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Abstract—Massive Open Online Courses (MOOCs) are attract-
ing the attention of people all over the world. Regardless the
platform, numbers of registrants for online courses are impressive
but in the same time, completion rates are disappointing. Under-
standing the mechanisms of dropping out based on the learner
profile arises as a crucial task in MOOCs, since it will allow
intervening at the right moment in order to assist the learner
in completing the course. In this paper, the dropout behaviour
of learners in a MOOC is thoroughly studied by first extracting
features that describe the behavior of learners within the course
and then by comparing three classifiers (Logistic Regression,
Random Forest and AdaBoost) in two tasks: predicting which
users will have dropped out by a certain week and predicting
which users will drop out on a specific week. The former
has showed to be considerably easier, with all three classifiers
performing equally well. However, the accuracy for the second
task is lower, and Logistic Regression tends to perform slightly
better than the other two algorithms. We found that features that
reflect an active attitude of the user towards the MOOC, such
as submitting their assignment, posting on the Forum and filling
their Profile, are strong indicators of persistence.

Index Terms—Massive Open Online Courses, Imbalanced
Classification, Temporal Dropout Prediction

I. INTRODUCTION

Massive Open Online Courses (MOOCs), as the name

suggests, are online courses open to anyone and aimed at

teaching large audiences for free. The only entrance barrier

to most of these courses is having access to a computer or a

smart device with an internet connection. This, among other

factors, causes them to have become increasingly popular over

the last few years and attract hundreds or thousands of users in

some cases. However, the number of students that effectively

complete the courses is significantly smaller, as the dropout

rate of many MOOCs is above 90% [1]. Having significant

amounts of data collected on the users within a course lends

itself well for quantitative statistical analysis with respect to

the factors indicative of completion or dropout.

This paper focuses on applying feature extraction and ma-

chine learning classification techniques on Maastricht Univer-

sity’s MOOC on Problem Based Learning in order to better

assess dropout behavior of learners. The contribution of this

paper is threefold: First, a methodology of extracting features

that describe user behavior within a MOOC (approach is

applied to a specific dataset but can easily be extended to

others as well) is described. Second, a machine learning frame-

work (comparing three different algorithms, namely Logistic

Regression, Random Forest and AdaBoost) to predict dropout

within a temporal context (i.e. which is the exact time that

a user will dropout) is presented. Finally, we conduct an

analysis on which features are strong indicators of dropout

(or persistence) from a MOOC. Novelty of this paper lies

in the combination of static and temporal features while

providing a straightforward machine learning framework for

both predicting and highlighting indicators for dropouts.

The rest of the paper is organized as follows. Section

II presents recent works relevant to dropout prediction. The

dataset used in this paper is presented in Section III, followed

by the methodology description in Section IV. Experimental

setup and results are presented in Section V and finally Section

VI concludes the paper.

II. RELATED WORK

There have been several approaches tackling user dropout in

MOOCs, but only a few take into account the temporal aspect.

In [2] authors utilized Hidden Markov Models to predict the

persistence of a user in a MOOC, however their accuracy is

not satisfying. Onah et. al [3] delve into finding predictors

of dropout by analyzing the behaviour and profile data of

users. They conclude that the presence of interactions between

users and tutors is a strong indicator of persistence, but their

conclusions are not supported by any machine learning algo-

rithm. Halawa et. al [4] explore many time related features,

in order to find strong indicators of dropout, however their

classification algorithm is very simple and could be improved.

All these works attempt to predict one week ahead, except for

[5] where they predict at three different time points during

the course and [6] where they provide predictions for all lags.

Current work goes beyond [6] by including profile information

of learners so that prediction is also available when the course

starts. Moreover, we compare three classification algorithms

and come up with a way to measure feature importance.

III. DATASET

As mentioned previously, the dataset used in this paper

is from Maastricht University’s MOOC on Problem Based

Learning that was offered from October till December of 2015.

In total, after removing duplicates, there were 2769 users

registered for the course, but only 358 of those completed it.
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This represents a dropout rate of 87%, which corresponds to

the rates found in similar literature [6]. It is interesting to note

that 75% of the users failed to submit any assignment, and of

those that submitted at least one assignment, 51% completed

the course. Furthermore, it out of the 37% of users that left

their profile empty, less than 1% completed the course.Figure

1 shows the number of users that dropped out and those that

remained per week.This graph shows a peak of dropouts in

week 0, corresponding to users that did not start, and slightly

decreasing trend for the rests of the weeks. Furthermore, it

shows that for most weeks the minority class, dropping out, is

a rare event and rationalizes the use of specific techniques and

metrics described in Sections IV and V for dealing with such

scarceness. The dataset is composed of profile data, course

activity data, forum data, video data and team data. All the

features have to be dated as the classifiers should not use data

posterior to the predicted week, hence team data and video

data are omitted due to the lack of temporal information.

Fig. 1. Number of users dropped out and remaining per week, where R
represents the remaining users and D the dropped out ones

IV. METHODOLOGY

The dropout prediction framework consists of two

main modules: the feature extraction and the predic-

tion/classification algorithm. These sections describe in detail

the process of constructing features from the data and the three

classification algorithms tested.

A. Feature extraction

The features extracted can be grouped into two different

sets. The first set contains the Profile Data features, which

are not fixed in time and thus the same ones are used for all

the predictions, regardless of the week predicted. The second

set consists of the Forum data features, the Course Activity

data features and the Google Hangout features. These are all

specific to each week, which means that to predict the dropouts

for a certain week, only features of that week and of the weeks

before it can be used. This set of features will be referred to

as the temporal features.

The Profile data features shown in Table I are all categorical

TABLE I
PROFILE DATA FEATURES

Label Definition [levels]

pd a Country of residence [113]

pd b Primary language [62]

pd c Gender [4]

pd d Biography

pd e* Track chosen [3]

pd f Range of age of the user [5]

pd g* Why choose this course? [4]

pd h* Role in education [5]

pd i Education experience [3]

pd j PBL experience [3]

pd k* Areas of interest [6]

pd l* Work schedule preference [3]

pd m Time-zone [25]

pd n Anxious to discover the content? [5]

pd o Determination to finish the MOOC [5]

pd p Learning objectives

pd q First MOOC? [2]

pd r* Medium for finding this MOOC? [5]

except for biography and learning objectives where the values

represent the standardized length of the text written by the

user. The features in bold are ordinal, which means that

they are ordered, and conversely the rest of the categorical

features which cannot be ordered, are said to be nominal. The

predictors followed by an * need some disambiguation:

• pd e: the user has to choose between one of the following

tracks:

– T1: Role of tutor in PBL

– T2: Designing PBL problems and courses

– T3: Assessment/organizational aspects of PBL

The track chosen will dictate which assignments must be

handed in.

• pd g: The user can choose one of the following motiva-

tions:

– Personal interest

– Expand professional network

– Increase career opportunities

– other

• pd h: The user can choose one of the following roles in

education:

– Curriculum manager

– Not involved

– Teacher

– Educational adviser

– other

• pd k: The user can choose one of the following areas of

interest:

– Arts - literature - philosophy

– Economics - Business - Trade

– Healthy body and healthy mind

– International relations - politics - law

– Science - Technology

– None of these - No difference

• pd l: The user can choose of the the following options

for his preferred work schedule:

– Synchronously
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TABLE II
TEMPORAL FEATURES

ID DESCRIPTION

f Interaction with the forum

fp Number of forum posts

fp l Average forum post length

fr ba Number of replies received

fr ba l Average length of replies received

fr ba u Number of distinct user that replied

fr ab Number of replies given

fr ab l Average length of replies given

fr ab p Number of distinct posts replied to

fc ba Number of comments received

fc ba l Average length of comments received

fc ba u Number of distinct users that commented

fc ab Number of comments given

fc ab l Average length of comments given

fc ab p Number of distinct posts commented on

[...] i*
All of the above containing ” ba” but

where the user replying is an instructor

a Assignment submitted

ar Assignment review submitted

gh Participated at Google Hangout session

– Asynchronously

– No preference

• pd r: The user can choose one of the following mediums

for finding the course:

– Professional network

– Social media

– Maastricht University’s website

– NovoEd website

– other

The features in italics have been dropped during early exper-

imental stages as it was observed that they did not positively

impact the predictions and that they slowed down the clas-

sifiers significantly. Furthermore, it is important to note that

each categorical feature has one more level which corresponds

to Not Communicated (NC) which means that the users left it

blank.

Table II shows the temporal features. All are numerical and

standardized, except for the ones in bold which are Boolean.

The features in italics have been dropped for the same reasons

as in Table I. Furthermore, ”[...] i” represents the 6 features

containing ” ab” but where the user replying is an instructor.

From the literature in Section II, it was expected that these

features would perform well. However, the instances in which

these features take positive values are very rare, which leads

to them decreasing the performance of the classifiers, hence

they have been dropped.

B. Logistic Regression

Logistic Regression is a classification technique widely used

for predicting the outcome of binary classes [7]. Given a

training set of N instances, let xi be the feature vector of

instance i = 1, 2, ..., N and be of length K + 1 for the K

features and xi0 = 1 as a dummy variable for β0.Let y be

the column vector of length N representing the binary class

of each instance.β is the column vector of coefficients of the

predictors computed by the logistic regression. The probability

that a given instance is predicted as a success is calculated by

the logistic function defined as follows:

πi = Pr(yi = 1|xi) =
1

1 + e−(βxi)
(1)

Hence, the probability that an outcome is a failure is equal to

1− πi.

1) Training: Maximum Likelihood Estimation (MLE) is

used to iteratively train the logistic regression. It estimates the

values of β such as to maximize the log-likelihood function

defined as follows:

�(β) =

N∑
i=1

yilog(πi) +

N∑
i=1

(1− yi)log(1− πi) (2)

To estimate β, it initiates with a set of random coefficients,

then at each iteration, it uses Newton’s method to find the

steepest gradient between the current predictions and the

actual classes, and updates the coefficients of the features

accordingly. It repeats the process until convergence of the

coefficients [8].

2) Feature selection: The significant number of features

extracted justifies the implementation of a feature selection

method to improve the model. The most important incentives

for using such techniques are decreasing the variance of

the coefficients, decreasing over-fitting, and increasing model

interpretability [9].

The feature selection method applied to the Logistic Re-

gression is the Elastic-net regularization. It is a weighted

combination of two other regularization techniques, namely

the Lasso and Ridge regressions. The idea is to minimize the

penalized negative log-likelihood (PNLL) function which is

defined as follows:

PNLL = −�(β) + λJ(β) (3)

Where −�(β) is obtained from Eq. 2, J(β) is the shrinkage

penalty and λ ≥ 0 is a tuning parameter which controls how

much weight is given to each term. The Elastic-net shrinkage

penalty is defined as follows:

JEN (β) = (1− α)
K∑

k=0

β2
k

2
+ α

K∑
k=0

|βk| (4)

Where α ∈ [0 : 1] is a tuning parameter controlling the weight

applied to each norm. When α = 0, a ridge regularization

is performed, whereas when α = 1 a lasso regularization is

performed. H. Zou et. al[10], who first proposed the elastic-

net approach, argue that it inherits the benefits of the Lasso

method, while at the same time being able to group strongly

correlated predictors. Both λ and α are tuned through cross-

validation, as will be explained in Section V-A.

C. Random Forest

Random Forest is an ensemble learning method often used

for classification and that has shown to perform well [11].

The main idea of this classifier is to create many decision

trees independently, through a technique called bagging, and
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combining their outputs in order to make predictions. To select

the best predictors, the decision trees use the Gini index

defined as follows:

IG(f) = 1−
J∑

i=1

f2
i (5)

Where fi is the fraction of instances of class i and J is the

number of classes. The lower the Gini index of a predictor,

the better it is at splitting the data.

1) Bagging: In order to overcome the fact that decision

trees are prone to overfitting the data, Random Forest uses

a specific implementation of a technique called bootstrap

aggregating (bagging) to grow many trees independently

and combine their results [12]. To do so, it samples with

replacement B times from the training set to generate B

new samples of equal size to the original one, and trains

a classification tree on each sample using
√
p randomly

selected predictors of the total p predictors available. Once

all the trees have been trained, the Random Forest will be

able to make predictions for unseen data by taking the mode

of the predictions of each tree .

D. AdaBoost

AdaBoost, akin to Random Forest, is an ensemble learning

algorithm that uses decision trees as weak learners in order

to obtain a strong learner. The main idea of this classifier is

to build decision trees sequentially through a technique called

boosting, such that each tree improves on the previous one.

AdaBoost is considered to be the first successful implemen-

tation of a boosting algorithm, and is still considered to be a

very good classifier for binary classes [13]. The decision trees

used in this classifier are similar to those used in Random

Forest, the only difference being that they generally only have

a depth of a few nodes.

1) Boosting: Boosting, in the context of decision trees,

consists of growing a tree on the training dataset where all the

samples have the same weights, then re-weighting the dataset

such that the weights of misclassified samples increase and

repeating the process for an arbitrary number of trees. Once

all the trees have been built, the final classifier combines the

predictions through a weighted vote approach, where each

weight is a function of the individual tree’s performance

measure.

2) Training: Let Z be the training set such that zn =
(xn, yn) for n = 1, ..., N where xn is the predictor vector

and yn ∈ {−1,+1} is the class label of instance zn. Then,

let W be the vector of weights associated to each training

instance and initiated such that W (zn) =
1
N
, ∀n ∈ N . Now,

for t = 1, ..., T with T being an arbitrary number of trees, let

St be the training set obtained by sampling with replacement

N times from Z with respect to the weights W and let ht(St)
be the tree trained on that dataset. The error of the weak learner

is calculated as follows:

εt =
∑

i:ht(xs)�=ys

W (zs), ∀zs ∈ St (6)

The weights of the misclassified instances are then increased

as follows:

W (zs) = W (zs)× eαt×I(ys �=ht(xs)), ∀zs ∈ St (7)

Where I(ys �= ht(xs)) is an indicator function that takes the

value 1 if the instance was misclassified and 0 otherwise. And

the parameter αt is defined as such:

αt =
1

2

(
1− εt

εt

)
(8)

Then, W is normalized in order to represent a distribution

function, and the steps of sampling, training and re-weighting

are repeated until T decisions trees have been generated. Once

all the trees have been trained, the AdaBoost classifier is

obtained by weighted majority voting defined as follows:

AdaBoost(x) = sign

( T∑
t=1

αtht(x)

)
(9)

V. EXPERIMENTAL SETUP

A. Training-validation

1) k-fold cross validation: K-fold cross validation (k-CV)

is used in order to train and validate the models. To do so,

it partitions the data into k equal sized samples (folds), then

k − 1 of those are used to train the model and the remaining

one is used to test the model. This process of training and

testing is repeated k times, using a different testing sample

every time. The performance metrics of the k iterations are

then averaged and used as an estimate of the performance of

the model. It has been shown that validating through k-CV

when one of the classes is relatively rare is generally one of

the best options [14]. The classifiers discussed in this paper

include hyperparameters that are tuned through k-CV. To avoid

ambiguity, the k-CV for evaluating the models will be referred

to as the outer loop and the one for tuning the hyperparameters

as the inner loop. This naming reflects the fact that the inner

loop k-CV is applied to each training set created in the outer

loop.

2) SMOTE: Synthetic Minority Over-sampling Technique

(SMOTE) is a method regularly used to improve the perfor-

mance of classifiers on datasets with rare events [15]. To do

so it synthesizes new samples of the minority class, dropouts

in our case, using k-Nearest-Neighbours. SMOTE is applied

to every training set created in the outer loop of the nested

k-CV, but never to the test sets, as these must reflect the real

distribution of the data.

B. Evaluation metrics

The choice of performance metrics is important as different

metrics assess different aspects of the models, and using an

inadequate one can be misleading. For instance, accuracy, one

of the most commonly used metrics for binary classification

tasks, is shown to be ineffective at representing the perfor-

mance of a model when the data set is imbalanced [16].

Table III represents a confusion matrix, which compares the

predicted classes to the reference values.
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TABLE III
CONFUSION MATRIX

Predicted
Pos Neg

Actual
Class

Pos (P) TP FN
Neg (N) FP TN

1) AUROC: The Area Under the Receiver Operating Char-

acteristic curve (AUROC) is a newer metric than the afore-

mentioned accuracy and has become the norm in measuring

the performance of binary classifiers [17]. It takes advantage

of the fact that most classifiers output probabilities instead of

binary classes. To do so, it calculates the relationship between

the True Positive Rate (TPR or Sensitivity or Recall) and the

False Positive Rate (FPR or Fall-out) while sweeping through

threshold values for the output probabilities. The TPR and FPR

are calculated as follows:

TPR =
TP

TP + FN
(10)

FPR =
FP

FP + TN
(11)

The ROC curve is then obtained by plotting the values

calculated with the different thresholds. Using this curve,

the AUROC is derived by calculating the area underneath it.

This one number metric summarizes the goodness of fit of

a classifier. J. Davis et. al[18] argue that the AUROC can

be overly optimistic if the dataset is highly imbalanced, and

propose to use other metrics such as the Area Under the

Precision-Recall Curve (AUPRC). However, in our scenario,

the cost of missing dropouts is considerably higher than the

cost of predicting too many dropouts. Hence, AUROC is

considered to be a more suitable metric.

2) F2 measure: The AUROC measures the performance

of the classifiers over all the thresholds of the outcome

probabilities, which is a good measure for comparing different

models within the experiments. But in order to measure how

well the classifiers would perform in a real life scenario where

hard class labels have to be predicted, we use the F2 measure.

This measure is a variant of the Fβ measure, which is defined

as follows:

Fβ = (1 + β2)
precision× recall

(β2 × precision) + recall
(12)

where β = 2, and precision is calculated as follows:

precision =

∑
TP∑

TP + FP
(13)

C. Experimental Results

Throughout the experiments we hold a few parameters fixed

in order to be able to compare the results . Each experiment

uses the k-CV approach where k = 10 for the outer loop and

k = 3 for the inner loop. The reason for choosing a relatively

small k value for the inner loop is because using greater ones

would result in having the test sets of the inner folds contain

too few positive cases, especially when predicting the exact

week of dropout.

1) State prediction: The first experiments are aimed at

predicting the state of the users, which comes down to

predicting which users will still participate from a certain

week on. Throughout this paper we described the dataset as

being unbalanced such that the dropouts are the minority class,

however this is reversed when predicting the states. Indeed,

all users that have dropped out already are still used for

future predictions, which means that for week 8 the remaining

users represent 13% of the data. Figures 2 and 3 show the

AUROC and F2 measures of the Logistic Regression trained

and tested on every lag/week combination. We omitted the

graphs corresponding to the same experiments using Random

Forest and AdaBoost because the values differed at most by

0.01 for a few lag/week combinations. We can see that both

the AUROC and the F2 measures are high throughout the

combinations, except for the predictions using only the Profile

features and for those of week 0 with a lag of 0. This shows

that all three algorithms perform very well for predicting

whether a user has dropped out by a certain week.
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2) Dropouts per week: The second set of experiments

focuses on predicting dropouts for each specific week. In this

scenario, the minority class becomes the dropouts, except for

week 0 as can be seen in figure 1. Furthermore, in order to

overcome the fact that the events of the minority class appear

only rarely in most of the weeks, we use the SMOTE technique

to over-sample the dropouts in the training sets. The Figures

4,6,7,8 and 9 show the AUROC and the F2 measures for

each of the classifiers. We directly see that these values are

lower than for the previous experiments, which was expected.

Week 7 has no values because no user dropped out during

that week. Furthermore, we notice an important difference

between the two metrics. This is mainly due to the fact that the

AUROC barely penalizes for predicting too many dropouts,

whereas the F2 measure highly penalizes this. Hence, the

low F2 measures reflect low precision values, but the recall

values are still relatively high. In other words, these algorithms

tend to predict too many dropouts which drastically lowers

the F2 score, however their performance at identifying those

that will actually drop out, which is captured in the recall,

is still quite good. Furthermore, the values for week 0 are

still very high, this is because many learners drop out that

week, hence the algorithms do not considerably overestimate

the number of dropouts. We can see that overall, AdaBoost

slightly outperforms the two other classifiers with respect to

AUROC, while Logistic Regression slightly outperforms the

two others with respect to the F2 measure.
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Fig. 4. AUROC measures for dropout week prediction with Logistic Regres-
sion

3) Feature importance: To be able to judge of the impor-

tance of the different features, we set up an experiment similar

to the previous one but we remove the users that did not

fill their Profile. The reason for this is that having left the

Profile empty is a very strong indicator of dropout and pushes

the coefficients of the Profile features down. As mentioned

previously, the number of temporal features increases as the

lag increases, therefore, we chose to combine the values of

different weeks of each feature while still taking into account

the temporal quality that they possess. Figure 10 shows the
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Fig. 5. AUROC measures for dropout week prediction with Random Forest
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Fig. 6. AUROC measures for dropout week prediction with AdaBoost

relative importance (RI) of each feature on a logarithmic scale.

These values are obtained from AdaBoost and are based on

the mean decrease in the Gini Index. No pre-processing is

done for the Profile Data features, however for the temporal

features we sum the relative importance for the different

values of each feature for each prediction. For example, if

the relative importance for a0, a1, a2 for week 2 are 0, 15 and

65 respectively, then a = 80 for that prediction. We can see

that ’a’ is almost ten times more important than any other

feature. Furthermore, we see that ’pd d’,’pd k’,’pd p’ and ’ar’

are relatively high compared to the other features. To reflect

how spread the weights of a certain temporal feature are over

time, we define a new metric, the temporal weight, which is

computed as follows:

TW(x) =

lag∑
i=0

RI(xi)

RI(x)
× (lag − i) (14)

Using the same values as the previous example, we would

obtain: TW(a) = 0
80 × 2 + 15

80 × 1 + 65
80 × 0 = 15

80 . We then

average these weights for each feature over all the predictions

to obtain the box plots shown in Figure 11. We see that ’a’,
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Fig. 7. F2 measures for dropout week prediction with Logistic Regression
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Fig. 8. F2 measures for dropout week prediction with Random Forest

which has been shown to be the most important feature, has

its values close to zero and only one outlier which implies

that it mainly gives weight to the latest features. This can

be explained by the fact that users either stop submitting

assignments or persist until the end,but seldomly skip an

assignment, hence looking more than one week back does not

provide new information. The rest of these features denote

activities which are not required to pass the course, which

makes them interesting because they reflect a latent variable

which can be defined as having an active attitude towards

the MOOC. We see that all of them have many outliers

and their range is significant, especially for ’fr ab’,’fp’ and

’fc ba’. This implies that their values are often composed

of the features of several weeks prior to the prediction. By

analyzing the results of our experiments, we found that all

these features are indicators of persistence rather than dropout.

This knowledge combined with the results shown in Figure

11 corroborates the hypothesis that Forum activity denotes an

active attitude towards the course. Furthermore, the significant

range of values suggests that the importance of these features

barely decays over time, which means that having shown this
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Fig. 9. F2 measures for dropout week prediction with AdaBoost

active attitude towards the course at some point in time is still

a strong indicator of persistence several weeks later.
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Fig. 10. Box plots of the relative importance of each Profile Data feature

VI. CONCLUSION

In this paper, a framework for extracting features from a

MOOC course was presented and then these features were

used as input to a classification system which is able to predict

whether a user will dropout or not, taking into account the

temporal dimension. In more detail, contributions of this paper

are as follows: Firstly, predicting which users will drop out at

some point is done with high accuracy for all three classifiers,
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Fig. 11. Box plots of the relative importance of each Profile Data feature

even when using only the Profile Data. This is not to be

translated that filling in the Profile leads to completing the

course, but it does demonstrate that asking users to do so is

important for teachers interested in predicting who will finish

the MOOC.

Secondly, predicting the exact week that a user will drop out

is considerably more difficult, and even when the lag is equal

to the predicted week results obtained are not always looking

good. This can be explained by the fact that there are few

dropouts per week which makes it difficult for the classifiers

to train and test, even when using k-CV. Furthermore, we

believe that if the Video Data and the Team Data had temporal

information, which would allow us to use them, better results

could be obtained.

Finally, we found some interesting indicators of dropout and

persistence. Although it is not a feature, we found that the

users who leave their Profile empty have a high probability

of dropping out, and this can be considered the strongest

indicator of dropout. The strongest indicator of persistence

is the assignment feature, which is the only feature that really

denotes whether a user is actively involved in the course or not.

Following this, we have a few features that reflect a hidden

variable which could be to have an active attitude towards

the MOOC. These features are the length of the Biography

and of the Course objectives. Lastly, the temporal weights’

graph showed us that the features which denote an active

participation of the user on the forum are relatively important.

Given a dataset with more active forum users, it would be

interesting to dig deeper into the relationship between Forum

activity and user persistence.

Despite this work brought interesting insights into the

dropout behaviour of users in a MOOC, there is still more

work to be done. First of all, aligning all features so that

they can be correctly projected on a temporal axis will

boost the timely (per-week) prediction accuracy. Furthermore,

current features can be combined with usage (log) statistics

on the actual website (clicks, active time, etc.). Finally, we

are looking forward to integrating the implemented approach

with a real MOOC in order to check real-time performance

and whether instructors are assisted in improving learners’

experience.
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