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ABSTRACT
Crowdsourcing involves the creating of HITs (Human Intelligent
Tasks), submitting them to a crowdsourcing platform and providing
a monetary reward for each HIT. One of the advantages of using
crowdsourcing is that the tasks can be highly parallelized, that is,
the work is performed by a high number of workers in a decen-
tralized setting. The design also offers a means to cross-check the
accuracy of the answers by assigning each task to more than one
person and thus relying on majority consensus as well as reward
the workers according to their performance and productivity. Since
each worker is paid per task, the costs can significantly increase,
irrespective of the overall accuracy of the results. Thus, one impor-
tant question when designing such crowdsourcing tasks that arise
is how many workers to employ and how many tasks to assign to
each worker when dealing with large amounts of tasks. That is, the
main research questions we aim to answer is: ‘Can we a-priori esti-
mate optimal workers and tasks’ assignment to obtain maximum
accuracy on all tasks?’. Thus, we introduce a two-staged statisti-
cal guideline, CrowdED, for optimal crowdsourcing experimental
design in order to a-priori estimate optimal workers and tasks’ as-
signment to obtain maximum accuracy on all tasks. We describe
the algorithm and present preliminary results and discussions. We
implement the algorithm in Python and make it openly available on
Github, provide a Jupyter Notebook and a R Shiny app for users to
re-use, interact and apply in their own crowdsourcing experiments.

CCS CONCEPTS
• Information systems→Crowdsourcing; •Human-centered
computing→HCIdesign and evaluationmethods;Usermod-
els;HCI theory, concepts andmodels;User studies; Human com-
puter interaction (HCI); •Applied computing→ Life and medical
sciences;
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1 CROWDSOURCING AS A MEANS OF
QUALITY ASSESSMENT

Enormous amounts of (biomedical) data have been and are being
produced at an unprecedented rate by researchers all over the world.
However, in order to enable this reuse, there is an urgent need to
understand the structure of the experimental data, the conditions
under which they were produced and the relevant information
that other investigators may need to make sense of the data [4].
That is, there is a need for good quality i.e. structured, accurate
and complete description of the data – defined as metadata. Good
quality metadata is essential in finding, interpreting, and reusing
existing data beyond what the original investigators envisioned.
This, in turn, can facilitate a data-driven approach by combining
and analyzing similar data to uncover novel insights or even more
subtle trends in the data. These insights can then be formed into
hypothesis that can be tested in the laboratory [11].

One of the means to assess the quality of this biomedical meta-
data that we propose is by the use of microtask crowdsourcing i.e.
non-expert workers in order to reduce the cost and time involved
for performing the same assessment bymeans of domain experts [8].
Crowdsourcing involves the creating of HITs (Human Intelligent
Tasks), submitting them to a crowdsourcing platform (e.g. Amazon
Mechanical Turk (MTurk)1) and providing a monetary reward for
each HIT [8]. The tasks primarily rely on basic human abilities and
natural language understanding but less on acquired skills such
as domain knowledge. A great share of the tasks addressed via
microtask platforms like MTurk could be referred to as ‘routine
tasks’ - recognizing objects in images, transcribing audio and video
material and text editing.

1http://mturk.com
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One of the advantages of using crowdsourcing is that the tasks
can be highly parallelized, that is, the work is performed by a
high number of workers in a decentralized setting. The design
also offers a means to cross-check the accuracy of the answers
by assigning each task to more than one person and thus relying
on majority consensus as well as reward the workers according
to their performance and productivity. Since each worker is paid
per task, the costs can significantly increase, irrespective of the
overall accuracy of the results. Thus, one important question when
designing such crowdsourcing tasks that arise is howmanyworkers
to employ and how many tasks to assign to each worker when
dealing with large amounts of tasks. That is, how do we optimally
design the task such that the right combination of workers and
tasks can produce the maximum accuracy and can we determine
this number a-priori.

In order to determine the number of workers as well as number
of tasks that would be ‘ideal’ in order to solve the problem, we pro-
pose CrowdED, a two-staged Crowdsourcing Experimental Design.
CrowdED provides a guideline for designing optimal crowdsourc-
ing experiments. The main research questions we aim to answer is:
Can we a-priori estimate optimal workers and tasks’ assignment to
obtain maximum accuracy on all tasks?
We describe the use case in section 2. We describe our two-staged
statistical guideline, CrowdED in section 3. Preliminary results are
reported in section 4. Related work is discussed in section 5. Finally,
we conclude with an outlook on future work in section 6.

2 USE CASE: GEO METADATA
Amongst the several biomedical databases available on theWeb, the
Gene Expression Omnibus (GEO) is one of the largest, best-known
biomedical databases [11]. GEO is an international public reposi-
tory for high-throughput microarray and next-generation sequence
functional genomic data submitted by the research community. The
GEO database hosts >32, 000 public series (study records) submitted
directly by 3, 000 laboratories, comprising 800, 000 samples derived
from >1600 organisms (as of 2012). In GEO, a Sample Record de-
scribes the specific conditions under which an individual sample
was handled, the manipulations it underwent, and the abundance
measurement of each element derived from it.

In a sample, from the different metadata elements, we specifically
chose the semi-structured ‘characteristics’ field, which contains in-
formation about, for example, the disease, strain, cell line etc. used
in the study. This information is captured in a key: value pair
format. Currently users can submit data to GEO via three ways: (i)
spreadsheets, (ii) SOFT format (plain text) or (iii) MINiML format
(XML). When users submit data to GEO via a spreadsheet (namely
GEOarchive spreadsheet), it requires them to fill out a metadata tem-
plate that follows the guidelines set out by the Minimum Informa-
tion About a Microarray Experiment (MIAME) guidelines [1]. The
metadata template includes fields for title, overall design, summary,
the protocols (e.g. treatment, extraction, labeling, hybridization and
data processing) as well as sample characteristics (e.g. organism,
cell type, tissue). After submission, a curator checks the content
and validity of the information provided [2]. This process is not
only error-prone but also time consuming considering the amount
of manual labor that is involved. Moreover, without a standardized

set of terms with which to fill out the template fields, there are
different versions of the same entity without any (semantic) links
between them, thus leading to several quality issues.

Quality issues such as inaccuracy, inconsistency and incomplete-
ness hamper the uptake of the datasets and also the reliability of the
resultant applications making use of this data. All the 44,000,000+
key: value pairs in GEO suffer from these quality problems, which
raises the scalability issue of performing large-scale curation. Ad-
ditionally, with a scarcity of domain experts to curate the large
amount of data in GEO, there is a need for more efficient methods
for curating the metadata. Thus, we propose the use of crowdsourc-
ing to perform metadata quality assessment.

We design a microtask as a classification task of identifying the
correct category for a given key. These key categories belong to the
top most frequently occurring keys in GEO. Additionally, five top
most frequently occurring values are also provided to the worker.
For example, the key e.g. ‘disease specific survival years’ along with
five key categories, namely, ‘cell line’, ‘disease’, ‘gender’, ‘strain’ and
‘time’ is provided to the worker along with the values 8.22, 17.66,
4.51, 0.89 and 12.19. The worker’s task is to choose ‘one’ of the
categories that the given key (best) belongs to. In this example, the
worker should choose ‘time’ as the correct answer since the values
are numerical indicating a time period. However, with 44,000,000+
key: value pairs in GEO, we are faced the question of how many
workers to employ in order to perform this large-scale curation
and how many tasks to assign per worker so as to achieve maxi-
mum accuracy of consensus. This led to the design of CrowdED as
described in the following section.

3 CROWDED
In this section, we describe the details of the two-staged design for
which we provide guidance on choosing the optimal number of
workers to obtain maximum accuracy for their experiment. Figure 1
provides an overview of the CrowdED guideline, which is divided
into two stages. We assume a scenario where the worker’s task (as
described in section 2) is to choose one correct answer among five
given key categories. There are two stages, where the first stage
gathers information on tasks difficulty and worker competency.
The second stage is then designed based on what is learned from
the first stage.

3.1 Stage 1
In the first stage, the user (the requester) has the option to con-
figure the following variables that represent the user’s a priori
assumptions. If unspecified, default (example) values are assumed,
as specified in parentheses.

• No. of tasks (100)
• No. of workers (40)
• No. of tasks assigned to each worker (7)
• Proportion of easy (or hard) tasks (hard tasks - 0.2)
• Proportion of competent or so-called good (or less competent
or poor) workers (competent workers - 0.8)

• Proportion of training tasks (0.4)
The number of workers per task is chosen such that it is an

odd number, greater than the number of possible answers. This
parameter is chosen in order to deal with cases with no consensus



Figure 1: Overview of the CrowdED algorithm showing the steps involved in the two stages.

(e.g. if there are 5 possible answers and each of the 5 workers
chooses a different answer). In our use case, the number of answers
is 5, thus the number of workers per task is set to 7. However, each
worker can have more than 7 tasks as we want to ensure that each
of the (40% of the) training tasks have been evaluated by some
of the workers. After setting the initial parameters, the algorithm
randomly assigns (without replacement2) which tasks and workers
are easy/hard and good/poor. Additionally, the true answer for each
task is generated by randomly selecting from the set of answers
such that they are evenly distributed across all the tasks. Next,
the exact probabilities of each worker and each task of getting the
answer right is calculated under the following assumptions.

pw =


pw ≥ 3/4, if competent worker
1/2 < pw < 3/4, if less competent worker
0, otherwise

pt =


pt ≥ 3/4, if easy task
1/2 < pt < 3/4, if hard task
0, otherwise

These values are chosen to represent variation in performance
across workers. Based on the value specified for the proportion of
tasks to train (40 in our example) the number of workers per task

2https://www.ma.utexas.edu/users/parker/sampling/repl.htm

(7 in our example) are assigned to each task and the worker answer
is generated.

In practice, true answers will not be known, and thus we rely on
an agreement statistic to gauge the performance of the worker us-
ing the following metric: the average proportion of times a worker
is in agreement with other workers for a given tasks over all tasks
considered by the worker. The range of the performance value
spans from 0 to 1. The values close to 1 indicate that the the worker
had large consensus with other workers. Values close to 0 indicate
that there was no consensus for that worker among other workers.
Then, cut off values, above the median, of the performance of the
worker and also the probability of getting the answer right is set
to choose which workers get carried forward to Stage 2. The prob-
ability and the performance of the worker is combined since it is
not always the case that the workers who had a high probability of
getting the answer right in the beginning necessarily performed
well in the actual tasks. Thus, this combination ensures that the best
workers with high probabilities for both measures are identified.
Additionally, for each task we determine whether it is an easy or
hard task based on the workers’ answers. That is, for all pairwise
comparisons between the workers’ answer the truth, we match
how many pairs of workers arrived at the same answer for each
task.

At the end of Stage 1, we get:

https://www.ma.utexas.edu/users/parker/sampling/repl.htm


• Poor workers, those that did not achieve high consensus
amongst other workers performing the same task.
– These workers are flagged and not chosen for Stage 2.

• Best workers, those with a good performance value and
assigned the good worker status at the beginning.
– These workers are chosen for Stage 2.

• Easy tasks, those that have the predicted performance to be
3/4 to 1.
– These tasks are considered to have achieved majority
consensus and are not carried forward to Stage 2 for re-
assessment.

• Hard tasks, those that have the predicted performance to
be below 3/4. That is, those that did not achieve majority
consensus in Stage 1.
– These tasks are then carried forward to Stage 2 to be re-
assessed.

– Unassigned tasks
∗ The total number of tasks (100) minus the proportion
of tasks to train (40) = 60.

3.2 Stage 2
In this stage, the algorithm assigns the hard and unassigned tasks
to the best workers, generates the workers’ answers and calculates
the overall accuracy of all the tasks. Stage 2 begins with:

• Best workers
• Hard tasks
• Unassigned tasks

Before the best workers are assigned to the remaining of the tasks,
it should be ensured that the workers do not perform the same tasks
that they were assigned in Stage 1. To ensure this, the following
pseudo-code is used:
for each task

select odd number of workers
check if the workers already done this task
and exclude them
calculate how many tasks left

while the number of workers is the same as
the number of workers per task variable
re-select this number of workers

Then, the worker answers are generated, as described in Stage 1.
Next, the performance of each of the workers is calculated. Finally,
data from all the tasks from Stage 1 and Stage 2 are merged to
get the final dataset of all tasks and all workers. After merging
the datasets, a final answer is assigned to each task based on the
majority consensus of the workers’ answers3. Additionally, the
proportion of tasks for which the workers got the right answer is
also calculated.

Finally, the accuracy of all the tasks as well as the workers is
calculated using the formula described below.
Let T = total number of tasks in the experiment
Let t̂i = (number of workers correctly answered task ti ) / (number
of workers doing task ti ) considering t̂i ∈ [0, 1]
Let C = subset of tasks which achieved consensus is greater than 1

2 ,

3This is done because there may be cases where the workers converge on an answer
different than the truth value, which need not be necessarily incorrect.

more than a half means a majority.
Let nC = number of elements in the subsetC .
Then the subset C is defined as follows:

C = {∀ t̂i | t̂i >
1
2
}

Finally, the accuracy of consensus is a combination of the following
two statistics of the subset C .
Mean of consensus:

â =
1
nC

∑
ti ∈C

t̂i

Proportion of consensus:

p̂ =
nC
T

The proportion of consensus can be seen as the percentage of tasks
under consensus and the mean of consensus is how accurate the
consensus is. These consensus values help determine the accuracy
and thus the optimal number of workers one needs for the total
number of tasks.

3.3 Implementation
The algorithm is written in Python and openly available for reuse
at https://github.com/pedrohserrano/crowdED. A Python package is
available at https://pypi.python.org/pypi/crowdED (requires Python
3 or later versions) where one can use CrowdED to test with one’s
own values. A Jupyter Notebook version is available4 where one
can see the exact steps of CrowdED. Additionally, we provide a
user interface at https://pedrohserrano.shinyapps.io/crowdapp/ , built
using the R Shiny apps5 (depicted in Figure 5) to visualize the
interaction of the variables and their effects on the overall accuracy.
Even though at this stage, the app does not allow direct user input
(which is part of the future work), in the ‘Analysis’ tab, one can
vary the number of simulations to see the effect on accuracy in the
form of graphs.

4 PRELIMINARY RESULTS
We tested our algorithm by generating random value distributions
for the variables as:

• tasks = [60, 80, 100, 120, 140, 160, 180]
• workers = [20, 30, 40]
• answers key = ["liver", "blood", "lung", "brain", "heart"]
• good workers = [0.1, 0.3, 0.5, 0.7, 0.9]
• hard tasks = [0.1, 0.3, 0.5, 0.7, 0.9]
• proportion of training tasks = [0.2, 0.3, 0.4, 0.5, 0.6]
• workers per task = [3, 5, 7, 9, 11]

In total, there were 13, 125 of combinations that were tested for
each of the variables, and every combination were simulated one
thousand times, preliminary results of which are described below.

4https://github.com/pedrohserrano/crowdED/blob/master/notebooks/
Crowdsourcing.ipynb
5https://shiny.rstudio.com/

https://github.com/pedrohserrano/crowdED
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(a) Proportion of good workers (b) Proportion of hard tasks

Figure 2: (a) Matrix showing accuracy values for different number of tasks, number of workers and varying proportions of
the good workers. The darker green cells show higher accuracy while the blue ones show lower accuracy. Results suggest that
starting out with good workers does not always lead to high accuracy. The performance of the workers in combination with
whether they were a good worker ensures that they are the best workers. This is why we need a two-staged crowdsourcing
design. (b) Matrix showing accuracy values for different number of tasks, number of workers and varying proportions of
the hard tasks. The darker green cells show higher accuracy while the blue ones show lower accuracy. Results support our
intuition that the lesser the hard tasks (10%), the higher the accuracy.

Proportion of good and poor workers. In most crowdsourcing plat-
forms, one has the option to choose ‘good’ workers before launch-
ing the tasks. For example, in Mturk the so-called ‘Master workers’
can be chosen by specifying their HIT (Human Intelligence Task)
acceptance rate. These workers are assigned this status depend-
ing on their performance over all the tasks they have attempted
and their acceptance rate for these. However, based on our results,
we observe that starting out with good workers does not always
lead to high accuracy. Figure 2(a) shows a matrix with the accu-
racy values for different number of tasks, number of workers and
varying proportions of the good workers. The darker green cells
show higher accuracy while the blue ones show lower accuracy.
With 90% of good workers at the start, the accuracy ranges from
0.82 to 0.86 whereas starting with 10% of the tasks, the accuracy
ranges from 0.84 to 0.88. Thus, it is inconclusive of the proportion
of good workers to start with. However, adopting the two-staged
algorithm ensures that only the best workers are chosen to perform
all the tasks. Therefore, calculating the performance of the workers
in combination with whether she was a good worker (from the
beginning) ensures that she is the best worker. This is why we need
a two-staged crowdsourcing design in order to test the workers

performance and choosing only the best workers to perform the
total set of tasks in order to achieve high accuracy.

Proportion of easy and hard tasks. We determined the effect on
accuracy depending on the proportion of hard and easy tasks. Fig-
ure 2(b) shows a matrix of the accuracy values for different number
of tasks, number of workers and varying proportions of the hard
tasks. The darker green cells show higher accuracy while the blue
ones show lower accuracy. With 10% of hard tasks, the accuracy
ranges from 0.88 to 0.9 whereas with 90% of hard tasks, the ac-
curacy ranges from 0.78 to 0.8. Results support the intuition that
reduced difficulty (10%) in tasks result in higher accuracy.

Proportion of training tasks. We analyzed the results for the ideal
proportion of total tasks that should be trained in Stage 1. Figure 3
shows a heat map with the accuracy values for different workers
per task and the percentage of tasks trained in Stage 1. The darker
green bubbles show higher accuracy while the blue ones show
lower accuracy. The values inside the bubble are ‘a’ is mean and ‘p’
is proportion of consensus (as described in Section 3). With 20%,
30%, 40% of training tasks and 3, 5, 7 and 9 workers per task, the
accuracy ‘a’ is lower as compared to 40%, 50%, 60% of training tasks
with 3, 5 and 7 workers per task. Results suggest that ideal is to use



3, 5 or 7 workers per task and train 40% to 60% of the task in Stage
1 to achieve high accuracy.

Number of workers per task. We examined how the number of
workers per task affects the accuracy and the proportion of con-
sensus. Figure 4 shows how the ratio of all workers over all tasks
(X-axis) compares to proportion of accuracy and proportion of con-
sensus (Y-axis) when the number of workers is different per task
(3, 5, 7 and 9). With 3, 5 and 7 workers per task, the accuracy of
consensus remains stable at a range of 0.8 to 0.9. However, the ac-
curacy declines significantly with 9 workers per task. Additionally,
the proportion of consensus increases uniformly along with signifi-
cant p-values for each variation with 3, 5 and 7 workers per task.
However, with 9 workers per task, the proportion for accuracy also
decreases along with a non-significant p-value. Results suggest that
after 9 workers per task the accuracy and proportion of consensus
decreases.

Overall results. The preliminary results of these simulations sug-
gest that in order to achieve high accuracy:

• the number of workers should be 40% to 60% of the total
number of tasks

• to train workers on 40% to 60% of the tasks in Stage 1
• to set the number of workers per task to be either 3, 5 or 7
(or fewer than 9)

• to reduce the number of hard tasks
• to adopt the two-staged algorithm to identify the best work-
ers

5 RELATEDWORK
There have been empirical studies to determine the ‘optimal’ num-
ber of workers per task. However, these studies only focus on their
domain or task at hand. For example, there is an adaptive model [10]
which studied different scenarios of increasing complexity of tasks
wrt. the worker quality. This strategy was applied particularly to
labeling tasks. However, they assume that all workers are of the
same quality Another strategy employs active learning algorithms
(changing the assignments per tasks in real-time) to minimize the
number of questions asked to the crowd to maximize the number of
tasks [9]. However, reportedly this model is extremely expensive to
adapt in a real-world experiment. Another study assigns tasks based
on the quality of workers and suggest that, for example, between
three and eight workers is ideal [3]. In [13], test questions created
from a generalized knowledge base are used to estimate the relia-
bility of the new workers. Their result suggest that this approach
performs better than using gold-standard tasks automated selection
of knowledge base questions for quality control [12] used a hybrid
approach of self-rating and gold-standard task for estimating the
expertise of workers, however the self-assessment does not ensure
high accuracy on the actual tasks.

Two models [5] and [6] provided approaches for cost-quality and
cost-time optimization respectively. However, the former model
is focused on each task and requires that the pay be set based on
progress of the total number of tasks. The latter model assumes
a fixed number of workers per task and and does not optimize
quality by taking a variable number of workers based on each task
difficulty. A recent study [7] introduced an AI agent, OCTOPUS,

to jointly balance the quality of work, total cost incurred and time
to completion and significantly outperformed existing state-of-the-
art approaches. However, OCTOPUS only tested for tasks that
contained a binary choice for the answer. CrowdED is distinct from
all these studies as it offers a two-staged statistical model that can a-
priori estimate the number of workers to assign per task in order to
gain maximum accuracy whereas OCTOPUS optimizes on-the-fly.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we describe a two-staged statistical guideline, CrowdED,
for designing optimal crowdsourcing tasks in order to a-priori esti-
mate optimal workers and tasks’ assignment to obtain maximum
accuracy on all tasks. We implemented the algorithm in Python and
made it openly available on Github, a Python package, provided a
Jupyter Notebook and a R Shiny app for users to re-use, interact
and apply in their own crowdsourcing experiments. Our prelimi-
nary results suggest the ‘optimal’ values for each of the variables
in order to achieve maximum accuracy for the tasks. This is a first
step towards answering our research question of estimate a-priori
the optimal task-worker assignment towards high accuracy.

At this stage, CrowdED only simulates multiple-choice questions
type of crowdsourcing experiments and not free text answers. In
future work, we will explore the feasibility of Natural Language
Processing (NLP) approaches to evaluate the accuracy of free-text
answers. Also as part of future work, we will assess the operating
characteristics of this design, and perform testing of the algorithm
on our use case as well as other real-world input data. Additionally,
we will compare the results of these approaches to the baseline
approaches that are standard crowdsourcing platforms (e.g. Crowd-
Flower6, MTurk). Moreover, we will account for the budgetary
constraints in the optimization algorithm. Also, we will extend the
interface such that a user can vary parameters and assumptions to
see how sensitive the design is to various assumptions.
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