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Abstract

Understanding homologies and differences in auditory cortical processing in human and nonhuman primates is an
essential step in elucidating the neurobiology of speech and language. Using fMRI responses to natural sounds, we
investigated the representation of multiple acoustic features in auditory cortex of awake macaques and humans.
Comparative analyses revealed homologous large-scale topographies not only for frequency but also for temporal and
spectral modulations. In both species, posterior regions preferably encoded relatively fast temporal and coarse spectral
information, whereas anterior regions encoded slow temporal and fine spectral modulations. Conversely, we observed a
striking interspecies difference in cortical sensitivity to temporal modulations: While decoding from macaque auditory
cortex was most accurate at fast rates (> 30 Hz), humans had highest sensitivity to ~3 Hz, a relevant rate for speech
analysis. These findings suggest that characteristic tuning of human auditory cortex to slow temporal modulations is
unique and may have emerged as a critical step in the evolution of speech and language.

Key words: functional MRI, primate auditory cortex, rhesus macaque, spectrotemporal modulations, tonotopy

Introduction

How does the cortical processing of sounds compare between
human and nonhuman primates? Previous studies have
assessed the functional organization of the primate auditory
cortex using animal electrophysiology (Merzenich and
Brugge 1973; Morel et al. 1993; Kosaki et al. 1997; Rauschecker
1997; Bendor and Wang 2008; Kusmierek and Rauschecker
2009) and more recently fMRI in humans (Formisano et al.
2003; Talavage et al. 2004; Humphries et al. 2010; Woods

et al. 2010; Da Costa et al. 2011; Striem-Amit et al. 2011;
Langers and van Dijk 2012; Moerel et al. 2012) and monkeys
(Petkov et al. 2006; Joly et al. 2012, 2014). Using synthetic and
natural stimuli, the large-scale tonotopic organization (i.e.,
the spatially ordered representation of frequency) as well as
the functional properties of distinct auditory areas have
been established in human (Formisano et al. 2003; Striem-
Amit et al. 2011; Langers and van Dijk 2012; Moerel et al.
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2012) and nonhuman primates (Bendor and Wang 2008; Joly
et al. 2014; Baumann et al. 2015).

At higher processing levels, regions in auditory cortex that are
more responsive to conspecific vocalizations than other sound
categories have been identified in humans (Belin et al. 2000) and
monkeys (Petkov et al. 2008; Ortiz-Rios et al. 2015). Yet, little is
known about the representation of “intermediate” acoustic fea-
tures (e.g., spectrotemporal modulations) in the primate brain,
which are relevant for the analysis of complex sounds.

So far, acoustic feature mapping has largely been conducted
with simple synthetic sounds such as pure tones and ripples
(Petkov et al. 2006; Schonwiesner and Zatorre 2009; Baumann
et al. 2015).

Compared to synthetic sounds, natural sounds are beneficial
for two reasons. First, they are ecologically valid and engage the
auditory cortex in meaningful processing. Second, natural
sounds elicit higher responses than artificial stimuli, particularly
in nonprimary areas (Theunissen and Elie 2014). Hence, the use
of natural sounds has enabled the characterization of stimulus-
response functions for neurons that respond poorly to artificial
sounds. Spectrotemporal receptive fields (STRFs) estimated using
synthetic sounds poorly predict STRFs to natural sounds in some
neurons especially of nonprimary areas (Theunissen et al. 2000;
Bitterman et al. 2008). Accumulating evidence suggests that audi-
tory cortical processing is adapted to the statistics of natural
sounds, for example, vocalizations (Woolley et al. 2005;
Rodriguez et al. 2010; Theunissen and Elie 2014).

The acoustic properties of behaviorally relevant sounds likely
differ for different species. Thus, cross-species comparisons of
acoustic feature processing provide a unique opportunity to dif-
ferentiate between exclusively human and evolutionarily con-
served processes that we share with nonhuman primates. Such
information is crucial to ultimately understand the neurobiologi-
cal origins of speech and language (Wilson et al. 2015). Further,
comparative studies are essential to relate single cell properties
of auditory cortex obtained in invasive monkey studies with
noninvasive human fMRI data (Vanduffel et al. 2014).

The present study combines high-resolution fMRI and
computational modeling to examine auditory cortical responses
to natural sounds in awake macaque monkeys. We focus on the
level of representation of fundamental acoustic features (spec-
trotemporal modulations) and compare the results to those pre-
viously obtained in humans with 7T fMRI, using an identical
paradigm and the same computational modeling approach
(Santoro et al. 2014, 2017).

We address 2 specific comparative issues. First, in a voxel-
by-voxel encoding analysis we derive topographical cortical
maps of acoustic feature preference in the macaque. As men-
tioned above, tonotopy is a well-established organizational
principle of the auditory system in both human and nonhuman
primates (Morel et al. 1993; Formisano et al. 2003; Bendor and
Wang 2008; Moerel et al. 2013; Joly et al. 2014). However, the
topographic organization of other acoustic features, for exam-
ple, temporal and spectral modulations, remains elusive (Joris
et al. 2004), although those are ubiquitous features of natural
sounds and crucial for processing behaviorally relevant stimuli
such as speech (Drullman et al. 1994; Shannon et al. 1995;
Elliott and Theunissen 2009). Converging results support the
presence of a topographic organization for temporal modula-
tions in both macaque (Baumann et al. 2015) and human audi-
tory cortex (Langner et al. 1997; Barton et al. 2012; Santoro et al.
2014; Brewer and Barton 2016; Hullett et al. 2016). Conversely,
evidence for a spatial representation of spectral modulations in
the auditory cortex is more limited (Santoro et al. 2014, 2017).

Second, in a multivariate model-based decoding analysis,
we quantify the sensitivity of auditory cortex to distinct acous-
tic features. Both neuroimaging and behavioral data suggest
that humans have highest sensitivity to temporal modulations
of approximately 3-4Hz. Likewise, neuronal populations in
human auditory cortex have been shown to preferentially
encode temporal modulations in this range (Santoro et al. 2017)
relevant for the analysis of speech (Giraud and Poeppel 2012;
Luo and Poeppel 2012). Psychoacoustic evidence confirms that
humans best detect modulation rates at approximately 4Hz
(Viemeister 1979; Bacon and Viemeister 1985) whereas maca-
ques exhibit highest sensitivity to faster temporal modulations
of approximately 30-60 Hz (O’Connor et al. 2011; Massoudi et al.
2014). Hence, an open question is how such differences across
species in psychoacoustic sensitivity are reflected in neural
response properties.

Materials and Methods
Subjects

Three adult rhesus monkeys participated in the experiment
(macaca mulatta; referred to as M1-M3; 2 females; aged 6-8
years; 4.1-8.4kg). Animal care and methods were in accordance
with national and European guidelines and were approved by
the ethical committee of the “Katholieke Universiteit Leuven.”
The animals were implanted with 8-channel phased-array coils
(Janssens et al. 2012). For the details of the surgical procedures,
training of monkeys, and eye-monitoring please refer to
(Vanduffel et al. 2002; Fize et al. 2003; Ekstrom et al. 2008).
Monkeys had experience performing behavioral tasks and were
prepared for awake fMRI sessions. Before scanning sessions,
monkeys were trained daily (3-5 weeks) to perform a passive
fixation task with the head rigidly fixed in sphinx position to a
plastic primate chair.

Stimuli and Experimental Procedure

Stimuli and experimental design were identical to the ones pre-
sented to human subjects in previous experiments (Moerel
et al. 2012, 2013; Santoro et al. 2014). In brief, the stimuli con-
sisted of 168 natural sounds comprising human speech and
vocal sounds, animal cries, tool and environmental sounds.
The category of animal sounds contained 5 monkey calls; sti-
muli are available at dx.doi.org/10.5061/dryad.np4hs. Sounds
were sampled at 16 kHz and their duration was cut at 1000 ms.
Sound onset and offset were ramped with a 10 ms linear slope,
and their energy (root mean square) levels were equalized.

Sounds were presented in the silent gap between acquisitions
with a randomly assigned interstimulus interval of 2, 3, or 4 TRs-
plus an additional random jitter. Zero trials (trials where no
sound was presented) constituted 6% (5%) of the trials in train
(test) runs. Sounds were presented through MR-compatible
insert earphones (MR Confon, Magdeburg, Germany) at approxi-
mately 80 dB SPL.

Each monkey completed as many runs as possible during 4
consecutive days (M1: 60 runs; M2: 80 runs; M3: 57 runs); each
run lasted approximately 10min. For runs with too much
movement, we discarded the data of the whole run. The data
were subdivided into train and test runs. Of the 168 sounds
comprised in the stimulus set, 144 belonged to the train set and
24 to the test set. We had a set of 6 train and 2 test runs that
were repeated as many times as possible. In each train run,
approximately half of the 144 training stimuli (69-74 sounds)
were presented once, such that after a set of 6 train runs, each
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training sound had been presented 3 times. In the test runs,
the 24 testing stimuli were presented and repeated 3 times per
run, such that after a set of 2 test runs, each testing sound had
been presented 6 times. Thus, the presentation ratio of train to
test sounds was 1:2.

Behavioral Task

During fMRI data acquisition, monkeys performed a visual fixa-
tion task on which they were highly trained. Eye position was
monitored at 120 Hz, using pupil position and an infrared cor-
neal reflection system (Iscan). To encourage monkeys to main-
tain fixation of a red dot in the center of a black screen, a juice
reward was delivered during continuous visual fixation
(>800 ms) of the target (red dot in the center of a black screen)
through a plastic tube in intervals of 1-2s. Humans performed
a one-back task on the sounds, indicating when the same
sound was repeated (Santoro et al. 2014, 2017). Although the
tasks differed between species, both tasks were intended to
keep subjects alert during passive listening.

MRI Data Acquisition

Data were acquired on a 3T Siemens Trio scanner with an
AC88-insert gradient. Functional (T2*-weighted) contrast-agent
enhanced images were collected using implanted 8-channel
phased-array coils (Janssens et al. 2012). Implantation of coils
adjacent to the macaque’s skull places the coil closer to the
measured signal and has been shown to increase the signal-to-
noise ratio (SNR) of functional MR images by up to a factor of 5
compared with external coils (Janssens et al. 2012). Before each
scanning session, the contrast agent monocrystalline iron
oxide nanoparticle (MION) was injected intravenously (6-11 mg/
kg). MION has the potential to increase the contrast-to-noise
ratio by a factor of ~3 at 3T (Vanduffel et al. 2001). Note that
MION-weighted signal changes were opposite to the sign of the
blood-oxygenation-level-dependent (BOLD) response which we
accounted for in the modeling procedure (see below).

The experiment had a fast event-related design. T2*-
weighted functional data were acquired using an echo planar
imaging sequence. The acquisition parameters were as follows:
repetition time (TR) = 2600 ms; acquisition time (TA) = 1200 ms;
echo time (TE) = 30ms; number of slices = 33; voxel size =
0.75 mm isotropic. Between subsequent acquisitions, there was
a silent gap of 1400 ms during which the sounds were pre-
sented. The slices covered the brain transversally from the infe-
rior portion of the anterior temporal pole to the superior
portion of the superior temporal gyrus bilaterally.

High-resolution T1-weighted images were acquired for each
monkey during a separate session under ketamine-xylazine
anesthesia. The anatomical images were acquired prior to coil
implantation (see above) using a single radial transmit-receive
surface coil and an MPRAGE sequence (TR = 2200ms, TE =
4.05ms, flip angle = 13°, number of slices = 208, voxel size =
0.4 mm isotropic). We collected 12-15 whole-brain volumes per
anatomical session that were averaged to improve SNR.

Preprocessing

Functional and anatomical data were preprocessed in
BrainVoyager QX. We applied slice scan-time correction (using
sinc interpolation), 3D motion correction and temporal high-
pass filtering of 5 (for monkey M1), 10 (M2), or 15 (M3) cycles per
time course to remove low frequency drifts. Inspection of raw

data revealed more pronounced low frequency drifts in M2 and
M3; therefore, high-pass filtering was adjusted individually to
maximize the responses to sounds as observed in a GLM analy-
sis (see below). Functional data were coregistered manually to
the anatomical data. To improve the SNR in M2, we excluded
the 20 runs which had the lowest t-values in response to
sounds (in a GLM which treated all sounds as a single condi-
tion) within a bilateral auditory cortex mask. Thus, the number
of runs that were analyzed (n = 60) was comparable to the other
2 monkeys.

Anatomical scans were segmented into gray matter and
white matter. We used the border between gray and white mat-
ter to obtain inflated hemispheres of the individual monkeys.
Next, cortex-based alignment (Goebel et al. 2006) was per-
formed to align the major sulci and gyri between the 3 mon-
keys using BrainVoyager 20. This alignment information was
used for calculating and displaying group maps.

Computational Modeling

We applied an identical computational modeling approach to
the macaque fMRI data as described in Santoro et al. (2014,
2017). Two modeling procedures were applied: In a first univari-
ate encoding analysis, we calculated an MTF for each individual
voxel. Thus, we obtained maps of the voxel’s preferred features
across the auditory cortex. In a second multivariate decoding
analysis, data from voxels were jointly modeled within a
model-based decoding framework. The combined analysis of
signals from multiple voxels increases the sensitivity for stimu-
lus information that is represented in patterns of activity,
rather than in individual voxels. It further provides an explicit
measure of the amount of information about sound features
available in the cortex in the accuracy with which those
features can be reconstructed.

Extraction of the Sounds’ Frequency-Specific
Modulation Content

The modulation content of the stimuli was obtained by filtering
the sounds with a biologically plausible model of auditory pro-
cessing (Chi et al. 2005). This auditory model consists of an
early stage that models the transformations that acoustic sig-
nals undergo from the cochlea to the midbrain; and a cortical
stage that accounts for the processing of the sounds at the level
of the auditory cortex. We derived the spectrogram and its
modulation content using the “NSL Tools” package (available at
http://www.isr.umd.edu/Labs/NSL/Software.htm) and custom-
ized Matlab code (The MathWorks Inc.). The sounds’ spectro-
grams were obtained using a bank of 128 overlapping bandpass
filters with equal width (Q04s = 3), spaced along a logarithmic
frequency axis over a range of f = 180-7040 Hz. The output of
the filter bank was band-pass filtered (hair cell stage). A mid-
brain stage modeled the enhancement of frequency selectivity
as a first-order derivative with respect to the frequency axis,
followed by a half-wave rectification and a short-term temporal
integration (time constant r = 4ms). The auditory spectrogram
was further analyzed by the cortical stage, where the modula-
tion content of the auditory spectrogram was computed
through a bank of 2D filters selective for a combination of spec-
tral and temporal modulations. The filter bank performs a com-
plex wavelet decomposition of the auditory spectrogram. The
magnitude of such decomposition yields a phase-invariant
measure of modulation content. The modulation selective filters
have joint selectivity for spectral and temporal modulations, and
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are directional, that is, they respond either to upward or down-
ward frequency sweeps.

In the univariate encoding analysis, filters were tuned to
spectral modulation frequencies of @ = [0.5, 1, 2, 4] cyc/oct,
temporal modulation frequencies of w = [1, 3, 9, 27] Hz, and fre-
quencies of f = [232, 367, 580, 918, 1452, 2297, 3633, 5746] Hz.
Our rationale for this choice of values was first, to use a decom-
position roughly covering the temporal and spectral modula-
tions present in the acoustic energy of natural sounds (see
Supplemental Fig. S1) and second, to use an identical decompo-
sition as previously used humans (Santoro et al., 2014) in order
to obtain comparable best feature maps in both species.

The filter bank output was computed at each frequency
along the tonotopic axis and then averaged over time. To avoid
overfitting, a reduced modulation representation was obtained.
This resulted in a representation with 4 spectral modulation
frequencies x 4 temporal modulation frequencies x 8 tonotopic
frequencies = 128 parameters to learn. Note that the number of
parameters to estimate is thus smaller than the number of
observations in the train set (n = 144 sounds). The time-
averaged output of the filter bank was averaged across the
upward and downward filter directions. Then, we divided the
tonotopic axis in ranges with constant bandwidth in octaves
and averaged the modulation energy within each of these
regions (Santoro et al. 2014).

In the multivariate decoding analysis, filters were tuned to 7
spectral modulation frequencies (2 = [0.3, 0.5, 0.7, 1.1, 1.7, 2.6, 4]
cyc/oct), and 12 temporal modulation frequencies (v = [1, 1.5,
2.4,37,5.7,8.8,13.6, 21, 32.5,50.3, 77.7, 120] Hz). This resulted in
a representation with 7 spectral modulations x 12 temporal
modulations (averaged across 12 upwards and 12 downwards) x
60 tonotopic frequencies = 5040 features. Note that in an initial
decoding analysis using an identical decomposition as for the
encoding analysis (data not shown), we noticed that the decod-
ing accuracy profile for temporal modulations was high-pass in
the macaque. Thus, we extended the upper limit of modulation
rates from o = 30 Hz to w = 120 Hz to explore at which rate the
macaque decoding accuracy profile peaked. Dimensionality and
overfitting are not affected by the number of features
(Equation 5), because in the multivariate case all voxels in a
region are used to fit the variation of each feature indepen-
dently. Therefore, we were able to the use a more fine-grained
resolution for the feature decomposition in the multivariate
decoding analysis.

The above described processing steps were applied to all sti-
muli, resulting in an [N x F| feature matrix S of modulation
energy, where N is the number of sounds, and F is the number
of features in the modulation representation.

Extraction of the Sounds’ Frequency Content

For the univariate encoding analysis, we used a tonotopy
model as a control analysis in which the stimulus representa-
tion in the frequency domain was obtained using only the first
stage of the auditory model. The spectrogram was computed at
128 logarithmically spaced frequency values (f = 180-7040 Hz)
and averaged over time.

Estimation of fMRI Responses to Sounds

To estimate responses to sounds, first, a matrix Y [[N x V), V =
number of voxels] of the fMRI responses to the sounds was cal-
culated using a voxel-by-voxel general linear model (GLM) anal-
ysis (Friston et al. 1995). For each voxel i, the response vector Y;

[(N)] was calculated in 2 steps. First, we performed a deconvolu-
tion analysis which treated all stimuli as a single condition in
order to estimate the hemodynamic response function (HRF)
common to all stimuli. Then, using this HRF and one predictor
per sound, we computed the response of single voxels to each
sound as beta weight (Kay et al. 2008; Moerel et al. 2012;
Santoro et al. 2014). This deconvolution analysis was applied to
the human fMRI data (Santoro et al. 2014) and the data of
macaque M1. The other 2 monkeys’ data (M2 and M3) were
noisier. Thus, their data were instead modeled using a canoni-
cal HRF which is more robust to noise than a deconvolution
analysis. Note that MION-weighted signal changes measured
here are opposite to the sign of the BOLD response. Therefore,
the sign of the applied HRF was inverted.

Further analyses were performed on voxels with a response
to the sounds (thresholds were set at t > 3 for M1 and t > 1 for
M2 and M3 in order to be not too strict in this stage of the anal-
ysis) within an anatomically defined mask of auditory core and
belt regions.

We further improved the SNR by applying a denoising pro-
cedure. Noise regressors were entered into the GLM analysis as
implemented in the Matlab-based package GLMdenoise (Kay
et al. 2013). As an improved SNR was observed only in M1,
denoising was applied uniquely to this monkey’s data.

Univariate Encoding Analysis: Model Estimation

Based on the training data only, the fMRI activity Y; [Nirain X 1]
at voxel i was modeled as a linear transformation of the feature
matrix Strain [Nirain X F] plus a noise term n [Niain X 1J:

Y = StrainCi + 1 @

where Ny, is the number of sounds in the training set, and
Ci is an [N x 1] vector of model parameters, whose elements
¢; quantify the contribution of feature j to the overall response
of voxel i. Columns of matrices Si.;n and Y; were converted to
standardized z-scores. Therefore, Equation (1) does not include
a constant term. The solution to Equation (1) was computed
using kernel ridge regression (Hoerl and Kennard 1970). The
regularization parameter 4 was selected independently for each
voxel via generalized cross validation (Golub et al. 1979). The
search grid included 32 values between 10°° and 10** logarith-
mically spaced with a grid grain of 1032,

To obtain more stable estimates of the voxels’ feature pro-
files, this computation was performed 5 times using different
subsets of the 144 training sounds. For each iteration, 10 of the
training sounds were randomly selected and left out, resulting
in subset of 134 sounds on which the estimation was per-
formed. In this way, we obtained 5 estimates of each voxel’s
feature profile which were averaged across iterations.

Model Evaluation

To evaluate the model’s prediction accuracy we performed a
sound identification analysis (Kay et al. 2008). To this end, we
used the fMRI activity patterns predicted by the model to iden-
tify which of the test sounds had been heard. Given the trained
model C [F x V], and the feature matrix Siest [Niest X F] for the
test set, the predicted fMRI activity Viest [Ntest x V] for the test
sounds was obtained as follows:

?test = Stestc (2)

Then, we computed for each stimulus s, the correlation
between its predicted fMRI activity Yiest (SK) [1 x V] and all

1.20Z IMdy L0 uo Jasn AysiaAlun Jyouisee|\ Aq 9€Z8G L G/9€9€/6/62/2|01E/100199/W00 dNo"ojWwapeoe//:sdiy woij papeojumoq



3640 | Cerebral Cortex, 2019, Vol. 29, No. 9

measured fMRI responses Yiest(sk) [1 X V]. The rank of the corre-
lation between predicted and observed activity for stimulus si
was used as a measure of the model’s ability to correctly match
Yiest(Sx) With its prediction Yies(sk). The rank was then normal-
ized between 0 and 1 as follows to obtain the sound identifica-
tion score m for stimulus s;:

rank(sy) — 1

m(se) =1 -
Niest = 1

3)
Note that m = 1 indicates correct match; m = 0 indicates pre-
dicted activity pattern for stimulus s; was least similar to the
measured one among all stimuli. Normalized ranks (sound
identification scores) were computed for all stimuli in the test
set, and the model’s overall accuracy was obtained as the
mean of the sound identification scores across stimuli.
Statistical significance of the observed accuracy was assessed
using permutation testing. The empirical null-distribution of
accuracies was obtained by randomly permuting (200 times)
the stimulus labels (i.e., N in matrix Y) and repeating the train-
ing and testing procedures. In order to preserve the spatial cor-
relations among cortical locations, the same permutations
were applied to all voxels. The regularization parameter was
constant across permutations and was set to the value derived
when the model was estimated on the unpermuted set of
responses. Accuracies were converted to z-scores via Fisher’s
transformation in order to reduce deviations from normality.

Topographic Maps of Feature Preference

The response profiles for temporal modulation, spectral modu-
lation and frequency were computed as marginal sums of the
estimated stimulus-activity mapping function C of the
frequency-specific modulation model by summing across irrel-
evant dimensions. For example, to obtain the temporal modu-
lation transfer function (tMTF), we summed across the spectral
modulation and frequency dimension:

tMTF (@) = ). ) C(w, Q, ) @
Q f

To calculate profiles for the spectral modulation transfer
function (sMTF) and frequency transfer function (fTF), we corre-
spondingly summed across irrelevant dimensions. The voxels’
characteristic values (CTM, CSM, CF) were defined as the point
of maximum of the tMTF, sMTF, and fTF, respectively. Cortical
maps were generated by color-coding the voxels’ preferred val-
ues and projecting them onto an inflated representation of the
monkey’s cortex. To obtain group maps, individual maps were
aligned using cortex-based alignment (Goebel et al. 2006) and
averaged. Surface maps were smoothed using BrainVoyager
(1 iteration).

Multivariate Decoding Analysis: Model Estimation

In the multivariate decoding analysis, we evaluated the fidelity
with which regions of interest (ROIs) in auditory cortex encode
acoustic features by estimating decoders. We selected 3 ROIs,
CM/CL, A1, and R/RT based on individual tonotopic maps (see
Results). For each monkey in each ROI, a linear decoder was
trained for every feature of the modulation space based on the
training data only (Santoro et al. 2017). Each stimulus feature S;
[Ntrain X 1] was modeled as a linear transformation of the multi-
voxel response pattern Yirain [Nuain X V] plus a bias term b; and
a noise term n [Nirin X 1] as follows:

Sj = YrainGj + bjl +n ©)

where Ny,in is the number of sounds in the training set, V is
the number of voxels, 1 is a [Nyain % 1] vector of ones, and C; is
a [V x 1] vector of model parameters, whose elements ¢j; quan-
tify the contribution of voxel i to the encoding of feature j. The
solution to Equation (5) was computed using kernel ridge
regression (Hoerl and Kennard 1990). The regularization param-
eter 1 was determined independently for each feature by gener-
alized cross validation (Golub et al. 1979). The search grid
included 42 values between 10** and 10%° logarithmically
spaced with a grid grain of 10°.

Estimation of Multivoxel MTFs

Decoders were estimated on the train runs (see above) and
tested on the test runs. Given the trained model C [F x V], and
the patterns of fMRI activity for the test sounds Yiest [Ntest X V],
the predicted feature matrix activity Stest [Ntest x F] for the test
sounds was calculated as follows:

étest = Ytestc ®)

The features’ predictions from the test sets were
concatenated and decoders were assessed individually by com-
puting the Pearson’s correlation coefficient (r) between the pre-
dicted and the actual stimulus features. This resulted in 5040
correlation coefficients, which represented the MTF. To obtain
marginal profiles of the MTFs, we averaged across irrelevant
dimensions.

For statistical testing, all correlation values were trans-
formed into z-scores by applying Fisher’s z-transformation and
pooled together. For each stimulus feature we computed the
null distribution of correlation coefficients at the single-subject
level. Null distributions were obtained by randomly permuting
(500 times) the stimulus labels of the reconstructed features
and computing the correlation coefficient for each permutation.
The empirical chance level of correlation rchance was defined as
the mean of the null distribution. The P-value was computed as
the proportion of permutations that yielded a correlation equal
to or more extreme than the observed one. This procedure was
repeated in each monkey. For each feature bin, we counted the
number of monkeys in which the correlation between recon-
structed and original feature was significantly higher than
chance (P < 0.05); this is indicated in Supplemental Figure S6A
by gray color shading of the background.

Post Hoc Statistical Analysis of Marginal MTFs

Group marginal profiles of MTFs were obtained as the mean of
all individual marginal MTFs. To assess the statistical signifi-
cance of the observations on the MTF’s marginal profiles, we
performed the following post hoc analyses. For the temporal
modulation profile we compared accuracies across all hemi-
spheres pooled across 3 low rates (2.4-5.7 Hz for low frequencies
< 2kHz; 1-2.4Hz for high frequencies > 2kHz) 3 high rates
(32.5-77.5Hz for low frequencies; 50-120Hz for high frequen-
cies). Similarly, for the spectral modulation profile, we com-
pared decoding accuracies across all hemispheres at low (0.3-0.5
cyc/oct) and high scales (2.7-4 cyc/oct) using a Wilcoxon signed-
rank test. For the frequency profile, we pooled accuracies across
8 bins as the sound decomposition had higher resolution for fre-
quency than for rate and scale (60 frequencies, 12 rates, 7 scales;
see above). We compared decoding accuracies at low
(0.3-0.5kHz) and high frequencies (2.1-3.2kHz) to accuracies at
mid frequencies (0.7-1kHz), using a Wilcoxon signed-rank test.
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To test for an interaction of species and modulation rate on
decoding accuracy of temporal modulations in the low fre-
quency range we conducted pairwise comparisons between
human and macaque ROIs using 2-way ANOVAs with the factor
species (human, macaque) and modulation rate (low [2.4-5.7 Hz]
or high [32.5-77.5 Hz] rates).

Results

We acquired high-resolution (0.75mm isotropic voxels)
contrast-agent enhanced fMRI at 3T (Vanduffel et al. 2001)
using implanted phased-array coils (Janssens et al. 2012) in
awake macaque monkeys (n = 3). Monkeys listened to a large
set of real-life sounds (n = 168), including speech and vocal
samples, music pieces, animal cries, tool sounds, and scenes
from nature (for modulation content of different stimulus cate-
gories see Supplemental Fig. S1A). Macaque fMRI responses to
natural sounds were modeled using both univariate encoding
(Santoro et al. 2014) and multivariate model-based decoding
(Santoro et al. 2017), following methods previously employed
for homologous human fMRI data (for details see Materials and
Methods). For each monkey, we first calculated a map of the
responses to all sounds in auditory cortex (see Materials and
Methods) and restricted further analyses to activated voxels
(t> 3 for M1 and t > 1 for M2 and M3 in order to be not too strict
at this stage of the analysis). The activation spanned a large
area of the superior temporal plane (Supplemental Fig. S2A).

Single-Voxel MTFs

In a first univariate encoding analysis we estimated an encod-
ing model for each of these sound-activated voxels. We com-
pared 2 computational models of auditory processing. The first
model describes the responses at each auditory cortex voxel as
resulting from the combination of modulation-selective filters,
each tuned to a specific spectral modulation, temporal modula-
tion, and frequency (referred to as modulation model). The sec-
ond model describes the responses at auditory cortex voxels as
resulting from a bank of frequency selective filters (referred to
as tonotopy model). The tonotopy model reflects the hypothe-
sis that voxels simply contain information about the frequency
content of the stimuli.

Based on a subset of fMRI data (training), we estimated an
MTF (using the modulation model) or a frequency tuning curve
(using the tonotopy model) for each voxel. We then assessed
the ability of these models to accurately predict the fMRI
responses to sounds of a new, independent dataset (testing
data; see Materials and Methods). For both the modulation and
tonotopy model, we quantified prediction accuracy by means of
an identification analysis. For each sound in the testing set, we
predicted the fMRI activity patterns using estimated voxels’
MTFs (or tuning curves). We then correlated the predicted
response pattern with the activity patterns measured for all
other sounds in the test set, resulting in voxel-wise prediction
accuracy maps (for average accuracy maps of the modulation
model see Supplemental Fig. S2B). The rank of the correlation
between a sound’s predicted and measured activity was used
as identification score. This score ranged between 0 and 1; 0
denotes that the predicted activity pattern for a given stimulus
was least similar to the measured one among all test stimuli; 1
denotes correct identification; chance level is 0.5. The average
score across all test sounds was used as the model’s overall
prediction accuracy (see Materials and Methods).

The sound identification accuracy of the modulation model
was significantly higher than chance for each individual mon-
key (Fig. 1A, P < 0.005 for monkey M1, P = 0.04 for M2 and M3;
permutation test), indicating that the model was able to gener-
alize to stimuli not used for parameter estimation. The tonoto-
py model performed significantly above chance for monkeys
M1 (P = 0.02) and M3 (P < 0.005) and showed a trend for perfor-
mance above chance for monkey M2 (P = 0.07; permutation
test). We tested for the difference between the tonotopy and
modulation model considering the identification accuracies of
all available hemispheres (n = 6; 2-tailed Wilcoxon signed-rank
test). The modulation model (median [range] = 0.56 [0.52 0.69])
had significantly higher sound identification accuracies than
the tonotopy model (median [range] = 0.54 [0.47 0.68]; z = 2.21;
P = 0.028). This is similar to results in humans, where a signifi-
cant improvement of the modulation model over the tonotopy
model was observed (see Santoro et al. (2014), Fig. 4). Thus, a
model accounting for the frequency-specific modulation con-
tent of the spectrogram is predicting fMRI responses to natural
sounds significantly better than a model solely based on the
frequency content of the spectrogram.

Preferred Feature Maps

The cortical topography of voxels’ preferred features was inves-
tigated by calculating maps of voxels’ characteristic frequency
(CF), temporal modulation (CTM), and spectral modulation
(CSM). We applied previously established analyses of best fea-
ture mapping (Moerel et al. 2012, 2013; Santoro et al. 2014). For
each feature, the estimated single-voxel MTF was averaged
across irrelevant dimensions (e.g., spectral and temporal modu-
lation for the frequency transfer function) and the point of
maximum was assigned as the voxel’s preferred feature value.
Tonotopic cortical maps were obtained by logarithmic mapping
of best-frequency values to a red-yellow-green-blue color scale.
Spectral and temporal modulation maps were obtained by
linear mapping of best-feature values to a yellow-green-blue-
purple color scale. Maps were then projected onto an inflated
representation of the macaques’ cortex (Figs 1B and 2A). To
obtain group maps we performed cortex-based alignment and
averaged individual surface maps (see Materials and Methods).
Maps of best frequency confirmed the presence of the typi-
cal mirror-symmetric tonotopic pattern with multiple reversals
of the frequency gradient along the anterior-posterior axis in
all 3 monkeys (see Fig. 1B for individual map of M1 and group
map and Supplemental Fig. S3 for individual maps of M2 and
M3). Tonotopic maps provide a basis for the delineation of
auditory fields in the primate auditory cortex (Merzenich and
Brugge 1973; Morel et al. 1993; Kosaki et al. 1997; Petkov et al.
2006; Joly et al. 2014; Baumann et al. 2015). Tonotopic gradients
were most obvious in the putative core fields Al and R, particu-
larly in monkey M1 (Fig. 1B, middle panel) and the macaque
group map (Fig. 1B, lower panel). Consistent with previous
macaque fMRI data (Petkov et al. 2006; Joly et al. 2014;
Baumann et al. 2015; for review see Baumann et al. 2013) the
high-to-low frequency gradient of A1l started in the midline of
the posterior superior temporal plane. The gradient ran antero-
laterally parallel to the circular sulcus, where the low frequency
region (Fig. 1B, red-yellow color) forming the presumed border
between core fields Al and R was located (Fig. 1B, dashed black
line). Anterior to this low frequency area, a high-frequency
region was located on the medial side of the superior temporal
plane, in the depth of the circular sulcus, presumably delineat-
ing the border between rostral (R) and rostrotemporal (RT) core
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Figure 1. Sound identification accuracies for the modulation and tonotopy
model and tonotopic maps. (A) Bars indicate the sound identification accuracies
for each monkey (M1-M3) and hemisphere (L: left, R: right) separately for the
modulation model (black bars) and the tonotopy model (white bars). The last
column represents the mean (+SEM) of all 6 hemispheres. Accuracies are nor-
malized between 0 and 1, chance level is 0.5. (B) Upper panel: Anatomy is
shown as inflated representation of monkey M1’s cortex; tonotopic maps are
depicted in the cortical region highlighted by the black square (temporal lobe).
Middle panel: Individual tonotopic map for monkey M1. Black line illustrates
the border of the circular sulcus; dashed black lines delineate the putative bor-
ders of auditory fields A1, R, and RT located at the reversals of frequency prefer-
ence. Lower panel: Macaque group tonotopic map computed as the mean
across all monkeys. See also Supplemental Figure S3 for individual tonotopic
maps for monkeys M2 and M3. (C) Human group tonotopic map modified from
Santoro et al. (2014). Black line indicates Heschl’s gyrus. Red denotes tuning for
low frequencies; blue denotes tuning for high frequencies. CS, circular sulcus;
Ins, Insula; STG, superior temporal gyrus; STP, superior temporal plane; STS,
superior temporal sulcus; CF, characteristic frequency.

fields. Posterior to presumed area Al, another high frequency
region was observed in all monkeys, corresponding to the puta-
tive border between Al and caudomedial (CM) / caudolateral
(CL) belt areas (Fig. 1B, blue-green color). We observed an addi-
tional low frequency area at the posteromedial end of the lat-
eral fissure in 2 monkeys, likely comprising the posterior
boundaries of CM and CL (Fig. 1B, Supplemental Fig. S3).

Note that putative area borders (dashed black lines) are indi-
cated along the posterior-anterior axis at the frequency prefer-
ence reversals. In contrast, the distinction between core, belt
and parabelt regions along the medial-lateral axis is more
problematic, as adjacent core and belt areas share the same
tonotopic preference (Joly et al. 2014). Those can be defined on
the basis of microanatomical properties (Hackett et al. 2001,
Morosan et al. 2001). Auditory core regions, in particular A1, are
known to be more densely myelinated than belt areas (Hackett
et al. 2001; Hackett 2011; Joly et al. 2014). We estimated myelin
maps based on the ratio of T1- over T2-weighted (T1w/T2w) MR
images (Glasser and Van Essen 2011; De Martino et al. 2015).
The highest myelin content was indeed localized in the poste-
rior region of the lateral sulcus at the high-to-low frequency
gradient presumably delineating A1l (Supplemental Fig. S4).

Human tonotopic maps obtained using identical stimuli
(Santoro et al. 2014) showed a consistent high-low-high fre-
quency gradient (Fig. 1C). A low frequency region was observed
in the central region of Heschl’s gyrus (HG) presumably mark-
ing the boundary between the human homolog of primary
fields Al and R (Fig. 1C, red-yellow). This low frequency region
was surrounded anteromedially and posteriorly by high
frequency regions (Fig. 1C, green-blue). The anteromedial high
frequency areas clustered on the planum polare (PP). The
posterior regions preferring high frequencies covered Heschl’s
sulcus and planum temporale (PT).

The topography of characteristic spectral and temporal
modulations was more variable and complex across monkeys
(see Fig. 2A-C, and Supplemental Fig. S5 for individual maps of
temporal and spectral modulations). However, the group data
(Fig. 2B,C, lower panels) confirmed distinct regional preferences
for modulation frequencies. In line with a recent macaque fMRI
study (Baumann et al. 2015), preferences for high temporal
modulations (high CTM, purple) consistently clustered in the
posterior auditory cortex with maxima at the high frequency
part of the putative primary field Al in both hemispheres.
Preference for low temporal modulations (low CTM, yellow)
was located in anterior-lateral auditory regions (Fig. 2B). In con-
trast, best-spectral-modulation maps indicated that coarse
spectral information (low CSM, yellow) was preferably encoded
in posterior-medial auditory regions, as opposed to fine spec-
tral information (high CSM, purple) in anterior-lateral auditory
regions (Fig. 2C). On a qualitative level, best-modulation maps
confirmed the systematic organization of fMRI responses to
temporal and spectral modulations consistent with the topo-
graphic representation observed previously in human data
(Fig. 2D,E).

Supporting the hypothesis of a trade-off between spectral
and temporal resolution at the map level (Santoro et al. 2014),
we found a negative correlation between voxels’ characteristic
spectral and temporal modulation for all 3 monkeys (Fisher-
transformed Spearman’s rank correlation coefficient: median
[range] = —-0.12 [-0.11 —0.15], P < 0.001). Further, we observed a
positive correlation between tonotopy and temporal modula-
tion maps, on the one hand, and negative correlation between
tonotopy and spectral modulation maps, on the other hand. In
other words, sensitivity for low temporal modulations tended
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Figure 2. Individual and group maps for temporal and spectral modulations. (A) Inflated representation of monkey M1’s auditory cortex; dashed yellow lines delineate
the putative borders of auditory fields Al, R, and RT based on the reversals in the tonotopic maps from Figure 1B. (B) Distribution of best temporal modulation
responses in auditory cortex of monkey M1. Middle panel: Individual map of preferred temporal modulations for monkey M1. See also Supplemental Figure S5 for
individual maps of temporal modulations for monkeys M2 and M3. Lower panel: Macaque group map for preferred temporal modulations obtained as the mean
across 3 monkeys. (C) Distribution of best spectral modulation responses in auditory cortex of monkey M1. Middle panel: Individual map of preferred spectral modula-
tions for monkey M1. See also Supplemental Figure S5 for individual maps for monkeys M2 and M3. Lower panel: Macaque group map for preferred spectral modula-
tions. (D) Human group best feature map for temporal modulations modified from Santoro et al. (2014). (E) Human group best feature map for spectral modulations
modified from Santoro et al. (2014). Black line indicates Heschl’s gyrus. Purple denotes tuning for fast (fine) temporal (spectral) modulations; yellow denotes tuning
for slow (coarse) temporal (spectral) features. CS, circular sulcus; Ins, insula; STG: superior temporal gyrus; STP, superior temporal plane; STS, superior temporal sul-
cus; CTM, characteristic temporal modulation; CSM, characteristic spectral modulation.

to be observed in low frequency regions of auditory cortex
(Fisher-transformed Spearman’s rank correlation coefficient:
median [range] = 0.19 [0.18 0.26], P < 0.001; see also Fig. 2) and
sensitivity to low spectral modulations in high frequency
regions (Fisher-transformed Spearman’s rank correlation coeffi-
cient: median [range] = —0.38 [-0.29 —0.44], P < 0.001).

Multivoxel MTFs

In a second analysis, we ran a multivariate model-based decod-
ing analysis to investigate whether we can decode the spectro-
temporal modulations of sounds from fMRI response patterns
in the macaque auditory cortex. First, we calculated MTFs for
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the whole auditory cortex. Second, we computed MTFs in ROIs
along the superior temporal plane corresponding to putative
core and belt areas. Three ROIs on the temporal plane were
defined using the frequency reversals of individual tonotopic
maps (Fig. 1B and Supplemental Fig. S3): putative primary core
area Al, rostral and rostrotemporal core areas R/RT and caudo-
medial and caudolateral belt areas CM/CL (see Supplemental
Fig. S7A for correspondence between tonotopy and ROIs). In
humans, the following anatomically defined ROIs (Kim et al.
2000) were included: HG, the putative location of primary AC,
and adjacent areas PP and PT (Santoro et al. 2017). We calcu-
lated the modulation representation for all stimuli (see
Materials and Methods). Then, in each subject and each ROI
separately, we estimated a linear decoder for each feature of
this modulation representation using a subset of fMRI data
(training), which resulted in a map of voxels’ contributions.
This allowed us to investigate how faithfully distinct features
in the sounds’ spectrotemporal modulation content can be
decoded from activation patterns in ROIs. In each subject, we
quantified decoding accuracy as Pearson’s r between decoded
and actual stimulus features. This resulted in a multivoxel MTF
per ROI per hemisphere with corresponding marginal profiles

of frequency, spectral, and temporal modulation. The group
marginal multivoxel MTFs were obtained as the mean of indi-
vidual MTFs (Fig. 3).

Multivoxel Marginal Profiles for Temporal Modulation

Results in the whole macaque auditory cortex indicated that
decoding accuracies for temporal modulations were highest at
rates >30Hz, peaking at 77.5Hz in the macaque (Supplemental
Fig. S6A, left). The profile showed a trough at low modulation
rates with a local minimum at 3.7 Hz. Post hoc analyses of the
marginal MTF for temporal modulations confirmed that decoding
accuracies at 32.5-77.5 Hz were significantly higher than accura-
cies at 2.4-5.7 Hz (z = 3.07, P = 0.002, Wilcoxon signed-rank test).
Conversely, in the human auditory cortex, the decoding profile
for temporal modulations peaked at 3.7Hz. Accuracies at low
modulation rates (2.4-5.7 Hz) were significantly higher than at
high rates (32.5-77.5Hz; z = 4.7, P < 0.001, Wilcoxon signed-rank
test; Supplemental Fig. S6B, left). A 2-way ANOVA confirmed a
significant interaction of species (human, macaque) and modula-
tion rate (pooled at rates of 2.4-5.7 Hz and 32.5-77.5Hz) on accu-
racy (F[1, 95] = 10.53, P = 0.001).
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Figure 3. ROI-based multivoxel marginal profiles for temporal modulation. The profiles represent decoding accuracies defined as Pearson’s correlation coefficient
between decoded and original stimulus features. Marginal transfer functions were obtained by averaging the MTFs across irrelevant dimensions (spectral modulation
and frequency). (A) Macaque decoding accuracy profiles were obtained as the mean across the 6 hemispheres of 3 monkeys. (B) Human marginal MTFs in distinct
ROIs; 10 hemispheres of 5 human subjects from Santoro et al. (2017) were reanalyzed using an identical sound decomposition as for the macaque data. Shades denote
SE across all hemispheres. CM/CL, caudomedial/caudolateral belt areas; Al, primary auditory area; R/RT, rostral/rostrotemporal area; PT, planum temporale;

HG, Heschl’s gyrus; PP, planum polare.
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Next, we computed MTFs for individual ROIs. Because visual
inspection of the 3D MTFs in the human (Santoro et al. 2017,
Fig. 4B) and monkey (Supplemental Fig. S7B) indicated that decod-
ing accuracy for temporal modulation rates depended on fre-
quency, we computed distinct marginal tuning functions for
frequencies < and >2kHz. In all 3 macaque ROIs, decoding accu-
racies for temporal modulations for low frequencies (<2kHz)
were highest at 32.5-77.5Hz and lowest at 2.4-5.7 Hz (Fig. 3A, red
profile). Post hoc analyses confirmed that decoding accuracies at
32.5-77.5Hz were significantly higher than accuracies at
2.4-5.7Hz in all 3 macaque ROIs (CM/CL: z = 3.72, P < 0.001; Al: z
= 2.68, P = 0.007; R/RT: z = 3.07, P = 0.002; Wilcoxon signed-rank
test). Conversely, in humans, the profile for temporal modula-
tions at frequencies <2kHz peaked at 3.7Hz and was lowest at
high rates >21Hz in PT, HG, and PP (Fig. 3B, red profile, see also
Santoro et al. 2017; Wilcoxon signed-rank test comparing
2.4-5.7Hz and 32.5-77.5Hz: z = [3-4.6], P < 0.005 in all ROIs). The
temporal rate profile in macaque ROIs correlated negatively with
the profile in all corresponding ROIs on the human temporal
plane (Spearman’s rho over the 12 modulation rates: CM/CL-PT:
—0.59, P = 0.05; A1-HG: —0.73, P = 0.009; R/RT-PP: —0.85, P < 0.001).
Comparisons between corresponding human and macaque ROIs
using 2-way ANOVAs confirmed a significant interaction of spe-
cies (human, macaque) and modulation rate (low [2.4-5.7 Hz] or
high [32.5-77.5 Hz] rates) on decoding accuracy in all correspond-
ing ROIs (CM/CL-PT: F[1,95] = 12.23; P = 0.001, A1-HG: F[1,95] =
4,41, P = 0.038; R/RT-PP: F(1,95) = 20.46, P < 0.001). These results
suggest that cortical tuning to a timescale relevant for the anal-
ysis of speech (3-5Hz) is characteristic of the human but not
monkey auditory cortex (see Discussion).

Importantly, the enhanced accuracy of low temporal rates
was not an indirect effect of decoding a global preference for
speech. When removing speech sounds from the analysis,
decoding results remained largely unchanged and the peak of
the MTF profile for temporal modulations at ~3Hz was still
observed in all human ROIs (Pearson’s r with the original mar-
ginal MTF: HG = 0.99, PT = 0.99, PP = 0.98, Santoro et al. 2017).
Removal of speech and vocal sounds altered the relative contri-
bution of low and high frequencies to the acoustic energy of
the stimulus set, but for temporal and spectral modulations,
the consequences on the relative energy distribution were
smaller (Supplemental Fig. S1B; for details also refer to Santoro
et al. 2017, Supplemental Fig. S4).

Moreover, ANOVAs also showed a significant main effect of
species in all ROIs (F[1,95] = [51.58-65.03], P < 0.001), indicating that
humans had overall higher decoding accuracies than monkeys.

In contrast, the decoding accuracy profile in the temporal
modulation dimension for high frequencies (>2 kHz) was high-
pass in both species (Fig. 3, blue profiles). Decoding accuracies
at low temporal modulations of 1-2.4Hz were significantly
lower than accuracies at high temporal modulations of
50-120 Hz in monkey CM/CL (z = —3.382, P < 0.001) and Al(z =
—2.80, P = 0.005) and all human ROIs (PT: z = —4.6, P < 0.001, HG:
—4.58, P < 0.001, PP: z = —3.14, P = 0.002, Wilcoxon signed-rank
test). The profiles in the macaque ROIs correlated positively
with the profiles in the corresponding human ROIs for the pairs
CM/CL-PT (Spearman’s rho = 0.93, P < 0.001) and Al1-HG
(Spearman’s rho = 0.8, P = 0.003).

Multivoxel Marginal Profiles for Spectral Modulation
and Frequency

The macaque decoding accuracy profiles for spectral modula-
tion and frequency were reminiscent of the marginal profiles

observed in humans (Santoro et al. 2017, see Supplemental
Fig. S6). For the whole macaque auditory cortex, the profile for
spectral modulations was low-pass (Supplemental Fig. S6A,
middle panel). Decoding accuracies at low spectral scales
(0.3-0.5 cyc/oct) were significantly higher than accuracies at
high spectral scales (2.6-4 cyc/oct; Supplemental Fig. S6A, mid-
dle panel) according to a Wilcoxon signed-rank test (z = 1.96,
P = 0.05). This pattern of results is consistent with results in
humans, where we also observed a low-pass decoding accuracy
profile for spectral modulations (Supplemental Fig. S6B, middle
panel).

In macaques, this result was driven by voxels in Al: Only in
A1, but not CM/CL and R/RT, decoding accuracies at low spec-
tral modulations (0.3-0.5 cyc/oct) were significantly higher than
accuracies at high spectral modulations (2.6-4 cyc/oct;
Supplemental Fig. S8A; z = 2.2, P = 0.03) similar to human PT,
HG, and PP (z = [2.87-3.85]; P < 0.005, Wilcoxon signed-rank test;
Supplemental Fig. S8A, for human results see also Santoro
et al. 2017). We did not find a significant interaction of species
and spectral modulation (high, low).

For spectral modulations, the median accuracy profile in the
whole macaque auditory cortex correlated positively with the
acoustic energy in the stimuli (Spearman’s rho over the 7 spec-
tral scales = 0.89, P = 0.01) indicating that brain responses
followed the spectral modulation content of the stimuli.
Conversely, for temporal modulations and frequency we found
a negative correlation between median accuracy profile in
macaque auditory cortex and the acoustic energy in the stimuli
(temporal modulations: Spearman’s rho over the 12 modulation
rates = -0.65, P = 0.02; frequency: Spearman’s rho over the 60
frequencies = —0.48, P < 0.001).

The decoding accuracy profile for frequency for the whole audi-
tory cortex appeared more complex and variable (Supplemental
Fig. S6A, right panel). In particular, we observed the highest
decoding accuracies at high frequencies (>2 kHz). Decoding accu-
racies were lowest in the mid frequency range (0.7-1kHz), similar
to the spectral profile observed in humans (Supplemental
Fig. S6B, right panel). Post hoc analyses of the frequency profile in
the whole macaque auditory cortex confirmed that decoding
accuracies at mid frequencies (0.7-1kHz) were significantly lower
than accuracies at high frequencies (2.1-3.2kHz; z = —4.2, P <
0.001, Wilcoxon signed-rank test) and accuracies at low frequen-
cies (0.3-0.5kHz; z = —3.91, P < 0.001).

In individual ROIs, a similar trough in decoding accuracies
for mid frequencies was observed (Supplemental Fig. S8B). In
all macaque ROIs, decoding accuracies at high frequencies
(2.1-3.2kHz) were significantly higher than in mid the fre-
quency range (0.7-1kHz, z = [4.62-4.77], P < 0.001, Wilcoxon
signed-rank test). Decoding accuracies at low frequencies (0.3-
0.5kHz) were also higher than in the mid frequency range in
CM/CL (z = 2.78, P = 0.005) and R/RT (z = 4.03, P = 0.001). Post hoc
analyses of the human spectral profile in PT, PP and HG con-
firmed that decoding accuracies at high frequencies were signif-
icantly higher than accuracies at mid frequencies (z =
[3.05-6.59], P < 0.005, Wilcoxon signed-rank test). Accuracies at
low frequencies were also significantly higher than at mid fre-
quencies (z = [4.24-5.42], P < 0.001, see also Santoro et al. 2017).
This frequency profile was not present in the stimuli and might
be related to effects of the scanner noise (see Discussion). We
observed a significant interaction of species (macaque, human)
and frequency (low [0.3-0.5 kHz] or high [2.1-3.2 kHz]) on decod-
ing accuracy in all corresponding ROIs (CM/CL-PT: F[1, 255] =
11.81, P < 0.001; A1-HG: F[1, 255] = 11.61, P < 0.001; R/RT-PP: F
[1255] = 4.95, P = 0.03), where macaques had better decoding
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accuracies for high frequencies and poorer accuracies for low
frequencies compared with humans. This finding may be
related to the difference in hearing range in both species (see
Discussion).

Discussion

Here, we show evidence for topographic cortical maps of tem-
poral and spectral modulation preference in awake macaques
by combining the presentation of natural sounds and computa-
tional modeling of high-resolution fMRI data. The large-scale
organization of these maps is remarkably similar to the one
previously observed in humans using the same natural stimuli
(Santoro et al. 2014). We further demonstrate that we can
decode the spectrotemporal modulations of natural sounds
from macaque fMRI response patterns. Model-based decoding
in the temporal modulation domain was most accurate for
high rates (>30 Hz) in macaques. This property of the macaque
auditory cortex contrasts with the human auditory cortex that
exhibits characteristic tuning to slower timescales (~3 Hz) rele-
vant for the analysis of speech sounds.

Homologies in Natural Sound-Encoding: Large-Scale
Topographic Maps

We derived topographic maps of acoustic feature preference for
frequency, spectral, and temporal modulations. Tonotopic
maps exhibited the well-established mirror-symmetric high-
low-high frequency gradients across the primary core and sur-
rounding belt areas (Fig. 1B,C) in line with numerous studies in
human (Formisano et al. 2003; Talavage et al. 2004; Humphries
et al. 2010; Woods et al. 2010; Da Costa et al. 2011; Striem-Amit
et al. 2011; Langers and van Dijk 2012; Moerel et al. 2012, 2014)
and nonhuman primates (Merzenich and Brugge 1973; Morel
et al. 1993; Kosaki et al. 1997; Rauschecker et al. 1997; Bendor
and Wang 2008; Joly et al. 2014; Baumann et al. 2013, 2015).
Another low frequency region in the posterior end of the lateral
fissure was consistently observed which may have been
obscured in previous monkey fMRI studies due to an incom-
plete coverage of the lateral fissure (1-3 oblique slices in Petkov
et al. 2006), lower resolution of the data (1.2mm isotropic in
Joly et al. 2014; 1 mm isotropic in Baumann et al. 2015; as com-
pared with 0.75Smm isotropic in the present dataset), or
smoothing of the data. When looking at tonotopic maps with
higher spatial resolution, and exploring single subject rather
than group maps, more frequency reversals than commonly
reported become evident (Moerel et al. 2014). The observed
redundancy in neuronal populations responding to the
same frequency range may enable auditory cortex to generate
simultaneous “views” of the spectrogram at distinct spectral
resolutions (see below).

In contrast, previous studies have not come to an agreement
on the existence of a topographic organization for temporal
and spectral modulations in auditory cortex. Here, we observed
a posterior-to-anterior high-to-low gradient for temporal mod-
ulations across macaque auditory cortex (Fig. 2B). This observa-
tion from single-voxel encoding was confirmed by the
multivoxel model-based decoding from distinct ROIs: although
the general pattern of profiles was similar in caudal and rostral
areas, the caudal fields CM/CL had higher decoding accuracies
for fast temporal modulations (Fig. 3A). A topographic repre-
sentation for modulation rate has previously been reported in
the inferior colliculus (IC) of cats (Schreiner and Langner 1988).
At the level of the cortex, primate fMRI (Baumann et al. 2015)

and electrophysiological studies showed that fast temporal
acoustic information is preferably encoded in caudal auditory
regions (Camalier et al. 2012; Kusmierek and Rauschecker 2014)
and slow temporal information in rostral areas R and RT (Liang
et al. 2002; Bendor and Wang 2008). Although earlier human
fMRI studies failed to observe a clear topography for modula-
tion rate (Giraud et al. 2000; Schonwiesner and Zatorre 2009;
Overath et al. 2012; Leaver and Rauschecker 2016), fMRI data
from our lab (Santoro et al. 2014) as well as a recent electrocor-
ticography (ECoG) study (Hullett et al. 2016) confirmed the pres-
ence of a posterior-to-anterior high-to-low rate gradient in
human auditory cortex. Such a cortical modulation filter bank
could parse the acoustic information in the stimulus according
to its dominant temporal components and would facilitate the
encoding of multiple views of the incoming spectrogram at dif-
ferent temporal resolutions (Dau et al. 1997). Multiple cortical
representations of sounds are likely critical for simultaneously
executing distinct behavioral tasks. For example, encoding of
slow temporal modulations is critical for speech comprehension
(Elliott and Theunissen 2009) while encoding of fast temporal
modulations is hypothesized to facilitate sound localization.
Notably, the presence of high modulation rates in human
screams (>30Hz) improves the ability to localize sounds (Arnal
et al. 2015). In the framework of an auditory “where”-pathway
the observed topography is consistent with an account where
fast temporal modulations are represented more prominently
in caudal regions of auditory cortex. Those posterior regions
have been shown consistently to participate in sound localiza-
tion (Rauschecker and Tian 2000; Tian et al. 2001; Woods et al.
2006; Rauschecker and Scott 2009; Ortiz-Rios et al. 2017).

In electrophysiology, responses of single neurons to tempo-
ral modulations follow 2 different coding principles, namely
rate coding and temporal coding (Joris et al. 2004). The rate
code represents the average firing rate (i.e., the average number
of spikes over a period of time). The temporal code constitutes
a measure of phase-locking to the stimulus envelope. Neurons
tuned to fast temporal modulations above approximately 50 Hz
(Joris et al. 2004) typically code through average spike rate (rate
code), whereas neurons tuned to slow temporal modulations
below approximately 50 Hz mostly demonstrate synchroniza-
tion to the sounds’ modulations (temporal code; Joris et al.
2004). How the hemodynamic response reflects these 2 types of
neuronal coding and how they are related in turn to the
observed topographies remains unclear (Joris et al. 2004;
Baumann et al. 2015). Advances in computational models inte-
grating results from single-cell recordings (Petkov and Bendor
2016) and fMRI studies in macaques are expected to shed light
on this crucial question in the future.

Previous fMRI studies investigated cortical processing of
spectral and temporal modulations measuring responses to
artificial sounds, for example, amplitude-modulated noise
(Baumann et al. 2015) or dynamic ripples (Schonwiesner and
Zatorre 2009), whereas we chose to present natural sounds, for
the following reasons. Natural sounds are characterized by dis-
tinct statistical regularities. As synthetic sounds lack both the
behavioral relevance and the statistical structure of natural
sounds, they activate auditory cortex differently than under
natural listening conditions (Theunissen and Elie 2014): STRFs
of auditory neurons differ significantly under natural and syn-
thetic stimulus conditions, in human (Bitterman et al. 2008)
and animal electrophysiological experiments (Theunissen et al.
2000). In particular, tonotopic maps obtained with tones or nat-
ural sounds are similar in the IC (De Martino et al. 2013) and
the primary auditory cortex, but differ more in nonprimary
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areas (Moerel et al. 2013). Further, whereas natural stimuli
cover a wide range of combination of features, achieving the
same resolution with ripples would involve the presentation of
5040 conditions, exceeding experimental time constraints.

Beyond the presentation of natural sounds, our approach
approximates natural listening conditions with another respect:
Whereas earlier primate experiments collected data in anaes-
thetized animals (Rauschecker et al. 1995), our data were
acquired in awake macaques. Thus, we provide evidence that
topographic maps of feature preference can be observed under
approximately natural hearing situations. However, natural
hearing also involves attention and goal-directed behavior.
Whether and how best feature maps are shaped by task
demands necessitates further investigation.

Specificity in Natural Sound-Encoding: Multivoxel MTFs

On a methodological level, our first univariate encoding analy-
sis derived cortical maps of relative feature preference by
selecting the feature eliciting the highest response at each vox-
el. These maps are based on the assumption that stimulus fea-
tures are more accurately encoded when they maximally
activate single voxels. However, higher responses may not nec-
essarily mean better encoding. Our second, complementary
multivariate decoding analysis relies on measures of informa-
tion rather than activation levels. It assesses how faithfully
stimulus features can be retrieved from fMRI response patterns.
Thus, the amount of information that is available in the cortex
about a set of stimulus features is explicitly quantified in the
accuracy with which those features can be decoded. Accurate
decoding of spectrotemporal modulations in test sounds indi-
cates that these modulations are reproducibly mapped into dis-
tinct spatial patterns. As data from individual voxels are jointly
modeled, the cortex is characterized in a multivariate manner,
without the need of integrating results derived from the model-
ing of individual voxels. This combined analysis of signals from
multiple voxels increases the sensitivity for stimulus informa-
tion that may be represented in patterns of responses, rather
than in individual voxels.

In the human primary area HG and adjacent regions PP and
PT, decoding accuracy for temporal modulation rates depended
on frequency. For low frequencies, we observed a striking spe-
cies difference: While humans’ highest decoding accuracies
were observed at the speech-relevant rate of ~3 Hz, the maca-
que’s temporal modulation profile peaked instead at faster
rates of > 30Hz (Fig. 3). Importantly, the selectivity to slow
temporal modulations observed in humans was present
already in primary auditory (HG) and adjacent areas (PP, PT).

One might argue that the observed specialization of human
auditory cortex could be the spurious side effect of selectivity
for higher level properties of sound, such as the semantic cate-
gory. A large fraction of human auditory cortex, especially
along the STG, is highly selective for speech, producing larger
fMRI responses to speech and voice than to other sounds (Belin
et al. 2000; Overath et al. 2015). Therefore, to rule out the possi-
bility that the enhanced decoding accuracy for slow temporal
rates could reflect speech selectivity rather than privileged
encoding of those rates, a control analysis was performed in
humans: all speech and vocal sounds were removed from the
stimulus set (Supplemental Fig. S1B). Critically, modulation
tuning curves in early auditory areas (HG, PT, PP) were largely
unaffected by removing speech sounds from the decoding anal-
ysis (Santoro et al. 2017, Supplemental Fig. S6). Three conclu-
sions arise from this result. First, this finding excludes the

possibility that tuning profiles could simply mirror the stimulus
statistics rather than representing characteristic acoustic tun-
ing properties of neuronal populations in auditory cortex.
Second, the result indicates that successful decoding of slow
temporal rates was independent of semantic category. It rules
out the possibility that low frequency sensitivity in human
auditory cortex could reflect “speech selectivity” rather than
privileged encoding of slow modulation rates. Third, the finding
supports the hypothesis that, in the human brain, the tuning
properties of neuronal populations for the analysis of any
sound have been shaped by the characteristic acoustic proper-
ties of speech.

While lower levels of the auditory system, that is, the IC and
medial geniculate body, have been found to express faster mod-
ulation rates in a number of species (for review see Joris et al.
2004), the finding of strong responsiveness of macaque auditory
cortex to such fast modulation rates is surprising. This result
suggests that the cutoff of the cortical MTF is not a purely phys-
iological limit but is rather plastic and reflects the animal’s par-
ticular acoustic environment. Importantly, supporting evidence
for this finding comes from psychoacoustic observations of
human listeners performing best in the discrimination of slow
temporal modulations in the 24 Hz range (O’Connor et al. 2011,
Massoudi et al. 2014), whereas the macaques’ sensitivity to tem-
poral modulations is highest at fast rates of approximately
30-60 Hz (O’Connor et al. 2011). A plausible explanation for the
observed divergence of cortical function across species is that
the auditory cortex has evolved to optimize the representa-
tional mechanisms for acoustic features of the behaviorally
most relevant sounds, species-specific vocalizations. In anes-
thetized marmosets, neuronal Al responses showed highest
synchronization to the repetition rate of natural calls (approxi-
mately 8 Hz), irrespective of whether species-specific vocaliza-
tions (Wang et al. 1995) or amplitude-modulated tones
(Nagarajan et al. 2002) were presented, indicating that most
neurons were tuned to the natural repetition rate of calls. For
humans, speech is arguably the most relevant sound category.
Consistently, the modulation spectrum of speech peaks at low
temporal modulation rates of approximately 3-4Hz, corre-
sponding to the rate of syllables (Giraud and Poeppel 2012).
Similarly, for macaques, vocalizations are considered essential
for intraspecies communication (Hauser et al. 2002). The modu-
lation spectrum of macaque vocalizations is broader, and more
importantly, the highest variance is contained in the energy of
higher modulation rates (Cohen et al. 2007; Joly et al. 2012).
Such high temporal modulations in the frequency range of
30-120 Hz elicit the percept of roughness (Joris et al. 2004). They
are abundant in, for example, screams and alarm signals (Arnal
et al. 2015) and the environmental and nature sounds of the
current stimulus set (Supplemental Fig. S1A).

A caveat of our approach was the task difference between
species. Both species performed unspecific tasks to keep sub-
jects awake but for reasons of feasibility, macaques performed
a visual fixation and humans a one-back task. One might argue
that the human sensitivity to slow modulations in the theta
range (4-8 Hz) could be interpreted as working memory related
rather than a specialization for species-specific communication
signals given the task differences and given earlier ECoG inves-
tigations that identified semantic memory related theta oscil-
latory signals in human auditory cortex (Canolty et al. 2006).
However, it seems unlikely that an unspecific vigilance task
would exclusively affect the cortical response to temporal mod-
ulations (but not the other acoustic dimensions). To date, our
understanding of how hemodynamic effects relate to
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electrophysiological oscillatory findings is still limited. Studies
directly looking at the relation between the BOLD signal and
oscillatory activity in different frequency bands find the stron-
gest correlation of the hemodynamic response with power of
oscillations in the high gamma (60-80 Hz) rather than the theta
range (Niessing et al. 2005; Scheeringa et al. 2011).

The macaques’ decoding accuracy profiles for spectral modu-
lation and frequency were reminiscent of the marginal profiles
observed in humans (Santoro et al. 2017). In the spectral modula-
tion domain, the accuracy profile correlated with the spectral
modulation energies in the stimuli, indicating that neural
responses followed the spectral modulation content of the
sounds. The marginal MTF for frequency revealed a decrease in
decoding accuracies for frequencies at 1kHz that may be related
to the scanner noise (Santoro et al. 2017). In the clustered fMRI
acquisition, sounds were presented during silent gaps between
scans. Thus, the acoustic scanner noise between stimulus pre-
sentations may have interacted with the response to the auditory
stimulation, through, for example, adaptation of the neuronal
population preferring sound frequencies in the range of the scan-
ner noise or saturation of the hemodynamic response. In contrast
to humans who had higher sensitivity to low frequencies, maca-
que’s decoding accuracies were enhanced at high frequencies
(>2kHz) possibly due to macaques’ larger hearing range up to
32kHz (Pfingst et al. 1978).

Although stimuli were identical, decoding accuracy profiles
differed between human and nonhuman primates, excluding
the possibility that observed tuning profiles could simply mir-
ror the acoustic properties of the presented natural stimuli.
Rather, our results provide evidence that decoding accuracies
represent characteristic tuning of neuronal populations in audi-
tory cortex (see above). Importantly, by comparing human data
to the present results in macaques, we have shown that tuning
to speech-relevant modulation frequencies is specific to the
human brain and is already present in early auditory areas.
The finding supports a tight link between modulation tuning
and speech: we show that tuning of the auditory cortex to slow
modulation rates is uniquely human and propose that this
characteristic may have evolved as a function of the acoustic
properties of human speech. Thus, it is plausible that even
basic processing mechanisms in auditory cortex have evolved
to selectively amplify acoustic features and optimize the repre-
sentation of species-specific vocalizations.

Supplementary Material

Supplementary material is available at Cerebral Cortex online.
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