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Abstract—This paper develops a new method for coevolu-
tion, named Fitness-Diversity Driven Coevolution (FDDC). This
approach builds on existing methods by a combination of a
(predator-prey) Coevolutionary Genetic Algorithm (CGA) and
novelty search. The innovation lies in replacing the absolute
novelty measure with a relative one, called Fitness-Diversity.
FDDC overcomes problems common in both CGAs (premature
convergence and unbalanced coevolution) and in novelty search
(construction of an archive). As a proof of principle, Spring
Loaded Inverted Pendulums (SLIPs) are coevolved with 2D-
terrains the SLIPs must learn to traverse.

I. INTRODUCTION

The seminal work of Hillis [1] showed how predator-
prey coevolution could be used for optimisation. Inspired by
this work, numerous authors have applied coevolution across
multiple domains. At the same time, it has become clear
that coevolution has a number of potential shortcomings. One
problem is that coevolution may not always reach a global
optimum, e.g., cycling may occur. Another is that it may suffer
from premature convergence, which typically results in a loss
of diversity [2]. Third, the coevolution can become unbalanced
if evolving populations diverge from one another [3] and
one population becomes too strong too quickly, preventing
a gradual stepwise arms race between the populations. This
fitness divergence results in a lack of gradient and thus a halt
to evolution. To ameliorate these problems, several diversity
preserving methods have been proposed, including fitness
sharing [4] and crowding [5], [6]. Alternatively, Rosin and
Belew [7] proposed the use of an archive of old individuals,
called Hall of Fame.

Another approach is suggested by Lehman and Stanley
[8], who introduce novelty search, a different evolutionary
force which does not directly involve fitness but instead uses
novelty, a behavioural distance measure between current and
past individuals. This successfully allows a novelty-driven
genetic algorithm (GA) to evolve solutions that do not follow
the actual objective function and therefore, cannot be deceived
by it. However, their algorithm suffers from the drawback that
a history of past individuals must be maintained. This paper
builds upon their findings while avoiding the need to maintain
such a history.

This paper integrates novelty search in the Coevolutionary
Genetic Algorithm (CGA) introduced by Paredis [9]. The
structure of the CGA allows for the integration of novelty
search in an easy and straight-forward way. To illustrate this,

a simple coevolutionary application is used to demonstrate
the implications of this integration and to provide a proof of
principle of the complementarity of coevolution and novelty
search.

The application used here, is the control of spring loaded
inverted pendulums (SLIPs) over 2D-terrains [10]. A SLIP
consists of a stiff spring attached to a point mass and is
often used to model walking, running and jumping in monoped
[11], biped [3] and multiped [12] simulations. A SLIP usually
has a single control parameter (its angle of impact) and
three dependent morphological parameters (mass, length and
stiffness). Thus the SLIP follows the motion cycle as shown
in figure 1. It has been shown [11] that SLIPs already exhibit
self-stabilisation without active control; however, it is rather
difficult to control them on rough terrain. In this paper, SLIP
controllers are coevolved with terrains the SLIPs must traverse.
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Fig. 1. A SLIP in motion. m = mass, L = rest length, k = spring constant,
α = angle of attack.

The SLIP population uses a standard fitness evaluation,
while the terrains use novelty search. The proposed algorithm,
which is called Fitness-Diversity Driven Coevolution (FDDC),
is then compared with the standard CGA where both popula-
tions are fitness based.

The paper is structured as follows: First, the general de-
sign of a CGA is described. Next, the idea behind novelty
search is elaborated. Section IV describes FDDC and explains
how adding novelty to CGAs achieves Fitness-Diversity. The
following section provides experimental results obtained via
FDDC. Section VI discusses the results and a section of future
research is provided. Finally, conclusions are drawn.
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II. NOVELTY SEARCH

In their initial work on novelty search, Lehman and Stanley
[8] showed how an objective function can be misleading and
why it can be best to ignore the objective altogether. In
order to reduce the algorithmic complexity for solving difficult
optimisation problems, simple objective functions approximate
the distance to the optimisation goal. This simplicity, however,
comes at a cost.

One of the problems of optimisation is that most heuristics
include dead-ends in their solution-space. Consider navigating
a maze: a simple objective function could be to minimise the
Euclidean distance to the maze exit. Here, the distance could
be iteratively reduced by moving in the direction to the goal.
Unfortunately, there often exists paths through a maze that
initially point to the goal but later become dead-ends. Most
optimisation algorithms find such dead-ends difficult to escape
– they have been deceived by a poorly specified objective
function.

Novelty search avoids deception by ignoring the objective
altogether. It does this by developing solution attempts, which
are simply different, or novel, from those previously tried.
However, in order to make such comparison, it has typically
been necessary to keep a history of all previous attempts.
These histories are often called archives. Moreover, because
novelty search ignores the objective, and thus the information
contained within it, it can take an a priori unknown large
number of cycles to reach the objective.

Furthermore, novelty search can only be successful if the
measure of novelty is appropriately defined [8]. Typically, the
behaviour shown by an individual is categorised and a distance
measure as an indicator for novelty distance is defined on these
categories i.e., the end-point reached in a maze or the full path
traveled could be defined as the behaviour, where a simple
distance measure defines the novelty. However, choosing a
good representation might be as difficult as choosing the right
objective function.

The following section will describe the general CGA which
is used here to solve the problems of novelty search discussed
above.

III. COEVOLUTIONARY GENETIC ALGORITHM

A CGA is a genetic algorithm (GA) which uses two
evolving populations. This section paraphrases the description
of the CGA developed by Paredis [9]:

Two populations are created. The first population is called
the solution population, and the second population is called
the problem population. All individuals from both populations
are initialised with a uniformly random distribution. Individu-
als are evaluated in encounters between both the populations.
Each encounter results in a behaviour. The objective function
awards a score/fitness to each behaviour. However, because
there are multiple solutions and problems, the overall score of
an individual is determined by several encounters (in this paper
20 encounters). Each individual’s total score is the aggregation
of its encounters. The explicit aggregation is irrelevant as
long as the total order is preserved; hence, taking either the

average or the sum of scores is sufficient. Usually, a predator-
prey relationship exists between the solutions and problems ,
although symbiotic relations are possible [9]. Therefore, the
fitness score for a solution has a positive value, and the score
for the problem has a negative value. Hence, the success of a
solution is the failure of the problem and the other way around.
Both populations are then sorted in order of their fitness value.

After the initialisation of the two populations and the
calculation of their fitness, the algorithm executes the cycle
described by the pseudo-code given below. First, encounters
(here 20) occur between selected solutions and problems. The
selection is solely influenced by an individual’s rank in its
population, and hence the actual fitness score is irrelevant.
The advantages of rank-based selection have been shown by
Whitley with his GENITOR algorithm [13]. This paper uses a
selection bias of 1.5, meaning that the top ranked individuals
are 1.5 times more likely to be selected than individuals in the
centre of the ranking. Each encounter results in a novel fitness
score which updates the total score of the involved individuals.
The new fitness score removes the fitness score of the oldest
encounter that is still in the history. Hence, the history of an
individual’s latest encounters (here 20) define its total score.
The updated total score can result in a change in ranks in each
population. This concludes the evaluation phase of a cycle (see
first loop of the pseudo-code).

In the subsequent reproduction phase (see second loop of
the pseudo-code), each population generates a single offspring,
and the lowest ranked individual is removed. The same selec-
tion procedure as used in the encounter selection is applied
to both populations to choose two parents each. The genetic
information of both parents is combined by 2-point crossover.
Furthermore, on average, a single gene mutates by shifting the
gene’s value by a small amount (here 0.001) with a probability
(here 0.6) or is re-initialised uniformly with another probability
(here 0.4) (see later in table IV). Each new individual is
immediately evaluated the appropriate number of times to fill
up their history by the matching process as explained above.
The individual is then inserted into the sorted population
according to its rank while removing the least fit individual to
maintain a constant population size. In the case that the new
individual is less fit than the lowest ranked individual, it is
effectively not inserted in the population i.e., the population
remains unchanged.

DO 20 TIMES
ind1 := SELECT(pop1); ind2 := SELECT(pop2)
payoff := EVALUATE(ind1, ind2)
UPDATE-HISTORY-AND-FITNESS(ind1, payoff)
UPDATE-HISTORY-AND-FITNESS(ind2, -payoff)

ENDDO

FOREACH pop IN (pop1, pop2)
p1 := SELECT(pop); p2 := SELECT(pop)
child := MUTATE-CROSSOVER(p1, p2)
f := INIT-HISTORY(child)
INSERT(child, f, pop); ENDFOREACH



The following section describes how combining the CGAs
and novelty search can solve the problems arising in each of
these approaches separately.

IV. FITNESS-DIVERSITY DRIVEN COEVOLUTION

Fitness-Diversity Driven Coevolution (FDDC) is the result
of combining a CGA with the concept of novelty search
without using an archive.

To avoid the difficulties of defining a separate novelty
measure, the fitness score is reused and also defined as the
novelty measure. However, while fitness is relative in the CGA
context, but novelty measure generally requires an absolute
measure of novelty. The relativity of the new novelty measure
makes it impossible to construct an archive to compare active
individuals with preceding ones from earlier cycles. However,
because the problem set changes simultaneously, the archived
results cannot be compared to the latest results due to the
changed problem set. Hence, the novelty measure is only
valid for the current state of the population and in other
words simply measures the diversity of fitness values. Thus,
this paper terms the new approach Fitness-Diversity Driven
Coevolution (FDDC) rather than Novelty Driven Coevolution.

In order to add Fitness-Diversity to the CGA described in
section III only a small number of changes are necessary.

The first change is to modify the ranking function of either
the solution or the problem population. Instead of ranking
by fitness scores, the minimal difference in terms of fitness
between each individual determines an individual’s rank (see
equation 1 defined in [14]). The process can best be understood
as a two-step process. First, the population is sorted by fitness.
Then the population is re-sorted by the fitness difference
towards the nearest neighbour i.e., the individual above or
below in the initial sorting of the first step. Thus, the best
individual is now the individual whose fitness differs the
most from the fitness of the other individuals. Hence, the
optimisation process for the re-sorted population is going to
maximise the differences between fitness scores rather than
maximising the fitness score. Optimisation of local fitness
scores on an individual level are replaced by a population-wide
Fitness-Diversity optimisation. In a single population scenario,
the above describes novelty search without an archive, where
the active state of the population instead maintains all novelty
information. However, in a coevolutionary setup where the
opposing population remains driven by fitness-only, the effects
are different.

fitnessdiversity(i) =min
∀j 6=i
|fitness(i)− fitness(j)|,

∀i, j ∈ Population
(1)

FDDC creates a strong dynamic between solution and prob-
lem population beyond the predator-prey relationship. First, in
contrast to novelty search, the ‘novelty’ information which is
solely stored in the population changes over time. Novelty
is always computed relative to the current characteristics
of the opposing population. The interaction between both
populations defines the extent of the novelty space, and the

interaction between a Fitness-Diversity driven and a fitness-
driven population balances both populations in terms of fitness,
thereby actively avoiding the unbalanced coevolution problem
found in general CGAs.

Furthermore, FDDC actually reintroduces the overall objec-
tive which was removed in novelty search. Fitness-Diversity
causes the novelty-space to expand by increasing the dif-
ferences between individuals. On the other hand, the fitness
driven population causes the novelty-space to move across
the fitness landscape. One way to understand this is to think
of pure fitness driven optimisation as water following the
gradient of the ‘objective function’. Once reaching a steep
slope, the rest of the water (the population) is likely to follow.
Fitness-Diversity, however, is better thought of as a cloud
of gas, which expands in all directions. This cloud is still
driven by the objective function though it moves as a whole.
This way, a broader part of the search space is covered,
which makes getting caught in a local extrema in the fitness
landscape less likely. Hence, an algorithm using Fitness-
Diversity can avoid premature convergence while still being
guided by the objective function. Further, due to the coupling
between the populations, this holds for both populations. The
application of FDDC on sample problems in the following
sections will show these effects.

V. EVOLVING SLIPS AND TERRAINS

The following section briefly explains the setup of the
experiments by giving first the definition of the SLIPs, the
terrains and the configuration of the genetic algorithm.

A. SLIPs

The SLIP model has only three morphological parameters,
which are: its mass, the length of the spring and the spring
constant. Furthermore, the simulation of the physics of the
SLIPs (described below) requires additional variables, which
are summarised in the following Table I.

Simulation Variables
m Mass of the spring
L Rest length of the spring
l Current length of the spring
k Spring constant
α Angle of the spring
x Horizontal coordinate of the point mass
y Vertical coordinate of the point mass
ẋ Horizontal velocity of the point mass
ẏ Vertical velocity of the point mass
g Vertical acceleration of the gravity
sx Horizontal coordinate of the spring tip
sy Vertical coordinate of the spring tip
T Terrain
FT (x) Function returning height of terrain T at x.

TABLE I
VARIABLES OF THE SLIP PHYSICS SIMULATION.

Deploying a SLIP on a terrain can be either done by
dropping it from a certain height and/or initialising the model
with an initial velocity vector. If a SLIP’s passive or active
control is well-behaved, the spring enters a following motion



cycle which can be divided into two phases, a Flight Phase
and a Stance Phase, as shown in Figure 1.

Flight Phase: while the SLIP is not in contact with the
ground, its motion simply follows the ballistics of its point
mass. Once the tip of the SLIP touches the ground, it enters
the second phase.

Stance Phase: the SLIP is now in contact with the ground.
Here, the SLIP’s angle α when touching the ground influences
the outcome of the Stance Phase. This angle is usually referred
to as angle of attack (see α in Figure 1). The point mass is
still accelerating in the vertical direction due to gravity, but
the spring begins to convert the kinetic energy of the SLIP
system into potential energy. Once the potential energy of the
spring is equal to the kinetic energy, the process gets reversed.
The spring starts to expand and pushes the point mass away
from the ground. The fully expanded spring converts enough
kinetic energy to pull the spring off the ground and the system
enters the Flight Phase again.

Overall the SLIP is an energy conserving system. Given the
SLIP’s stance point (sx,sy), the angle and current length can
be computed. The state vector in (2) and the following system
of differential equation (3) fully describes the motion of the
SLIP during the Stance Phase.

s =


x
y
ẋ
ẏ

 (2)

ṡ =


ẋ
ẏ

k(L−l) sin(α)
m

k(L−l) cos(α)
m + g



=


ẋ
ẏ

k(L−
√
hx2+(x−FT (sx))2) sin(α)

m
k(L−
√
hx2+(x−FT (sx))2) cos(α)

m + g


where hx = x− sx and α = arctan(hx, x− FT (sx))

(3)
For brevity the trivial ballistic equation for the Flight Phase

is not given here, but can be found in [14].

B. Terrains

The terrain characteristic has a significant influence on
the SLIPs motion and success. Therefore, a terrain generator
which can produce a broad range of different terrains is
required. Additionally, it is helpful to use a generator with
easily controllable parameters.

The midpoint-displace algorithm used in this paper is one
commonly used for 2D terrain generation in side-scrolling
games [10] and is well understood. This algorithm, also known
as diamond-square algorithm [15], has only four parameters:
(height (h), roughness (r), displacement (D), resolution (p)).
Nevertheless, it is capable of producing a broad range of
terrains.

resolution = 0

resolution = 1

resolution = 2

resolution = 3

~D

h

~rD

~r²D

Fig. 2. Output of the terrain generator with unchanged roughness (r), base
height (h) and maximal displacement (D) at different levels of resolution.
Filled dots indicate midpoints used in the creation for next resolution level.
Empty dots indicate the latest displaced midpoints at the current resolution
level.

The implementation below is a minor adaptation of that
found in [10]. The usual implementation generates terrains
of finite length, while this paper applies sectioning to create
terrains of infinite length. Sections are joined by taking their
endpoints and forcing them to the same height, therefore,
making it easier to connect adjacent sections. Next recursively
all midpoints between the current points are selected and
shifted according to the displace and roughness parameter. The
recursion stops once a defined resolution is reached, Figure 2
illustrates the process of terrain generation.

C. Genetic Algorithm

The CGA evolves two populations. The first population
consisting of SLIPs has three morphological characteristics:
mass (m), rest length (L) and a constant spring constant term
(z) of the parametrised function (5) defining the effective
spring constant. The SLIP controller controls the angle of
attack (Equation 4) taken from [16], during the Flight Phase
and the spring constant during the Stance Phase (Equation 5).
Both functions are parametrised and these parameters (a,b,c)
are also evolved by the GA.

angle : α = a ẋ+ b (4)

spring constant : k = c (1− l

L
) + z (5)

Overall the GA has six control parameters to evolve:
a,b,c,m,L,z. A single, floating point value encodes each control
parameter. Predefined bounds (Table II) restrict the value



range of the control parameters such that only physically and
morphologically correct values are allowed.

control parameter low bound high bound
a ẋ (a) -0.5 0.5
b (b) -0.5 0.5
c (1− l

L
) (c) 0.1 1.0

spring constant (z) 0.1 5.0
rest length (L) 0.5 3.0
mass (m) 10.0 150.0

TABLE II
BOUNDS ON THE SLIP CONTROL PARAMETERS.

The objective function, i.e. fitness, for the SLIP population
used in the experiments is defined as the distance traveled in
the positive direction of the x-axis. Due to the predator-prey
relation between SLIPs and terrains, the fitness of the terrains
is simply the negative fitness value of the encountered SLIPs.

The second population of the CGA are the terrains. All five
control parameters explained in section V-B are evolved and
their ranges are also bounded (Table III).

control parameter low bound high bound
height (h) 0.0 50.0
roughness (r) 0.0 1.0
displacement (d) 0.0 50.0
resolution (p) 0.0 10.0
seed (s) 0.0 100.0

TABLE III
BOUNDS ON THE TERRAIN CONTROL PARAMETERS.

Both GAs for evolving the SLIPs and terrains respectively
use identical parameters shown in Table IV. To ensure that
slightly altering the GAs parameters has no significant impact
on the results obtained, a sensitivity analysis per parameter
was performed.

GA Parameter value
SLIP population size 50
Terrain population size 50
Expected number of crossovers 1
Expected number of mutations 1
Shuffle mutation probability 0.4
Change mutation probability 0.6
Delta change 0.001
History size 20

TABLE IV
PARAMETERS USED FOR THE GA.

The following section describes and discusses the results
obtained.

D. Advanced CGA

The classic CGA (see section III) often leads to premature
convergence. To avoid this behaviour, the advanced CGA
proposed by Paredis [17] is used, where instead of fixed
reproduction rates (1 per cycle), each population’s reproduc-
tion rate depends on its fitness. The reproduction rate of the
solution population negatively correlates with its fitness. On
the other hand, the reproduction rate of the problem population

positively correlates with its fitness (figure 3). The following
pseudo-code replaces the second part of the pseudo-code given
in section III in order to enforce the balance.

IF RANDOM(0.0, 1.0) < 1-
BEST-FITNESS(pop1) / MAX-FITNESS:

p1 := SELECT(pop1)
p2 := SELECT(pop1)
child := MUTATE-CROSSOVER(p1, p2)
f := INIT-HISTORY(child)
INSERT(child, f, pop1)

ENDIF

IF RANDOM(0.0, 1.0) <
BEST-FITNESS(pop2) / MAX-FITNESS:

p1 := SELECT(pop2)
p2 := SELECT(pop2)
child := MUTATE-CROSSOVER(p1, p2)
f := INIT-HISTORY(child)
INSERT(child, f, pop2)

ENDIF

The code above unfortunately introduces a new parameter
MAX-FITNESS which in most cases is a priori unknown and
must also be estimated.
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Fig. 3. Adaptive reproduction rate in the modified CGA for solution and
problem population.

VI. RESULTS AND DISCUSSION

To measure the performance objectively across different
runs, a fixed set of SLIPs and terrains were created by
sampling their respective parameter space uniformly. These
benchmark sets are then used to compute comparable perfor-
mance scores. In the case of the terrains, the inverse of the



performance is used as an indicator of the terrain’s difficulty.
The following subsections illustrate and elaborate on the
results obtained.

A. Comparing CGA and FDDC
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Fig. 4. Average maximum SLIP performance per cycle over 10 runs.

Figure 4 shows that Fitness-Diversity outperforms the CGA.
Fitness-Diversity reaches higher benchmark scores already
from the earliest cycles, and remains there throughout.

In addition, the standard deviation is lower for the FDDC
than for the CGA. This indicates that FDDC produces more
reliable and consistent results. Additionally, the overall per-
formance of the FDDC algorithm converges towards a higher
level than the CGA, see figure 5.

Figure 6 shows the difficulty levels of the terrain population.
Here, the continuous increase of average difficulty of the CGA
can be observed. The FDDC on the other hand quickly reaches
a stable level of difficulty. At the same time FDDC maintains
a set of very challenging and easy terrains. Moreover, the min-
imal, average and maximal difficulty encountered in the CGA
begins to converge towards solely difficult terrains. Hence,
FDDC is able to maintain a diverse set of terrain, in contrast to
the CGA, which completely loses terrain diversity in the long
run. Additionally FDDC is able to evolve functional SLIPs in
all runs. However, the CGA was unable to evolve SLIPS in
run three and six.

The density plots in figure 7 show that CGA mostly evolves
populations of terrains which have very little diversity. Most
of the evolved terrains are very difficult. Furthermore, in
one run (run 4) the terrain difficulty did not evolve at all.
This indicates that the SLIP population converged prematurely
towards simple but unwanted motion, i.e. falling as far as
possible rather than coordinated jumps (see the spike in run 4
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0%

10%

20%

30%

40%

50%

0%

10%

20%

30%

40%

50%

0%

10%

20%

30%

40%

50%

0.
0

0.
2

0.
4

0.
6

0.
0

0.
2

0.
4

0.
6

0.
0

0.
2

0.
4

0.
6

Benchmark performance

P
er

ce
n
ta

g
e 

o
f 

p
o
p
u
la

ti
o
n

algorithm CGA FDDC

Fig. 5. Distribution of SLIP performance in the final cycle in each of 9
samples.

Fig. 6. Average terrain difficulty per cycle over 10 runs (solid and dotted
line). The areas show the minimal and maximal average terrain difficulty for
both algorithms.

in Figure 7). On the other hand, the distributions of terrains
of the FDDC simultaneously contain both easy and difficult
terrains.
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Fig. 7. Distribution of the terrain difficulty in the final cycle in each of 8
samples.

B. Differences from Random selection

Additional experiments were run where the terrain selection
process was replaced by purely random selection, demonstrat-
ing that Fitness-Diversity is indeed actively creating a diverse
set of terrains and that the same results cannot be achieved by
a completely random process. As expected the terrains evolved
by a random process were mostly trivial and did not represent
a challenge for the slips, as shown in figure 8.

C. Other Novelty Measures

In the preceding experiments, novelty search was based
on fitness. In the following experiments, fitness novelty was
replaced by genotype novelty. The original results can be
found in [14]. Here, the genotype novelty search used a
Manhattan distance measure to rank individuals by normalised
differences in their genotype, while keeping all other settings
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Fig. 8. Average maximal terrain difficulty per cycle over 10 runs.

identical to the other experiments. Again, an archive was not
used to provide comparable conditions.

The results indicated that genotype novelty search performs
significantly (p-value < 0.001) worse than Fitness-Diversity.
The genotype novelty search failed due to the size of the
genotype parameter space, consisting of six and five control
parameters for SLIPs and terrains respectively. The Genotype
novelty search was not fitness driven and therefore had only
a small chance of finding the sparse sets of valid control
parameters. Fitness-Diversity, remained partly fitness driven
and could focus its resources on more promising areas in
the parameter space. Thus, the population’s sizes could be
kept small for Fitness-Diversity while genotype novelty search
would have required much larger population sizes.

Fitness-Diversity simply utilises existing information more
efficiently than most other approaches, and requires no addi-
tional parameters or storage structures.

D. Further Experiments

This paper applies Fitness-Diversity to the problem popula-
tion. However, it is also possible to apply Fitness-Diversity to
the solution population, or to both the problem and solution
populations simultaneously. Thus, there are two more combi-
nations where at least one population uses Fitness-Diversity.
These settings are further explored in [14], the following will
briefly describe the results obtained and summarise the key
findings.

Table V compares the CGA with these three different
Fitness-Diversity combinations: Fitness-Diversity used on the
problem population (FDDC-P i.e. the FDDC algorithm dis-
cussed in this paper), further Fitness-Diversity used for the
solution population (FDDC-S) and finally Fitness-Diversity
applied to both solution and problem population (FDDC-SP).
Notice that all FDDC algorithms outperform the CGA in the
long run, however the FDDC-P algorithm yields the highest
performance and shows the quickest convergence.



Algorithm / Cycle 0 800 1600 2400 3200 4000
CGA (baseline) .06 .32 .48 .50 .46 .48
FDDC-P (relative) 0.0 0.0 +.02 +.08 +.20 +.22
FDDC-S (relative) 0.0 -.08 -.06 -.08 0.0 +.02
FDDC-SP (relative) 0.0 -.20 -.08 0.0 +.04 +.14

TABLE V
BENCHMARKED SLIP PERFORMANCE OF DIFFERENT FITNESS-DIVERSITY

DRIVEN ALGORITHMS RELATIVE TO THE CGA ALGORITHM. AVERAGES
OVER 10 RUNS.

Further, table VI shows the average terrain difficulty for
the same runs as in table V. It can be seen that the terrain
difficulty of the FDDC-S setup does not converge towards very
difficult terrains, even though the terrains are similarly driven
by fitness like in the CGA setup. This highlights the interaction
and mutual influence of both populations on each other in the
Fitness-Diversity driven setups. Additionally, despite that the
average terrain difficulty remains very low, the FDDC-SP setup
achieves similar SLIP performance compared to the FDDC-P
setup. That is, because due to the Fitness-Diversity criterion
the individuals of each population are sparsely spread across
the search space.

Algorithm / Cycle 0 800 1600 2400 3200 4000
CGA (absolute) 0.0 .50 .68 .56 1.0 .96
FDDC-P (absolute) 0.0 .52 .60 .52 .49 .60
FDDC-S (absolute) 0.0 .28 .60 .44 .52 .60
FDDC-SP (absolute) 0.0 0.0 0.0 .12 .12 0.0

TABLE VI
BENCHMARKED TERRAIN DIFFICULTY OF DIFFERENT FITNESS-DIVERSITY
DRIVEN ALGORITHMS AND THE CGA, WHERE 0.0 MEANS EASY AND 1.0

MEANS HARD. AVERAGES OVER 10 RUNS.

These experiments show that Fitness-Diversity can improve
the performance of the CGA in various ways not only by
applying Fitness-Diversity to the problem population.

VII. FUTURE RESEARCH

Future research will investigate whether using Fitness-
Diversity on both populations might be lead to even greater
performance or flexibility improvements than already found
here.

In addition, it should be possible to generalise the applica-
tion of Fitness-Diversity to other domains. In this context, the
author experimentally applied Fitness-Diversity in the context
of robot maze navigation for evolving RNNs (recurrent neural
networks) with promising initial results.

Furthermore, other diversity measures could be tested to see
whether they improve the performance i.e., multiple nearest
neighbours could be taken into account for determining the
Fitness-Diversity scores.

VIII. CONCLUSION

This paper integrates coevolution and novelty search to
create a versatile Fitness-Diversity driven algorithm called
FDDC. It actively avoids the potential for deception by the
objective function and is thus less likely to suffer premature

convergence. Furthermore, the self-balancing dynamics exhib-
ited by the new type of coevolution compensates for the coevo-
lutionary problem of unbalanced coevolution. Importantly, the
FDDC algorithm does not introduce extra parameters relative
to the CGA and also does not require the use of an archive (as
used in novelty search). Further, FDDC is applicable to CGAs
in various ways. Comparison with random search shows that
Fitness-Diversity significantly improves performance.

Finally, it has been shown that the FDDC algorithm is
capable of evolving robust SLIP controllers while at the same
time removing the need to predefine appropriate test terrains.

REFERENCES

[1] W. D. Hillis, “Co-evolving parasites improve simulated evolution as
an optimization procedure,” Physica D: Nonlinear Phenomena, vol. 42,
no. 1, pp. 228–234, Jun. 1990.

[2] G. Squillero and A. Tonda, “Divergence of character and premature
convergence: A survey of methodologies for promoting diversity in
evolutionary optimization,” Information Sciences, vol. 329, pp. 782–799,
Feb. 2016.

[3] S. Ficici and J. B. Pollack, “Challenges in Coevolutionary Learning:
Arms-Race Dynamics, Open-Endedness, and Mediocre Stable States,”
in Proceedings of the Sixth International Conference on Artificial Life.
MIT Press, 1998, pp. 238–247.

[4] D. E. Goldberg and J. Richardson, “Genetic algorithms with sharing
for multimodal function optimization,” in Genetic Algorithms and Their
Applications: Proceedings of the Second International Conference on
Genetic Algorithms. Hillsdale, NJ: Lawrence Erlbaum, 1987, pp. 41–
49.

[5] K. A. D. Jong, “An Analysis of the Behavior of a Class of Genetic
Adaptive Systems,” Ph.D. dissertation, 1975.

[6] S. W. Mahfoud, “Crowding and preselection revisited,” Urbana, vol. 51,
p. 61801, 1992.

[7] C. D. Rosin and R. K. Belew, “New methods for competitive coevolu-
tion,” Evol Comput, vol. 5, no. 1, pp. 1–29, 1997.

[8] J. Lehman and K. O. Stanley, “Abandoning objectives: Evolution through
the search for novelty alone,” Evol Comput, vol. 19, no. 2, pp. 189–223,
2011.

[9] J. Paredis, “Coevolutionary computation,” Artif. Life, vol. 2, no. 4, pp.
355–375, 1995.

[10] J. Brown, “Simple 2d Terrain With Midpoint Dis-
placement,” http://www.somethinghitme.com/2013/11/11/
simple-2d-terrain-with-midpoint-displacement/, Nov. 2013.

[11] G. Piovan and K. Byl, “Enforced symmetry of the stance phase for
the Spring-Loaded Inverted Pendulum,” in 2012 IEEE International
Conference on Robotics and Automation, May 2012, pp. 1908–1914.

[12] R. Altendorfer and others, “Evidence for Spring Loaded Inverted Pen-
dulum Running in a Hexapod Robot,” in Experimental Robotics VII, ser.
Lecture Notes in Control and Information Sciences. Springer Berlin
Heidelberg, 2001, no. 271, pp. 291–302.

[13] D. Whitley, “The GENITOR Algorithm and Selection Pressure: Why
Rank-Based Allocation of Reproductive Trials is Best.” San Mateo:
CA. Morgan Kaufmann Publishers, 1989, pp. 116–121.

[14] F. Fränz, “Fitness-Diversity driven Coevolution of Spring Loaded In-
verted Pendulums and Terrains,” B. Sc. Thesis, Department of Data
Science and Knowledge Engineering, Maastricht University, Maastricht,
unpublished manuscript, Jun. 2016.

[15] A. Fournier, D. Fussell, and L. Carpenter, “Computer Rendering of
Stochastic Models,” Commun. ACM, vol. 25, no. 6, pp. 371–384, Jun.
1982.

[16] M. Howard, “Morphology and Control Optimisation of the Spring
Loaded Inverted Pendulum Model Using Genetic Algorithms,” B. Sc.
Thesis, Department of Data Science and Knowledge Engineering, Maas-
tricht University, Maastricht, unpublished manuscript, Jun. 2015.

[17] J. Paredis, “Towards Balanced Coevolution,” in Parallel Problem Solv-
ing from Nature PPSN VI, ser. Lecture Notes in Computer Science,
M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo,
and H.-P. Schwefel, Eds. Springer Berlin Heidelberg, Sep. 2000, no.
1917, pp. 497–506.


