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INTRODUCTION 26	

Atrial fibrillation (AF) is a common cardiac arrhythmia that progresses over time. As 27	

demonstrated by both invasive(1) and non-invasive(2) assessment of the 28	

electrophysiological properties of AF, the incidence of local conduction 29	

heterogeneities or conduction block and the number of fibrillation waves increases 30	

with the duration of AF episodes. AF is classified as paroxysmal or persistent, 31	

depending on AF episode duration and cardioversion attempts undertaken.(3) A 32	

decision on rhythm control strategy is based on this classification, the patient’s 33	

symptoms, and physician’s and patient’s preference. Whether a patient will respond 34	

to rhythm control therapy is difficult to predict. Moreover, any kind of rhythm control 35	

strategy is associated with considerable risks, such as ventricular pro-arrhythmia in 36	

case of anti-arrhythmic drug therapy or procedural risks caused by AF ablation. 37	

Predicting acute and long-term success of AF treatment at any stage of the disease 38	

is therefore desirable and subject to extensive research.(4)  39	

Progression of AF is characterized by an increase in number of fibrillation waves, 40	

caused by increasing incidence of conduction block in the atria as a consequence of 41	

a progressive structural remodelling.(1) The standard 12-lead ECG is an attractive 42	

choice for non-invasive assessment of the level of AF complexity because of its 43	

widespread use in daily clinical practice. However, whether AF complexity quantified 44	

from the surface ECG can be employed in a clinical setting to predict treatment 45	

outcome and ultimately guide management of AF, still has to be established. In the 46	

recent past, many complexity parameters derived from the 12-lead ECG have been 47	

proposed.(4,5) Although several studies report encouraging results in either 48	

classifying AF or predicting treatment outcome, it is not a straightforward task to 49	

compare and interpret these results, because of large differences in patient 50	

populations, the parameters computed on the ECG, and the specific clinical setting. 51	
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There is a clear need for standardization of ECG-based AF complexity analysis to 52	

predict response to therapy and develop an individualised treatment strategy.(5,6)   53	

To address these issues, we investigated a large set of ECG-derived AF complexity 54	

parameters and their ability to predict successful outcome of pharmacological 55	

cardioversion (PCV) using flecainide in patients with recent onset AF. Long-term 56	

implications of observed AF complexity were investigated by associating AF 57	

complexity prior to cardioversion to progression to persistent AF. Our study shows 58	

that ECG parameters outperform commonly used clinical predictors in the setting of 59	

PCV and in the prediction of long-term progression to persistent AF. 60	

 61	

METHODS 62	

Patient database 63	

Patient data were retrieved from a database at Maastricht University Medical Center, 64	

Maastricht, the Netherlands, of consecutive patients with short lasting episodes of AF 65	

(< 48h, recurrent or new onset AF) undergoing first time cardioversion with the anti-66	

arrhythmic drug flecainide between the years 2008 and 2012. Exclusion criteria were 67	

the use of anti-arrhythmic drugs (AAD) less than 5 half-lives prior to the PCV attempt, 68	

use of additional medication during the PCV procedure, and a missing or poor quality 69	

ECG (assessed visually). A total of 221 patients were included in this study. Patient 70	

characteristics are listed in Table 1.  71	

Echocardiographic parameters were included if echocardiography was recorded 72	

within one year before or after the PCV attempt (available in 139 patients). A 10-73	

second 12-lead ECG was recorded during AF for each patient before the PCV 74	

attempt, using a GE MAC® 5500 resting ECG recording device (sampling frequency 75	

250Hz). PCV success was defined as restoration of sinus rhythm within one hour 76	

after starting the flecainide infusion. Flecainide was dosed at 2 mg/kg with a 77	



	 4	

maximum dose of 150 mg intravenously. Follow-up data on progression to persistent 78	

AF within the period January 2008-March 2015 was available for 201 patients. 79	

Progression was defined as occurrence of an AF episode with a duration > 7 days, 80	

as derived from Holter ECG or 2 consecutive ECGs at least 7 days apart with 81	

symptomatic AF. 82	

 83	

Non-invasive AF complexity parameters 84	

The list of non-invasive AF complexity parameters included in this study was 85	

composed of parameters that appeared frequently in the last decade of non-invasive 86	

AF complexity literature. See Supplementary Materials for detailed parameter 87	

definitions and interpretation. Parameters were computed with algorithms provided 88	

by the original author(s) or otherwise as described in the original publication. An 89	

overview of parameters and their domain is shown in Figure 1.  90	

Before parameter computation, ECGs were filtered with a 1-100Hz band-pass filter 91	

(3rd order Chebyshev, 20dB stop-band attenuation). To enable analysis of TQ-92	

segments, the end of the T-wave and onset of the Q-wave were detected in 93	

unfiltered signals using Woody’s improved method.(7) Ventricular QRST complexes 94	

were removed by a single lead cancellation method based on singular value 95	

decomposition of QRST windows.(8) The extracted atrial signals were filtered with a 96	

3Hz high-pass filter to remove any remaining T-wave residues. Finally, the first and 97	

last second were truncated to avoid the border effect of filtering procedures, leaving 98	

8 seconds available for analysis. 99	

 100	

Prediction models and statistical analysis 101	

PCV prediction models were built by logistic regression. In multivariate analyses 102	

parameters were selected by combing the selected parameters from both stepwise 103	
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and sparse logistic regression, a method that can identify dominant predictors from a 104	

large set of candidate predictors while also accounting for parameter correlation.(9) 105	

The optimal model was then found by iterating over all possible combinations of this 106	

subset of parameters. See Supplementary Materials for a detailed description of the 107	

parameter selection procedure.  108	

Prediction performance was measured as the area under the receiver operating 109	

characteristic (ROC) curve (AUC). Complexity parameters were first individually 110	

scored in terms of predictive performance. Then, parameters were divided into 4 111	

groups, based on their electrophysiological interpretation (in the time or frequency 112	

domain) and the number of leads involved in the computation (one lead or multiple 113	

leads). Best predicting parameter models were compared to the prediction 114	

performance obtained by conventional clinical and echocardiographic predictors. 115	

Model prediction performance was cross-validated using 5-fold data partitioning with 116	

repeated (20 times) random subsampling. Differences in model performance were 117	

assessed with a Student’s t-test with a significance level alpha = 0.05.  118	

The association between parameters and the risk of progression to persistent AF 119	

was investigated using Cox proportional hazards models. Hazard models were 120	

estimated for each parameter individually, unadjusted and adjusted for age and sex, 121	

and for combinations of parameters, again applying a sparse technique to select 122	

dominant predictors.(10) Differences in hazard model fit quality were assessed using 123	

a likelihood ratio test with a significance level alpha =0.05. 124	

All computations were performed in MATLAB (MATLAB and Statistics Toolbox 125	

Release 2014a, The MathWorks, Inc., Natick, Massachusetts, United States), using 126	

custom made software and the Glmnet for MATLAB toolbox(11) for elastic net 127	

regression. 128	

 129	
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RESULTS 130	

Prediction using one parameter derived from one lead 131	

Single lead ECG parameter results are listed in Supplementary Table 1. 132	

The best predictor for successful PCV was lower dominant frequency (DF, computed 133	

from Welch’s power spectral density estimate), with maximum AUC at lead II (0.66, 134	

95% confidence interval [0.64-0.67], sensitivity 78[76-79]%, specificity 45[43-48]%). 135	

All other significant predictors in the frequency domain obtained lower performance 136	

with an AUC below 0.60. Best predictor in the time-domain was sample entropy 137	

(SAE) at lead II (AUC 0.63 [0.62-0.65], sensitivity 86[85-87]%, specificity 33[31-138	

35]%)). 139	

 140	

Prediction using one parameter derived from multiple leads  141	

Results for ECG parameters derived from multiple leads, so-called multidimensional 142	

parameters, are listed in Supplementary Table 2. This analysis focused on the 143	

parameters that were computed using information derived from multiple leads, but 144	

expressed the complexity of those multiple leads as a single parameter value. 145	

Maximum predictive power was observed using multidimensional DF (MDF) (AUC 146	

0.64 [0.62-0.66], derived from leads V(1,2,4,5,6), sensitivity 84[82-86]%, specificity 147	

37[35-39]%) and spectral variability (SV) (AUC 0.64 [0.62-0.66], all leads, sensitivity 148	

77[76-79]%, specificity 48[45-50]%).  149	

 150	

Prediction using a combination of ECG parameters 151	

Results are listed in Table 2. The best model containing a combination of frequency-152	

domain parameters computed on a single lead improved performance from an AUC 153	

of 0.66 [0.64-0.67] to 0.72 [0.70-0.73], sensitivity 75[73-77]%, specificity 54[52-57]% 154	

(p<0.001), by adding organization index (OI, lead III) and spectral entropy (SE, lead 155	
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I) to the best single lead parameter DF (lead II). In the time-domain prediction 156	

improved by extending the best performing single lead parameter SAE (lead II) with 157	

fibrillation wave amplitude (FWA, lead aVF and V1) and fibrillation wave power (FWP 158	

MAW, lead V2), from an AUC of 0.63 [0.62-0.65] to 0.72 [71-74], sensitivity 83[81-159	

84]%, specificity 48[46-51]% (p<0.001).  160	

Combining multidimensional parameters produced similar results in the frequency-161	

domain, with a 6-parameter model increasing the AUC from 0.64 [0.62-0.66] to 0.71 162	

[0.69-0.72], sensitivity 95[94-96]%, specificity 29[27-31]% (p<0.001). Combining 163	

multidimensional time-domain parameter did not improve predictive performance. 164	

Combining the best predicting parameters of each group into a single model further 165	

improved prediction performance (AUC 0.78 [0.76-0.79], sensitivity 80[79-82]%, 166	

specificity 60[57-62]%). A selection of cross-validated ROC curves is depicted in 167	

Figure 2a. Supplemental Figure 1 shows the effect of combining parameters within 168	

each parameter group on prediction performance. 169	

 170	

Prediction using clinical parameters and ECG parameters 171	

An overview of the performance of a combination of clinical patient characteristics 172	

with ECG parameters can be found in Figure 2b and Supplementary Table 3. The 173	

predictive capability of clinical parameters alone was limited, with the best results 174	

obtained using weight and right atrial volume (RAV) (0.68 [0.66-0.70], sensitivity 175	

87[86-89]%, specificity 35[32-37]%). Predictive performance of optimized ECG 176	

parameter models was superior, except for the multidimensional time-domain 177	

parameter model. Combining these ECG parameter models with the optimized 178	

clinical parameter model significantly enhanced predictive performance in all cases, 179	

again except for the multidimensional time-domain parameter model. The best 180	

predictive model was obtained by combining clinical and single lead frequency-181	
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domain parameters DF(II), OI(III) and SE(I) (AUC 0.81 [0.79-0.82], sensitivity 83[81-182	

85]%, specificity 64[61-67]%). 183	

 184	

Risk of progression to persistent AF 185	

Out of the 201 patients for whom follow-up was available, 38 (19%) developed 186	

persistent AF between the moment of PCV and March 2015 (median time to 187	

persistent AF: 408 days, interquartile range (IQR): 171-822 days, median follow-up 188	

49 months). Table 3 contains the significant hazard ratios (HR) of individual clinical 189	

and ECG complexity parameters for AF progression. Age, BMI, left atrial diameter 190	

(LAD), RAV, left ventricular end systolic diameter (LVESD) and ejection fraction 191	

(LVEF) showed small, but significant hazard ratios. Unsuccessful PCV was not a 192	

significant hazard (HR 1.58, 95% confidence interval (CI) 0.82-3.06, p=0.17). The 193	

ECG complexity parameters DF and FWA obtained significant HRs, with both a 194	

higher DF and – surprisingly - a higher FWA associated with a larger risk of 195	

developing persistent AF.  196	

Figure 3 depicts Kaplan-Meier curves for four dichotomized parameters, showing that 197	

obesity (BMI>30 kg/m2), an enlarged left atrium (LAD>41 mm), faster atrial rate 198	

(DF>5.7 Hz), and higher fibrillation wave amplitude (FWA>0.06 mV) were associated 199	

with an increased risk of AF progression. As expected from previous studies, an 200	

elevated HATCH score indicated a significantly higher risk for progression to 201	

persistent AF.(12) However, FWA (V1) was a better predictor than the HATCH score 202	

in predicting progression within 2 years (AUC 0.72 [0.70-0.74] vs. 0.60 [0.57-0.62] 203	

p<0.001, n=184, 22 persistent AF). Combining FWA and the HATCH score did not 204	

improve prediction performance. 205	

Multivariate analysis showed that the risk of progression to persistent AF is best 206	

explained by LAD, when considering only clinical parameters. ECG complexity 207	
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parameters modelled progression best using a combination of DF (lead aVL) and 208	

FWA (lead V1) (n=201, DF(aVL): HR 1.45, CI 1.08-1.94, p=0.01; FWA(V1): HR 1.16, 209	

CI 1.05-1.27, p<0.01). Adding DF(avL) or FWA (V1) to the best model containing only 210	

clinical parameters both improved the model fit (p=0.05 or 0.02 respectively). 211	

 212	

DISCUSSION 213	

EGC parameters as predictors of pharmacological cardioversion outcome 214	

The results of the ECG parameter analysis demonstrate that characteristics of 12-215	

lead ECGs can predict successful PCV of recent onset AF and progression from 216	

paroxysmal to persistent AF. Patients with a lower DF were more likely to respond to 217	

treatment, which is in line with the observation by Choudhary et al. who showed that 218	

recent onset AF with a lower DF was more likely to spontaneously terminate.(13) 219	

Also in patients with persistent AF a lower DF was found to predict successful 220	

electrical CV outcome.(14) Moreover, single lead measures of organization of atrial 221	

rate (OI and SE) indicate that a higher degree of organization favours successful 222	

PCV. Overall, differences between successful and unsuccessful PCV were subtle, 223	

but plausible given the interpretation of DF as a surrogate parameter for the AF cycle 224	

length. In the patients investigated in this study, undergoing their first cardioversion, 225	

the process of electrical remodelling is still on-going and may have an important 226	

effect on the success of PCV. The degree of electrical remodelling increases with AF 227	

duration. Although precise AF duration is difficult to assess in the majority of recent 228	

onset AF patients, DF may reflect action potential duration shortening associated 229	

with the degree of electrical remodelling and  - indirectly - the duration of AF in these 230	

patients.(15)  231	

Multidimensional parameters that compute one complexity indicator from multiple 232	

leads are a logical extension of single lead analysis. Incorporating spatial differences 233	
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among leads and capturing inter-lead variability as an additional measure of 234	

complexity, could lead to a more sophisticated estimate of AF complexity. The results 235	

from the multidimensional parameter analysis partially confirm this. While DF 236	

computed on one of the precordial leads only gave a significant result on lead V1, the 237	

multidimensional extension MDF performed better, with significant results for many 238	

combinations of precordial leads. Maximum performance of MDF was however still 239	

lower than the performance of single lead DF on limb lead II (AUC 0.64 vs. 0.66). We 240	

did not notice an important role of left atrial content in this patient population as 241	

indicated by Uldry et al. in their study on discriminating persistent and long-standing 242	

persistent AF.(16) Most significant multidimensional parameter differences were 243	

observed in a mix of right- and left-oriented precordial leads. Overall, predictive 244	

performance of a single parameter was moderate, even when calculated from 245	

multiple leads. More importantly, combining several complexity parameters in a 246	

prediction model significantly improved prediction, regardless of whether these 247	

different parameter values were calculated from single lead or multiple leads.  248	

 249	

Added predictive value of ECG parameters compared to clinical information 250	

The ability of clinical parameters, including echocardiographic parameters, to predict 251	

successful outcome of PCV was limited. Combinations of ECG parameters 252	

performed better on the subset of patients with complete clinical and 253	

echocardiographic data records. Combining ECG and clinical parameters further 254	

improved prediction. This implies that features extracted from the ECG contain 255	

complementary information to the available clinical characteristics in this patient 256	

population. Worthwhile noting is that the best overall predictive performance was 257	

obtained by combining a small number of frequency-domain parameters computed 258	

on a single lead with the clinical parameters RAV and weight. The 3 ECG parameters 259	
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in this model were all computed in limb leads I, II and III, with a strong role of DF at 260	

lead II, again suggesting the need to include leads that contain both right and left 261	

atrial activity. 262	

 263	

Non-invasive complexity and risk of progression to persistent AF 264	

Interestingly, both clinical as well as ECG complexity parameters were associated 265	

with risk of progression to persistent AF. Clinical parameters like age, BMI and 266	

HATCH score, and echocardiographic parameters like LAD, RAV and LVEF were 267	

indicators for an increased risk of progression to persistent AF, which is in line with 268	

previous findings.(12,17) From the set of ECG parameters only parameters 269	

computed on a single lead showed significant hazard ratios, namely DF and FWA. 270	

The threshold of 5.7 Hz computed for DF to produce the survival curve in Figure 3c is 271	

very comparable to the AFR threshold of <350 fibrillations per minute (5.8 Hz) found 272	

by Choudhary et al.(13) associated with a significant increase in the likelihood of 273	

spontaneous cardioversion of recent onset AF within 18 hours. One could argue that 274	

patients that are not likely to spontaneously convert to sinus rhythm have a higher 275	

risk to develop persistent AF, due to more electrical and, eventually, structural 276	

remodelling caused by prolonged episodes of AF. On the other hand, Mochalina et 277	

al.(18) reported no predictive value of DF in a comparable cohort of patients 278	

undergoing PCV with vernakalant. A possible explanation for this discrepancy is that 279	

in their study only lead V1 was analyzed, as opposed to all 12 ECG leads in the 280	

present study. Alternatively, differences in the anti-arrhythmic mechanism of 281	

flecainide and vernakalant may affect the predictive performance of complexity 282	

parameters.  283	

The role of FWA on V1 in the development of persistent AF in this patient cohort is 284	

more challenging to interpret: a higher FWA was associated with a higher risk for 285	
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persistent AF, while the inverse relation was found for FWA in the prediction of 286	

successful PCV. Moreover, a higher FWA on V1 attained better predictive value than 287	

an elevated HATCH score, an established predictor of progression to persistent AF. 288	

The relatively low HATCH scores in this cohort may limit its predictive power. The 289	

amplitude of fibrillation waves that are visible on an ECG is influenced by both the 290	

atrial mass and the degree of complexity of AF. On the one hand, patients with an 291	

organised AF pattern have a larger simultaneously activated atrial mass and 292	

therefore larger vectors in a certain direction.(19) Larger electrical vectors are 293	

expected to produce larger f-waves, potentially explaining higher success rates of 294	

PCV. On the other hand, patients with atrial dilatation have more atrial mass and 295	

therefore could produce larger f-waves. Patients with atrial dilatation are known to be 296	

more likely to progress into persistent AF, as also indicated by our results.(12) 297	

Certainly, the implications of FWA for long-term rhythm outcome warrant further 298	

investigation. 299	

 300	

ECG parameters in clinical decision-making 301	

We showed that non-invasive atrial complexity parameters, automatically derived 302	

from a standard 12-lead ECG improve prediction of successful PCV in patients with 303	

recent onset AF. Correctly predicting patients in whom AF is likely to terminate using 304	

drugs is certainly of relevance in the emergency department. In patients with low 305	

complexity, one could wait for spontaneous CV or restore of SR (for example using 306	

intravenously administered AADs) but refrain from continuous anti-arrhythmic drug 307	

treatment for rhythm control, thereby minimizing drug-related adverse effects.(3) For 308	

patients reporting at the emergency department with a complex AF pattern, a more 309	

aggressive rhythm control strategy may be necessary to prevent recurrences and 310	

reduce the risk of progression to persistent AF, by either continuous AAD treatment 311	
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or early catheter ablation. Early identification of these patients with early treatment 312	

might result in improved success percentages and prevent future cardiovascular 313	

complications.(20) Implementation of algorithms capable of extracting atrial activity 314	

and computing non-invasive complexity parameters into commercially available ECG 315	

acquisition systems is an important prerequisite to enable individualized AF therapy. 316	

 317	

LIMITATIONS 318	

The retrospective nature of this study had implications for the availability and quality 319	

of clinical information and ECG signals. Echocardiography was not recorded at the 320	

same time as the ECG, but selecting an available echocardiography within a year 321	

produced similar results compared to a narrower timeframe (see Supplementary 322	

Materials). Our institutional protocol for PCV introduced a weight-dosage 323	

dependency for patients with a weight above 75kg. This dependency is most likely 324	

partially responsible for the inclusion of weight in the final clinical prediction model of 325	

successful PCV. ECG signals were not recorded with the intention to analyse AF 326	

complexity but rather to diagnose the arrhythmia, meaning that quality was varying 327	

and recording duration was limited to 10 seconds. This does however reflect 328	

everyday clinical practice.  329	

 330	

CONCLUSIONS 331	

AF complexity parameters determined from 12-lead ECGs are superior to common 332	

clinical predictors in predicting successful PCV in patients with recent onset AF. 333	

Combining ECG and clinical parameters generally improved prediction, especially by 334	

including single lead frequency-domain parameters. Notably, both clinical 335	

characteristics as well as ECG complexity parameters can predict progression to 336	

persistent AF, which may guide individualized rhythm control strategies in the future. 337	
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FIGURE LEGENDS 428	

 429	

Figure 1. Overview of ECG signal processing and complexity parameter 430	

computation. In the time-domain, multidimensional parameters derived from multiple 431	

leads can be computed on both the extracted atrial activity (AA), as well as on the 432	

TQ-segments of the original ECG. In the frequency-domain, complexity can be 433	

quantified based on spectra computed from a single lead or multiple leads.  434	

DF: Dominant Frequency; OI: Organization Index; SE: Spectral Entropy; RHE: 435	

Relative Harmonic Energy; MDF/MOI/MSE: Multidimensional DF/OI/SE; SC: Spectral 436	

Concentration; SV: Spectral Variability; SAE: Sample Entropy; FWA: Fibrillation 437	

Wave Amplitude; FWP MAW: Fibrillation Wave Power of the Main Atrial Wave; K0.95, 438	

C:  spatial complexity parameters; NMSE, CV: Variability of spatial complexity; 439	

MFWA: Multidimensional FWA 440	

 441	

Figure 2. Cross-validated receiver operating characteristics (ROC) curves of various 442	

prediction models. The band around each curve indicates the 95% confidence 443	

interval of the sensitivity for a given specificity. Depicted are the ROC curves for a) 444	

the best prediction performance of a single parameter computed on 1 lead (Dominant 445	

Frequency (DF) on lead II, area under the ROC curve (AUC) 0.66), the best 446	

performance for a single multidimensional parameter (Spectral Variance (SV) derived 447	

from all leads, AUC 0.64), the best performing combination of parameters computed 448	

on 1 lead (DF (II), Organization Index (OI) (III) and Spectral Entropy (SE) (I), AUC 449	

0.72), and the best combination of all ECG parameters (DF (II), SE (I), Fibrillation 450	

Wave Amplitude (FWA) (aVF, V1), Multidimensional OI (MOI) (V(3,4), V(3,5)), SV, and 451	

Multidimensional FWA (MFWA), AUC 0.78). In b) the ROC curves are shown for the 452	
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best model consisting only of clinical parameters (Right Atrial Volume (RAV) and 453	

weight, AUC 0.68), only of parameters computed on the ECG (best ECG parameter 454	

model derived from the full data set, AUC 0.78), and a combination clinical and ECG 455	

parameters (weight, RAV and the best single lead frequency-domain parameter 456	

model, AUC 0.81).  457	

	458	

Figure 3. Kaplan-Meier curves for the risk of progression to persistent AF after the 459	

PCV attempt for patients with a) Body Mass Index (BMI)>30 kg/m2 (Hazard ratio (HR) 460	

2.97), b) Left Atrial Diameter (LAD)>41 mm (HR 2.65), c) Dominant Frequency 461	

(DF)>5.7 Hz on lead aVL (HR 4.16), and d) Fibrillation Wave Amplitude (FWA)>0.06 462	

mV (HR 3.25). All HRs p<0.01.  463	
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TABLES 464	

	465	

Table 1. Patient characteristics.  466	

Characteristic Successful PCV  
n=157 (71%) 

Unsuccessful 
PCV  
n=64 (29%) 

P-value 

Sex (Male \ Female) 93\64  52\12  0.002 

Age (years) 61±13 57±15 0.170 
Height (cm) 174±10 (116) 179±12 (51) 0.004 

Weight (kg) 81±14 (116) 91±19 (51) 0.001 
BMI (kg/m2) 26.9±3.9 (116) 28.1±5.3 (51) 0.305 

Diabetes 11 (141) 5 (61) 0.924 

Hypertension 66 (141) 29 (62) 0.996 
COPD 8 (141) 2 (61) 0.471 

PVI in history 2 (141) 5 (60) 0.014 
Left atrial diameter (mm) 40.3±5.1 (113) 43.1±6.0 (49) 0.003 

Left atrial volume (ml) 74.2±20.8 (111) 80.8±19.6 (48) 0.067 
Right atrial volume (ml) 56.3±18.0 (99) 69.9±23.3 (47) <0.001 

LVEDD (mm) 49.4±5.4 (117) 51.5±6.0 (51) 0.127 
LVESD (mm) 33.6±4.5 (116) 36.3±7.3 (50) 0.064 

LVEF (%) 60.1±5.6 (117) 57.0±10.0 (51) 0.171 
CHA2DS2-VASc 2[0-3] (140) 1[0-3] (61) 0.159 

HATCH 1[0-1] (140) 1[0-1] (61) 0.621 

Numbers are given as mean±SD, median [25th-75th percentile] or count. Between 467	

brackets is the number of observations for each parameter if lower than n=221. 468	

Binary variables were tested using a Chi-square-test for proportions.  469	

BMI: body mass index; COPD: chronic obstructive pulmonary disease; 470	

LVEDD/LVESD: left ventricular end diastolic/systolic diameter; LVEF: left ventricular 471	

ejection fraction; PVI: pulmonary vein isolation 472	

  473	
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Table 2. Best performing parameter models for single and multidimensional ECG 474	

parameters in the frequency- and time-domain. 475	

Group Parameters Leads or signal AUC 
[95%CI] 

Single lead 

Frequency domain 

DF 

OI 
SE 

II 

III 
I 

0.72 [0.70-0.73] 

    
Single lead 
 Time domain 

SAE 
FWA 

FWP MAW 

II 
aVF, V1 

V2 

0.72 [0.71-0.74] 

    
Multiple leads 

 Frequency domain 

MDF 

MOI 
SV 

V(1,2,4,5), V(1,2,4,5,6) 

V(3,4), V(3,5), V(2,4,5,6) 
All leads 

0.71 [0.69-0.72] 

    
Multiple leads 

 Time domain 

MFWA 

CV 

AA 

AA 
0.61 [0.60-0.63] 

   
Combined DF (II), SE (I), FWA (aVF, V1), MOI (V(3,4), 

V(3,5)), SV, MFWA 
0.78 [0.76-0.79] 

AUC: Area under the Receiver Operator Characteristics Curve; CI: Confidence 476	

Interval; AA: Atrial Activity 477	

DF: Dominant Frequency; OI: Organization Index; SE: Spectral Entropy; SAE: 478	

Sample Entropy; FWA: Fibrillation Wave Amplitude; FWP MAW: Fibrillation Wave 479	

Power of the Main Atrial Wave; MDF/MOI: Multidimensional DF/OI; SV: Spectral 480	

Variability; MFWA: Multidimensional FWA; CV: Variability of spatial complexity 481	

  482	
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Table 3. Significant hazard ratios for risk of progression to persistent AF. 483	

  Hazard ratios (95% CI) 

Parameter Increment Unadjusted Adjusted for Sex 

and Age 

Age 1 year 1.03 (1.01-1.06) † N/A 
BMI (n=159) 1 kg/m2 1.09 (1.03-1.17) ‡ 1.10 (1.03-1.18) ‡ 

LAD (n=155) 1 mm 1.12 (1.05-1.19) ‡ 1.11 (1.04-1.18) ‡ 
RAV (n=141) 5 ml 1.11 (1.03-1.21) † 1.12 (1.02-1.22) † 

LVESD (n=158) 1 mm 1.06 (1.00-1.11) † 1.08 (1.02-1.14) ‡ 
LVEF (n=160) -1 % 1.06 (1.02-1.11) ‡ 1.06 (1.02-1.10) ‡ 

HATCH (n=184) 1 point 1.43 (1.10-1.86) ‡ 1.27 (0.92-1.76) 

DF (III) 1 Hz 1.57 (1.17-2.10) † 1.65 (1.24-2.19) ‡ 
DF (aVL) 1 Hz 1.50 (1.14-1.99) ‡ 1.64 (1.24-2.16) ‡ 

DF (aVF) 1 Hz 1.46 (1.11-1.92) ‡ 1.53 (1.17-2.00) † 
DF (V4) 1 Hz 1.37 (1.03-1.87) † 1.34 (0.99-1.83) 

FWA (V1) 0.01 mV 1.17 (1.07-1.29) ‡ 1.16 (1.06-1.27) ‡ 

CI: Confidence interval; † p<0.05, ‡ p<0.01 484	

BMI: body mass index; LAD: left atrial diameter; RAV: right atrial volumn; LVESD: left 485	

ventricular end systolic diameter; LVEF: left ventricular ejection fraction; DF: 486	

Dominant Frequency; FWA: Fibrillation wave amplitude 487	

  488	
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FIGURES 489	

 490	

Figure 1 491	

 492	

  493	
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Figure 2 494	

495	

 496	

  497	

a) 

b) 
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Figure 3 498	

 499	
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SUPPLEMENTAL MATERIALS 1	

 2	

METHODS 3	

Non-invasive AF Complexity parameters 4	

Spectral parameters 5	

Frequency-domain parameters are parameters that derive a complexity score from 6	

the frequency content of the atrial signal. The frequency content of each lead was 7	

determined by computing the spectrum using 1) the (fast) Fourier transform of the 8	

extracted atrial signal, 2) Welch’s power spectral density estimate (3 segments, 1024 9	

points, 50% overlap), and 3) the compressed spectrum (CS)(1) using the original 10	

ECG signal. 11	

The dominant atrial frequency (DF) was defined as the frequency with the largest 12	

power within the 3-12Hz band. The organization index (OI) of the spectrum was 13	

defined as the relative contribution of the 2 largest peaks to the total spectral power. 14	

OI reflects the relative strength of the 2 dominant frequencies compared to other 15	

frequencies present in the atrial activity as a measure of the number of competing 16	

fibrillatory processes present in the atria. A low value of OI indicates high complexity. 17	

Spectral entropy (SE) is the application of Shannon’s entropy to the frequency 18	

distribution and can be interpreted as a measure of uniformity of the fibrillatory 19	

frequencies present in the atria. A high value of SE indicates high complexity. 20	

Single lead spectral analysis can be extended to a multidimensional analysis that 21	

incorporates spectral information from multiple leads using the so-called spectral 22	

envelope. The spectral envelope describes the shared spectral characteristics of a 23	

multidimensional signal.(2) This means that the spectral information from multiple 24	

leads is represented in a single spectrum. From the spectral envelope, the same 25	

three spectral parameters were derived: multidimensional dominant frequency 26	
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(MDF), multidimensional spectral organization index (MOI) and multidimensional 27	

spectral entropy (MSE).(3) MDF, MOI and MSE were computed on the spectral 28	

envelope of all possible combinations of 2 or more precordial leads, as opposed to 29	

only pairs of leads in Uldry et al.(3) 30	

 31	

Fibrillation wave amplitude 32	

The amplitude of fibrillation waves was determined in two ways: automatic annotation 33	

of f-waves in a single lead by peak detection, followed by amplitude computation 34	

(FWA), comparable to the manual annotation method used by Nault et al. (4), and – 35	

analogous to the computation of spectral complexity – a signal envelope approach 36	

that computes a multidimensional f-wave amplitude on multiple leads (MFWA).(5) 37	

MFWA was computed on both the AA signal and TQ segments. A low value of FWA 38	

or MFWA indicates high complexity. 39	

 40	

Sample entropy 41	

Sample entropy (SAE) is a time-domain parameter that quantifies the irregularity of a 42	

signal by searching for similar segments of a certain length. It can be interpreted as a 43	

measure of repetitiveness and predictability of the atrial activity. As proposed by 44	

Alcaraz et al.(6) SAE was computed on the main atrial wave (MAW) of each lead. 45	

The MAW is the signal resulting from filtering the atrial signal centred around the 46	

dominant frequency with a 3Hz bandwidth. A high value of SAE indicates high 47	

complexity. Additional parameters related to the MAW are the f-wave power of the 48	

MAW (FWP MAW), with similar interpretation as FWA, and the relative sub-band 49	

energy (RHE)(6), computed as the relative energy present in the first and second 50	

harmonics of the MAW. A low value of RHE indicates high complexity as it indicates 51	

a less dominant role of the main atrial wave. 52	
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 53	

Principal component analysis 54	

Another multidimensional approach to AF complexity quantification is principal 55	

component analysis (PCA), which expresses the information from all 12 leads in a 56	

number of linearly uncorrelated components that essentially describe the amount of 57	

variance between the leads. Complexity measures based on PCA included were 58	

spatial complexity k0.95, the number of components required to describe 95% of the 59	

variance in all 12 leads, and spatio-temporal stationarity (NMSE), the degree in 60	

which the three major signal components vary over time.(7) A high value of k0.95 and 61	

NMSE indicates high complexity, as they indicate that there is a large amount of 62	

variation in the atrial activity between leads and in time. Additional measures of 63	

spatial complexity C and variability of spatial complexity CV were also included. C 64	

defines spatial complexity as the relative signal variance, excluding the three major 65	

components.(8) Also here, a high value of C indicates high complexity as it means 66	

that the variance between lead activity is higher. Frequency domain parameters 67	

derived from PCA were spectral concentration SC and spectral variability SV(8), 68	

where SC quantifies the concentration of the spectral power around the dominant 69	

frequency and SV the temporal variation of the SC. A low value of SC or a high value 70	

of SV indicates high complexity. PCA parameters were computed on both the AA 71	

signal and the TQ segments. 72	

 73	

Parameter selection via elastic net logistic regression 74	

In several cases, the number of candidate parameters in the logistic regression 75	

model makes it infeasible to iterate over all possible parameter combinations to 76	

select the overall best performing model. Parameter selection using stepwise logistic 77	

regression has the disadvantage that it is dependent on the order in which 78	
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parameters are added or removed from the prediction model. Stepwise parameter 79	

selection is also affected by parameter correlation. To select dominant parameters 80	

from a large set of candidate parameters, and to overcome the limitations of stepwise 81	

methods we applied an approach that combines information from classical stepwise 82	

logistic regression and elastic net logistic regression. Elastic net regression is based 83	

on mixed ℓ1/ℓ2-norm regularization of the parameter coefficients in the criterion 84	

function of the regression model at hand. This regularization aims to minimize the 85	

number of non-zero parameter coefficients in the estimated model. Given a certain 86	

output data y of length N, in the case of logistic regression the objective is to 87	

minimize the model deviance 𝐷(𝑦, 𝜃) = −2*log*𝑝(𝑦|𝜃)0 − log	(𝑝(𝑦|𝜃2))0, where the 88	

vector θ contains the parameter coefficients and θs denotes the parameter vector of 89	

the saturated model. The formulation for the elastic net logistic regression problem is 90	

min
6
789 𝐷(𝑦, 𝜃) + 𝜆𝑃=(𝜃)>, with 91	

𝑃=(𝜃) =
(8?=)
@

‖𝜃‖@@ + 𝛼‖𝜃‖8. 92	

The two regression tuning parameters are lambda (𝜆) and alpha (α). Lambda 93	

determines the strength of the regularization of the parameter coefficients, while 94	

alpha (a value between 0 and 1) controls the balance between penalizing either the 95	

ℓ2- and/or the ℓ1-norm of the coefficient vector(9).  96	

Several steps of the parameter selection procedure are outlined in Figure 2. In the 97	

analysis shown there the set of parameters under investigation was the group of 98	

parameters computed on 1 lead in the frequency domain (DF, OI, SE and RHE). 99	

Figure 2a) and b) show the elastic net estimation result for a fixed value of alpha 100	

(alpha = 0.5). The choice of lambda influences the estimated parameter coefficients 101	

and the deviance of the estimated model. A commonly accepted choice for lambda is 102	

the value that corresponds to a model deviation that lies within 1 standard deviation 103	
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of the cross-validated minimum deviation. These lambda values are indicated with a 104	

green (minimum deviation) and a blue line (minimum deviation + 1 standard 105	

deviation). The choice of alpha also determines the number of parameters that are 106	

selected. For alpha = 1 the algorithm corresponds the Lasso algorithm, which tends 107	

to select one parameter from a group of correlated parameters, but for alpha values 108	

between 0 and 1, the elastic net algorithm will include more correlated parameters. 109	

Therefore a range of alpha (between 0.1 and 1) was investigated and for each value 110	

of alpha the non-zero parameter coefficients were stored (see Figure 2c)). 111	

Parameters that appeared in any of the models computed with this range of alpha 112	

were considered potential candidates for the final logistic regression model. In this 113	

case the parameters DF (on leads II, aVR and V4), OI (leads I and III) and RHE (lead 114	

I) were selected. As an additional step, parameters were also selected through 115	

forward stepwise logistic regression (P < 0.05 for significant deviance improvement 116	

by adding a parameter). In this case selected parameters were DF (lead II), OI (III) 117	

and SE (I). The union of the parameters selected by the two regression methods was 118	

then taken to iterate over all possible combinations of parameters to find the model 119	

with the best prediction performance. Figure 2d) shows the result of this last step. 120	

The model performance increased by adding more parameters, but reached a 121	

maximum at a model containing 3 parameters (DF (II), OI (III) and SE(I)).  122	

 123	

Results 124	

 125	

Effect of time interval between echocardiography and CV attempt 126	

In our analysis we included echocardiographic data that was collected within a year 127	

(365 days) of the date of the CV attempt. In this analysis we also included patients 128	

without an ECG or a poor quality ECG before the CV attempt (n=198). Results are 129	
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shown in Figure 3. From Figure 3a it becomes clear that the number of patients that 130	

can be included in the analysis based on their echocardiographic data, initially 131	

decreases slowly when we move from 365 days to a narrower timeframe. This 132	

decrease accelerates when we reach 100 days as a cut-off value. The performance 133	

of the best model containing only clinical parameters (weight and right atrial volume 134	

(RAV)), shown in Figure 3b, remains relatively stable until 100 days, and then starts 135	

to increase, but also becomes more irregular, due to the lower number of patients 136	

included in the analysis. This observation is supported by examining the evolution of 137	

the two clinical parameters forming the best performing model, as shown in Figure 3c 138	

and 3d. 139	
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Tables 140	

 141	
Table 1. Significant single lead parameter differences and prediction AUC. 142	

Parameter values are reported as mean ± SD or median (interquartile range). AUC 143	

values are given as mean [95% confidence interval]. Parameter differences between 144	

patients with a successful and patients with an unsuccessful PCV were tested for 145	

normality (Lilliefors test) and compared using a standard 2-tailed unpaired t-test or a 146	

Mann-Whitney U-test if the test for normality failed. 147	

Parameter Lead Successful 
PCV 

Unsuccessful 
PCV 

P-value AUC 

Frequency domain 
DF (Hz) 

Welch 

II 

III 

aVR 
aVF 

V1 

5.9 (1.0) 

6.1 (0.7) 

5.9 (1.2) 
5.9 (1.0) 

6.3 (1.2) 

6.3 (1.1) 

6.3 (1.2) 

6.3 (1.2) 
6.3 (1.5) 

6.6 (1.6) 

< 0.001 

0.009 

0.008 
0.007 

0.027 

0.66 [0.64-0.67] 

0.60 [0.58-0.62] 

0.61 [0.59-0.62] 
0.60 [0.59-0.62] 

0.59 [0.57-0.60] 
RHE I 0.201 (0.155) 0.166 (0.106) 0.043 0.58 [0.56-0.60] 

OI (%) III 57.8±17.7 53.1±19.7 0.020 0.59 [0.58-0.61] 
SE V6 5.67 (0.67) 5.83 (0.55) 0.043 0.58 [0.56-0.59] 

Time domain 
SAE II 

aVF 

0.317±0.046 

0.323±0.060 

0.341±0.055 

0.345±0.061 

0.001 

0.010 

0.63 [0.62-0.65] 

0.60 [0.58-0.61] 
FWP MAW aVL 0.0064±0.0018  0.0058±0.0018 0.021 0.59 [0.57-0.60] 

FWA (mV) II 
III 

aVL 
aVF 

V6 

0.055 (0.024) 
0.059 (0.024) 

0.044 (0.016) 
0.053 (0.024) 

0.038 (0.012) 

0.051 (0.017) 
0.053 (0.021) 

0.040 (0.015) 
0.048 (0.016) 

0.034 (0.010) 

0.044 
0.007 

0.023 
0.016 

0.018 

0.58 [0.56-0.60] 
0.61 [0.59-0.62] 

0.58 [0.57-0.60] 
0.60 [0.58-0.61] 

0.59 [0.58-0.61] 

DF: Dominant Frequency; RHE: Relative Harmonic Energy; OI: Organization Index; 148	

SE: Spectral Entropy; SAE: Sample Entropy; FWA: Fibrillation Wave Amplitude; 149	

FWP MAW: Fibrillation Wave Power of the Main Atrial Wave; 150	

  151	
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Table 2. Significant multidimensional parameter differences and prediction AUC. 152	

Parameter values are reported as mean ± SD or median (interquartile range). AUC 153	

values are given as mean [95% confidence interval] 154	

Parameter Leads or 
Signal 

Successful 
PCV 

Unsuccessful 
PCV 

P-value AUC 

Frequency domain 
MDF (Hz) 

Top 4  
(of 42) 

V(2,5) 

V(1,4,5) 
V(1,2,4,6) 

V(1,2,4,5,6) 

6.0(1.0) 

6.0(1.3) 
6.0(1.3) 

6.0(1.3) 

6.3(1.3) 

6.8(1.5) 
6.5(1.4) 

6.5(1.3) 

0.008 

0.003 
0.001 

0.001 

0.61 [0.59-0.62] 

0.62 [0.60-0.64] 
0.63 [0.61-0.65] 

0.64 [0.62-0.66] 
MOI (%) 

Top 3  
(of 22) 

V(3,4) 

V(1,2,4) 
V(2,4,5,6) 

50.6±8.7 

53.8(10.2) 
41.6(8.0) 

47.6±6.9 

51.2(10.0) 
38.9(6.2) 

0.015 

0.005 
0.005 

0.60 [0.58-0.61] 

0.61 [0.59-0.63] 
0.61 [0.60-0.63] 

MSE V(3,4) 6.37±0.39 6.49(0.34) 0.046 0.59 [0.57-0.61] 

SC (%) All leads 23.8(1.4) 23.5(1.5) 0.031 0.58 [0.56-0.60] 
SV All leads 0.51(0.26) 0.66(0.37) 0.001 0.64 [0.62-0.66] 

Time domain 
k0.95 AA 

TQ 
4.8(0.8) 
3.2(0.6) 

5.0(0.8) 
3.4(0.4) 

0.033 
0.050 

0.58 [0.56-0.60] 
0.57 [0.55-0.59] 

MFWA  AA 0.049(0.037) 0.040(0.031) 0.025 0.59 [0.57-0.60] 

C AA 
TQ 

9.4(3.5) 
4.6±1.8 

10.7(4.3) 
5.2±2.0 

0.021 
0.050 

0.59 [0.57-0.61] 
0.57 [0.55-0.59] 

CV AA 
TQ 

2.5±1.0 
2.8±1.2 

3.0±1.5 
3.2±1.3 

0.005 
0.076 

0.58 [0.56-0.60] 
0.57 [0.55-0.58] 

MDF/MOI/MSE: Multidimensional DF/OI/SE; SC: Spectral Concentration; SV: 155	

Spectral Variability; K0.95, C:  spatial complexity parameters; CV: Variability of spatial 156	

complexity; MFWA: Multidimensional FWA  157	
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Table 3. Predictive performance of clinical parameters and the added value of the 158	

best performing single lead and multidimensional ECG parameters models, as 159	

determined on the full data set (see Table 2).  160	

Parameter model AUC on subset 

(n=139) 

AUC Clinical & 

ECG Parameters 

P-value 

(vs. combined) 

Clinical parameters 

 (Weight, RAV) 

0.68 [0.66-0.70] N/A N/A 

    
Single lead 

 Frequency domain 

0.75 [0.73-0.77] 0.81 [0.79-0.82] <0.001 

(<0.001) 

    
Single lead  

 Time domain 

0.73 [0.71-0.74] 0.77 [0.75-0.78] <0.001 

(<0.001) 

    
Multiple leads 

 Frequency domain 

0.73 [0.71-0.74] 0.77 [0.75-0.78] <0.001 

(<0.001) 

    
Multiple leads 

 Time domain 

0.59 [0.57-0.61] 0.67 [0.65-0.68] 0.289 

(<0.001) 

    
Best ECG model 0.78 [0.76-0.79] 0.78 [0.76-0.80] <0.001 

(0.473) 

P-values denote the comparison between the area under the receiver operating 161	

characteristics curve (AUC) of the model consisting of only clinical parameters and 162	

the specific combination. P-values between brackets signify the difference between 163	

the model consisting of ECG parameters and the combined model of clinical (weight 164	

and right atrial volume (RAV)) and ECG parameters. 165	

 166	
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 167	

Figures 168	

	169	

Figure 1. Prediction performance of different types of complexity parameters 170	

computed on one lead and multiple leads, in the frequency-domain and the time-171	

domain. Performance is expressed as the mean area under the receiver operating 172	

characteristic curve (AUC)± standard deviation (SD) for each of the 4 groups 173	

(parameter computed in the frequency/time-domain and on one/multiple leads). For 174	

every group the best performing single parameter model AUC is given, as well as 175	

AUC of the best combination of parameters belonging to the same group. 176	
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	177	

Figure 2. Parameter selection via elastic net logistic regression (parameters 178	

computed on a single lead, frequency-domain). The upper plots show the result of 179	

the analysis for alpha=0.5, with in a) the cross-validated deviance as a function of 180	

lambda and in b) the parameters coefficients (df indicates the number of non-zero 181	

parameter coefficients). The green line/circle marks the choice of lambda that 182	

minimizes the deviance, the blue line/circle marks the solution that is within 1 183	

standard deviation. Panel c) shows the non-zero parameters coefficients selected by 184	

the elastic net regression as a function of alpha. Panel d) contains the result for the 185	

cross-validated maximum AUC for models composed of a specific number of 186	

c) d) 

a) b) 
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candidate parameters, defined by union of the stepwise regression and elastic net 187	

parameter selection.  188	
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 189	

 190	

Figure 3. The effect of maximum allowed time difference between the date of 191	

cardioversion and the closest date of an echocardiography on (a) the number of 192	

patients included in the analysis, (b) prediction performance of the best performing 193	

model containing clinical parameters weight and right atrial volume (RAV), (c) 194	

differences in patient RAV (successful and unsuccessful CV), and (d) differences in 195	

patient weight.  196	
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