specific genotype or phenotype, and some tools allow also integration
of metabolomics results.
The five tools are designed to visualise the data on different pathway collections origi-
nating from different databases. Path refers to KEGG (http://www.genome.jp/
kegg ) [34], PathVisio to WikiPathways (http://www.wikipathways.org/)
[1] and Reactome [7], Caleydo to both KEGG and WikiPathways; while MetaCore and
IPA use their respective curated pathway collections.

Tool-specific visualization details

MetaCore is a software suite suitable for functional analysis of different omics data,
including expression data and genetic variation data. One of MetaCores relevant ap-
plications for pathway analysis is the Enrichment Analysis Workflow, which calculates
enrichment p-values in different types of gene sets within the uploaded dataset. These
gene sets originate from curated pathways, networks of related genes derived primar-
ily from literature evaluation and from the Gene Ontology lexicon. We performed an
example analysis using the 58 SNPs with significant epistasis interactions as input. As
the tool accepts variants in a VCF file, we formatted the input data accordingly. The
results of this analysis recognized 13 objects, limited to just one SNP per gene. Differ-
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ent outputs such as pathway maps, gene ontology (GO) processes, process networks,
and diseases (symbolized by biomarkers) are listed as part of the result. All list items
are clickable, allowing more detailed visualization of the different items. The resulting
pathway maps are ordered by enrichment p-value, with false discovery rate (FDR) cor-
rections. The FDR calculation considers the p-value of each network map and its rank
given the total number of maps in the entire set of pathway maps. The list also contains
the ratio of significant genes in the dataset over the number of genes in the pathway.
If one pathway in the list is selected, a pathway map is displayed. In our example the
first pathway of the list is Retinal ganglion cell damage in glaucoma in which two genes
appear to be colored bright and illustrated that they present the input SNPs with a red
colored bar. Clicking a gene symbol displays detailed information about the description
of the gene and encoded protein for human, mouse and rat. Clicking the red bar yields
details for the uploaded data of that gene, in this case the SNP rs ID. In the example
pathway two genes show data: BDNF with rs10835210 and ASIC1 with rs1108923. It
is remarkable to notice that ASIC1 is not in the list of the twelve obesity genes of the
study selected. Indeed, the SNPs from the obesity-epistasis dataset [40] were extracted
taking into account a window of 500kb from the obesity genes, but MetaCore assigned
SNPs only positioned within a gene region. This is also the reason why the total SNPs
identified by the analysis is thirteen and not twelve. In this case rs1108923 is selected
in the dataset because it maps to the upstream region of the obesity gene FAIM2, but
the tool considers this variant to be within the region of ASIC1.
QIAGENs Ingenuity Pathway Analysis, IPA is a web-based application for data analy-
sis in pathway context. Although the IPA environment is amenable to different types of
analysis (i.e. Metabolomics, microRNA, Toxicology, etc.), our objective is to highlight
aspects of pathway analysis. After uploading the list of 58 SNPs with the significant
epistasis interactions value, the program automatically displays an overview page with
information such as the number of SNPs recognized by the tool, in this case 22 SNPs
of 58 were mapped. In addition, a table is shown with Entrez gene IDs and affiliated in-
formation such as cellular location, type of gene, and interacting drug. Clicking on one
of the gene names listed, it displays a link to a description gene page for human, mouse
and rat, in which additional information about the gene functionality are provided. In
this overview page there is a possibility to perform different analysis as was mentioned
above. We opted to the Core Analysis that includes the enrichment pathway analysis.
However, such analysis takes into account the genes in which the 22 SNPs were mapped
and not the SNPs themselves. The result page, as in MetaCore, lists several output such
as: canonical pathways, diseases and function, regulators, and networks. The canonical
pathway visualization is a list of enriched pathways ranked by p-value and percentage
of the overlapping genes mapped against the total number of those in that pathway. Se-
lecting a pathway prompts IPA to offer several views that depict different items within
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the top significant pathways such as bar charts, and stacked bar charts. The pathway
visualization is displayed under the network tab, where genes with different colors and
shapes are shown as clickable nodes that link with additional information related to that
gene, including biochemical elements, metabolites, and references curated by IPA team.
At this level, further information about SNPs related to the genes is not visualised and
reported.
PathVisio 3 is a pathway editor, visualization and analysis software. PathVisio core
features related to visualisation are listed in a main panel where pathway diagrams
can be drawn, and the entities of the pathway can be displayed in different ways ac-
cording to advance data visualisation options. There is a side panel called backpage
where data and other visualization features are shown. Some of these features are
related to the advanced options provided by plugins. Developed by any user, these
plugins are extensions of the PathVisio system that do not change its core functional-
ities. Two of these plugins, BiomartConnect (https://www.pathvisio.org/
plugin/biomartconnect/) and RegInt plugin (https://www.pathvisio.
org/plugin/regint-plugin/), add functionalities related to genetic variants.
BiomartConnect enables visualization of biological information in the backpage, re-
trieved with the Ensembl BioMart tool (http://www.ensembl.org/biomart/
martview), with which variants also are accessible. With this plugin the variants,
stored in the Ensembl database and located in any gene selected from a pathway dia-
gram, are visualised in the backpage. Moreover, additional SNP information like SIFT
and PolyPHEN predictive scores is available and possible to display in the backpage.
The RegInt plugin enables one to upload and visualise user data on the pathway, in
the form of an interaction file. This file contained a data column listing the 58 SNPs
and another listing the genes in which those SNPs are located. For the detailed input
format check plugin instructions in Github (https://github.com/PathVisio/
RegInt-Plugin/wiki/User-Guide). We used the RegInt plugin to display the
58 epistatic SNPs. First, in the main panel, we opened a pathway diagram present-
ing at least one of the genes related to the 58 SNPs from the WikiPathways collection
(www.wikipathways.org), a pathway database linked to the software. Then, in
the backpage the SNPs related to the gene selected in the pathway are displayed. The
number of SNPs visualised depends on the data uploaded. In our case we selected from
Wikipathways the brain-derived neurotrophic factor signaling pathway (WP2380), that
presents two (BDNF and SH2B1) of the twelve genes of the epistatis dataset. From a
biological prospective this type of visualization allows two types of investigation: one
at the gene level where the relation between genes with significant epistatic SNPs can be
explored in the pathway. The other one at the SNPs level, where the list of the epistatic
SNPs is shown in the backpage and their effects can be explored further. Moreover,
a SNP hyperlink that connects to a variant database in which the SNP description is
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provided, is a useful feature to speed the research into SNP function.
Caleydo is an open source software with three applications for data visualization:
StratomeX [39], enRoute [6], and Entourage [32]. StratomeX organizes different data
from cancer patients, and retrieves disease information from TCGA datasets
(http://www.cancergenome.nih.gov/). Packages that are of interest for path-
way analysis are the Entourage view, which investigates interdependencies between
pathways, and the enRoute view, which analyses experimental data in pathway con-
text. The Entourage view compares pathway maps selected from the same or different
pathway collections. A notable aspect is the visualization of pathway interconnectivity
between selected pathways for specific genes. This useful feature enables deeper in-
sight because it depicts how a gene or even a subpath observed in one pathway might
have different roles in an interconnected process. These interconnections are intuitively
displayed with colored lines that connect the selected subset of genes or single genes
from the main pathway to their occurrence in other pathways. Lastly, enRoute allows
selection of a subset of genes in a pathway, and these selected genes can be associated
with experimental data from TCGA in which CNVs also are shown. Caleydo provides
this type of visualization and analysis only for a specific set of experimental data (i.e.
TCGA dataset), and for this reason it was not possible to upload the list of 58 epistatic
obesity SNPs for the use case.
Path is specifically designed for GWAS analysis, connects GWAS results with infor-
mation retrieved from nine common bioinformatics resources (NCBI, OMIM, KEGG,
UCSC Genome Browser, Seattle SNPs, PharmGKB, Genetic Association Database, db-
SNP, The Innate Immune Database), and supports visualisation of the integrated data.
Path uses UNPHASED [24] for statistical analysis and retrieving information on SNP-
SNP associations from the different bioinformatics resources. The only pathway re-
source included is KEGG. Visualizations mainly consist of charts, plots and summary
tables that list genes, SNPs, SNP associations and gene-gene interactions. Importantly,
Path is specifically directed towards GWAS studies, showing specific association re-
sults, and lists of genes, SNPs and LD plots. The pathway visualization using KEGG
data shows genes with significant SNPs highlighted in red. Currently, not all the fea-
tures of Path work properly due to unfixed bugs, that the authors decided to do not
address at the moment. For this reason it was not possible to perform the use case with
the epistatic obesity SNPs.
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Statistical methods in pathway analysis tools

The GWAS variants from the 65 articles retrieved by literature search, were evalu-
ated for pathway assignment using different algorithms that were not always well de-
scribed. When they were, the authors always provided the p-value of the variant from
the genotype-phenotype association [20]. The different algorithms used in the pathway-
based methods aggregated SNP or gene scores to assign a p-value to a pathway. The
association of a SNP to a particular gene is normally evaluated using a cutoff for SNP
significance in a specific gene neighborhood region. Then, p-values assigned to each
pathway can be calibrated and adjusted for some biological event such as LD patterns
and co-location of functionally related genes. Such biological events can be evalu-
ated differently by different algorithms, which can affect the results and suggest other
conclusions. Researchers have developed different statistical methods for analysis of
associating SNPs (Table 1, supplemental material). Approaches include LD calibration
and identification of associated pathways [26], and comparison of different algorithms,
which revealed advantages and disadvantages of the statistics used for a specific GWAS
dataset [21, 23, 37, 38]. These articles compare different statistical methods tested in
GWAS datasets, evaluating the lists of enriched pathways. Although not all algorithms
listed in Table 1 of the supplemental material have been compared, we reported the
conclusive judgment of the comparison performed in certain studies. Some of the most
sensible statistical methods include the adaptive rank truncated product (ARTP) [38],
the modified summary statistic (mSUMSTAT) [26], and the raw data-based algorithms
implemented in PLINK (PLINK set-based test) [21, 37]. These algorithms were shown
to be the most powerful for detecting genes that could be used further by pathway
analysis tools [21, 26, 38]. It is difficult to make a single and objective preference of
one specific method because results of pathway-based analysis for GWAS data vary by
method. Even the overlap of shared pathways can be quite limited because each al-
gorithm has its own evaluation focus on disease associations [37], and some examples
concern different calculations of values, including pathway p-values in ARTP, or the
mean value of a gene with the significant SNP in mSUMSTAT.
From the tools analysed, MetaCore, IPA and PathVisio present a statistical analysis of
the data provided. Instead Caleydo and Path provide only data visualization on path-
way graph and not statistical methods for pathway analysis. MetaCore, PathVisio and
IPA perform pathway analysis in an automated fashion. The first tool uses an over-
representation method on the gene list annotated from the variants present in the Vari-
ant Calling Format (VCF) provided as input. MetaCore employs a hyper-geometric
model to determine the significance of the enrichments. PathVisio also uses an over-
representation analysis and it is based on methods adopted in the MAPPFinder tool
[19] with settings designed for gene expression data. Finally, IPA utilizes a method
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for combining p-values. In the over-representation test, an association for each gene
in the dataset is first calculated, then a threshold is used to determine which genes are
significantly associated. The proportion of significantly associated genes within a tar-
get pathway is compared to the proportion of significantly associated genes among all
genes outside the target pathway.
Alternatively, in the method applied in IPA, a p-value associated with a pathway is cal-
culated using the right-tailed Fisher Exact Test. This p-value measures the likelihood
that the association between a set of genes with a significant SNP identified by GWAS
and a pathway arose by chance. In this method, the p-value for a given process anno-
tation is calculated by considering (i) the number of genes with a significant SNP that
participate in that process and (ii) the total number of genes that are known to be as-
signed to that process in the selected reference set. Further details on how IPA identifies
pathways reaching significance were not provided (IPA webpage, 23rd June 2016, date
last access).

Discussion

Overview of the comparison: benefits and limitations of the tools

Comparing the five tools described above makes evident that each uses different interac-
tive ways to combine experimental data with information about genes, metabolites and
pathway relationships (Table2.11). A mock visualization of the beneficial and applica-
ble features observed in the different tools (green highlight), and the new characteristics
that enhance the visualization and analysis of GWAS data in pathway-based analysis
tools is shown in Figure 2.1. The five investigated investigated tools share some sim-
ilar and effective visualization approaches, such as depicting significant pathways that
contain genes in the analysed data by list view. These lists are generally ranked by
enrichment ratios, p-values or FDR scores. Another common and useful strategy is to
highlight genes for which pathway data are uploaded by the user, with an option to un-
cover gene details via hyperlinks.effective visualization approaches, such as depicting
significant pathways that contain genes in the analysed data by list view. These lists are
generally ranked by enrichment ratios, p-values or FDR scores. Another common and
useful strategy is to highlight genes for which pathway data are uploaded by the user,
with an option to uncover gene details via hyperlinks.
A general problem in pathway-based visualizations is the efficient display of infor-
mation about genes that appear in multiple pathways and thereby interconnect those
pathways. Caleydo offers an attractive solution in allowing interactive and automatic
visualization of subpathways of genes present in other pathways. Caleydo uses this sub-
pathway approach to indicate when the dataset has information about genes in a given
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pathway. This demonstrates how experimental data can be combined with different
types of knowledge about gene relationships and permits an increased understanding of
experimental results that might act in concert. Caleydo provides this type of visualiza-
tion and analysis only for a specific set of experimental data (i.e. TGCA dataset). It
would be a large improvement if this same approach were used to automatically select
the relevant genes in the pathways based on the GWAS statistical parameters such as
SNP p-value or effect size beta, which in turn could offer an assessment of allele effects
on pathway output, or other omics datasets.
A strength of PathVisio, on the other hand, is its enabling of this feature to permit visu-
alisation of variants in pathways sourced either from a public repository like Ensembl
or from user data. However, PathVisio lacks the interactive visualization that links enti-
ties of different pathways, as it described in Caleydo. In this context MetaCore depicts
related experimental effects of genes known to be connected via membership in a path-
way, protein-protein interactions, co-citation, or co-expression in other experimental
datasets with network visualization. MetaCores network settings can be used to view or
hide specific interaction mechanisms, such as binding, influence on expression, phos-
phorylation, or cleavage. IPAs approach is similar to that of MetaCore. After running
the enrichment analysis, IPA lists the most represented processes, such as canonical
pathways, networks, upstream regulators, diseases, and biological functions. In this
way the user subjectively decides which information to use and how to integrate it. Fi-
nally, Path has some methods to integrate GWAS data in pathway analysis. Paths basic
data visualization of pathways uses the common strategies described above, and data
integration focuses specifically on genetic information and on gene-gene interactions.
Paths representation also includes an LD plot, useful and important support for GWAS
interpretation.

Suggested improvements for data integration in pathway-based anal-
ysis tools

As early as 2005, the importance of effective approaches to visualization was noted
through interviews and observations of current work practices [29]. That report high-
lighted different aspects of pathway visualization, and suggested future developments to
improve the researchers job. Our comparisons indicate that most of those recommenda-
tions have been implemented. Two examples are the options to automatically search for
relevant pathways containing genes from an uploaded dataset, and access to periodically
updated pathway libraries. We have presented different types of visual strategies used
in currently available tools that, for a specific gene set, support the connection with
various kinds of pathway information including significant pathways, metabolites in-
volved therein, and related diseases. With many different types of high-throughput data
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now readily available, including gene expression, metabolomics and protein-protein in-
teractions, methods for integrated analysis and visualization are greatly needed [25].
Visual strategies are particularly important for data from high-throughput experiments
that provide information about many genes, facilitating evaluation of potential interac-
tions between affected genes. This potentiality can speed the investigation of the SNP
effect in the pathway. Indeed, highlighting the relevant items related to the research
question can reduce the process of investigating pathways singly. Moreover, alternative
visualizations such as pathway hierarchies and network analysis can also reduce the
long list of relevant pathways resulting from a pathway analysis. However, researchers
still must investigate those pathways one by one, in order to understand how a SNP
influences gene function in the entire process. MetaCore and IPA are examples that use
networks to visualise the data integration. However, genetic variants cannot be used
readily with these methods, because the data uploaded are not completely recognized.
Adding the variants option to these tools would allow the user to contextualize the func-
tion of the genetic polymorphisms on different molecular levels. In addition, when data
such as SNP-SNP interactions become available, pathway tools that present a network
visualization option (i.e. MetaCore and IPA) could support display of epistatic interac-
tions from a set of SNPs located in genes that function in the same pathway. In general,
some specific omics data integration methods that support inclusion of genetic vari-
ants in a pathway already exist. In this context it is suitable to mention BioXM from
Biomax Informatics [22] because it semantically integrates existing knowledge such
as genotype-phenotype relations or signal transduction pathways, and organizes data
into structured networks that are connected with clinical and experimental data (e.g.
metabolites or proteomics datasets). With regard to the pathway collection, BioXM is
flexible in that, it can display any pathway data, but requires input of pathway enrich-
ment statistics from other sources. BioXM, on the other hand, is designed for flexibility
and can integrate and display a wide range of relationships between entities, including
pathways and genetic variants, but linking those two has not been demonstrated with
GWAS data.

New types of genetic variant interactions for pathway-based analysis
tools

Additional characteristics regarding genetic variant interactions currently are rarely de-
picted in pathway visualizations: edgetics, gene-environment and epistatic interactions.
Edgetics is a new term referring to network perturbation models focusing on specific
alterations of the molecular interactions resulting from genetic variants [12]. This per-
turbation model might improve understanding of how mutations associating with com-
plex diseases affect biological networks or interactome properties [9]. With network
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visualization already developed in some of the presented tools, it would be exciting to
see this model implemented as a new feature.
Another area in which pathway visualization of genetic associations can be improved
involves gene-environment interactions (GxE), where the genotype-phenotype associ-
ation exists only under certain environmental conditions. A recently published cata-
log of GxEs for numerous cardiometabolic phenotypes showed the wide extent under
which the genotype-phenotype association can be modified by factors such as diet, ex-
ercise, sleep and many other exposures and lifestyle factors [2]. For identical traits,
that study noted sparse overlap of SNPs contributing to main-effect associations from
GWAS compared to those supporting GxE interactions. In such instances, the pathway
edges linking the GxE gene to the phenotype obviously would be conditional, and in
many examples would contain entities such as glucose, palmitic acid or linoleic acid,
which are constituents of standard metabolic pathways. Finally, epistatic interactions
were used here as a use case to test the visualization tool. As a result PathVisio, Meta-
Core and IPA are the tools that support upload of variant data, and highlight those
variants in the pathways of the genes related to the uploaded SNPs. This feature aids
investigation of the effect of the epistatic SNPs within the genes and their pathways.
However, only PathVisio is able to provide the complete list of variants present in the
uploaded data. Indeed, IPA identifies the genes related to the SNPs without showing
the SNPs, and MetaCore performed a SNP-gene mapping that resulted in a selection
of genes not included in the original dataset. Concerning IPA, it is notable to mention
that Ingenuity developed another software specifically dedicated to variant investigation
called Variant Analysis that was not detected by the review literature search, but dis-
covered only through the Ingenuity website. In addition, the PathVisio RegInt plugin,
even if it can upload the complete dataset, fails to automatically provide to the users the
overview of the total pathways that present at least one of the genes with the SNPs. This
feature is supported by IPA and MetaCore. The epistatic obesity use case shows that
IPA, MetaCore and PathVisio have several features that permit the visualization of ge-
netic variants in pathways. However, these features are not harmonized in one tool. On
the one hand, this is a reasonable outcome because the tools were not built with the aim
to analyse genetic variants. On the other hand, it is remarkable to notice that these tools
already have some characteristics that, with improvements, could permit such complex-
ities of variant analysis. In summary, such conditional relationships as epistasis, GxE
interactions and edgetics will need to be considered for pathway-based visualization of
association data because genome-wide approaches to identify such genetic elements are
rapidly maturing [9–11, 13].
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Conclusions

In conclusion, what is especially needed regarding the GWAS data visualization in
pathway-based analysis tools are two important items (red highlight in Figure 2.1). One,
there must be development and integration in the tools of specific statistical methods for
GWAS pathway analysis (red highlight in Figure 2.1). One, there must be development
and integration in the tools of specific statistical methods for GWAS pathway analy-
sis. Two, improving strategies for combined visualization of genetic data with other
omics data in a pathways context will vastly facilitate interpretation of results. For the
first point, as indicated in Results and listed in Table 1 of supplemental material, some
accepted statistical methods used for pathway analysis of GWAS data have been de-
scribed. Our recommendation is to include at least one of these algorithms in pathway-
based analysis tools that focus on GWAS data. This will enhance pathway-based anal-
yses by increasing accuracy to detect significant pathways because of the specificity of
the statistics for GWAS data. Additionally, it is necessary that results are visualised
properly, and subpaths of genes with consideration of significant SNPs in the affected
pathways. Next, the necessity to identify a strategy of combining genetic variants with
other omics data could be addressed by permitting immediate evaluation of significant
SNPs in the pathway context. While a detailed report of functional information is al-
ready provided for genes in a pathway, this needs to be extended to SNPs. Examples of
SNP information that could be useful to add include: (i) incorporation of data or links to
databases that contain association data from other sources, including data mined from
GWAS databases, epistasis and gene-environment interactions, eQTL data, and allele-
specific drug and micronutrient responses; (ii) SNP function and description; (iii) LD
plot images anchored to the chromosomal region where the SNP maps. Lastly, other
improvements in visualising genotype-phenotype associations will involve extending
the phenotype information to co-morbidities, and data from electronic health records
and public health agencies.
The main aim of this review is to give an overview of the current state of the tools
that visualise GWAS data in a pathway context. We attempted to identify and describe
the visualization options of the tools that resulted from a literature review in order to
provide suggestions for improvements in this developing field (Figure 2.1). We also
have reported the necessity to include in these tools statistical methods for the pathway-
based analysis in GWAS, aiming to define features for more comprehensive pathway-
based analysis tools.
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Abstract

Database identifier mapping services are important to make database information in-
teroperable. BridgeDb offers such a service. Available mapping for BridgeDb link
1. genes and gene products identifiers, 2. metabolite identifiers and InChI struc-
ture description, and 3. identifiers for biochemical reactions and interactions between
multiple resources that use such IDs while the mappings are obtained from multi-
ple sources. In this study we created BridgeDb mapping databases for selections of
genes-to-variants (and variants-to-genes) based on the variants described in Ensembl.
Moreover, we demonstrated the use of these mappings in different software tools like
R, PathVisio, Cytoscape and a local installation using Docker. The variant mapping
databases are now available from the BridgeDb mapping database repository (http:
//bridgedb.org/data/gene_database/) and updated according to the regu-
lar BridgeDb mapping update schedule.

Introduction

Many bioinformatics software tools rely on database identifier mapping, for instance
for 1) recognition and mapping of identifiers used in experimental data to the corre-
sponding identifiers present in secondary sources like pathways or ontology classes or
2) simply to combine data from different sources that use different identifiers. BridgeDb
is a database identifier mapping tool that is available as a Java framework and as an in-
stallable web service [2]. Tools that integrate BridgeDb are for instance: the community
curated pathway resource WikiPathways [3], the modular pathway editor and pathway
analysis tool PathVisio [1], and the network tool Cytoscape used to visualize, extend
and evaluate biological networks. Depending on the available mappings BridgeDb can
provide the mapping between identifiers from various data sources, also when these link
to different molecular levels, e.g. gene to protein. BridgeDb can also be deployed as a
web service. Moreover, it is available in a semantic web version, the Identifier Mapping
Service (IMS), which can be used inside the Open PHACTS platform but can also be de-
ployed from a software container [14]. Mappings for BridgeDb are already available for
gene products for many species (produced from the respective Ensembl genome anno-
tations [10]), for metabolite identifiers (produced from HMDB [8]) and ChEBI [5]), and
for reaction identifiers (produced from Rhea [9]). The BridgeDb mapping databases are
linking pins between tools that support genetic variants, genes, and pathways analysis
helping to visualize a complex biological context such those typical of the multifaceted
(genetic) diseases. Gene-to-variant mapping was not yet available for BridgeDb. Such
mappings can be especially useful to work with genetic variations, for instance when
evaluating traits with a complicated genetic background like blood pressure, suscepti-
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bility to heart failure, or diabetes type 2 development. Single nucleotide polymorphism
(SNP) can be responsible for phenotypic variations. In extreme cases this can be the
cause of rare genetic disorders. For example, several SNPs in the human DMD gene can
be responsible of Duchenne muscular dystrophy (DMD), a severe congenital disorder
which leads to severe physical impairment [20]. Since BridgeDb can stack mappings,
the combination of the new gene-to-variant mapping database with the collection that
was already available offers versatile mappings for variants to a large set of different hu-
man gene and gene product identifiers. The main objective of this work was to provide
mappings between gene identifiers and variant identifiers in both directions. The steps
needed to achieve this were: 1) select the best source for the mappings, 2) collect data
from the selected source, 3) annotate the result with provenance data about the process,
the source, and the source version, and 4) finally to release the new BridgeDb mapping
database and integrate that in the regular BridgeDb mapping database update sched-
ule. Target users for the resulting mappings are 1) bioinformaticians and developers,
working on new approaches for data integration, if these use human genetic (variant)
information; 2) members and users of ELIXIR data interoperability services, includ-
ing the implementations in the tools mentioned that perform analyses based on human
genetic variant data, for instance for the analysis of common multifaceted genetic dis-
eases or in the rare disease field; and 3) researchers who access and query molecular
data resulting from the analysis above.

Methods

The gene-to-variant database uses mappings between Ensembl and dbSNP [21]. The
Ensembl gene-to-dbSNP variant mappings present in Ensembl were used as the source.
The released database is based on Ensembl r91, dbSNP b150, and the human genome
assembly GRCh38. Although Ensembl provides more genetic variation from different
sources, we focused on dbSNP as this variation database is regularly updated and ad-
justed to the actual Ensembl genome built. We compared both sources (Ensembl and
dbSNP) and made sure that Ensembl provides all dbSNP available variants. So, we are
able to rely only on the Ensembl API as a source for the extraction of the data nec-
essary for creation of this mapping database. To prevent problems introduced by the
user interfaces we used database dumps for this comparison. The data dump was ob-
tained from the Ensembl ftp server. For the first version, we used Ensembl 91, gene
annotation with Gencode 27. The vcf (variant call format) file is the one relevant for
our mapping. It contains the dbSNP identifier with its additional attributes and the as-
sociated Ensembl transcript identifier. By querying the Ensembl platform web service,
we can access the gene identifier of the transcript. Combined, this leads to mappings
between variants and genes. The size of the complete mapping database exceeded 150
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Gb (for Ensembl 91), so we decided to create several different subsets: exonic vari-
ants, missense variants, protein truncating variants (PTV), PTV and missense variants,
and variants with a PolyPhen score ¿0.908 indicating Probably Damaging. Other se-
lections can be created easily on individual demand. The created database contains
the link between the Ensembl gene identifiers and the dbSNP variant identifiers in-
cluding a selection of attributes (MAF (minor allele frequency), chromosome, variant
alleles, and chromosome position start/end). For the rare cases where a variation is
associated to more than one gene, the variant is also associated to these genes in the
BridgeDb database. For example, rs199773918 overlaps in the exons of two genes
(ENSG00000173366 and ENSG00000239732), and in the exonic variant BridgeDb
mapping both genes show up. Nevertheless, in our selection of variants it may hap-
pen that not all of them show up due to different variant effect classifications in the
different genes. As an example, rs199773918 is a variant that overlaps in the following
genes: TPR (ENSG00000047410) and PRG4 (ENSG00000116690). This variant is a
3 prime UTR variant of TPR and a missense variant of PRG4. It can be found in both
genes variant tables but due to our selection it will show up only once in the missense
variant dataset.

Implementation

Database creation:

An open-source Java program to create the gene-to-variant database is available on
GitHub (https://github.com/BiGCAT-UM/BridgeDbVariantDatabase).
After downloading the vcf file form Ensembl, users create a configuration file with sev-
eral parameters. Then the database creation program will parse the vcf file, retrieve
additional information through the Ensembl web service and create the BridgeDb map-
ping database. Due to the large amount of mappings, the tool commits the mappings to
the database in batches to keep the required memory low.

Operation:

The database creation workflow is depicted in Figure Database creation workflow. The
gene-variant mapping database is built on the variant call format (vcf) file provided
by Ensembl. After running the database creation tool, the database can be used in all
the different use cases. . The vcf file can be downloaded from the Ensembl FTP. The
“Homo sapiens incl consequences.vcf.gz” file is used.
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System requirements:

The database creation tool runs with Java and requires more memory than usually given
to a Java process. We advise users to allocate 3-4GB of memory at least when running
the database creation tool (-Xmx4G).

Fig. 3.1 Database creation workflow. The gene-variant mapping database is built on the
variant call format (vcf) file provided by Ensembl. After running the database creation
tool, the database can be used in all the different use cases.

Results

The resulting BridgeDb mapping databases are available as a Derby database from
here: http://bridgedb.org/data/gene_database/. The new mappings
are available for all the BridgeDb implementations mentioned above (PathVisio, Cy-
toscape, R package, web service, and the IMS). The mapping databases are freely avail-
able for download under CC-BY license. Application examples of the use of the variant
BridgeDb database are given in the following section. We created gene-to-variant map-
ping databases for the variant classes given in Table 3.1. Any other subset of variant
classes can be created on demand using the tool described in the Methods section. Any
other subset of variant classes can be created on demand using the script given in the
previous chapter.

Use cases

To test and demonstrate the application of the variant BridgeDb database, we down-
loaded the database from BridgeDb. The gene-to-variant (and variant-to-gene) queries
are shown in four different tools: R command line [11], PathVisio [1], Cytoscape [4]
and the local IMS installation using Docker, in order to provide an overview of the
flexibility of the mapping database in different environments. A genetic variant of the
rare disease Duchenne muscular dystrophy (DMD) was selected from the gene-disease
association database DisGeNET [15]. The rs104894790 [13] SNP was chosen because
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Table 3.1 Gene-to-variant mapping databases (status Ensembl 91, to be updated regu-
larly)

SNP selection File Date Size
Exonic variants SNP r91 Exon.bridge.zip 2018-06-04 1.1G
Missense variants SNP r91 Missence.bridge.zip 2018-06-07 620M
Protein truncating
variants SNP r91 PTV.bridge.zip 2018-06-07 75M

Protein truncating
variants and missense SNP r91 PTV Missense.bridge.zip 2018-06-07 620M

All variants with
a PolyPhen score
above 0.9

SNP r91 PolyPhen.bridge.zip 2018-06-07 227M

it presented a high number of citations and a stop gain damaging effect on the genes
protein product.

R

The SNP, rs104894790, as described above was used to query the Ensembl identifier for
the gene(s) in which it is located (variant-to-gene query). The query was performed in
R command line, after the installation of the BridgeDb R package (example R script in
Supplementary File 1) (R version 3.5.1). The result shows that the variant is positioned
only in one gene: dystrophin (DMD, ENSG00000198947). DMD is one of the largest
genes in the human DNA (about 2.2 Mb), and is composed of 79 exons and has 32
known transcripts of which 20 are protein coding. Because the output is identifiers, it
can be easily linked to other R packages such as mygene [12] which normally wraps
around the mygene.info web service [6].

PathVisio

We used PathVisio (version 3.3.0) (Figure 3.2), a biological pathway analysis tool that
allows drawing, editing and analyzing biological pathways, to demonstrate how the new
gene-variant database can be used to evaluate variants in a pathway context. PathVisio,
like Cytoscape, has the BridgeDb functionality integrated in the core. For the pur-
pose of the demonstration, we first selected pathways that contain the DMD gene from
the R example. Five pathways were found: two striated muscle contraction pathways
(WikiPathways identifiers: WP3795 and WP383), Ectoderm differentiation (WP2858),
Extracellular matrix organization (WP2703) and Arrhythmogenic right ventricular car-
diomyopathy (WP2118). In principle, a new PathVisio plugin could now be developed
that searches pathways that contain genes with selected variants automatically, or the
plugin could show all variants from an analysis sets on a given pathway. For the exam-
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ple, one of the striated muscle contraction pathways (WP383) was selected and visu-
alized. Next, the BridgeDb variant database was loaded, using the BridgeDbConfig plu-
gin (http://www.pathvisio.org/plugin/bridgedbconfig-plugin/).
After selecting a gene in the pathway, the backpage tab of the right hand side panel now
shows the list of hyperlinks obtained from the BridgeDb database that point to differ-
ent information sources linked to the gene selected. Figure 3.2 shows the backpage
with the list of the 720 SNPs (from the BridgeDb with a PolyPhen ¿ above 0.908, file
“SNP r91 PolyPhen.bridge”) for the selected DMD gene. All the SNPs in the backpage
have a hyperlink to the corresponding dbSNP page.

Fig. 3.2 PathVisio shows the diagram of the pathway WP383 from WikiPathways col-
lection is shown in the left panel of the tool. When the DMD gene is selected a list of
hyperlinks from different sources are displayed in the back page of the left panel. In
this case a list of SNPs located in the gene are visualized.

Cytoscape

An alternative gene-to-variant visualization is provided using Cytoscape (version 3.6.1),
a popular tool for (biological) network analysis and visualization (Figure 3.3). The
BridgeDb app for Cytoscape is available at: http://apps.cytoscape.org/

apps/bridgedb. A node with the Ensembl gene identifier of DMD was created
and the 720 SNPs were mapped to the gene using the BridgeDb app interface. A gene-
variant network was created using the list of variants mapped. Moreover, the app can be
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used to configure the selection of several attribute columns related to the variant nodes
such as: chromosome location, minor allele frequency, and variant allele. In this exam-
ple figure, we visualize the PolyPhen score as the node fill color of the variants. For
simplicity, the rs-numbers are not displayed.

BridgeDb Identifier Mapping Service (IMS)

Finally, we here show that identifier mapping linking variants to genes and vice versa
can also be done at a semantic web level, we here demonstrate how an online BridgeDb
Identifier Mapping Service (IMS) can be set up. The IMS technology was developed in
the Open PHACTS project to link drug discovery related data sets, including a Docker
image [2, 16, 17]. Here, identifier mappings are defined by link sets, which specify
which identifiers are mapped. However, unlike traditional BridgeDb mapping files,
these link sets also specify why the two identifiers are mapped, allowing them to be used
as scientific lenses [17]. Because the IMS works at a semantic web level, identifiers are
represented by uniform resource identifiers (URIs). Moreover, the IMS is aware of
URI equivalence defined by the MIRIAM registry [18]. This means that even when a
mapping file does not provide mappings for a certain URI, one would still get a number
of equivalent URIs, following knowledge from MIRIAM database. And, when a single
mapping is found in the link sets, equivalent URIs for the mapped URIs it returned.
The IMS provide a targetUriPattern parameter allowing you to restrict the number of
mapped URIs. We developed a tutorial explaining how to set up an IMS instance with
the variant-gene mappings (available from GitHub). The instance is run locally using
a Docker container developed by Open PHACTS, which is available from DockerHub.
After the Docker image is started, it provides a web interface and an API. The web
interface has a ”Check Mapping for an URI” page where the URI can be given to be
mapped, the return format (XML, JSON, or HTML), and optionally a lensUri (see [17]),
and the aforementioned targetUriPattern. However, it is more convenient to use this API
from other tools, as demonstrated with a second R script (Supplementary File 1). This
R script uses the curl [19] and jsonlite [7] packages to interact with the IMS. The first
package is used to call the IMS webservice and the second to convert the returned JSON
into a data model more easily handled in R. The example consists of two API calls:
the first part finds 603 variants for the DMD gene (Ensembl ID ENSG00000198947);
the second example takes a single variant (dbSNP ID rs769658853) and looks up the
matching gene.
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Fig. 3.3 Cytoscape displays the gene-variants network in which the red node is the
DMD gene and the blue nodes are the 720 variants with a PhenScore ¿ 0.9 (pathogenic)
known for this the gene. Below the main screen there is a table that shows the nodes ID
and the attributes retrieved from the BridgeDb mapping.

Discussion

The BridgeDb toolset provides several apps and tools designed for different purposes,
while mapping databases are available to link different database IDs for genes and
gene products, metabolites, and reactions and interactions. A mapping database in the
BridgeDb software environment, capable of linking genes to their variants and vice
versa, was not yet available. The new database is expected to be useful to enhance
the biological interpretation of genetic variant data (as shown with the example of the
DMD gene) for instance when using apps that evaluate biological pathways, use the

48



classification of genes according to ontology terms, or in the R environment when per-
forming gene and variant related statistical evaluation. With this newly created mapping
database and the transitivity function of BridgeDb, the user can map between three dif-
ferent layers: e.g. variant-gene-protein. This approach can support multi-omics analysis
for various biomedical applications, and tools like Cytoscape and PathVisio can be used
immediately to benefit from this. We intend to keep the content up-to-date by regular
updates. The human variant mapping database is already incorporated into the quarterly
BridgeDb mapping database update. Also other variant sets including more than only
the currently included protein truncating and missense variants can be created on user
community (or individual) demand.
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Abstract

Genome-wide association studies (GWAS) have become a common method for dis-
covery of gene-disease relationships, in particular for complex diseases like Type 2
Diabetes Mellitus (T2DM). The experience with GWAS analysis has revealed that the
genetic risk for complex diseases involves cumulative, small effects of many genes and
only some genes with a moderate effect. In order to explore the complexity of the re-
lationships between T2DM genes and their potential function at the process level as
effected by polymorphism effects, a secondary analysis of a GWAS meta-analysis is
presented. Network analysis, pathway information and integration of different types
of biological information such as eQTLs and gene-environment interactions are used
to elucidate the biological context of the genetic variants and to perform an analysis
based on data visualization. We selected a T2DM dataset from a GWAS meta-analysis,
and extracted 1,971 SNPs associated with T2DM. We mapped 580 SNPs to 360 genes,
and then selected 460 pathways containing these genes from the curated collection of
WikiPathways. We then created and analyzed SNP-gene and SNP-gene-pathway net-
work modules in Cytoscape. A focus on genes with robust connections to pathways
permitted identification of many T2DM pertinent pathways. However, numerous genes
lack literature evidence of association with T2DM. We also speculate on the genes in
specific network structures obtained in the SNP-gene network, such as gene-SNP-gene
modules. Finally, we selected genes relevant to T2DM from our SNP-gene-pathway
network, using different sources that reveal gene-environment interactions and eQTLs.
We confirmed functions relevant to T2DM for many genes and have identified some -
LPL and APOB - that require further validation to clarify their involvement in T2DM.

Introduction

GWAS and pathway analysis

Since 2005 analysis of genetic variations in complex diseases has been conducted with
genome-wide association studies (GWAS) [49]. Such an analysis consists of genotyp-
ing the genomic DNA of individuals divided into case and control groups according to
a specific trait or phenotype. A genome scan is performed using a set of genetic vari-
ation probes of at least 100,000 single nucleotide polymorphisms (SNPs) to a million
or more, and more recently genomic sequencing-based approaches to detect SNPs have
been added [1]. Thereafter, computational methods are applied to SNPs related to the
investigated phenotype, resulting in a list of SNPs significantly associated with the phe-
notype. Despite the limitations of such studies [11], GWAS is still a valuable method
that provides insights to delineate the molecular scenario of complex diseases like type
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2 diabetes mellitus (T2DM) and to support risk prediction [28].
Nevertheless, it remains challenging to perform secondary analysis on GWAS results
with the aim of obtaining a detailed biological understanding of the SNPs function and
role in a disease [42]. Pathway analysis is an example of secondary analysis that has
been applied to GWAS since 2007 [4], where the SNPs are contextualized in biolog-
ical processes through the genes to which they are assigned [13]. Garcia-Campos et
al. (2015) and Kai et al.(2015) [3, 5] published reviews describing how to use differ-
ent pathway analysis methodologies, which are applicable to GWAS data. Three basic
steps are performed in these pathway analysis methods: (1) gene set are chosen by the
user for instance from Gene Ontology annotations [17], KEGG or WikiPathways path-
ways [16], (2) genetic variants are mapped onto the genes, and (3) gene set statistics are
performed. There are two different approaches for the gene set statistics: in a one-step
approach, gene set p-values are calculated directly from genotype data, whereas in a
two-step approach first single gene p-values are determined, from which the final gene
set p-values are computed.
Another way to discriminate gene set statistical methods is by the difference in the
hypothesis tested. The hypothesis tested is either whether the observed pathway is
associated with the phenotype (often referred to as a self-contained approach or an
association method), or whether the genes within a pathway are significantly enriched in
comparison of other genes (referred to as competitive approach or enrichment method).
In both cases the output is a list of pathways ranked by their significance based on
the statistical test performed. Gene set enrichment was used to obtain interesting and
germane pathway results linked to diabetes [18, 26]. However, looking only at the
highest ranked pathways does not assure an accounting of all genes detected by the
significant association signals, interpretation of which could be relevant to understand
the phenotype. In general, it is often suggested that the output list needs to be checked
manually, pathway by pathway and gene by gene. It then becomes time-consuming and
error prone to account for all the possible relations that different pathways and genes
present between each other.
We propose an approach based on network analysis and visualization where we display
biological pathways identified by the presence of genes in which the SNPs from T2DM
GWAS meta-analysis are mapped. The list of pathways is derived simply from the fact
that one or more genes associated with a significant GWAS SNP signal are present in
that pathway. This allows us to create a SNP-gene-pathway network that includes all
the pathways where a significant SNP was found.
Furthermore, in recent years development of methods for testing hypotheses about the
molecular mechanisms of a phenotype from the GWAS results, has promoted several
secondary approaches besides those related to pathway-based analysis [41]. An exam-
ple is expression quantitative trait loci (eQTL) analysis that can enhance the characteri-
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zation of GWAS variants, in particular the non-coding ones. eQTLs are loci that contain
sequence variants that are found to affect the expression of genes. They are identified
by relating gene expression measurements to genotyping information in panels of in-
dividuals [6]. eQTL databases, such as GTEx portal [12], provide the opportunity to
link GWAS results to the transcriptome level, in which a GWAS hit matching an eQTL
for a given gene, brings up the hypothesis that the expression of this gene influences
the particular phenotype. This transcript level can be analyzed in tissues relevant to the
phenotype of interest. Pre-identified gene-phenotype and gene-environment interac-
tions also form important resources because they allow us to both confirm the relation
between the environmental causes that could lead to the gene network found (for in-
stance determined by nutrition), and the relation between the gene network and the
disease phenotype, in order to identify subnetworks related to more specific aspects of
the phenotype (e.g. inflammation). CardioGxE is an important resource for such gene-
environment and gene-phenotype interactions [9]. We use GTEx and CardioGxE to
better understand the SNP and gene connections in the network, in relation to pathway
context, environmental causes and the T2DM phenotype.

Key pathways in Type 2 Diabetes Mellitus

We chose to perform an analysis on T2DM data because this is a highly investigated
complex disease. There are many and different types of T2DM data and biological
information published in articles or stored in databases that can be re-used and inte-
grated for secondary analysis [19]. T2DM is the inability to regulate glucose levels
in the blood associated with the development of insulin resistance. This insulin resis-
tance can be systemic or tissue specific. The high glucose levels progressively stress
the pancreatic beta-cells, which respond by increasing secretion of insulin. Insulin in-
duces glucose uptake in skeletal muscle, and regulates both glucose production in the
liver and the release of free fatty acids from adipose tissue. The insulin imbalance leads
to complications related to those organs. Pathway analysis results of T2DM GWAS
studies [26, 50] have identified molecular pathways involved in the tissues previously
mentioned such as: pancreas, liver, adipose and skeletal muscle. For example, the G-
protein signaling pathways are known to activate genes like mitogen-activated protein
kinases (MAPK) resulting in insulin resistance, regulation of lipid metabolism, and
calcium signaling that converges in AKT signaling and promotes glucose uptake in re-
sponse to insulin [26]. Another example is the neural development processes found to
be enriched with well-known T2DM genes like TCF7L2 that also have a role in the
WNT-signaling pathway, involved in the regulation of pancreatic development [50].
Identifying the genetic influence on the pathways implicated in T2DM pathophysiology
is an influential step to determine the genetic predisposition of this complex disease,
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and offers targets for development of pharmacological agents. In this study we apply
a novel network biology approach to identify genes and pathways relevant in T2DM
based on GWAS results. To gain more insights into the possible role of identified genes
in T2DM, we use several databases and literature search tools. Lastly, we identified a
number of genes with known influence on T2DM phenotypes and others with potential
molecular roles in T2DM, but which require further validation.

Materials and Methods

GWAS dataset

The GWAS results described in the current study are taken from a human GWAS meta-
analysis conducted by Johnson and O’Donnell in 2009 [21]. The authors used a custom
computer analysis to extract and collect 56,411 significant SNP-phenotype associations,
in an publicly available GWAS database, from 118 previously published GWAS studies
related to different phenotypes. As stated in the paper ”the database represents results
from an heterogenous set of studies with varied amounts and types of data available”.
The description of the included studies, and the information on how the meta-analysis
was conducted (i.e. search strategy, study quality, heterogeneity between study vari-
ance, etc) are reported in the Method and Material section of the original paper [20].
We extracted 1,971 SNPs (in August 2016) associated with T2DM, which came from
nine of the T2DM GWAS articles collected [24, 27, 30, 35, 36, 39, 43, 46, 51], and
a total of 22,363 samples were considered. From this pool of SNPs 1,621 SNPs are
from populations with European ancestry (and hence highly relevant to LD analysis
performed with CEU data), 195 SNPs are from a MEX population and 155 SNPs are
from American Indians. Study information for these articles related to: number of cases
and controls, genotyping arrays used, phenotype descriptions, replication samples, an-
alytic strategies, data availability, URLs, publication date and contact information are
listed in additional file 2 and 3 of the dataset publication [21].
Consequently, in December 2017, an additional 757 SNPs associated with T2DM were
retrieved from the GWAS Catalog (https://www.ebi.ac.uk/gwas/) and their
genes and pathways were investigated. Those SNPs are not present in the Johnson and
O’Donnell dataset, because they were detected in studies performed after their analysis.
We report the full list of genes and pathways related to the 757 SNPs as Supplemental
material in Table S1.
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Workflow of the analysis

Our workflow of the data analysis is presented in Figure 4.1 showing the different steps
and tools used. We started our analysis by mapping the 1,971 T2DM-linked SNPs to
the genome using the Variant Effect Prediction tool (VEP[15]). This tool gives both the
chromosomal location and the known consequences of the variants in the gene sequence
(as defined by Sequence Ontology [25]), transcripts, proteins, and regulatory regions
(http://www.ensembl.org/info/docs/tools/vep/index.html). We
obtained 716 variants located in intergenic regions and 1,255 SNPs positioned within 1
kbp up and downstream of the 5’ and 3’ UTR of 1,046 genes.
We used Ensembl BioMart to retrieve the Ensembl gene identifier and gene name for
the 1,046 genes linked to the T2DM SNPs [29]. Next, we checked their pathway in-
volvement using the human complete WikiPathways curated collection [16] (Analysis
performed in October 2016, 710 pathways). We identified 368 of 1,048 genes in 460
different pathways.
The 678 genes not present in any of the pathways were annotated with Gene Ontology
(GO) terms using GOElite [7] in which 672 genes were detected in the three top level
Gene Ontology (GO) trees: molecular function, biological process and cellular compo-
nent. The GO annotation of these 672 genes was obtained running the GOElite analysis
with default parameters (Z-score cutoff for initial filtering above 1.96, 3 minimum num-
ber of genes changed (genes connected to a GO term), permutated p-value cutoff above
0.05, excluding terms with gene ID counts greater than 10000). Then, complete re-
sults list was used without taking into account the parameters chosen such as: Z score
or number of genes changed. As we were trying to complement the biological path-
way analysis, we then focused the investigation on the 1,503 GO terms (associated
with 196 genes from the original 672) found in the biological processes tree. Further-
more, we used the pathway list obtained from WikiPathways in combination with the
gene-variant relations retrieved from BioMart to create a SNP-gene-pathway network,
using Cytoscape 3.3.0 [8]. This network contains nodes for all three types of entities.
Pathways are included whenever they contain one or more genes that were found to be
associated with one or more of the SNPs. These genes then become part of the net-
work and are connected to all pathway nodes in which they occur. Finally, SNPs are
connected to the gene(s) to which they were mapped.
Before building this T2DM network, we implemented procedures that allowed us to re-
duce the redundancy of the pathways used. The aim of this was to obtain a less crowded
visualization, without losing the relevance of given networked pathways. We manually
evaluated the pathway names and content and whenever two were found with similar
names and overlapping content, the smallest pathway was removed. This led to 36 path-
ways being excluded. On the remaining 424 pathways we performed a cluster analysis
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in R using the hclust function with Euclidean distance and complete linkage clustering.
We obtained 81 clusters of pathways and 36 individual pathways. We displayed the
resulting 117 pathway clusters as a network in Figure 4.2.

Fig. 4.1 Workflow of GWAS data analysis The data processing, online resources and
tools used to perform the GWAS data analysis and visualization, as described in Mate-
rials and Methods.

Information sources for GWAS data interpretation

We used several types of online sources and performed web-based analyses to retrieve
specific biological information regarding SNPs and the genes to which they are related.
We include these additional steps in the workflow Figure 4.1. The information retrieved
from those sources enhanced the understanding of the relations between SNPs, genes
and pathways.
Regarding the SNPs the following database and analyses were performed:
1) SNP descriptions were obtained from Ensembl VEP, in which we checked the variant
location and the consequences of the variation on the DNA sequence (i.e. intronic,
missense, regulatory, etc).
2) Ensembl Variation database was consulted directly to find citations related to the
variants (queried by rs IDs) and to the diabetic phenotype, and the chromatin state
regarding the variant location.
3) A Pairwise Linkage Disequilibrium test on the T2DM SNPs with genes was per-
formed for the CEU and MEX SNPs, using the SNP annotation tool SNAP (http://
archive.broadinstitute.org/mpg/snap/ldsearchpw.php) [20]. The
number of CEU SNPs is 504, the MEX SNPs is 50 and the American Indians is 28, and
in Figure S1 the SNPs with genes are colored differently according to the population
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in which they were detected. The parameters used were: HapMap 3 (release 2), CEU
population for the 504 SNPs and MEX population for the 50 SNPs, r2 threshold 0.8,
and Distance limit 500 kb. The LD test was not performed for the American Indian
population because of the lack of a suitable genetic dataset.
4) The T2DM SNP list was used to query the CardioGxE database [2] to verify if any
GWAS variant was previously reported to have a significant gene-environment interac-
tion.
5) The entire set of GWAS, with data from 7,051 post-mortem samples representing 44
tissues and 449 individuals was queried at the GTEx portal[12, 33] in order to identify
cis-eQTL. Particular to the GTEx data, we first queried the 716 SNPs not mapping in or
near genes to retrieve eQTL data in any tissue. Then we checked for cis-QTLs for the
1,255 SNPs that map in or near genes and the genes to which they map for eQTLs in
four T2DM relevant tissues: pancreas, liver, subcutaneous adipose tissue, and skeletal
muscle. Finally, the results were visualized in a Venn diagram created with Venny [44].
Concerning gene information, we manually retrieved functional gene descriptions for
the genes from GeneCards (http://www.genecards.org/) and disease associ-
ations from DisGeNET (http://www.disgenet.org/) [14]. The evidence ob-
tained was sorted using ”Diabetes” as a keyword and the article pertinence was eval-
uated using both the DisGeNET score and reading the article. DisGeNET score ranks
gene-disease associations according to their level of evidence calculated by an algo-
rithm that considers the number and type of sources present in the database, and the
number of publications that support the association. For some genes we also performed
an additional search using PubMed and Google Scholar in which a query of ”gene name
AND Diabetes” was used. From the list of articles retrieved, abstracts were scanned,
and only those that reported gene name and type 2 diabetes were further analyzed.
As a last step, a search of WikiPathways was used to read the details of the Diabetes
related pathway diagrams (i.e. Description, Ontology tag, etc) and to evaluate the role
of the identified genes.

Results and Discussion

SNP analysis

The 1,971 SNPs associated with T2DM were analyzed using different tools and database
information from the resources mentioned above, in order to have a detailed description
of the variants, the genes and the pathways that can lead to plausible biological mech-
anisms regarding T2DM risk or onset or progression of this disease. 98% of T2DM
SNPs were mapped to non-coding regions of which 716 SNPs (36%) were outside gene
regions (called intergenic variants). The percentage of total non-coding variants in the
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dataset is consistent with what other GWAS studies detect [11]. The non-coding vari-
ants are described in more detail in the section that covers the eQTL analysis.
The coding SNPs in the dataset consist of: two nonsense SNPs: rs328 and rs2499953,
each with high impact on the LPL and MMP26 genes respectively, five missense SNPs
(rs2271586, rs5215, rs2499953, rs10494217, rs13088) with moderate impact on the
gene protein function according to SIFT and PolyPhen scores, and six synonymous
variants with no resulting change to the encoded amino acid, but which nonetheless
may alter translation rates and protein structure and function [45].
Regarding the genes with high-impact mutations, LPL is a lipoprotein lipase and its
mutations increase ending diabetes mellitus. Matrix metalloproteinases (MMPs) are
proteolytic enzymes belonging to the family of zinc-dependent endopeptidases that are
risk of hyperlipidemia, a known complication in T2DM. LPL is a key enzyme in human
lipid metabolism that facilitates the removal of triglyceride-rich lipoproteins from the
bloodstream [23, 32]. For MMP26 a risk allele was reported to be associated with higher
fasting plasma glucose [10], and the MMP26 gene is known to have a role in diabetic
nephropathy occurring after a longstcapable of degrading almost all the proteinaceous
components of the extracellular matrix. It is known that MMPs play a role in a number
of renal diseases, such as various forms of glomerulonephritis and tubular diseases,
including some of the inherited kidney diseases [48]. The fact that MMP26 is a T2DM
GWAS hit and carries a nonsense SNPs involved in T2DM complications, is sufficient
to warrant further investigation of this gene and its involvement in T2DM.
Finally, identification of proxy SNPs allowed determination of redundancy within each
dataset. Strong LD (r2 ¿ 0.8) between CEU SNPs was found in 17% of the 504 variants
with genes, and for the MEX SNPs strong LD was present in 24% of the 50 SNPs with
genes. We also identified genes where the SNPs are in strong LD only in MEX, such
as OR51A7. Nonetheless, pathway analysis was performed for all genes, identified
in populations of European or non-European ancestry, because pathway function and
disease phenotypes are highly conserved across populations.

Analysis of the SNP-gene-pathway network

The curated human WikiPathways collection was used to retrieve pathway information
on the genes related to the T2DM GWAS SNPs. In WikiPathways genes and metabo-
lites are connected by lines that show meaningful interactions and/or chemical reactions
between entities present in the pathway. From the 1,046 SNP related genes identified
via Ensembl BioMart, 368 were found in a total of 460 pathways of the complete 709
pathways in the WikiPathways curated collection. In order to achieve a comprehensive
picture of the biological processes related to all genes and pathways detected by the
T2DM SNPs, a SNP-gene-pathway network was created, following the steps explained
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in the blue box of the workflow in Figure4.1. The network consists of 580 SNPs located
in 368 genes present in 460 pathways, which in Figure4.2 are shown as 117 cluster
nodes. Cluster nodes were created by merging redundant pathways that share the same
genes as reported in the methods section. Furthermore, to better describe and discuss
the biological connections of the network nodes, we conducted both a network topology
investigation and an integration of information from other data sources. In particular,
we studied the node degree distribution using the Cytoscape NetworkAnalyzer module
[47] and we integrated additional information from other databases and sources, such
as: GeneCards (gene description), Ensembl (gene and variants description), DisGeNET
(evidences on gene-disease association), CardioGxE (gene-environment interaction),
and PubMed and Google Scholar (for confirmation of gene function).

Focus on the gene-pathway connections

For each gene node, the number of gene-pathway connections (node degree), was cal-
culated to detect which genes have the highest number of connections to pathways. 27
genes were found to be connected to ten or more pathways even after removal of re-
dundant pathways. These genes are located in the core of the network. The list shows
either pleiotropic genes such as transcription factors (i.e. NFBK1, CREB1) and ser-
ine/threonine kinases (i.e. PRKCA, CHUK, JAK2) or typical T2DM genes (i.e PPARG).
Furthermore, we explored the gene-disease association in T2DM using DisGeNET, and
we summarized the findings in Table S2 in supplemental material. For 18 of the 27 core
genes in the network we found evidence related to T2DM phenotype in DisGeNET. The
DisGeNET score for these 18 varied from 0.001 for JAK2, MAP3K1, and TGFBR1 to
0.393 for the most T2DM associated gene PPARG. The scores rank the gene-disease
associations according to their level of evidence, range from 0 to 1, with the higher
score indicating greater confidence in the gene-disease association. The genes with a
positive DiSGeNET score are displayed as a black triangle in figure 4.2. We explored
the pathways shared by at least 2 of the 27 core genes and found 161 common path-
ways. These pathways were then clustered using the pathway ontology tags present
on WikiPathways. The main clusters with most contributing pathways were: pathways
related to immunity (e.g. B-cell and T-cell receptor signaling, Toll-like receptor signal-
ing, TNF alpha, interferon type I and Interleukin 11 signaling), neuron activity (BDNF
signaling and Neurotransmitter receptor binding), cell life cycle related pathways (e.g.

apoptosis, MyD88 cascade initiated on plasma membrane and endosome), hormone
signaling pathways (e.g. androgen and estrogen signaling), energy related pathways
(leptin, insulin and AGE/RAGE signaling), heart function related pathways (e.g. car-
diac hypertrophic response) and different types of signaling pathways (e.g. EGF/EGFR
ErbB, MAPK signaling etc.). The variety of these pathways can be explained by the
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pleiotropic action of genes such as kinases or transcription factors, and it is remarkable
to observe that, according to previous knowledge, many of these pathways are relevant
to T2DM pathophysiology.
All 27 genes are located in the core of the large central network which consists of the
nodes with the highest connections. However, nine small network structures are dis-
connected from the larger network, these consist of fourteen genes (see the black frame
on the left side of figure 4.2). The fact that most of the 368 genes are connected in
a central network indicates that they function in pathways that are interlinked. Shar-
ing genes between pathways can in fact point at different forms of relations between
pathways. Pathways can be functionally related (one regulates the other, or metabolites
move each) and can describe related processes in different ways (the strong relation-
ships between cell cycle and cancer pathways, for example) and the shared genes can
have real pleiotropic functionality where they play different roles in the two pathways.
The latter typically happens for instance for transcription factors that can have multiple
targets which can appear in different pathways.
The disconnected small network structures that are represented in the frame in figure
4.2 consist of a single pathway node with the associated genes. These pathways are:
1) energy related pathways (peroxisomal lipid metabolism, bile acid metabolism, gly-
colysis and gluconeogenesis, TCA cycle and respiratory electron transport), 2) neuron
related pathways (synaptic vesicle, GABA metabolism and dopaminergic neuron), 3)
pathways related to general cellular processes (RNA transcription, RNA processing
and oxidative phosphorylation, and 4) the ACE inhibitor pathway. All these processes
have a clear and known involvement in T2DM pathophysiology [26, 50] and there are
many known connections between these processes and other parts of the larger network.
Some of these pathways are separate from other similar pathways present in the larger
network, because the genes known to connect them were not found to have associated
SNPs. The gene-pathway isolation within the network could also be the result of in-
complete knowledge representations in the pathways, where disease associated genes
are not represented in each of the related pathways, not because the pathways as such
are unrelated.
Our analysis helps to identify both potential mechanistic links between pathway
(sub)networks and an understanding of epistasis (SNP-SNP or gene-gene interactions)
[34] that is supported by SNPs mapping to different pathways. We found an exam-
ple of a missing link between the unconnected pathways previously listed, for instance
between the TCA cycle (WikiPathways ID: WP2766) and the glycolysis and gluconeo-
genesis (WP534) pathway. The two processes are clearly related but the conceptual
division can be made in such a way that no genes are shared. WikiPathways in fact has
a mechanism to show this: the pathway diagram can have an explicit link to another
pathway diagram. However, this pathway-pathway relation is still hard to interpret
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in the type of network that we presented here, because we identify a connection be-
tween a gene in one pathway and an entire other pathway, and not with a specific gene
(pathway 1) to gene (pathway 2) connection. We also found an example of a missing
link between the unconnected processes and the processes in the large central network,
regarding again the TCA cycle and glycolysis and gluconeogenesis pathways, and a
pathway that describes the transport of glucose and other sugars (WP1935). The latter
pathway contain the SLC family of glucose transporters, of which seven SLC genes
are present in the network, but without links to the main glucose metabolism related
pathways (WP2766 and WP534). These findings are useful to improve the WikiPath-
ways collection, where we could add pathway links to all three diagrams. Clarifying the
functional connections between genes in different processes that contribute to the syn-
ergistic effects found in GWAS studies, represented in our network, helps to understand
the background of epistasis.

Focus on the SNP-gene connections

Several genes have a relatively high number of SNPs associated with T2DM (CNTN1,

GRB10, PRKCA, ZNF615, SYNE1, THSD7B, NRG1, DDOST, SLC13A1, HIPK2, ATP8A1,

ARHGAP26, TCF7L2, CDKAL1). The Table S3 in supplemental material gives an
overview of the number of related SNPs found for every gene. It should be noted that
some SNPs are in high linkage disequilibrum (LD) and thus would point to the same
causal variant. For example there are four SNP-gene network structures with a number
of SNPs greater than ten. The genes at the centers of these networks are: CDKAL1,

ATP8A1, ARHGAP, and TCF7L2, but considering LD only the gene CDKAL1 remains
connected to at least 10 SNPs independent of each other. CDKAL1 variants have been
reported to be associated with T2DM with highly significant p-values detected by dif-
ferent GWAS studies [18].
In the blue frame of Figure S1 in supplemental material 19 structures are placed, in
which one or more SNPs connect with at least two genes, meaning that those SNPs are
located in multiple genes according to the size of the gene regions chosen. Such ge-
netic overlaps are well known, and they are important for the biological interpretation
of the outcome from GWAS studies. In such cases the knowledge of the function of
the associated genes can be used to decide which relations are more plausible [37]. For
this purpose we collected gene-disease associations with T2DM and their scores from
the DisGeNET database regarding the 41 genes present in the 19 structures, genes with
such scores are shown as black triangles in figure 4.2, and we also report the DisGeNET
score that indicate strength of the gene-disease association in Table S4 of the supple-
mental material. The DisGeNET analysis reveals that 13 of the 41 genes found to have
SNPs associated with T2DM in the GWAS analysis already have known relationships
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with T2DM (31%), a value likely the result of evaluation of the same GWAS studies.
However, if when considering the SNPs in in Table S4 that overlap with multiple genes,
SNPs associated with these 13 previously known T2DM genes are also associated with
8 other genes. In some cases such a dually connected SNP is the only association found
for a specific gene, which reduces the likelihood that such a disease relationship is real.
Finally, we checked if any of the SNPs and related genes in the network presented
a known gene-environment interaction in the CardioGxE database. Finding relevant
gene-environment interactions in the database adds supports for their involvement in
the disease mechanism. We found six SNPs (rs9939609, rs1801282, rs7903146, rs328,
rs693 and rs780094) influenced by thirteen environmental factors such as: energy in-
take, whole-grain intake, fiber intake, carbohydrate, fat, polyunsaturated, monounsat-
urated and saturated fatty acid, Vitamin E and A, normal diet, Mediterranean diet and
physical activity. Those SNPs are located in six genes (FTO, PPARG, TCF7L2, LPL,

APOB, and GCKR respectively), most of which are well-known to be associated with
T2DM and its complications [28]. CardioGxE also provides a list of phenotypic traits
related to these genes such as: body mass index (BMI), insulin, triglyceride, and choles-
terol. The complete results of the gene-environment interactions are reported in Table
S5 of the supplemental material.

Gene Ontology analysis of the genes without pathways

We used GOElite [7] to provide a biological description from the Gene Ontology for
the 678 genes that were not found in the complete WikiPathways curated collection,
and therefore not represented in the SNP-gene-pathway network. When we used all
three main GO classes, molecular function, biological process and cellular component,
672 genes were annotated. For only 196 of these genes we found an annotation from
the biological process tree and we focused on these. Although this resulted in less than
half of the input genes being evaluated, this approach has the advantage that the annota-
tion comes closest to a biological pathway description. The total number of biological
processes identified for these 196 genes was 1,503. In order to further evaluate these an-
notated genes we also performed the same Gene Ontology annotation for the 368 genes
from the SNP-gene-pathway network, and for these genes 4,544 biological processes
GO terms were identified related to 351 of the 368 input genes. We compared these an-
notations of the two groups of genes. From the 1,503 annotations identified for the 362
genes not assigned by WikiPathways, 1,255 were observed previously for the 363 genes
in the SNP-gene-pathway network. These 1,255 annotations are related to all the 351
genes with GO terms in the original SNP-gene-pathway network, and to the 122 out of
196 genes in the newly annotated group. This means that for the 74 (196 - 122) genes
in the newly annotated group, there are biological process annotations not previously
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Fig. 4.2 SNP-gene-pathway network. The network displays 580 SNPs (green dia-
monds) located in the selected region for 365 genes (circles) present in 117 pathway
clusters (blue squares). Black symbols indicate genes with ten or more connections to
pathway clusters, and triangles indicate genes with a positive DisGeNET score (note
that these are all black). The disconnected SNP-gene-pathway subnetworks are shown
on the left, framed in black.

found. In total this added 248 (1503 - 1255) new biological process annotations to the
T2DM SNP/gene set. A network visualization that illustrates the connections between
these 74 genes and 248 GO terms is provided in figure 4.3.
Two points related to the Gene Ontology comparison are worth noting: first, the 1,255
common terms extracted describe most of the original SNP-gene-pathway network and
the corresponding 351 genes represent most of the pathways in that network. This im-
plies that we have identified new information for the biological processes related to
most of the pathways. Exceptions include the Aminoacid conjugation and Lnc-mRNA
mediated mechanism of therapeutic resistance pathways for which we did not find any
new related genes. To use the information about genes discovered by GWAS analysis
for diabetes that are not in current pathways with similar Gene Ontology annotations
as genes that are, and the information about discovered genes that have different gene
ontology annotations, expert evaluation is required. This could lead to an extension of
existing pathways if the discovered genes with similar annotations are in fact known to
be involved in these pathways, or to development of new pathways that would cover
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processes found in the Gene Ontology not currently covered. In this way this informa-
tion can be used to improve pathway curation, especially for pathways involved in the
pathophysiology of T2DM. The second notable observation from the analysis of GO
terms concern the connections between 248 biological processes exclusively linked to
74 genes that are not currently in any WikiPathways pathways are visualized for further
analysis in figure 4.3. Of course this network is likely to contain much of spurious in-
formation. If only one gene related to a biological process was found, this result is more
likely to relate to a gene-process relationships not really related to T2DM. This could
be because of: a false GWAS result, or the genes is involved in multiple processes or
the SNP in that gene acts at a distance.
In order to have a general overview of the different biological processes in the network,
related biological processes were clustered in the same frame of the figure 4.3. Then,
we constructed for each frame a GO ancestor chart of the biological terms, using the
old version of QuickGO (http://www.ebi.ac.uk/QuickGO-Old/). In these
charts GO slim terms were used to provide a summary of the results, which then gives
an overview of the ontology content of the terms present in the tree. An example of the
ancestor chart, with the GO slim terms related to the GO biological processes clustered
in frame ”l” of the figure 4.3, is reported in Supplemental material.
In figure 4.3 four frames functionalities referred to basic cell division and development
such as: cytokinesis and different types of regulation of meiotic cell cycle regarding: sex
determination, chromosome separation, telomere maintenance and polar body extru-
sion, stem cell fate determination, brain and skeletal muscle development. There is also
a group of processes involved in cell communication regarding: protein targeting and
transport, cell-cell junction maintenance, membrane raft assembly, and immune sys-
tem processes such as: T cell antigen processing and pattern recognition of the toll-like
receptor. Other groups are: DNA modification (e.g.: histone methylation, acetylation
and ubiquitination, and G1 DNA damage checkpoint) and ATP metabolism processes
such as purine ribonucleoside metabolic processes, mitochondrial metabolism such as
cytochrome complex assembly, general functionalities regarding: protein modification
(i.e. methylation, acetylation and poly- and de- glutamylation), regulation of metabolic
processes related to: chitin and hydrogen peroxide catabolic processes, ubiquitin de-
pendent protein, bile regulation, thyroid hormone generation, and glycolytic process.
Finally, players of signaling cascade involved in cGMP catabolic process, epidermal
growth factor-activated receptor activity, kinase A, TOR, GTPase, NIK/NF-kappaB,
and keratinization. These results are an indication of relevant molecular processes in
which the genes detected by the T2DM GWAS study play a role. Further literature in-
vestigation is required to expand the knowledge about the connection of these precesses
and their genes in T2DM context, especially with respect to clinical measures of disease
risk.
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In conclusion, the Gene Ontology analysis performed for genes that currently were
not assigned to pathways allowed us to identify 1) genes that are indeed related to
several pathways identified by more fully annotated T2DM SNPs-genes, 2) genes that
are functionally related in processes not covered currently in pathways, and 3) gene-
process relationships that occur only occasionally (and are likely either to be of no real
value to understand the disease development, or to have a conditional relationship with
T2DM, such as via epistasis or gene-environment interactions).

eQTL analysis

In order to evaluate which T2DM variants influence expression of the gene to which
they map or any other genes, we used the GTEx portal to search for cis-eQTL SNPs
within the T2DM SNP set. We first checked if any of the 716 SNPs that did not map
to a specific gene had GTEx data indicating an eQTL function. We then evaluated
whether the SNPs that influence expression of a gene are known in GTEx to affect
cis-eQTLs in subcutaneous adipose tissue, liver, pancreas or skeletal muscle. For each
tissue we selected the genes from cis-eQTLs with a p-value minor and egual of 0.05
(Table S6 supplemental material), and we visualized the results in a Venn diagram in
figure 4.4. The Venn diagram shows that most of the cis-eQTLs are tissue-specific: 36%
in pancreas, 26% in adipose subcutaneous, 20% in skeletal muscle and 9% in liver. This
result confirms previous findings suggesting that GWAS variants are enriched related
to tissue-specific cis-eQTLs [12]. The selected tissues are relevant in T2DM, and we
checked the detected genes, finding well-known T2DM genes such as: PPARG and
TCF7L2 in pancreas or APOB and LPL in subcutaneous adipose tissue.
Moreover, we found 45 cis-eQTLs genes shared between at least two tissues. Within
this set of genes we found only one gene (MAP3K8) present in the core of the network
of figure 4.2 because it has a high number of pathway connections, and it is present
in several important pathways, such as: Insulin signaling (WP481) leading to a cell
growth differentiation, and TNF-alpha signaling (WP231) ending to the activation of
NFKB. A significant positive effect of diabetes related SNPs was found for MAP3K8

expression in pancreas and liver, in adipose tissue there was a tendency towards a neg-
ative effect on expression but the p-value was only 0.45. The MAP3K8 gene encodes a
kinase that in adipocytes is involved in inflammatory cytokineinduced ERK1/2 activa-
tion, and deregulation of its expression suggests a role in adipose tissue dysfunction in
obesity [31]. However, MAP3K8 does not activate insulin in adipose tissue and does not
trigger its effects like lipolysis. The presence of MAP3K8 in a diabetes related eQTL
in liver and pancreas could still lead to a significant alteration of the downstream in-
sulin signaling pathway. For instance in the Angiopoietin Like Protein 8 Regulatory
Pathway (WP3915), MAP3K8 is activated via the insulin cascade together with other
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Fig. 4.3 Overview of the GO biological processes exclusively linked to genes with-
out pathways. The image represents 248 GO biological processes (blue rectangles)
linked with 74 genes without pathways (yellow rectangles). The processes are grouped
in ten frames according to similar functions. Each group is identified with the highest
level GO term that identifies the general action of the processes. a. DNA modifica-
tion (e.g.: histone methylation, acetylation and ubiquitination, and G1 DNA damage
checkpoint) and ATP metabolism processes such as purine ribonucleoside metabolic
processes; b. Cytokinesis and different types of regulation of meiotic cell cycle re-
garding: sex determination, chromosome separation, telomere maintenance and polar
body extrusion; c. Stem cell fate determination; d. Mitochondrial metabolism such
as: cytochrome complex assembly and mithocondrial protein processing; e. Cell com-
munication regarding: protein targeting and transport, cell-cell junction maintenance,
membrane raft assembly, and immune system processes such as: T cell antigen process-
ing and pattern recognition of the toll-like receptor 3; f. Brain development regarding:
astrocyte, microglia, glial, myelin and synapse maturation; g. Skeletal muscle develop-
ment; h. Protein modification i.e. methylation, acetylation,poly- and de-glutamylation);
i. Several signaling cascades related to: cGMP catabolic process, epidermal growth
factor-activated receptor activity, kinase A, TOR, GTPase, NIK/NF-kappaB, and ker-
atinization; l. Metabolic processes especially chitin and hydrogen peroxide catabolic
processes, ubiquitin dependent protein, bile regulation, thyroid hormon generation, and
glycolytic process).

MEK/MAP kinases and another downstream effect, beside cell differentiation, is the
activation of the ANGPTL8 gene that is known to be a relevant regulator of glucose
and lipid metabolism in liver, and it is identified as a novel drug target for treatment of
T2DM and dyslipidemia [22].
Finally, we checked the common genes identified in the three approaches: the cis-eQTL

68



tissue-specific lists, the gene-environment analysis and the highly connected pathway
based network. We identified three genes and their (partner) SNPs present in all three
lists: PPARG in pancreas cis-eQTL (rs1801282), and LPL (rs328) and APOB (rs693) in
adipose tissue cis-eQTL. PPARG is a transcription factor and the molecular target of the
insulin-sensitizing drug, thiazolidinedione; its variant rs1801282 is robustly associated
to reduced risk of T2DM in different populations [38]. In contrast, LPL and APOB vari-
ants are not (yet) considered to be associated with T2DM [28], but in the CardioGxE
database they show association with diabetes related traits such as: LDL cholesterol and
triglycerides level for APOB and HDL-cholesterol and triglycerides level for LPL. In
particular, the LPL rs328 SNP was previously mentioned to have a high impact on se-
quence consequences according to VEP, because it is a nonsense mutation that truncates
the LPL protein to 446 instead of 448 amino acid residues. Despite the high impact ef-
fect assigned to this LPL nonsense mutation, there are controversial results from in vitro

studies that show either a normal enzyme activity of the LPL protein with the missing
codon at the carboxyl-terminal [23] or that the mutation might be responsible for a de-
fect in lipid interface recognition [32]. Yet another study examined the association of
LPL with T2DM in a Korean population taking into account different LPL SNPs includ-
ing rs328, that had significant associations with blood glucose-related phenotype [40].
In conclusion, our finding still supports the relevance of this and other genes like APOB

in the context of T2DM.

Conclusions

In this Bioinformatics study we were able to re-analyze the output of previously pub-
lished Type 2 Diabete Mellitus (T2DM) GWAS studies by integrating several types of
biological information regarding the GWAS SNPs and the genes in which the variants
are located, with the relevant findings summarized in Table 4.1. We also took advan-
tage of network visualization to recognize different types of biological relationships,
such as: genes highly connected with pathways, and overlapping genes that share the
same SNP GWAS hit.
First, we identified pathways relevant in T2DM. We then analyzed a SNP-gene-pathway
network that provided information about the types of biological processes in which the
GWAS genes have a role. We combined this with other information about the bio-
logical roles of the genes in the network obtained from various sources (CardioGxE,
GTEx, DiSGeNET). We propose these network steps as a method complementary to
the standard pathway analysis, because it allows the visualization of the relationships
between GWAS genes, different functional annotations, the relevant SNPs, and path-
ways containing these. Next, we selected a number of relevant genes that are featured
in small SNP-gene network nodelets (basically the edges in these nodelets consist of
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Fig. 4.4 cis-eQTL in T2DM-relevant tissues. The Venn diagram indicates the numbers
of cis-eQTLs in pancreas, liver, adipose subcutaneous and skeletal muscle, and the
numbers shared among these tissues.

SNPs known to be located in more than one gene). This highlights the SNPs that can
affect multiples genes. Sometimes choices for one or the other interaction can be made
based on the observed phenotype and the function of the affected genes.
Furthermore, we addressed the T2DM GWAS genes that were not included in the
WikiPathways collection, and as a consequence were not analyzed in the SNP-gene-
pathway network. For those genes the annotation tree of biological processes GO terms
were analyzed, and a list of relevant terms linked to 74 T2DM GWAS genes is pro-
vided as a network visualization for further investigation. Next we created a connection
map based on the GO biological process annotation shared by both the 351 genes found
in pathways and the 122 genes not found in pathways. Apart from their direct utility
to study the relationship between disease related genes and their annotated functions in
GO, such connectivity maps are also useful to evaluate which disease relevant processes
have not been captured well in pathway collections.
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Table 4.1 Summary of the relevant genes detected in the secondary analysis of T2DM
GWAS study.

Type of gene detection Gene name
Genes with nonsense SNP LPL, MMP26

Genes with missense SNPs
MMP26, KCNJ11, VSTM4,
ART5, TBX15

Genes with synonimous SNPs
OR51A7, SVIL, ARF3, PLEKHG7,
VSIG10, RP11-302B13.5

Genes highly connected with pathways 27 genes listed in S1 Table

Genes disconnected from the
SNP-gene-pathway central network
in Figure 2

VMP, TSEN, SYT, SET,
RPP3, RIMS, NR3C, NFI,
NDUFS, MPC, MBD,
HSD17B, FADS2, CPLX2

Genes overlapping the same SNPs 41 genes listed in S3 Table
Gene highly detected by significant
GWAS SNPs CDKAL1

Genes with significant
Gene-Environment interaction 35 genes listed in S4 Table

Genes detected by GTEX
cis-eQTLs in adipose, liver, pancreas,
and skeletal muscle tissue

264 genes listed in S5 Table

Genes with common
GTEX cis-eQTLs, Gene-Environment
interaction and high pathway connection

PPARG, LPL, APOB

Finally, we used three more disease targeted knowledge resources to select relevant
genes in the SNP-gene-pathway network that are known to share more specific bio-
logical functionality. 1) The CardioGxE database depicted genes involved in specific
environmental interactions, but also associated with T2DM related traits. 2) eQTL anal-
ysis provided an idea of the influence that the variants can have on the expression of the
genes in the network at the tissue level. 3) DisGeNET shows the evidence regarding
the gene-disease association and applying this suggested to us those genes in the SNP-
gene-pathway network that do not have compelling evidence to confirm a T2DM role.
A combination of the approaches described allowed us to identify genes such as LPL

and APOB, of which the variants appear to play an important role in T2DM but have
not been well studied in this context so far.
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Abstract

Obesity is a widespread complex trait that can lead to detrimental cardiovascular and di-
abetogenic diseases. Investigating the genetic background of complex traits is an essen-
tial component in the development of personalized treatments. However, the vast major-
ity of complex trait single nucleotide polymorphisms (SNPs) identified in genome-wide
association studies (GWAS) reside in non-coding regions of the genome, severely com-
plicating their interpretation. Here, we present an integrative network based approach
to study such non-coding variants SNPs in the context of obesity. The SNPs from a
publicly available GWAS dataset for body mass index (BMI; n = 339,224 individu-
als) are connected in a network with the genes in which these SNPs are located and
the genes are linked to their biological pathways. Moreover, epigenetics data such hi-
stone modifications, and expression quantitative trait loci (eQTLs) data from adipose
tissue, skeletal muscle, liver and pancreas, are integrated as additional information to
advance the understanding of the function of non-coding SNPs. Four tissue-specific ge-
netic reference networks of SNPs associated with obesity are presented, showing BMI
non-coding variants both located in region with epigenetically active state properties,
and with an influence on gene expression in different tissues. The connections between
SNPs, genes and pathways are also represented, enabling the interpretation of the SNP
effects at the process level, especially concerning non-coding variants typically not so
defined. The networks are available online for further exploration on the NDEx website.

Introduction

Precision medicine for obesity

Obesity, with both environmental and genetic components, is a widespread complex
trait that can lead to detrimental cardiovascular and diabetogenic diseases [24]. Many
studies have been performed to understand the influence of the obesogenic environment
[6, 17] order to decrease the risk of obesity, but preventing the disease in high-risk in-
dividuals through lifestyle changes has proven unattainable [8]. In contrast, it is well
known that obesity is partly genetically driven, and genetic factors should be explored
in order to understand the obesity phenotype fully [45]. In recent studies, several genes
in glucose homeostasis have been identified as risk factors for obesity [46, 47] . Aiming,
to improve screening for variants known to be associated with high risk of developing
type 2 diabetes mellitus (T2DM) enables immediate intervention [27, 31]. However,
the identification of the complete set of the genes and proteins changes involved in
a complex pathway such as energy homeostasis remains a challenge. Moreover, new
genetic factors such as circulating pigment epithelium-derived factor (PEDF)[36] and
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circulating lipopolysaccharide-binding protein (LBP)[5] show potential as markers for
obesity-related insulin resistance.
The emerging approach of precision medicine takes an individuals variability in genes,
environment, and lifestyle into account in order to treat and prevent diseases[4]. Thus,
knowing the landscape of genetic variation for a given disease trait, is an essential as-
pect for applying precision medicine to any treatment regimen. Moreover, both genetic
variants and identified biomarkers are essential components that can provide the key to
understand the phenotype and the response to treatment.

The challenge of data integration to improve biological interpreta-
tion

Genome wide association studies (GWAS) have been one of the most common ap-
proaches to identify genetic variants such as single nucleotide polymorphisms (SNPs)
associated with the trait of interest [11]. In the context of precision medicine, associ-
ation studies have limited usefulness in establishing causation and biological function;
however, such SNP associations are still very important to indicate the dependence of a
specific phenotype on genetic variation [39] .
Currently, one of the greatest tasks in the post-GWAS era is to describe the biological
implications of non-coding SNPs, which are the majority of GWAS findings. These
non-coding SNPs can regulate the expression of nearby or even distant genes by affect-
ing cell-tissue specific regulatory elements such as enhancers and promoters, so called
expression quantitative trait loci (eQTLs), rather than a direct effect on protein function
[3, 15]. The histone modifications and expression measurements are used to define if
there is any and which type of regulatory mechanisms are active in the position of the
non-coding SNPs. Beside the type of SNP effect on genes, the function of the gene and
its encoded protein(s) play a role in the larger context of biological pathways. Thus, the
combination of both SNPs and gene product actions must be interpreted with respect to
the phenotype. Nowadays, pathway analysis allows us to assess SNP-gene relationships
in the encompassing biological landscape of genes, proteins, metabolites and other cel-
lular entities [10, 41, 43]. The pathway context helps to investigate simultaneously: the
action of multiple genes affected by body mass index (BMI) SNPs, and the changes in
the biochemical and physiological process instigated by the BMI SNPs.
In this study, we aim to characterize a set of SNPs associated with BMI, including
those in strong linkage disequilibrium (LD), by integrating data such as: tissue specific
eQTLs, cell type specific epigenetic data and biological pathways. The relationships
between the different biological levels (SNPs, genes, epigenetics, pathways) are visu-
alized using network diagrams [1]. We investigate four relevant tissues often affected
in obesity, i.e. subcutaneous and visceral adipose tissue, skeletal muscle, liver and pan-
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creas. For each tissue, except for visceral and subcutaneous tissues that are combined,
we generated a genetic reference network of SNPs associated with obesity relevant for
both, researchers and clinicians. In particular, we focused on the interpretation of effects
of non-coding SNPs on genes and their involvement pathways. The data are retrieved
from multiple, freely available sources, and we provide detailed instructions, including
a video tutorial, to instruct researchers how to re-apply our workflow to their own data.

Results

Construction of genetic variation networks by integrating

GWAS and omics data

A workflow is presented to integrate BMI SNPs including the SNPs in LD using 1000
Genomes project European (CEU) population as a reference, and different types of
linked omics data in a network representation. The network contains information on
genetics (genes in which the BMI SNPs are located), epigenetics (SNPs mapped within
cell-specific histone marks indicative of transcription regulation), transcriptomics (SNPs
influencing gene expression; eQTL SNPs) and biological pathways (pathways contain-
ing genes with BMI SNPs), and it displays the relationships between SNPs, genes and
pathways. The procedure to integrate the data is illustrated in Figure 5.1 and the key
steps of the network construction are presented in a video tutorial in the supplemental
material, to encourage biologists to adopt this approach with their data without prior
bioinformatics skills. In this video, details of the network creation are described, such
as how the epigenetic and the eQTL information related to the SNP activity are visual-
ized in accordance with the genes that carry those SNPs. The workflow does not require
advanced programming skills and researchers with basic computer knowledge can per-
form the analysis. At the same time, our workflow can be used by bioinformaticians to
improve the steps and propose an alternative way to integrate data, in order to enhance
the interpretation of non-coding SNPs.
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The genetic reference networks of SNPs associated with obesity

The final output of our network approach consists of four tissue-centric networks that
each include i) epigenetically active non-coding SNPs, that are SNPs in region with
a property of an epigenetically active state, ii) genes in which those SNPs or other
coding SNPs are located, iii) genes whose expression is influenced by a subset of the
non-coding SNPs (eQTLs), and iv) biological pathways in which the gene products are
known to be involved in. The four networks are publicly available for interactive visu-
alization and further analysis in the Network Data Exchange (NDEx), an open-source
platform to share, store and publish biological network data [42]. One reference net-
work for each tissue is available
(adipose tissue: http://www.ndexbio.org/#/network/ef2f83f4-4e0d-\
11e8-a4bf-0ac135e8bacfaccesskey=12d5dbe59f51578fa47ff424ce\

23aeb031176a93c14cf2ce64f8cfdca19e8,
pancreas: http://ndexbio.org/#/network/5955ecb3-125a-11e8-b9\
39-0ac135e8bacfaccesskey=5dc6d866e343f8300b3117e56187e5c2\

2c65ab919e01ddd9ec4f6ffa1541cd20,
liver: http://ndexbio.org/#/network/31f18b1d-125a-11e8-b939-\
0ac135e8bacf?accesskey=502a48125940b8003a5482543ab88c6ead\

be0528f3f56c9838bfe977f193a92a,
skeletal muscle: http://ndexbio.org/#/network/45350810-125a-11e\
8-b939-0ac135e8bacf?accesskey=0a3126fa320dc4f0635b3e96951\

81e41fdb99a1ad58de164d70aff0a2a918c9e).
We designate these networks as genetic reference network of SNPs associated with obe-
sity. The description of the node colors and node shapes used for the different entities,
such as SNPs, genes and pathways, is reported in supplementary information (Figure
S1). The full list of the identifiers and full names of the elements are available in the
table displayed at the bottom of the network diagram. In this table, the information
regarding the epigenetic activity of non-coding SNPs and eQTLs is also reported. The
position of each entity in the four networks is kept in the same location, facilitating vi-
sual comparison of the differences and similarities of the nodes and their connections.
Based on the number of epigenetically active non-coding SNPs, a clear variability is
observable in all four networks. For example, a gene such as HSD17B12 has epigenet-
ically active SNPs in some tissues, but the number of those SNPs changes depending
on the tissue. This confirms a well-known biological property of tissue specificity of
regulatory elements. The novelty of this analysis is enabling the visual exploration of
the tissue variation attributed to the SNPs and not the genes, as is commonly investi-
gated. The epigenetic data refer to a specific genomic region such as histone modifica-
tion marks and predicted open chromatin state [30] that represent enhancer, transcrip-
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tion start site and other indicators of gene activity. The eQTL data retrieved from the
Genotype-Tissue Expression (GTEx) project [23] via the FUMA tool [38] contains a
SNP or its proxy that influences the expression of a gene highlighted in the network
with light blue color. Because only tag SNPs are available, it is not possible to identify
the specific causative SNP influencing the gene expression. Those SNPs in strong LD
with the eQTL SNP could potentially also have that role. Table 5.1 summarizes the en-
tities in the four genetic reference networks. The table shows that the number of genes
influenced by eQTLs is significantly higher for adipose tissue and skeletal muscle. This
discrepancy slightly decreases for the total number of genes with SNPs. On the other
hand, the number of pathways detected in each network is quite similar with a range
from 223 to 238 pathways per network.
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A close examination of the type of processes depicted in the four tissue specific obesity
networks indicates that the majority of pathways are shared in all tissues, with only
adipose and skeletal muscle presenting some pathways that are unique to the respective
tissue. Seven unique pathways are found in subcutaneous tissue: i) TP53 regulates tran-
scription of cell cycle genes (WikiPathways identifier: WP3804), (ii) mitotic G1-G1/S
phases (WP1858), iii) Inhibitor of DNA binding protein signaling pathway (WP53), iv)
amino acid metabolism (WP3925), v) monoamine transport (WP727), vi) glycolysis
and gluconeogenesis (WP534), and vii) TCA cycle and deficiency of pyruvate dehydro-
genase complex(WP2453). In skeletal muscle, seven metabolism related pathways are
uniquely linked to genes in the network: i) glycosaminoglycan metabolism (WP2743),
ii) sphingolipid metabolism (WP2788), iii) aflatoxin B1 metabolism (WP1449), iv)
benzene metabolism (WP3891), v) peptide hormone biosynthesis (WP2691), vi) the
corticotropin-releasing hormone signaling pathway (WP2355), vii) regulation of toll-
like receptor signaling pathway (WP1449). All other pathways are present in at least
two tissue reference networks, and those pathways reflect biological processes well
known in the pathophysiology of obesity, and may indicate avenues of crosstalk be-
tween tissues. One example is the signaling pathway of the well-described key regula-
tor of metabolism, AMP-activated protein kinase (AMPK)[25] and its targets (WP1403,
WP2748). Importantly, two AMPK target pathways are also present, i.e. fatty acid oxi-
dation (WP1817) and glucose transport (WP1935). Interestingly, the signaling pathway
of an AMPK activator, leptin (WP2034)[40] is also among the shared pathways. Leptin
is already known as an important regulator of energy homeostasis [18, 34], but in our
networks it is not highlighted. Interestingly, SH2B1 and NCOA1 genes are displayed by
our data integration. These genes play a role in the downstream part of the leptin path-
way, mediating the formation of complexes that either activate genes like IRS1 and IRS2

involved in insulin signaling for SH2B1, or act as chromatin remodelers and recruiters
of general transcription factors, ending in controlling the energy balance between white
and brown adipose tissue, for NCOA1. In the skeletal muscle network, both SH2B1

and NCOA1 show epigenetically active SNPs (rs11864107, rs7359397 for SH2B1 and
rs9309308 for NCOA1). In addition, in the adipose tissue network the SH2B1 gene
is an eQTL gene. This is an example of how reference networks with multiple data
integrated can be used to investigate further the role of SNPs that have a regulatory in-
fluence on downstream genes in relevant disease pathway such as the leptin signaling.
Importantly, other relevant pathways are those related to inflammation, including in-
terleukin signaling pathways (WP364, WP3796, WP49, WP127), interferon signaling
pathways (WP619, WP585), TNF alpha signaling pathway (WP231, WP3398), B cell
signaling pathways (WP23, WP2746), T cell signaling pathways (WP68, WP3863) and
the pathway related to development of macrophage subsets (WP3892).
In general, we see a majority of well-studied and relevant obesity related processes in

86



our tissue-centric networks, including energy metabolism (WP1831, WP1541), choles-
terol metabolism (WP197 and WP2011), insulin signaling (WP481), circadian clock
(WP3355, WP3594, WP1797), adipogenesis (WP236), neuronal activity related path-
ways (WP2380, WP2754, WP1871)as well as disease specific pathways (WP3407).
Among all genes defined by BMI SNPs, 64 genes contain SNPs that map to regions
of active chromatin in subcutaneous and visceral adipose tissue, skeletal muscle, pan-
creas and liver (Figure 5.2). Skeletal muscle and adipose tissue contain the most genes
with SNPs mapping within active chromatin regions, with 13 and 20, respectively. In
contrast, liver and pancreas have one and three unique genes, respectively. The discrep-
ancy between the number of genes in skeletal muscle and adipose tissue versus those in
liver and pancreas was previously observed in table 5.1 for the number of eQTL genes
in the respective tissues. Details regarding the 64 genes are presented in supplemen-
tary information (Table S1) including the common gene name, the Ensembl identifier,
gene function and an indication of the tissue in which the gene is present. Observing the
function of the genes listed in Table S1, there are several genes typically associated with
or changing expression in obesity. Genes such as NEGR1, MTCH2,[24] and TCF7L2,
already have been identified as important in several processes that affect obesity. In-
terestingly, only the BCKDK gene is shared by the four tissues and in all four a SNP
(rs749767) located in an enhancer region is observed. The gene encodes a component
of the branched-chain alpha-ketoacid dehydrogenase complex (BCKD), an important
regulator of branched-chain amino acid (BCAA) metabolism. An increase in circulat-
ing BCAAs in obese individuals has been found to be associated with the development
of insulin resistance and T2DM [44]. In an animal model, it was shown that increasing
BCKDK protein levels led to an increase of BCAAs in plasma.

Interpreting the epigenetic activity of non-coding SNPs and their influence on gene

expression In order to interpret the eQTLs and the epigenetic variability of the BMI
SNPs identified in the networks, the data related to two genes are reported as examples
(Figure 5.3). The first gene is HSD17B12, an enzyme (E.C. 1.1.1.330) that catalyzes
the second of four reactions of the long-chain fatty acid elongation cycle, allowing the
addition of two carbons to the chain of long- and very long-chain fatty acids (VLCFAs)
per cycle. Thereby, it may participate in the production of VLCFAs of different chain
lengths that are involved in numerous biological processes as precursors of membrane
lipids and lipid mediators. The protein (E.C. 1.1.1.62) also may catalyze the transforma-
tion of estrone (E1) into estradiol (E2) and participate in estrogen formation [20]. In the
genetic reference network of SNPs associated with obesity, the gene is linked to three
different pathways related to fatty acid, steroid hormone and vitamin D metabolism
(WP1817, WP2749 and WP3836). In three of the tissue networks, epigenetically active
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Fig. 5.2 Venn diagram of the genes with epigenetically active SNPs and eQTL data.
The diagram presents the number of genes with non-coding SNPs showing epigenetic
and eQTL data, distributed in the four tissues: subcutaneous and visceral adipose tissue,
skeletal muscle, liver, and pancreas.

non-coding SNPs are associated to HSD17B12: one in liver, six in skeletal muscle and
sixteen in pancreas. Close inspection of the sixteen intronic SNPs present in the pan-
creas network shows that they map within histone modification marks in two pancreatic
cell lines (RoadMap cell code E87 and E98), and these marks identify an enhancer re-
gion. The SNPs are located in an interactive chromatin region with transcription factor
(TF) binding sites. Several types of motifs are also identified in ten of the sixteen SNPs.
In addition, the gene shows significant BMI association with the coding missense SNP
rs11555762. Regarding the eQTL data, HSD17B12 is significantly expressed in all four
tissues and its expression is influenced by the tag SNP rs2176598 (or those SNPs in LD
with it). From these data, it appears that some variants of HSD17B12 serve to regulate
its own expression and that one BMI SNP in LD with a tag SNP is responsible for this
effect. Regarding the interpretation of these epigenetic and eQTL data, it is important to
consider that the results refer to a non-disease condition, because the histone modifica-
tion and mRNA expression measurements were performed on samples from individuals
with diverse phenotypes, and not in an obesity case-control scenario. In the case of
HSD17B12, the gene is not one of the well-known obesity genes, but it does contain
one coding SNP and many non-coding SNPs that are associated with BMI. Usually,
the effect of the coding SNPs, especially missense SNPs, is more commonly explored
with further laboratory experiments. That coding missense SNP rs11555762 has been
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demonstrated to be associated with breast cancer, and the effect has been ascribed to
its alternative role in estrone conversion [9]. The exploration of the other non-coding
SNPs, even if the data are related to a baseline condition, broadens the general picture
and the meaning of the BMI SNPs located in the gene. In addition, it has been shown
that HSD17B12 was associated with obesity in a DNA methylation experiment, invok-
ing its role in the fatty acid elongation pathway [9]. Our data, on HSD17B12 show
that BMI variants are located in active regulatory regions of genes, and this supports
published findings and the hypothesis that non-coding SNPs can act in a regulatory
function.
The other example is HMGCR, better known as an obese gene [32], encodes HMG-CoA
reductase (E.C. 1.1.1.34), the rate-limiting enzyme for cholesterol synthesis that is reg-
ulated via a negative feedback mechanism mediated by sterols and non-sterol metabo-
lites derived from mevalonate. The enzyme is suppressed by cholesterol derived from
the internalization and degradation of low-density lipoprotein (LDL) via the LDL re-
ceptor. Competitive inhibitors of the reductase induce the expression of LDL recep-
tors in the liver, which in turn increases the catabolism of plasma LDL and lowers the
plasma concentration of cholesterol, an important determinant of atherosclerosis [20].
In the tissue-centric networks, nine pathways are linked to HMGCR: i) statin pathway
(WP430), ii) regulation of lipid metabolism by peroxisome proliferator-activated recep-
tor alpha (WP2797), iii) activation of gene expression by SREBF (WP2706), iv) SREBF

and miR33 in cholesterol and lipid homeostasis (WP2011), v) integrated breast cancer
pathway (WP1984), vi) sterol regulatory element-binding proteins signaling (WP1982),
vii) cholesterol biosynthesis (WP197), viii) target of rapamycin signaling (WP1471), ix)
AMPK signaling (WP1403). The epigenetic data indicate histone modification marks
in two tissues in a genomic region containing the SNPs: one SNP for adipose tissue and
four SNPs for skeletal muscle. In skeletal muscle, the four intronic SNPs map to a re-
gion containing histone marks retrieved from skeletal muscle cell data (cell code E108,
E0107, E120, E121) indicating that those SNPs are located in an enhancer region. In
addition, in this case the chromatin is active, TF binding sites are present, and loca-
tion for two of four SNPs show different types of motifs (e.g. at SNP rs6453131 there
are four motifs: HP1sitefactor, Pbx-1 4, SIX5 disc3, SIX5 disc4). The eQTL data
indicate an mRNA-SNP association only in skeletal muscle with tag SNP rs6871667
(or those in LD with it) influencing gene expression. However, expression is not ob-
served for HMGCR itself, but for the hexosaminidase B (HEXB) gene located 613,682
bp upstream of HMGCR gene. HEXB (E.C. 3.2.1.52) encodes the beta subunit of the
lysosomal enzyme beta-hexosaminidase that, together with the cofactor GM2 activator
protein, catalyzes the degradation of the ganglioside GM2, and other molecules contain-
ing terminal N-acetyl hexosamines [20]. Hence, HEXB becomes an additional entry in
the gene list within this network-based analysis, because no BMI SNP was located in
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this region and because some BMI SNPs support eQTLs for its expression. Both results
relate to the epigenetic activity of HMCGR and the expression of HEXB in pathways
involved in obesity pathophysiology, and strengthen previous findings [28]. For HM-

CGR, Meaney et al. [16] reported epigenetic changes in the expression of this and other
genes involved in cholesterol activity. In addition, Knebel et al. [33] found in an obese
mouse model that HEXB was significantly expressed as a protein in adipose tissue, but
its role was not specifically investigated.
In summary, the HSD17B12 example highlights the importance of non-coding BMI
SNPs that can have a regulatory function influencing the expression of the gene in which
they are located, and contrasts with a coding missense BMI SNP affecting the encoded
protein. The HMGCR-HEXB example suggests that the non-coding BMI SNPs influ-
ence expression of a gene other than the one in which the epigenetic activity is found,
thereby detecting genes previously not considered in the analysis.

Discussion

The genetic reference networks of SNPs associated with obesity are maps of SNPs,
genes and pathways that can be used in different ways by different stakeholders inter-
ested in obesity and personalized treatments. Experts in the field of obesity can explore
the networks to confirm results or generate novel hypothesis related to the functional
role of BMI SNPs and their possible effect on gene regulation by influencing epigenetic
marks. Indeed, we identified pathways from genes that carry SNPs associated with
BMI. Our results are in line with the pathway output reported in the original study [12]
that applied a gene set enrichment analysis for the BMI-associated loci found in order
to identify relevant BMI biological pathways and gene sets. Moreover, the genetic ref-
erence network contains information on epigenetic marks, e.g. DNA methylation and
histone modifications, which enables to explore their possible involvement in the effect
of the SNP on gene expression. For example, the methylation patterns of the circadian
pathway genes CLOCK, BMAL1 and PER2 were found to be associated with BMI in
an interventional study [14]. Although that study was not designed to indicate direct
causal effects to the obese phenotype, it was confirmed that epigenetic changes of the
promoters at several human clock genes were altered. In our analysis NCOA1 is the
only gene linked to the circadian pathways (WP3355, WP3594, WP1797), and only in
our skeletal muscle network it is shown that the downstream SNP rs9309308 is located
in an enhancer region containing several transcription factor binding motifs. Such an
observation both supports the work of Milagro et al.[14] and adds another potential
gene in the investigation of the epigenetic changes that occur in genes involved in the
same circadian pathway. Different methods for GWAS data integration using networks
have been presented previously [7, 22, 26, 29] but, to our knowledge, our analysis is
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Fig. 5.3 Network detail of the HSD17B12 and HMGCR examples. 2A: SNPs (green
nodes) and pathways (blue nodes) related to the HSD17B12 example are shown. The
gene node is colored in light purple indicating that its expression is influenced by one
of its GWS SNP. 2B: SNPs and pathways linked to HMGCR and HEXB are presented.
HEXB is colored in light purple because it is detected as an eQTL, for which expression
is regulated by one of the SNPs located in HMGCR. This relation is represented by a
thick black line connecting HEXB and the tag SNP of HMGCR.

a unique example of identifying genetic reference networks that present tissue specific
interactions regarding the SNPs within active chromatin region, SNPs influencing gene
expression, and biological pathways in obesity. Experts in obesity also can examine
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these results in order to plan and improve new or different omics studies. For example,
using DNA and RNA sequencing data in this type of study would an interesting alter-
native to improve the detection of the causative SNPs. However, nowadays such data
are not easily and freely accessible, and the majority of the GWAS genotype-phenotype
association tests are performed with genotypes taken from SNP arrays [24]. Moreover,
the results obtained refer to the role of SNPs in individuals with a high BMI. Obesity
occurs also in cases with a normal BMI, but with other parameters altered such as the
level of adiposity or the waist circumference. The SNP scenario would most likely be
different if those other traits were considered. The data re-analyzed in this study are
related to individuals that share the same BMI parameters, but the original study [12]
does not provide specific phenotypic descriptions of these individuals. This missing in-
formation would have allowed us to distinguish obese patients in phenotypic subgroups
with different comorbidities.
In addition, such genetic reference networks could prove to be useful for clinical geneti-
cists involved in precision medicine. Indeed, for those patients for whom SNP geno-
typing data are available, the health care team can determine susceptibility to certain
diseases, by consulting the reference networks. Exploring those SNPs present both in
the network and in the patient can assist interpretation of the relevance of the patient’s
alleles, linking them to the gene and the functional context in which they are involved.
For example, the occurrence of several genotyped SNPs from the patient that indicate
presence of risk or effect allele, that occur in the same or related pathways, can prompt
the health care team to evaluate if those processes, in relation to the specific tissue, are
relevant to the patient’s condition. Precision medicine in obesity is a complex challenge
because diverse factors are involved. In this study we present the integration of genetic
and epigenetic factors, but also comorbidities and environmental, socio-economics as-
pects need to be considered to obtain the overall picture [37].
Finally, we made interactive visualization of the genetic reference networks publicly
available at NDEx with a video tutorial. These are important sources to: i) encour-
age the application of our data integration method to other datasets, ii) reproduce our
analysis step-by-step in an easy to follow manner, iii) further investigate these obesity
results.

Methods

Dataset description

A publicly available GWAS summary statistics of BMI meta-analysis based on 322,154
European descent individuals [12] was obtained from here. In the study, 95 independent
lead SNPs associated with BMI were detected across 77 genomic risk loci. The Func-
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tional Mapping and Annotation tool (FUMA, http://fuma.ctglab.nl/ )[38]
was used to extend the list of the 95 lead SNPs with variants from the 1000 Genomes
project European (CEU) population that were in LD at r2 above 0.6, resulting in a list of
10,367 SNPs. FUMA also annotates the SNPs with allele-specific consequences (e.g.

intron, exon, splicing, etc.). These SNPs are mapped to 182 genes with 10 kbp window
from the UTRs. Of all 10,367 SNPs, 10,190 SNPs are non-coding and 5,954 SNPs are
located in the gene region (10 Kbp up and downstream the gene UTR). All SNPs are
reported in Table S2 of the supplemental material with their rs-number, their functional
consequences, and genes (symbol and Ensembl identifier) if the SNP was mapped to a
gene.

Dataset analysis

The approach presented in this study enables network based interpretation of com-
prehensive genetics data derived from FUMA. The data analysis was divided in two
parts as shown in the workflow of Figure 5.1. In the yellow right side, a pathway
analysis was performed for the 182 genes in which at least one SNP is located. The
WikiPathways human curated collection (www.wikipathways.org, April 2017 re-
lease) [2] with 747 pathways was used to identify the biological processes in which
at least one of the 182 genes was present. In the blue left side of Figure 5.1, the
eQTL and the epigenetic data were retrieved from different sources to better charac-
terize the function of the non-coding SNPs. Tissue specific eQTL in subcutaneous and
visceral adipose tissue, skeletal muscle, pancreas, and liver were obtained from the
GTEx portal v6 [23] and annotated by FUMA on 21/02/2017. The Table S3 in the
supplemental material reports the gene symbols and Ensembl identifiers of the genes,
their eQTLs, the tissues, and the tag SNP(s) genotyped in relation to the gene expres-
sion data. The epigenetic data information are: chromatin state with cell type codes,
five histone modification marks (H3K4me3, H3K4me1, H3K27me3, H3K9me3 and
H3K36me3) with cell type codes, regulatory elements related to regions of interactive
chromatin, TF binding sites, regulatory motifs, and scores indicating SNP function-
ality, were retrieved from four online sources: FUMA [38], GWAVA [19], HaploReg
and rVarBase [21]. The main epigenetic data sources of these tools are Encode and
RoadMap Epigenomics project [30]. In the selection of the epigenetic parameters that
show cell type, the following codes were considered from the RoadMap Epigenomics
project: E023, E025 and E063 for adipose tissue, E107, E108, E120, and E121 for
skeletal muscle, E87 and E98 for pancreas, and E066 and E118 for liver. An explana-
tion of the cell type code is accessible https://github.com/Bioconductor/
BioC2015Introduction/blob/master/inst/extdata/epi_metadata.

txt. The four tools were queried with the non-coding SNPs, and for each tool a table
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was obtained, from which the epigenetic information previously listed was selected.
Table S4 shows the combination of the epigenetic outputs from the four online tools
related to the entire list of the non-coding SNPs with indications relating to the tool
from where the information was retrieved.
Cytoscape v3.6.0 [13], an open-source and extendable network visualization and anal-
ysis tool, was used to visualize the four tissue-specific SNP-gene-pathway networks
named genetic reference networks, where epigenetically active SNPs and eQTL genes
are also visualized. The Cytoscape app DyNet [35] was used to keep the same node
location of SNPs, genes and pathways in all four networks, facilitating network com-
parison. In addition, the Cytoscape app CyNDEX-2 was used to upload the four net-
works on NDEx website21, this step enables to share them with the network community.
Finally, a video provided in the supplemental material was created with Screencast-O-
Matic (https://screencast-o-matic.com/) to explain the network genera-
tion workflow and network visualization.
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Salvador, and et al. Circulating Pigment Epithelium-Derived Factor Levels Are Asso-

ciated with Insulin Resistance and Decrease after Weight Loss. The Journal of Clinical

Endocrinology and Metabolism, 95(10):4720–4728, oct 2010.

[37] Gema Frühbeck, Dimitrios N Kiortsis, and Victoria Catalán. Precision medicine: diagno-

sis and management of obesity. The lancet. Diabetes and endocrinology, 6(3):164–166,

mar 2018.

[38] Kyoko Watanabe, Erdogan Taskesen, Arjen van Bochoven, and Danielle Posthuma.

Functional mapping and annotation of genetic associations with FUMA. Nature Com-

munications, 8(1):1826, dec 2017.

[39] Editorial. Genome variation in precision medicine. Nature Genetics, 48(7):701, 2016.

[40] Hyeong-Kyu Park and Rexford S Ahima. Leptin signaling. F1000prime reports, 6:73,

2014.

[41] Aharon Brodie, Johnathan Roy Azaria, and Yanay Ofran. How far from the SNP may the

causative genes be? Nucleic Acids Research, 44(13):6046–6054, 2016.

[42] Dexter Pratt, Jing Chen, David Welker, Ricardo Rivas, Rudolf Pillich, and et al. NDEx,

the Network Data Exchange. Cell Systems, 1(4):302–305, oct 2015.

97



[43] Sujoy Ghosh, Juan C. Vivar, Mark A. Sarzynski, Yun Ju Sung, James A. Timmons,

and et al. Integrative pathway analysis of a genome-wide association study of V o

<sub>2max</sub> response to exercise training. Journal of Applied Physiology,

115(9):1343–1359, nov 2013.

[44] M. D. Adams. The Genome Sequence of Drosophila melanogaster. Science,

287(5461):2185–2195, mar 2000.

[45] Blanca M Herrera and Cecilia M Lindgren. The genetics of obesity. Current diabetes

reports, 10(6):498–505, dec 2010.

[46] D S Sinasac, J D Riordan, S H Spiezio, B S Yandell, and J H Nadeau. Genetic control

of obesity, glucose homeostasis, dyslipidemia and fatty liver in a mouse model of diet-

induced metabolic syndrome. International Journal of Obesity, 40:346–355, 2015.

[47] Jill M Norris and Stephen S Rich. Genetics of glucose homeostasis: implications for

insulin resistance and metabolic syndrome. Arteriosclerosis, thrombosis, and vascular

biology, 32(9):2091–6, sep 2012.

98



99



CHAPTER 6

Biological pathways leading from ANGPTL8 to Diabetes Mellitus -
A co-expression network based analysis

Amnah Siddiqa1,2, Elisa Cirillo2, Samar H. Tareen3, Amjad Ali4, Martina Kutmon2,3,
Lars M.Eijssen2, Jamil Ahmad1, Chris T. Evelo2,3, Susan L. Coort2

1 Research Center for Modeling and Simulation, National University of Sciences and
Technology, Pakistan.
2 Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Transla-
tional Research in Metabolism, Maastricht University, Maastricht, The Netherlands.
3 Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maas-
tricht, The Netherlands.
4 Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and
Technology, Pakistan.

Submitted to: Frontiers in Physiology

100



Abstract

Angiopoietin like protein 8 (ANGPTL8) is a newly identified hormone with unique na-
ture due to its ability to regulate both glucose and lipid metabolic pathways. It is char-
acterized as an important molecular player of insulin induced nutrient storage and uti-
lization pathway during fasting to re-feeding metabolic transition. Several studies have
contributed to increase our knowledge regarding its function and mechanism of action.
Moreover, its altered expression levels have been observed in Insulin Resistance, Dia-
betes Mellitus (Types I and II) and Non Alcohlic Fatty Liver Disease emphasizing its
assessment as a drug target. However, there is still a great deal of information that re-
mains to be investigated including its associated biological processes, partner proteins
in these processes, its regulators and its association with metabolic pathogenesis. In
the current study, the analysis of a transcriptomic data set was performed for functional
assessment of ANGPTL8 in liver. Weighted Gene Co-expression Network Analysis cou-
pled with pathway analysis tools was performed to identify genes that are significantly
co-expressed with ANGPTL8 in liver and investigate their presence in biological path-
ways. Gene ontology term enrichment analysis was performed to select the gene ontol-
ogy classes that over-represent the hepatic ANGPTL8-co-expressed genes. Moreover,
the presence of diabetes linked SNPs within the genes set co-expressed with ANGPTL8

was investigated. The co-expressed genes of ANGPTL8 identified in this study (n=460)
provides narrowed down list of molecular targets which are either co-regulated with it
and/or might be regulation partners at different levels of interaction. These results are
coherent with previously demonstrated roles and regulators of ANGPTL8. Specifically,
thirteen co-expressed genes (MAPK8, CYP3A4, PIK3R2, PIK3R4,PRKAB2, G6PC,

MAP3K11, FLOT1, PIK3C2G, SHC1, SLC16A2, and RAPGEF1) are also present in the
literature curated pathway of ANGPTL8 (WP39151). Moreover, the gene-SNP analysis
of highly associated biological processes with ANGPTL8 revealed significant genetic
signals associated to Diabetes Mellitus and similar phenotypic traits. It provides mean-
ingful insights on the influencing genes involved and co-expressed in these pathways.
Findings of this study have implications in functional characterization of ANGPTL8

with emphasis on the identified genes and pathways and their possible involvement in
the pathogenesis of Diabetes Mellitus and Insulin Resistance.

Introduction

Diabetes Mellitus (DM) is a pathological condition which is often characterized by hy-
perinsulinemia and hyperglycemia and has become a global health challenge for both
developed and developing countries [33]. It is estimated to affect 642 million peo-

1https://www.wikipathways.org/index.php/Pathway:WP3915
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ple by 2040 according to the International Diabetes Federation [34]. The underlying
pathogenic mechanisms are well studied and encompass deregulated glucose and lipid
homeostasis involving inter-organ crosstalk of substrates and hormones. However, the
suboptimal effectiveness of current diabetic therapies to control pathological glycemic
conditions necessitates the identification of novel molecular players involved in regu-
lation of lipid and glucose homeostasis for the development of better pharmacological
interventions [32]. An emerging novel molecular target for treatment of DM and related
metabolic disorders is Angiopoietin like protein 8 (ANGPTL8) due to its unique nature
in regulating both lipid and glucose metabolism [31]. Recent studies have demonstrated
the upregulation of ANGPTL8 gene expression in various related metabolic disorders
including insulin resistance, obesity, DM (type I and II), Metabolic Syndrome, Non
Alcoholic Fatty Liver Disease (NAFLD) and Hepatocellular Carcinoma (HCC) empha-
sizing its assessment as a potential drug target [41, 44, 45, 65].
ANGPTL8 is a newly identified member of angiopoietin like protein (ANGPTL) family
and is also known as lipasin, refeeding induced in fat and liver (RIFL), betatrophin,
C19orf80 and TD26 [39, 43, 53]. It is induced upon feeding in liver and adipose tis-
sue (both white adipose tissue (WAT) and brown adipose tissue (BAT)) whereas fasting
suppresses its expression [39, 43, 53]. It has been recognized as one of the essential
molecular players involved in the metabolic transition of fasting to re-feeding through
both in vivo and in vitro studies [37, 39, 53]. It has been demonstrated to play a role
in triglyceride (TG) metabolism by regulating postprandial lipid traffic via inhibition of
lipoprotein lipase (LPL) activity [37–39, 53]. LPL is a hydrolytic enzyme which gener-
ates free fatty acids (FFA) from hydrolysis of TGs for subsequent uptake by heart, skele-
tal muscles and WAT. According to the molecular mechanism demonstrated by [37],
ANGPTL8 inhibits the postprandial LPL activity of cardiac and skeletal muscles which
allows the uptake of FFA by WAT for storage. On the other hand, fasting decreases the
expression of ANGPTL8 and in turn the LPL activity in cardiac and skeletal muscles
which allows the uptake of FFA by them for energy expenditure. Thus, ANGPTL8 ex-
hibits a significant role in lipid metabolism being a part of lipid partitioning machinery
according to nutritional levels. ANGPTL8 has also been demonstrated to play role in
other lipid metabolic pathways including adipogenesis and autophagy [36, 53]. Its role
in glucose metabolism was reported in several studies individually [41, 43, 44]. How-
ever, Guo and colleagues demonstrated the mechanism of ANGPTL8 mediated glucose
regulation via AKT/GSK3beta and AKT/FOXO arms of insulin signaling pathway [44].
AKT/GSK3beta and AKT/FOXO signaling regulates the activation of glycogen synthe-
sis and inhibition of gluconeogenesis, respectively.
Recently, we have designed and published an up-to-date literature curated pathway of
ANGPTL8 regulation based on its reported regulators and pathways in liver [31]. The
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pathway model is available on WikiPathways2 [31]. The pathway allows to clearly
visualize the regulatory interactions between different regulators of ANGPTL8 includ-
ing insulin in presence of glucose, thyroid hormone receptors (THR-alph/beta), sterol
regulatory element-binding protein (SREBPs), carbohydrate response element binding
protein (ChREBP), mitogen-activated protein kinases (MAPKs), and 5’ AMP-activated
protein kinase (AMPK) for its regulation (reviewed in [31]). Moreover, the presence
of ANGPTL8 can be visualized in a broader spectrum with respect to other linked path-
ways including insulin signaling pathway [41, 43, 44, 53], postprandial TG partitioning
[37], adipogenesis [53], autophagy [36], and CD45+ hematopoietic-derived cell prolif-
eration [35].
Despite new insights, there is still a great deal of information that remains to be in-
vestigated regarding ANGPTL8’s functions, regulation and physiological mechanism of
action. For example, different studies have indicated the biological processes (such as
autophagy, adipogenesis and CD45+ hematopoietic-derived cell proliferation) in which
ANGPTL8 is involved but the underlying mechanism of action, associated receptors
and signaling molecules (genes/proteins/metabolites) still remain elusive [35, 36, 53].
Besides, the role of ANGPTL8 might not be limited to the already associated biologi-
cal processes and transcription factors and hence needs further investigation from this
point of view as well. Moreover, already identified transcription factors of ANGPTL8

and their coordinated role in initiating its expression during refeeding/fasting metabolic
transition also needs further investigation because they have been reported in individual
studies.
Briefly, the investigation of predominant functional roles, biological processes, and as-
sociated signaling molecules (receptors/cofactors/genes) of ANGPTL8 is of immense
importance for its assessment as a molecular target for the treatment of DM and related
metabolic disorders. Therefore, in the current study, we specifically aimed to iden-
tify the significantly co-expressed genes with ANGPTL8 and their presence in known
pathways (present in WikiPathways), in order to gain mechanistic insights regarding its
function. The genes exhibiting similar expression pattern have been demonstrated to be
involved in similar functions and/or biological processes besides being co-regulated [46,
66–68]. We further explored the co-expressed genes present in a selection of identified
pathways to scrutinize their significant Single Nucleotide Polymorphism (SNP) based
association with DM and/or other metabolic disorders. The investigation of the effect
of SNPs associated with DM can enhance and redefine the gene role in the identified
pathways [4].
Weighted gene co-expression network analysis (WGCNA) is an established method
for identification of modules (cluster of genes with similar co-expression patterns) of
biologically related genes [46–48]. In the present study, we performed WGCNA uti-

2https://www.wikipathways.org/index.php/Pathway:WP3915
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lizing a human liver transcriptomics data set retrieved from gene expression omnibus
(GEO). The selection of the gene expression data is based on the facts that ANGPTL8 is
a predominantly liver expressed gene in humans besides being up-regulated in insulin
resistance [42–44], obesity [41] and DM type II [45]. Overall, the data set consisted of
21 human liver samples from lean, obese and type II diabetic patients. WGCNA [46]
coupled with pathways analysis [1, 8, 9] as demonstrated in sections below was per-
formed to: i) identify the genes that are significantly co-expressed with ANGPTL8 in
liver, ii) select Gene Ontology classes that over-represent the hepatic ANGPTL8-co-
expressed genes, iii) identify biological pathways in which the hepatic ANGPTL8-co-
expressed genes are present and iv) investigate whether DM linked SNPs are present
in the ANGPTL8 co-expressed genes. The study focused on the analysis of ANGPTL8

co-expression genes module to increase our knowledge regarding its functions, its path-
ways based interactions (with co-expressed genes) and its relationship with the other
DM related genes. To the best of our knowledge, this is the first instance to perform a
transcriptomics data based analysis for functional assessment of ANGPTL8 in liver.

Methodology

The complete work flow deployed in the present study is illustrated in Figure 6.1.

Selection of Transcriptomics Data Set

Liver is the predominant expression site of ANGPTL8 that is also over-expressed during
insulin resistance [42–44], obesity [41] and DM type II [45]. Therefore, the selection
of a data set in which all of these conditions are present could aid in the identification
of highly corelated genes with ANGPTL8 based on similar expression pattern observed
across all the samples. A systematic and thorough check of GEO database [3] was per-
formed for the selection of a suitable data set as described above. The gene expression
profiles of human liver samples with GEO ID: GSE64998 was selected out of the iden-
tified data sets (GSE15653, GSE23343, and GSE64998) based on the best quality and
appropriate sample size for performing co-expression network analysis. It consists of
six healthy control samples, eight obese non-diabetic and seven type 2 diabetic patient
samples and was performed in GPL11532 (Affymetrix Human Gene 1.1 ST Array Plat-
form). This data set had been already analyzed with a different approach and aims than
ours by Kirchner. H and colleagues [50]. Several clinical parameters associated with
the samples are also provided comprehensively by [50].
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Fig. 6.1 Integrated workflow deployed for functional assessment of ANGPTL8: The
steps and the tools/softwares used for the the quality control assessment, construction
of ANGPTL8 co-expression network, Gene Ontology analysis, pathway analysis and
variant effect prediction analysis (through SNPs identification) are described.

Quality Control Check and Statistical Data Analysis

The raw data of GSE64998 was downloaded and reanalyzed using ArrayAnalysis.org [49].
ArrayAnalysis.org is a web server to perform quality control, preprocessing and statis-
tical analysis of microarray data. We selected Entrez IDs for gene annotation of mi-
croarray probe IDs via ArrayAnalysis.org. The quality control and preprocessing report
obtained is provided as supplementary file 1. The data was normalized using Robust
Multi-array Average (RMA) method and is provided as data sheet 1 of supplementary
material. All the samples of GSE64998 were included for the subsequent analysis as
there were no outliers. Average expression of less than 5 was selected as cutoff value
to remove the genes with low expression values from the data set which resulted in
selection of 10869 genes (data sheet 2 of supplementary material).

ANGPTL8 Co-expression Network Construction

The weighted gene co-expression network analysis (WGCNA) is an established systems
biology method for construction of correlation networks based on similar gene expres-
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sion patterns observed across microarray samples [47]. It allows the identification of
co-expression genes modules (set of genes observed with similar correlation pattern)
from gene expression data through unsupervised learning methods. The method was
implemented using the R package “WGCNA [48] in order to identify the ANGPTL8 co-
expression genes module. The preprocessed normalized data of all samples (data sheet
2 supplementary material) obtained in previous step was used as input. We selected au-
tomatic network construction and module detection method to perform WGCNA [48].
The complete R code utilized to perform the analysis is provided in data sheet 3 of
supplementary material.
As a first step, a similarity matrix was constructed by measuring Pearsons correlation
for all gene pairs. Next, an adjacency matrix was constructed by raising the similarity
matrix to the soft thresholding power beta (Equation 1) [46].

a(i, j) = |cor(x(i), x(j)|β (6.1)

where x(i) and x(j) corresponds to expression values of gene i and gene j, respectively.
The soft thresholding power beta is selected in order to achieve the approximate scale-
free network topology as described in [48]. We selected power of beta = 14 to fulfill
the scale free topology criterion. This Adjacency matrix was converted into Topological
Overlap Measure (TOM) matrix where TOM is a highly robust network proximity mea-
sure [47, 48] (equation 2). Next, TOM matrix was converted into dissimilarity TOM
matrix (equation 3) which was subsequently used to create a dendrogram through aver-
age hierarchical clustering method. Lastly, the dynamic branch cutting algorithm was
applied on the dendrogram in order to obtain the clusters (modules) of highly correlated
genes.

TOMij =

∑
u aiuauj + aij

min(ki, kj) + 1− aij
(6.2)

where aiu, auj and aij represents adjacency function based values between gene pairs
(i,u) (u,j) and (i,j). ki, kj represents connectivity of genes i and j, respectively.

DistTOMij = 1− TOMij (6.3)

The co-expression genes module detected with ANGPTL8 was selected for further anal-
ysis and it was exported in Cytoscape [52] network format using the WGCNA R func-
tion “exportNetworkToCytoscape”. This function allows to remove the edges with
lower TOM values based on the value of the parameter named “threshold”. We used a
threshold value equal to 0.02 for removing the low weighted edges from the ANGPTL8

genes co-expression module. The module-trait relationship was not assessed because
we were not interested to relate the modules with a single phenotype as already de-
scribed in section 6.
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Fig. 6.2 The dendrogram of dissimilarity TOM Matrix constructed using hierarchical
clustering. Each vertical line corresponds to the gene. Module colors are provided at
the bottom. Each color corresponds to the separate genes module.

Identification of Hub Genes of Co-expression Genes Module of
ANGPTL8

Next, the co-expression genes module of ANGPTL8 (identified in the previous step)
was visualized as a network using the network visualization and analysis software Cy-
toscape (version 3.4.0) [52]. For the identification of hub genes in the ANGPTL8 related
co-expression genes module, we used the connectivity (degree centrality) as described
by Langfelder. P and colleagues [48]. In an undirected network, the degree centrality
of a node (gene/protein/metabolite etc) can be defined as the total number of the edges
incident on the node. Genes of ANGPTL8 co-expression module with a degree greater
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than or equal to 80th percentile were considered as the hub genes [40]. The hub genes
are the most representative genes in a co-expression network due to the presence of
maximum number of co-expressed genes linked with them [48].

Gene Ontology (GO) Analysis of Co-expression Genes Module of
ANGPTL8

Gene Ontology (GO) analysis allows us to infer the gene properties from the controlled
vocabulary (defined terms) maintained by GO project [51]. Every gene product is clas-
sified based on three types of ontologies i.e. biological process (BP), molecular function
(MF) and cellular compartment (CC). We used GO-Elite [7] version 1.2.5 to perform
GO analysis [7]. GO-Elite is a software which identifies minimal non-redundant set
of GO terms describing a given set of genes. We compared the genes present in the
genes module identified with ANGPTL8 with all the measured genes. We used the fol-
lowing settings for GO analysis: (i) 2000 permutations, (ii) Z-score threshold > 1.96,
(iii) p-value threshold < 0.05 and (iv) minimum number of changed genes is three.
We used Cytoscape (version 3.4.0) [52] for intuitive visualization of the results in or-
der to analyze the connections between the genes and identified GO terms (Figure 1 of
supplementary material).

Pathway Analysis of Co-expression Genes Module of ANGPTL8

We investigated the presence of genes identified within the ANGPTL8 co-expression
network in the complete curated human pathway collection (n = 710) of WikiPath-
ways [1]. All pathways were scrutinized for the presence of at least one of the ANGPTL8

co-expression module genes. PathVisio, was used for the visualization of the selected
pathways [8]. The pathway analysis was performed in order to allow us to (i) determine
the biological processes that might be the part of physiological mechanisms associated
with ANGPTL8 and the significant genes co-expressed with it; (ii) determine the un-
known genes/proteins co-expressed with ANGPTL8 from biological processes already
known or associated with it.

Single Nucleotide Polymorphism (SNP) Analysis of Selected
Co-expressed Genes with ANGPTL8

We identified SNPs associated to DM and other metabolic disorders that are located
in 72 ANGPTL8 co-expressed genes, present in a selection of ten pathways with the
highest number of co-expressed genes. The analysis was performed using DisGeNET
database [54] version 4.0. The names of 72 genes were provided as input in the gene
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search panel of the DisGeNET website, in which the top 10 disease-association list and
the top 10 disease-associated variants list for each gene, were further consulted. We
extracted the names and IDs of the diseases associated to the genes that reported the
highest DisGeNET score (Data sheet 4 of supplemental material). However, if in the
top 10 disease-associations, a disease related to DM and other metabolic disorders was
listed with a lower score, its name, ID and score was also included in Data sheet 4
of supplemental material. Moreover, in this table SNPs associated to DM and other
metabolic disorders are also reported for several genes, with the name and ID of the
associated disease and the DisGeNET score related to the strength of the association.
The DisGeNET score ranges from 0 to 1 and it ranks the gene-disease associations
taking into account the number and type of sources (level of curation, organism), and
the number of publications supporting the association. The effect of the variants in
the genes and the pathways were further investigated with literature search in Google
and consultation of several databases such as: Ensembl [2] and SNPedia (https:
//www.snpedia.com/).

Results

Identification of ANGPTL8 co-expression genes module and visual-
ization of hub genes

WGCNA [46–48] is applied to gain insights into the functional organization of ANGPTL8

and its associated co-expressed genes in human liver utilizing a transcriptomics data
set of lean, obese and DM type II subjects (available online at 3) [50]. ANGPTL8 is
a predominantly liver expressed gene in humans which has been found up-regulated
in insulin resistance [42–44], obesity [41] and DM type II [45]. Therefore, a dataset
expressing all these conditions was selected in order to allow the selection of highly
corelated genes with ANGPTL8 across all the samples and conditions. The expression
profile of 10869 unique genes (data sheet 2 of supplementary material) obtained after
normalization and filtering off the probes with low intensities were used to construct the
gene co-expression network by applying the steps described in the section 6. Twelve
gene modules (clusters of highly co-expressed genes) other than grey module (unclus-
tered genes) were obtained by applying automatic module detection and dynamic tree
cutting algorithm with minimum cluster size of 30. The graphical illustration of the
resultant dendrogram, obtained from the hierarchical clustering based on the dissimi-
larity TOM matrix, is given in Figure 6.2. The number of genes in the corresponding
modules with the respective color codes are provided in Table 6.1. The complete list

3https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE64998
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of the genes (with respective Entrez ids) identified in each module is provided in data
sheet 5 of supplementary material.

Table 6.1 Modules resulted from the hierarchical clustering: Module names are as-
signed colors and module size corresponds to the number of genes clustered in each
module.

Module name Module Size Module name Module Size
Turquoise 999 Black 371

Blue 783 Pink 314
Brown 600 Magenta 183
Yellow 498 Purple 76
Green 462 Greenyellow 64
Red 461 Tan 43

The red module was identified with ANGPTL8 and 460 other genes and was then ex-
ported in cytoscape [52] network format for subsequent visualization and analysis. This
network is composed of 447 nodes and 1781 interactions due to the filtering criteria
used for removing the edges with the lower TOM values. It will be referred as co-
expression network of ANGPTL8 from here onwards. The graphical illustration of the
entire co-expression network is provided as Figure 6.3. The topological analysis of this
network revealed that 97 genes were greater than or equal to 80th percentile according
to the degree (Figure 6.3). These genes are classified as hub genes and represent the
most highly connected nodes in the entire network. The hub genes in a co-expression
network are important to gain insights into the associated functional roles (phenotypic
outcomes) related to majority of the genes. It is because these genes show highly sim-
ilar co-expression patterns and often are part of similar biological functions, biological
process and/or are co-regulated [48].
Ubiquitin protein ligase E3 component n-recognin 2 (UBR2) is the gene with the highest
degree in the entire co-expression network of ANGPTL8. It is a part of the N-end rule
pathway which regulates proteolysis of intracellular proteins on the basis of identity of
their N-terminal amino acids [69]. This pathway is found conserved from yeast to eu-
karyotes and is important determinant of half-life of diverse set of proteins. It has been
previously demonstrated to serve various developmental and physiological processes
including fidelity of chromosome segregation, apoptosis, autophagy, cardiovascular de-
velopment in animals, regulation of cellular check point controls (by degradation of
regulatory proteins involved in cellular differentiation, division and programmed cell
death) quality control of cytosolic proteins, controlling the redox dynamics of stress
related cellular compounds (such as nitric oxide, thiols, heme, oxygen and others) and
leaf senescence in plants (reviewed in [29]). Additionally, it has been demonstrated
to play an inhibitory role in mTOR signaling pathway [28]. It is interesting to observe
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that ANGPTL8 is a part of insulin and glucose mediated signaling pathway which also
includes downstream regulators of mTOR signaling arm [31]. Moreover, one of the
outstanding questions that remained elusive regarding ANGPTL8 was the identity of
its degradation pathway pointed out by Ren Zhang [37]. The results of current anal-
ysis demonstrate the possible involvement of N-end rule pathway (through UBR2) in
degradation of ANGPTL8 which should be further investigated through wet-lab studies.
Other top nine hub genes based on the degree are KANSL1L, ORC2, AGL, BNIP2,

MET, MBTD1, TFPI, ALDH6A1, and SLC16A4 (Figure 6.3). The role of KANS1L,

ORC2, MBTD1, BNIP2, MET, TFPI is mainly associated with DNA replication and/or
cellular division; AGL and ALDH6A1 are enzymes involved in metabolic pathways and
SLC16A4 is a solute transporter protein [10–14, 26].
ANGPTL8 itself is connected with nine other genes in its co-expression network which
means they are the most strongly co-expressed genes with it (Table 6.2). Two of these
genes are also identified as hub genes i.e. tissue factor pathway inhibitor (TFPI) and
insulin-like growth factor-binding protein 1 (IGFBP1). TFPI plays an important role
in the regulation of blood coagulation pathway [27]. It is an inhibitor of tissue factor
(TF) which is a glycoprotein present on surface of macrophages and other extravas-
cular cells. TF is involved in positive induction of inflammatory cytokines (such as
TNFα, IL-1 and IL-6) and coagulation signaling cascade. Thus TFPI plays a protective
role in maintaining cellular and systemic homeostasis of immune system. Additionally,
TFPI has been demonstrated to be involved in three interdependent biological processes
that is coagulation, angiogenesis and lipid metabolism [6]. Excess cellular lipid forms
lipotoxic metabolites (such as cholesterol crystals) which on one hand induce inflamma-
tory cytokine production and on the other induce TFPI [6, 26].TFPI not only regulates
the inflammatory processes through their inhibition but also reduces cholesterol con-
centration (through stimulation of internalization and degradation of VLDLs through
HSPG-dependent pathway) [6]. ANGPTL8 has also been previously demonstrated as
an integral component of lipid metabolism. Therefore, these results imply that TFPI and
ANGPTL8 represent interesting multifunctional molecular players which might be mu-
tually involved in maintaining the interconnected physiological feedback mechanisms
between angiogenesis, coagulation and lipid metabolism. These feedbacks should be
investigated further to understand the role of these genes in the integrated physiological
pathways for maintaining homeostasis.
IGFBP-1 is a plasma carrier protein which binds to insulin-like growth factors (IGFs)
I and II and increases their half-life [55, 56]. IGFI and IGFII are ligands of IGF sig-
naling system involved in cell proliferation, differentiation, migration and metabolic
processes. These ligands (IGF I and II) can bind with IGF-I and II receptors, isoforms
of insulin-receptors and their hybrid receptors [25]. IGFBP-1 has also been demon-
strated to improve whole body glucose regulation through its role in integrin mediated
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Table 6.2 Neighbors of ANGPTL8 in its co-expression network. Degree represents
the number of connected nodes (genes) with respective genes in the ANGPTL8 co-
expression network.

Gene Symbol Full Gene Name Degree
TFPI Tissue factor pathway inhibitor 42

IGFBP1
Insulin like growth factor
binding protein 1 21

YKT6 YKT6 v-SNARE homolog 10
PPARGC1A PPARG coactivator 1 alpha 6

MID1IP1 MID1 interacting protein 1 4

C10orf10
chromosome 10 open reading
frame 10 3

BHLHE40
basic helix-loop-helix family
member e40 3

VPS18
VPS18, CORVET/HOPS core
subunit 3

SDF2L1
stromal cell derived factor 2
like 1 2

Fig. 6.3 The complete co-expression network of the red module containing ANGPTL8
is provided. The nodes are annotated with their gene symbols. ANGPTL8 is shown with
red color. The hub genes are shown with bigger size as compared to the non-hub genes
which are shown in smaller size.
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signaling cascade [24]. IGFBP1 can bind to integrins (transmembrane cellular adhesion
proteins/receptors) through its Arg-Gly-Asp (RGD) domain and activate focal adhesion
kinase (FAK) [23, 24]. FAK signalling converges with insulin/insulin like growth fac-
tors signaling at IRS-1 phosphorylation signalling point. Previous studies have shown
that IGFBP-1 induced improved glucose regulation and increased insulin sensitivity
is a part of protective mechanism induced upon insulin resistance in the body [24].
These results are crucial for further investigation with reference to the similar role of
ANGPTL8 demonstrated for improved glucose tolerance in insulin resistance condition
by Guo and colleagues [44]. Their data indicated that ANGPTL8 is increased in the
presence of both glucose and insulin which subsequently induces the phosphorylation
of AKT involved in improving glucose tolerance through inhibition of gluconeogenesis
(via phosphorylation of FOXO) and induction of glycogen synthesis (via phosphory-
lation of GSK3beta). The signalling events leading to induction of ANGPTL8 were
verified in several other studies as well and can be visualized in the recently curated
ANGPTL8 regulatory pathway present in WikiPathways [31]. However, the mechanism
of action of phosphorylation induced activation of AKT via ANGPTL8 being direct or
indirect (involving other genes/proteins than ANGPTL8) is still a quest. Therefore, it
would be interesting to investigate the connection between IGFBP-1 and ANGPTL8 in
improving glucose tolerance in insulin resistance since both are highly co-expressed
with each other and are part of overlapping signalling pathways (focal adhesion path-
way and insulin/IGF signalling pathway).
Among other neighbors, peroxisome proliferator-activated receptor gamma coactivator
1-alpha (PPARG- C1A) is a key regulator of mitochondrial biogenesis. It integrates vast
set of physiological stimuli (including growth factors, stress, cold exposure, cytokines,
exercise etc.) into respective metabolic responses involving fat and glucose metabolism
[20]. It is a key co-activator of several transcription factors including NRFs, peroxisome
proliferator-activated receptor (PPAR), thyroid hormone, glucocorticoid, oestrogen and
oestrogen-related receptors (ERRs) alpha and gamma [19]. This result is in line with
previously demonstrated regulators of ANGPTL8 including thyroid hormone receptor
alpha and beta, Liver X receptor (LXR) and PPAR (reveiewd in [31]). Synaptobrevin
homolog YKT6 (YKT6) and vacuolar protein sorting-associated protein 18 homolog
(VPS18) are two other neighbors of ANGPTL8 in the co-expression network which
are involved in vesicular transport of cytoplasmic proteins within different cellular lo-
cations. VPS18 is specifically involved in the vesicles transport of endosome/lysome
pathway [22]. ANGPTL8 itself is a secreted protein which was demonstrated to reside
in lysosomal vesicles like compartments in cytoplasm and these proteins (YKT6 and
VPS18) might represent its associated partner molecules during vesicular transport pro-
cess [36]. Among other neighbors, MID1 Interacting Protein 1 (MID1IP1) is involved
in hepatic lipogenesis [18] and microtubule stabilization during cell division [17], stro-
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mal cell-derived factors 1-alpha and 1-beta (SDF2L1) is a chemokine protein playing
role in hematopoiesis [16, 70], Class E basic helix-loop-helix protein 40 (BHLHB2)
plays role in cell differentiation and control of circadian rythm, and chromosome 10
open reading frame 10 (C10orf10) plays role in regulation of autophagy [15]. These re-
sults (identified co-expressed genes) are in line with the roles associated with ANGPTL8

including lipid metabolism [37, 39], hematopoiesis [35], autophagy [36] and circadian
rhythm [5]. Overall, the results of the co-expression network analysis revealed the
genes with similar roles observed for ANGPTL8 in previous studies. Therefore, these
genes represent a focused and tremendous knowledge body for further investigations
regarding functional insights of ANGPTL8.

Gene Ontology Analysis

Gene Ontology (GO) analysis was performed to find the significant GO terms associ-
ated with the genes present in co-expression genes module of ANGPTL8 using GO-
Elite [7]. Thirty Two biological processes, seven molecular function and six cellular
components GO terms were identified to be associated with co-expression genes mod-
ule of ANGPTL8 (data sheet 6 of supplementary material). The graphical illustration
of the significant GO terms along with the associated genes is provided as Figure 1 of
supplementary material. Overall, the significant GO terms of biological processes were
identified related to different metabolic processes. Top five biological processes on
the basis of degree (number of connections of a node) include carbohydrate metabolic
process (GO:0005975), monocarboxylic acid metabolic process (GO:0032787), regu-
lation of small GTPase mediated signal transduction (GO:0051056), lipid modification
(GO:0030258) and phosphatidylinositol biosynthetic process (GO:0006661). ANGPTL8

is found associated with carbohydrate metabolic process (GO:0005975), that is the
largest connected metabolic process in the entire network (Figure 1 in supplemen-
tary material). Previous studies have demonstrated the role of ANGPTL8 in different
metabolic processes including carbohydrate and lipid metabolism (reviewed in [21,
31, 71]). Other than the metabolic processes, several other biological processes were
also identified including leukocyte migration (GO:0050900), extracellular matrix dis-
assembly (GO:0022617), blood vessel development (GO:0001568), regulation of ep-
ithelial cell migration (GO:0010632) and regulation of epithelial to mesenchymal tran-
sition (GO:0010717). These biological processes are especially relevant to a recently
revealed role of ANGPTL8 in stimulation and proliferation of CD45+ hematopoietic
derived cells demonstrated by Cox.A and colleagues [35]. CD45 is a glycoprotein also
known as receptor-type tyrosine-protein phosphatase C (PTPRC) which is present at
the surface of leukocytes and their progenitor hematopoietic stem cells [30]. It plays
important role in different hematopoiesis related processes including cellular differen-
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tiation, migration and proliferation of hematopoietic stem cells (HSCs). It is a key
signalling component of B- and T-cell activation. Since the underlying signalling path-
ways and genes of ANGPTL8s role in proliferation of CD45+ derived cells remained
elusive, the co-expressed genes of ANGPTL8 identified in these biological processes
(provided in data sheet 6 of supplementary material) represent peculiar molecular tar-
gets for future investigation. The associated cellular compartment related GO terms in-
cludes mitochondrial matrix , (GO:0005759), microtubule (GO:0005874), actomyosin
(GO:0042641), cell-cell junction (GO:0005911), cytoskeleton (GO:0005856) and mi-
crotubule organizing center part (GO:0044450). Mitochondrial matrix is a cellular site
involving fatty acid oxidation and other energy expenditure related processes whereas
the other identified compartments (microtubule, actomyosin, cytoskeleton, microtubule
organizing center part ) are involved in the cellular motility, maintaining cellular shape
and cell division. These results are in line with the biological processes identified with
the genes present in the co-expression module of ANGPTL8 as discussed above. Fi-
nally, the main molecular functions identified in ANGPTL8 co-expression network are
phospholipase activity (GO:0004620), monocarboxylic acid transmembrane transporter
activity (GO:0008028), ion channel binding (GO:0044325), protein binding, bridging
(GO:0030674), nucleoside-triphosphatase regulator activity (GO:0060589), protein ho-
modimerization activity (GO:0042803) and transferase activity (GO:0016740).

Pathways Analysis

The genes in the ANGPTL8 co-expression network were further investigated for their
presence in the complete curated WikiPathways collection. WikiPathways is a pub-
lic repository of curated and dynamic models of biological processes [1]. A total of
474 human pathways were identified to contain at least one of the genes from the co-
expression network of ANGPTL8. Whereas, 258 genes from co-expression network of
ANGPTL8 were identified to be present and 189 genes were identified to be not present
in any of these identified pathways. The complete list of pathways along with the re-
spective genes found in them is provided as data sheet 7 supplementary material and
entire gene to pathway network of these results is graphically illustrated in Figure 6.4.
Ten of these pathways identified with maximum (above 9) number of genes are listed
in Table 6.3 representing highly associated biological processes with ANGPTL8. The
gene-pathway network of these ten pathways (subset derived from the complete gene
to pathway network in Figure 6.4 is graphically illustrated in Figure 6.5. The net-
work is composed of a total of 72 genes and ten pathways connected with shared genes
among them. Twenty two hub genes identified in this network are shown with large
size as compared to non-hub genes in the network. Two pathways including the an-
giopoetin like protein 8 regulatory pathway (WikiPathways ID: WP3915) and Focal
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Table 6.3 Top ten pathways in gene-pathway co-expression network: The maximum
number of ANGPTL8 associated co-expressed genes identified in WikiPathways along
with respective gene symbols are listed.

PID PathwayName
Gene
Count Genes

WP3915
Angiopoietin Like Protein 8
Regulatory Pathway 13

MAPK8, CYP3A4, PIK3R2,
PIK3R4, ANGPTL8, PRKAB2,
G6PC,MAP3K11, FLOT1,
PIK3C2G, SHC1, SLC16A2,
RAPGEF1

WP306 Focal Adhesion 13

MAPK8, COL1A1, ACTN1,
COL5A1, MET, PIK3R2,
PIK3R4, ZYX, SHC1,
COL3A1, PIP5K1C, ARHGAP5,
RAPGEF1

WP2882
Nuclear Receptors
Meta-Pathway 12

FGD4, SLCO1B1, UGT1A9,
CYP3A4, ABCB11, BHLHE40,
GCLM, PRDX6, BAAT,
PPARGC1A, SLC19A2, IGFBP1

WP3888
VEGFA-VEGFR2
Signaling Pathway 11

MAPK8, FRS2, ATF6,
PFN1, SHC1, PLCG1,
PIK3R2, MYH9, GIPC1,
RAPGEF1, CYP2C8

WP481 Insulin Signaling 10

PIK3C2G, MAPK8, INPP4A,
SHC1, GYS2, PIK3R2,
PIK3R4, RAPGEF1, MAP3K11,
FLOT1

WP3362
Chromatin modifying
enzymes 10

KDM6A, CARM1, SETD1A,
SMARCA4, ELP2, TADA1,
SMARCD1,CHD4, GATAD2A,
JADE3

WP702
Metapathway
biotransformation 10

UGT1A10, UGT1A9, CYP3A4,
FMO4, GLYAT, BAAT,
CYP4V2, HNMT, CYP2C8,
NAA40

WP2857
Mesodermal Commitment
Pathway 9

BMPR2, MBTD1, KDM6A,
DIP2A, BHLHE40, EPB41L5,
C9orf72, HPRT1, AXIN1

WP3932
Focal Adhesion-PI3K-Akt-
mTOR-signaling pathway 9

COL1A1, COL5A1, COL3A1,
MET,GYS2, PIK3R2,
PIK3R4, GNG7,PPARGC1A

WP3925 Amino Acid metabolism 9
CTH, MAOA, FH,
GCLM, MCCC1, MUT,
BHMT, HNMT, AUH

Adhesion pathway (WikiPathways ID: WP306) were identified with the presence of
thirteen genes (maximum number of genes per pathway in this analysis) each. Both of
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these pathways share several genes among them including PIK3R2, PIK3R4, MAPK8,

SHC1, RAPGEF1. Previous studies have demonstrated the role of both of these path-
ways in improving glucose tolerance and insulin sensitivity in insulin resistance condi-
tion [23, 24, 44]. Besides, IGFBPI has been identified as a highly co-expressed gene
with ANGPTL8 (as mentioned in sections above) which induces focal adhesion pathway
through its RGD domain [23, 24]. Therefore, further studies are required to investi-
gate the interdependence of ANGPTL8 signaling pathway and focal adhesion signaling
pathway in regulating glucose homeostasis especially in pathological conditions like
insulin resistance and DM. These results emphasizes the association of revealed molec-
ular players with ANGPTL8 which should be further investigated especially in these
identified pathways.

Fig. 6.4 The complete gene to pathway network. The nodes correspond to the genes
and the pathways. The purple color nodes represent the genes and the green color nodes
correspond to the pathways. The connections between the nodes indicate the presence
of the genes in the corresponding pathways.

Mainly Angiopoietin Like Protein 8 Regulatory Pathway, Focal Adhesion pathway,
VEGFA-VEGFR2 signaling pathway and Focal Adhesion-PI3K-Akt-mTOR-signaling
pathway are part of overlapping signaling pathways. Other five pathways (Amino
Acid metabolism, Mesodermal Commitment pathway, Metapathway biotransforma-
tion, Chromatin modifying enzymes and Nuclear Receptors Meta-Pathway) also share
several genes among them and are in line with the previously demonstrated roles of
ANGPTL8 in metabolism and cell differentiation/division. Overall, the results of the
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pathway analysis identifies important signaling pathways and associated co-expressed
genes with ANGPTL8 which should be investigated further for their mutual and indi-
vidual role in pathogenesis of DM and related metabolic disorders.

Fig. 6.5 Gene-pathway network with information of genes and variants associated to
DM and other metabolic disorders. The top ten pathways identified with maximum
number of genes in WikiPathways human curated collection are illustrated as green
diamonds. The pathways are connected with seventy two genes (circles and triangles)
and the size of the gene nodes indicate that the gene is either a hub gene (large nodes)
or not (small nodes) in the co-expression network of ANGPTL8. The dark blue nodes
indicate genes associated with DM. The aqua color nodes are the genes associated with
GSD1. The triangle shapes represent the genes with a SNPs associated to DM or other
metabolic disorders. ANGPTL8 gene is highlighted in red.

Single Nucleotide Polymorphism (SNP) Analysis

We performed a SNP analysis on the 72 genes present in the ten highly associated bi-
ological processes with ANGPTL8. In data sheet 6 of the supplemental material we
listed both the gene names queried in the DisGeNET database associated with the top
diseases, and the SNPs, located in those genes, that reported the highest DisGeNET
score with the disease association. Ten genes were found associated with DM Non-
Insulin Dependent (ANGPTL8, BHMT, GATAD2A, GCLM, PIK3C2G, PPARGC1A,

PRKAB2, RAPGEF1, SLC19A2, and TADA1). In particular, RAPGEF1 with the in-
tronic SNP rs11243444 [57] and PIK3C2G with the two intronic SNPs rs10841048 and
rs12816270 [58] reported association with DM Non-Insulin Dependent, PPARGC1A
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has the upstream SNP rs590183 associated with blood pressure [59] and ANGPTL8

shows the missense variant rs2278426 associated with high density lipoprotein mea-
surement [60]. In addition, the SHC1 gene does not show a gene association with DM,
but it has the SNP rs8191979 associated to DM [61]. Moreover, GYS2 with its missense
SNP rs121918420 [62], and G6PC with another missense SNP rs1801175 [63] are as-
sociated with Glycogen storage disease type 1 (GSD1) that is a disorder characterized
by severe fasting hypoglycaemia. Although, GSD1 seems completely the opposite dis-
order of DM, they share similar metabolic pathways leading to nephropathy and fatty
liver [64].The genes involved in the control of glucose and energy homeostasis are the
same and for this reason investigating their variants effect can help to a better under-
standing of the role of these genes. In the Figure 6.5 ten genes reporting DM association
and two genes associated with GSD1 are highlighted in dark blue and light blue, respec-
tively. Moreover, when they present a SNP associated with DM or related phenotypic
condition, the genes nodes are represented with triangles. The network in the Figure 6.5
visualizes the gene-pathway relationships, allowing to investigate deeply the roles of the
seven genes already mentioned with a relevant SNP-disease association. We observed
that those seven genes were grouped around five processes: Angiopoietin like protein
8 regulatory pathway (WP3915), Insulin signaling pathway (WP481), Focal adhesion-
PI3K-Akt-mTOR signaling pathway (WP3932), VEGFA-VEGFR2 signaling pathway
(WP3888) and Nuclear receptor meta-pathway (WP2882). The first three pathways not
only contain at least one of the seven genes, but also share one or more of them. This is
also due to the fact that Angiopoietin like protein 8 regulatory pathway diagram present
subpaths of the other two processes, confirming the tightly biological interconnectivity
within the three pathways.
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Discussion

Several studies have demonstrated the role of ANGPTL8 in lipid metabolism through
LPL inhibition, regulation of autophagy and adipogenesis [36, 37, 39, 53]. It has also
been demonstrated to regulate a crucial gene circuit required for maintenance of glucose
homeostasis [44]. These unique features of ANGPTL8 in regulation of different aspects
of metabolism is driving the notion of its potential as a molecular target for treatment
of DM. However, due to the lack of knowledge regarding its gene/protein partners, the
associated biological processes and its mechanism of action, it has remained elusive
to understand its role in pathogenesis of DM and subsequent assessment as molecular
target. In this study, an integrated network analysis work flow especially suitable for
such problems was designed to allow the extraction of relevant information with several
regulatory levels. It helped us to identify the co-expressed genes with ANGPTL8, their
identification as hub/nonhub genes, their presence in pathways and their co-occurrence
in DM.
The current study provides the first instance of identification of co-expressed genes of
ANGPTL8 by utilizing a liver transcriptomics data set with the outcomes which are
in line with previous literature (Figure 6.6) and also unfolds several regulatory find-
ings which could present an important resource for future investigations (Figure 6.5).
The co-expressed genes of ANGPTL8 identified in this study (n = 460) provides nar-
rowed down list of molecular targets which are either co-regulated with it and/or might
be regulation partners at different levels of interaction. Current analysis revealed the
co-expression of thirteen genes with ANGPTL8 in the literature curated pathway of
ANGPTL8 (WP3915) which was designed in our previous work [31]. These find-
ings provides support to the current analysis and also emphasizes the association of
the thirteen revealed molecular players with ANGPTL8 in its pathway due to shared
co-expression pattern (Figure 6.6).
Previous studies demonstrated the role of ANGPTL8 in several biological processes
such as carbohydrate and lipid metabolism, adipogenesis, autophagy and CD45+ hem-
topoietic cell proliferation with none and/or partially identified partner proteins. The
GO analysis performed in this study revealed several biological processes (in line with
these previous literature findings) and the associated genes from co-expression network
of ANGPTL8. Thus, the revealed genes in each biological process have implications
for future investigation as being co-regulated with ANGPTL8 or mutual engagement
in these processes. The findings of the pathway analysis in the current study provides
another level of information on the role of ANGPTL8 in the identified biological pro-
cesses. It allows us to view the interactions between ANGPTL8 and the co-expressed
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genes based on the previously identified pathway diagrams present in WikiPathways.
The gene-pathway network represented in Figure 6.5 helped to identify visually the
relationships between significant pathways and co-expressed genes with SNPs associ-
ated to DM and similar phenotypic traits. It is remarkable how the seven genes identi-
fied with a relevant SNPs association, happen to be clustered around processes linked
with the Angiopoietin like protein 8 regulatory pathway. Although in some studies the
variants-disease associations were detected in different populations than the Caucasian,
such as Korean [57] and Aborigen [58], the literature regarding the gene-disease associ-
ations of those genes included Caucasian individuals as well. The effect of the SNPs is
not always well characterized except for the missense variant of the ANGPTL8 [60]. For
this reason exploring the possible SNP effects in the pathways identified by those genes
is not feasible with the literature information retrieved. However, from this genetic in-
vestigation it is possible to observe that there are significant genetic signals associated
to DM and similar traits, influencing genes involved and co-expressed in ANGPTL8

pathways. Thus, further experimental studies on those genes need to take the genetic
background into account or under control in case of mice studies. Moreover, upcom-
ing or existing GWAS studies for DM, could be checked for signals related to the co-
expressed ANGPTL8 genes, to properly assess their relevancy in the pathophysiology
of the disease.
The key findings of this study provide focused information on molecular players co-
expressed with ANGPTL8 and associated pathways with implications for follow up ex-
perimental studies which could aid in identifying the exact mechanism of action and
signaling events leading to pathogenesis of DM and metabolic disorders. Moreover, the
integrated systems biology workflow deployed in this study provides a way to assess
the gene-centric insights and to elucidate different levels of regulation from a transcrip-
tomics data, in contrast to the typical -omics workflows which less directedly target the
systems level knowledge.

Conclusion

In this study, an integrated systems biology workflow is deployed to analyze a hepatic
transcriptomics dataset. The co-expression network analysis coupled with pathways
analysis of this data aided in identification of the genes associated with ANGPTL8 at
different levels of regulation. The findings of GO analysis provided the complete an-
notation of the ANGPTL8 co-expression genes module. Moreover, the genes already
associated with DM in ANGPTL8 genes co-expression network were identified which
increased our knowledge regarding the possible mutual engagement of these genes in
the pathogenic mechanism. All of the findings of this study have implications for follow
up experimental studies which could aid in identifying the exact mechanism of action
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and signaling events leading to pathogenesis of DM and metabolic disorders. More-
over, the integrated analysis workflow based on different methods and tools employed
in the current study allows to assess a previously less characterized or uncharacterized
gene/protein in a systematic way which may aid future studies.
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CHAPTER 7

General discussion
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The current thesis addresses two bioinformatics challenges related to analyze in a bio-
logical framework a set of genetic variants measured on a large scale. The first challenge
relates to how the current technologies are designed for visualizing and analyzing sin-
gle nucleotide polymorphisms (SNPs) in the pathway context. The second challenge
focuses on how to explore and describe SNP effects by integrating multiple data types
with pathway and network analysis methodologies.

Technological requirements for the analysis of genetic vari-

ation in pathways

The analysis of genetic variants requires the support of various bioinformatics tools:
from the start when processing the DNA sequences to the end where the variants effect
on a gene are placed in a broader context of the affected biological processes. Nowa-
days, an enormous variety of online software, web-based services and programmatic
tools is available that can be used for the different stages of the genetic analysis [5, 9].
Chapter 2 presents an inventory and evaluation of tools performing analysis and visu-
alization of variants linked to genes in pathways. Different beneficial characteristics
showing the interactions between genes, metabolites and variants are identified in those
tools. However, features including the integration of more specific methods for GWAS
pathway analysis, and better visualization strategies for combining the genetic data with
other omics data in pathways are recommended requirements for future tool develop-
ments. The first aspect can improve the accuracy and reproducibility of the analysis and
the second one can support the interpretation of the biology behind the data [13, 14]. In
addition, a more robust genetic analysis strategy must consider other types of genetic
interactions, including edgetics [7, 12], gene environment (G - E) interactions [1], and
epistatic interactions [10, 15]. Edgetics refers to network perturbation models focus-
ing on specific alterations of the molecular interactions resulting from genetic variants
[12]. This perturbation model might improve understanding of how mutations associ-
ating with complex diseases affect biological networks or interactome properties [7].
With network visualization already developed in some of the presented tools, it would
be exciting to see this model implemented as a new feature. Another area in which
pathway visualization of genetic associations can be improved involves G - E, where
the genotypephenotype association exists only under certain environmental conditions.
A recently published catalog of G - E interactions for numerous cardiometabolic phe-
notypes showed the wide extent under which the genotypephenotype association can
be modified by factors such as diet, exercise, sleep, and many other exposures and
lifestyle factors [1]. Third, epistasis is yet another manner in which connections within
a pathway are different in different individuals, where two alleles mapping to differ-
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ent loci associate in concert with a phenotype, but where those two alleles individually
show no phenotype association [10, 15]. Consider, for example, that pathway endpoints
are a phenotype, clinical indicator of health or disease status, or disease itself. Then,
the epistatic relationships can be indicated by epistatic- or e-edges that serve to connect
distinct pathways or different nodes within a single pathway in this conditional relation-
ship. The pathways linked by such e-edges would give support to co-function and/or
co-regulation with regard to the given phenotype of interest.
In summary the evaluation of tools in Chapter 2 has the scope to facilitate the work of
both bioinformatics developers, in order to improve and provide better tools, and biol-
ogists who can become informed of the tools’ potentialities and limitations.
Another aspect related to the applicability of the bioinformatics tools is the need for
the biological entities used in the tools to be interoperable [4, 6, 11, 16]. This means
that such entities are recognized and mapped with identifiers, enabling the use of the
same element in different online sources and in a consistent manner. Currently, the
interoperability is an application feature that has become very important in data anal-
ysis. Projects like the FAIR data principles, for instance, aim to increase awareness
of this and other related issues in the data community, with the purpose to promote
good practices in managing and re-using data [8]. Regarding the requirements to make
genetic variant data interoperable, an upfront requirement is the proper identification
and retrieval of the different variant types stored in online sources. In this thesis only
SNPs were considered, but other variant forms exist: small or short-length variants like
indels (insertion and deletion), and the structural variants like copy number variants.
Large and well known databases like Ensembl (http://www.ensembl.org ) and
NCBI (https://www.ncbi.nlm.nih.gov/) store or provide the link of almost
all types of variants using a specific nomenclature or identification. However, such
identifications can change depending on the genome build considered and sometimes
even if a new variant is discovered. Thus, a continuous update of the variant IDs and
chromosome positions is required. Moreover, another controversial aspect is the map-
ping of variant to gene. Variants can be located in multiple genes or sometimes not even
close to a single gene. Usually, when variants are annotated in databases, the chromo-
some position of the variant is the reference to check if and how many genes are located
at that locus. However, if the interest of the user is to ascertain the biological effect of
the variant, and this variant is located in multiple genes, usually focus is placed on the
functionality of the chosen that relates most with the phenotype of interest. In addi-
tion, specialized researchers or physicians not always are able to share their databases,
and often those specialized databases are very relevant for the biological interpretation.
Despite such limitations, the amount of variants is growing daily at the Ensembl and
NCBI repositories. For this reason, it is possible to use these data in connection with
other sources and tools, in order to increase the understanding of variant function in a
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biological system. A database identifier mapping service can make database informa-
tion interoperable, and in Chapter 3 an improvement of the identifier mapping database
called BridgeDb is proposed [17]. A gene-to-variant and variant-to-gene mapping using
SNPs stored in Ensembl is integrated in the BridgeDb repository and is updated accord-
ing to the regular BridgeDb mapping update schedule. This new feature empowers the
user with the ability to analyze variants in different applications like R, PathVisio, and
Cytoscape [3]. Tools that perform several types of tasks such as statistical analysis,
pathway analysis or network analysis can now easily process the variant-to-gene (and
gene-to-variant) identification, which then supports extensive genetic variant analysis.

Data analysis for interpretation of genetic variants

The improvement of the tools for genetic analysis is one of several basic steps towards
the more impactful achievement of the interpretation of the effects of genetic variation.
Once the tools and the databases are in place, the genetic analysis and the data interpre-
tation can be performed. In this respect Chapters 4 and 5 show a workflow designed to
extend analysis of a GWAS output, in which several data sources are integrated in tools
that perform pathway and network analysis. In particular pathway analysis provides
pathway data related to the genes where the variants are located, and network analysis
is a supporting application to visualize and analyze the SNP-gene-pathway connections
in the context of phenotypes. One major advantage of displaying these connections in
a network is the easy detection of several biological relationships such as genes highly
connected with pathways, and overlapping genes that share the same GWAS-identified
SNP. The major difficulty is to discern if and how the intricate map represented in the
network can be translated in a biological meaning. The features that can facilitate this
interpretation step emerge from an examination of the major differences between the
studies presented in Chapters 4 and 5. In those chapters the type of data chosen to de-
scribe the SNP-gene-pathway network in more detail are different. In both cases the
starting point is a list of significant SNPs derived from GWAS studies, those SNPs are
mapped to genes, and the genes are linked to their pathways. However, the selection of
the data sources chosen to clarify the SNPs interpretation is different, mainly because
the focus of the research question of the study differs as well.
In Chapter 4 the goal is to discover the role of variants that are located in the gene or very
close to the gene, with the specific focus on SNPs that present a protein coding effect.
For this reason, gene-environment relationships, eQTLs and laboratory experiments se-
lected from literature were linked to the genes that show missense and nonsense SNPs.
In Chapter 5 the goal is to understand if and which type of effect the GWAS variants
show in the non-coding area of a gene. In this case epigenetics and eQTL data are used
to identify clear signals of potential regulatory activities of the variants in specific tissue
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types. The take of message of the interpretation of this data integration methodology
based on pathway and network analysis is the possibility to combine and find meaning-
ful relationships using different publicly available data. A key aspect of the analysis is
the selection of the type of data sources, and it is the responsibility of the researchers to
choose suitable sources that describe the biological meaning of the experimental data
used and to explore the research hypothesis.
However, there are also technical bottlenecks of the analysis: data quality and the un-
derstanding of the network connections in relation to the biological question. The first
limitation refers to the fact that re-using existing publicly available data is difficult be-
cause of the lack of information and/or metadata in the original data source. Mostly
this refers to missing phenotypic descriptions of the samples and only in some cases a
poor documentation of the methodology used to retrieve the data. The second limitation
regards how the obtained network connections are interpreted. Usually there are typ-
ical network analysis algorithms [2] that facilitate the identification of hub nodes (e.g
related to parameters like betweenness and centrality ). However, these algorithms are
not suitable in networks that integrate multiple entities such as the SNP-gene-pathway
network, reported in Chapter 4 and 5. In this case, our analysis shows that interpreting
of the network is facilitated by using extra information related to the data (such as Gene
Ontology terms in Chapter 4 or eQTLs in Chapter 5). Those additional descriptors of
the data nodes help to cluster the items in the network based on biological features and
to find meaningful biological connections.
Finally, Chapter 6 reports another example of how re-using and combining prior knowl-
edge from different data sources allows elucidation of the biological mechanism of a
specific gene. In this case the ANGPTL8 gene and its encoded protein are the focus be-
cause it is a potential drug target for T2DM. However, its specific regulatory mechanism
is not known. A new and more comprehensive ANGPTL8 pathway is designed using
different literature sources from human and mouse experiments. In addition, results
from independent transcriptomics and genomics studies of T2DM patients are visual-
ized on the genes present in the ANGPTL8 pathway. The outcome of this data integra-
tion is the identification of genes directly involved in the regulation of ANGPTL8, which
also show significance in co-expression analysis and carry significant GWAS variants
for T2DM. This result confirms the correctness of the pathway interactions drawn from
literature that can be used for further computational experiments supporting validation
tests in the wet laboratory. At the same time, the experimental data provide the strength
of gene-gene interactions that could be further validated in the laboratory with ad hoc
study.
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Conclusion

The data in this thesis show that in order to conduct analysis that supports the inter-
pretation of the effect of genetic variants in the pathway context, the analysis software
must meet certain specific requirements. In these tools a combination of both algo-
rithms suitable for GWAS analysis in pathways and a dynamic data visualization to
display the analyzed data, are relevant in order to provide accurate results and to fa-
cilitate their biological interpretation. Currently, pathway applications still require the
implementation of these two characteristics. In addition, enabling the analysis and vi-
sualization of new types of variant interactions (e.g. edgetics, gene - environment (G -
E), and epistatic) would provide for conditional links within the SNP-centric network,
and these would be an added improvement for the field. In terms of tool efficiency, the
development of the interoperability in the genetic resources, is another technological as-
pect to consider. For this reason, in this thesis a new variant-to-gene and gene-to-variant
mapping is implemented in the BridgeDb mapping database. Raising awareness about
this aspect in the life science community is a responsibility of the bioinformaticians,
computational biologists and data scientists. Lastly, several workflows for data integra-
tion using network analysis and pathway information are evaluated, resulting successful
in two aspects. Firstly, network visualization allows depicting a general overview of the
potential biological effect that significant SNPs associated with a certain disease could
have on the phenotype. Secondly, using pathway knowledge enables the construction
and understanding of specific gene-gene interactions not previously known. Further, de-
velopment in using these methodologies with the individual DNA sequence of patients
can lead to their application at the clinical level, in particular in the field of precision
medicine.
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In this thesis solutions related to two aspects of the analysis of SNP data are presented.
The first aspect regards the type of tools and technologies available for the analysis of
SNPs in the context of biological pathways. The second aspect concerns the identifica-
tion of potential biological function of the SNPs associated to a certain phenotype.
Currently, a variety of tools are used to perform analysis of genetic variants. Chapter 2
presents an inventory and evaluation of tools that combine the analysis and visualization
of variants linked to genes in pathways. We identified the advantages and the limitations
of those tools. The purpose was to facilitate the work of both bioinformaticians and ex-
perimental biologists that are the first users of such tools. In addition, we propose new
analytical features to add to software, such as the inclusion of new types of genetic inter-
actions: edgetics, gene-environment interactions and epistasis relationships. Chapter
3 presents an implementation of the BridgeDb identifier mapping database aimed at the
improvement of interoperability in pathway analysis through mapping of genetic vari-
ants to genes. A gene-to-variant and variant-to-gene mapping using publicly available
SNPs, is available in the BridgeDb repository. This has expanded the mapping domains
available in that repository, that already included gene-products, metabolites, and reac-
tions. The addition of the variants to gene mapping enables building a more complex
data analysis in the different applications in which BridgeDB is integrated, such as R,
PathVisio, and Cytoscape or can be used as a webservice e.g. in R or any programming
language.
The second part of the thesis presents methods that are able to integrate multiple data
in order to explain the genetic variation effect in diseases such as T2DM or in the de-
velopment of obesity. In this respect Chapters 4 and 5 show a workflow designed to
further analyze a GWAS output, combining multiple data sources using pathway and
network analysis. The result is a workflow that ends with a network construction, used
as support for the interpretation of the data in a biological point of view. With the dis-
tinction that in Chapter 4 the focus is on the SNPs that cause a protein coding effect,
and in Chapter 5 the main interest is on the understanding of the variants effects in
non-coding area of the genome. The lesson learnt is pathway and network analysis are
both valid methodologies that support data integration, and thereby allow us to dive
deeper in the biological context. However, bottlenecks are still present concerning data
re-usability. In addition, researchers need to select carefully the data that they wish to
integrate, based on relevant biological connections with the genes affected by genetic
variants.
Finally, Chapter 6 reports an example in which re-using open data of different types
such as co-expressed genes in diabetes, significant associations of SNPs with diabetes
and pathways, provided biologically relevant outcomes. The purpose was to explore
in more detail the molecular interactions of the ANGPTL8 gene with other genes and
proteins. The results confirm that re-using data with a different purpose than the one for

141



which the original studies were designed, is possible. Indeed, we were able to identify
what types of relationships exist between ANGPTL8 variants and T2D phenotypes in
our populations, which can be validated in follow-up laboratories studies.
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In questa tesi vengono presentate soluzioni relative a due aspetti dell’analisi delle vari-
anti genetiche SNPs. Il primo aspetto riguarda il tipo di tecnologie disponibili per
l’analisi degli SNPs nel contesto dei pathway biologici. Il secondo aspetto riguarda
l’identificazione della potenziale funzione biologica degli SNPs, associati ad un deter-
minato fenotipo.
Il Capitolo 2 presenta un inventario e una valutazione di software che combinano
l’analisi e la visualizzazione di SNPs, associati a geni presenti in specifici pathways.
Sono stati identificati vantaggi e limiti di tali software, con lo scopo di facilitare il lavoro
di bioinformatici e biologi sperimentali. Inoltre, sono state proposte nuove funzionalitá
analitiche da aggiungere ai software, come l’inclusione di nuovi tipi di interazioni ge-
netiche tipo: edgetics, interazioni gene-ambiente e relazioni epistasiche. Il Capitolo 3
presenta un’implementazione del database di mappatura chiamato BridgeDb, finalizzata
al miglioramento dell’interoperabilitá nell’analisi dei pathway in cui sono presenti geni
contenenti rilevanti varianti genetiche. La mappatura da gene a variante e da variante
a gene, e’ disponibile pubblicamente nella repository di BridgeDb. Questa implemen-
tazione ha ampliato i domini di mappatura disponibili nel database, che includeva giá
geni, metaboliti e reazioni. L’aggiunta delle varianti alla mappatura dei geni, consente
di costruire un’analisi dei dati piú complessa nelle diverse applicazioni in cui BridgeDb
é integrato come: R, PathVisio e Cytoscape. Inoltre BridgeDb puó essere utilizzato
come servizio web, ad esempio in R o in altri linguaggi di programmazione.
La seconda parte della tesi presenta metodi che sono in grado di integrare piú dati,
al fine di spiegare l’effetto di varianti genetiche in malattie come il Diabete Mellito o
l’obesitá. A tale riguardo, i Capitoli 4 e 5 mostrano un workflow progettato per analiz-
zare piú in dettaglio gli SNPs risultanti da studi di associazione genetica chiamati
GWAS. In tale workflow gli SNPs sono combinati in un network con diversi tipi di dati
ad esempio geni e pathways. Tale network é utilizzato come una mappa di supporto
per l’interpretazione degli SNPs da un punto di vista biologico. Con la differenza che
nel Capitolo 4 il focus é sugli SNPs che causano un effetto funzionale sulla proteina, e
nel Capitolo 5 l’interesse principale é comprendere gli effetti delle varianti localizzate
nell’area non codificante del genoma. La lezione appresa che l’analisi di SNPs usando
networks e’ una valida metodologia che supporta l’approfondimento dello studio degli
SNPs nel contesto biologico. Tuttavia, sono ancora presenti dei problemi relativi alla
riutilizzabilitá dei dati. Inoltre, i ricercatori devono selezionare attentamente i dati che
desiderano integrare nel network, sulla base di connessioni biologiche rilevanti con i
geni interessati dalle varianti genetiche. Infine, il Capitolo 6 riporta un esempio in cui
il riutilizzo di dati pubblici di diversa tipologia come: i geni co-espressi in individui
con il diabete, gli SNPs associati con il Diabete e i pathway biologici, ha fornito esiti
biologicamente rilevanti. I risultati confermano che é possibile riutilizzare i dati con
uno scopo diverso da quello per cui sono stati progettati gli studi originali. Infatti, sono
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state esplorate in piú dettaglio, le interazioni molecolari del gene ANGPTL8 con altri
geni e proteine e il tipo di relazioni tra le varianti di ANGPTL8 e quelle delle proteine
che interagiscono con ANGPTL8. Lo studio si e’ focalizzato su individui con il diabete
e i dati ottenuti possono supportare e direzionare la scelta di nuovi studi di laboratorio.
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From researchers to researchers

Nowadays, the internet provides an enormous number of tools that scientists can use
to analyze, consult and store data obtained from the wet laboratory. However, the time
has not yet come where ”one tool does everything”. Thus, often researchers spend time
to search for tools that potentially provide the service required, check if and how the
tool performs the tasks desired, investigate if the way to run it fits with the user com-
petencies and only then are able to test that analysis tool for his/her research. These
operations require investment of time, effort and expertise that often biologists do not
have. For this reason, the review article presented in this thesis is a valuable resource to
those researchers who wish to interpret genetic variants using the power of the biolog-
ical pathway knowledge. The fact that the applications reviewed have the peculiarity
of providing visualization features and a user interface makes the tool evaluation even
more appealing for those researchers that are not very familiar with programmatic tools.
Moreover, the relevance of such a tool inventory is not only for those that will use the
tools, but also for bioinformaticians or computational biologists that develop such ap-
plications. These researchers need the opinions of the users and experts of the field,
in order to understand if the tools work properly, and what type of improvements are
needed to perfect them.
Another effort in raising awareness on using bioinformatics methodologies for data in-
terpretation is presented in Chapter 5, where we make publicly available a video tutorial
and a web-session of the genetic networks obtained by combining multiple data types.
Sharing with the scientific community such resources is important to: i) encourage the
application and validation of the data integration method in other datasets, ii) reproduce
the analysis step-by-step in an easy to follow manner, iii) further investigate the results
with different perspectives.
Finally, presenting an inventory and evaluation of tools, sharing data and explaining the
methodology are all efforts that improve communication between researchers. This is a
key aspect in modern science, where due to the technological advancements expertise
becomes more and more specialized, but at the same time where interdisciplinary skills
are an essential requirement.

Towards an improvement of data interoperability

An important concept in data science is to enable computer systems and software to
exchange and easily make use of information, this concept is also known as interop-
erability. This is an essential aspect for improving the understanding of data in life
sciences. Nowadays, it is clear to every researcher that the advancement of the new
technologies create the ”big data” issue. This is not only a problem related to data
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storage, but also to data use and interpretation. In this regard, putting the effort of in-
creasing and perfecting data interoperability worldwide contributes to building a better
structure of the body of human knowledge. Moreover, data analysis tools can see im-
proved performances if the data are properly linked, and researchers smoothly can run
workflows that comprehend the usage of several tools and environments. Such imple-
mentation results in saving time and money for complex and specialized data analysis.
In line with this value, Chapter 3 includes an implementation of a mapping protocol
for existing identifiers called BridgeDb, which is an existing resource that makes data
interoperable because it matches the different types of identifiers related to the same
biological entity. The map already stores genes, proteins and metabolites of differ-
ent species including human. The implementation described here is a gene-to-variant
and variant-to-gene mapping that adds a new dimension in the database related to the
molecular world/dogma. The tangible benefit of such an implementation is evident in
the application of the mapping database to the tools that analyze biological data. In-
deed, the map can be used in pathway and network applications (e.g. PathVisio and
Cytoscape) that allow analysis and visualization of different data types.

Looking forward to the future of precision medicine

SNPs are the common genetic variations in the human genome, and currently there is
growing business activity around the concept of precision medicine, much of which re-
lies on the possibility to perform genetic tests to predict diseases or improve physical or
health conditions. Numerous companies, rather than hospitals or clinics, are providing
genetic tests for several types of purposes. In those tests specific variants are assessed
and related to risk of certain diseases, food intolerances, or even improvement in physi-
cal performance. For this reason, tools and methods that are able to support and improve
the interpretation of the biological effects of the genetic variant are in high demand. In
this thesis, a workflow is presented that combines multiple data types primarily in or-
der to understand the effect of the genetic variant in specific clinical conditions, namely
T2DM and obesity. Moreover, genetic reference networks of SNPs associated with obe-
sity are proposed, in an attempt to provide a visual instrument to elucidate the biological
and medical fucntion of the variants. These maps of SNPs, genes, pathways, and their
relationships to each other can be used in different ways by different stakeholders who
are interested in obesity and personalized treatments. Experts in the field of obesity
can explore the networks to generate novel hypotheses or confirm results related to the
functional role of BMI SNPs and their possible effects on gene regulation by influenc-
ing epigenetic marks. Clinicians involved in precision medicine also can benefit from
such networks. For patients with available SNP genotyping data, the health care team,
in theory, can determine susceptibility to certain diseases by consulting the reference
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networks. Exploring those SNPs present in the network and the patients genotype can
assist interpretation of the impact of the patient’s alleles, linking them to the gene and
the functional context in which they are involved. For example, the occurrence of sev-
eral genotyped SNPs from the patient that indicate presence of risk or effect alleles that
occur in the same or related pathways, can prompt the health care team to evaluate if
those processes, in relation to the specific tissue, are relevant to the patient’s current or
future condition.

Conclusion

Current fields of bioinformatics and systems biology have developed new technologies
and methodologies to further explore life science data. However, often the technical
specialization within this field increase the gap of biological understanding, mostly due
to a jargon issue. This is the reason why in the Bioinformatics and System biology
communities despite the technical advances, researchers need to be able to be good
translators within the biological and computer science area of knowledge. This role
itself has a strategic influence in terms of societal and economic value, and this thesis
contributes to highlight it. The societal value of the work reported relate to the aspect
of improving communication within researchers of the same discipline (like bioinfor-
matics), but also stakeholders of different fields, (e.g. bioinformaticians, biologists and
clinicians). On the other side, the economic value is less tangible to the public because
the advancements presented, such as the workflow for data integration and interpreta-
tion and an example of improvement in tool interoperability, directly benefit the area of
basic research. Improved methods to perform analysis and interpret results is a key to
innovation, without wasting public funds. The work performed in this thesis definitely
contributes to this purpose.
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