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Abstract
For a transverse-field Ising chainwithweak long-range interactions we develop a perturbative scheme,
based on quantumkinetic equations, around the integrable nearest-neighbourmodel.We introduce,
discuss, and benchmark several truncations of the time evolution equations up to eighth order in the
Jordan–Wigner fermionic operators. The resulting set of differential equations can be solved for
lattices withO(102) sites and facilitates the computation of spin expectation values and correlation
functions to high accuracy, at least formoderate timescales.We use this scheme to study the relaxation
dynamics of themodel, involving prethermalisation and thermalisation. The techniques developed
here can be generalised to other spinmodels withweak integrability-breaking terms.

1. Introduction

Equilibration and thermalisation are topics that link nonequilibriumphysics to equilibriumphysics, and they
play a fundamental role for the validity and success of thermodynamics. These topics have a long history and
have been studied in a variety of settings, including classicalmechanics versus quantummechanics, closed
systems versus open systems, and others. Renewed interest in equilibration and thermalisation in isolated
quantum systemswas to a large extend triggered by experimental progress in preparing andmanipulating
assemblies of cold atoms that are extremelywell isolated from their surroundings; see [1, 2] for reviews. Near-
integrable systems, consisting of a dominant integrable part plus a small integrability-breaking perturbation,
have been studied early on in some of these experiments, including the celebrated quantumNewton’s cradle by
Kinoshita et al [3]. The integrability-breaking perturbation ensures thermalisation to amicrocanonical
equilibrium, and the relaxation dynamics towards equilibrium in a near-integrable system takes place in two
stages onwidely separated timescales [4–7]: a fast decay, termed prethermalisation, to a long-lasting
nonequilibrium state that is characterised by a so-called generalisedGibbs ensemble (GGE) [8, 9]; and a second
step, inwhich relaxation to thermal equilibrium, as described by the ordinaryGibbs ensemble, occurs on amuch
longer timescale, once the integrability-breaking perturbation becomes relevant.

Accurate and reliable calculations of these phenomena are challenging, at least when going beyond the small
system sizes ofO(10)where exact diagonalisation (ED) is feasible. Perturbative techniques around the integrable
limit suggest themselves for the problem at hand, and various types of such techniques have been employed in
the context of prethermalisation, including a flow-equationmethods [10], self-consistentmean-field techniques
[11], self-consistent time-dependent spin-wave theory [12], and quantumkinetic theory [13–16]. The notion of
quantum kinetic theory subsumes a number of approximatemethods based on identifying certain classes of
operators (usually those of higher degree in the normal-ordered ladder operators; see section 3 formore precise
statements) as negligible, and deriving a reduced set of equations ofmotion for the remaining operators only
[17]. In the abovementioned [13–16] quantumkinetic theories are developed for studying bosons or fermions in
one spatial dimension.
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The quantumkinetic theorywe develop in the present paper differs from thoseworks in several important
aspects. The integrable part of theHamiltonianint we consider is an Ising spin chainwith nearest-neighbour
interaction and a transversemagnetic field, see equation (2). Our aim is to study the effect of weak long-range
interactions, wherewe define long range as a power-law decay - a-∣ ∣i j with the distance between lattice sites i
and j, whereα is somenon-negative exponent5. The specific long-range perturbationpert we consider is given
in equation (3), but other types can be treated similarly. As is well known, the transverse-field Ising chainint

can bemapped onto noninteracting fermions by a Jordan–Wigner transformation, followed by a Fourier and a
Bogoliubov transformation [18, 19], which, onemight think, should bring us back onto the familiar terrain of
near-integrable fermionicmodels. However, applying the same sequence of transformations topert generates
complicated, non-number-conserving terms beyond those that are usually considered in fermionicmodels. As a
consequence of these additional terms, quantumkinetic equations scale less favourablywith the system size and
the search for an optimised truncation scheme for those equations becomes a necessity. In section 3 of this paper
we introduce and discuss several such truncation schemes and benchmark them against exact results.

The long-range partpert of theHamiltonian can be a small perturbation for one of two reasons: either
because of a small prefactor Jz in (3), or because of a large value of the long-range exponentα. The quantum
kinetic theory we develop in this paper applies to both cases, but the applications and results of section 4 are for
the latter case. To the best of our knowledge, this is the first example of a quantumkinetic perturbation theory
that essentially uses 1/α as a small parameter. The truncated set of quantumkinetic equations allows us to study
the time evolution of spin expectation values and spin–spin correlation functions to high accuracy.Moreover,
unlike some of the other kinetic equations techniques, ourmethod does not require correlation functions to
factorise as in the conditions ofWick’sfirst theorem. Fromour results we can distinguish different relaxation
stages of themodel, including prethermalisation due to the integrable part of theHamiltonian, as well as the
onset of thermalisation caused by the integrability-breaking terms.

2. Time evolution equations of a long-range spin chain

2.1. Near-integrable transverse-field Ising chain
Weconsider theHamiltonian

  = + ( ), 1int pert

where
   å å= ++ ( )J h 2x

l
l
x

l
x

l
l
z

int 1

describes an integrable transverse-field Ising chain, and

  å=
a +( )

( )J

d m2

1
3z

l m
l
z

l m
z

pert
,

is a long-range contribution. Themethods developed in the following are expected to be applicable to a broader
class of perturbations, andwe discuss some of the possibilities as well as limitations in section 5.Here, Î  l N1,
labels the sites of a chain of lengthN. To each lattice site l a spin-1/2 operator    = ( ), ,l l

x
l
y

l
z is associated,

satisfying the commutation relations   d´ = il q l q l, (in units of h–≡1).We assume periodic conditions
 º+N 1 1, so that is translationally invariant. Additionally, theHamiltonian is invariant under the 2

symmetry x→−x. To account for the periodic boundary conditions, we define the distance between lattice
sites l and l+m as the shortest connection around the circle, = -( ) ( )d m m N mmin , . The long-range
interactions in (3) decay like a power law d(m)−αwith the distance, whereα is some non-negative exponent. To
enforce that this term contains exclusively interactions beyond nearest neighbours, the sumoverm extends over

- N2, 2 only. Themagnetic field strength is denoted by h, and Jx and Jz are pair coupling constants.
The integrable partint of theHamiltonian is known to be exactly solvable by a Jordan–Wigner

transformation, followed by a Fourier and a Bogoliubov transformation [18, 19] (see appendix A.1). Bymeans of
this procedure, the integrable part (2) of theHamiltonian can be brought into the quadratic form

 å h h= -( ) ( )† 4
k

k k kint
1

2

with dispersion relation6

 = + + ( )h hJ k Jcos 4 , 5k x x
2 2

5
The notion of long-range interactions is not unanimously defined. In some communities only exponentsα smaller than the spatial

dimension of the system are called long-range. Our terminology includes these cases, but is less restrictive.
6
In case of amagnetic field reversal, such as the onewewill use in appendix C.2, this formula should bemodified by replacing òk→−òk

(see appendix A.1), which has an effect on the dynamics if  ¹ 0pert .
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where k labels themomenta in the first Brillouin zone. hk and h
†
k are fermionic operators satisfying the

anticommutation relations h h d=¢ ¢{ }†,k k k k, and h h =¢{ }, 0k k . It is crucial for what follows to also express the
perturbationpert in this preferred fermionic basis inwhichint is quadratic and diagonal. This guarantees
that, whenmaking approximations by neglecting high-order terms, the errorwill be small. A proper definition
of the notion of high-order operators is given in section 2.2. Themain steps of transformingpert into the

fermionic quasi-particle basis h h†,k k are reported in appendix A.2, leading to the normal-ordered fermionic
representation

  å

å

h h h h h h

h h h h h h h h h h h h

h h h h h h h h

= + + +

+ + +

+ +

- -

- - - - -

- - -

(
)

( )( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

† † †

† † †

† † † † † † †

k k k

k k

A k A k A k

B B B

B B 6

k

k
k k k k k k

k k k k k k k k k k k k

k k k k k k k k

0 I II III

I II III

IV V

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

of the fullHamiltonian.Here we have employed the vector notation = ¼( )k k k, ,1 4 , and åk indicates a
summation over allmomenta kq (q=1,K, 4) in the Brillouin zone. The coefficients ¼A B, ,I V are defined in
appendix A.2.2, and they contain contributions from the coupling constants in the original Hamiltonian, as well
as combinatorial contributions that arise fromnormal-ordering. Normal-ordering leads to significantlymore
complicated expressions here, but it will be crucial for identifying negligible terms in the approximation scheme
of section 2.2.0 in (6) denotes a termof degree zero in the fermionic operators, i.e. proportional to the identity.
This term is irrelevant for the dynamics, butwill be important for the definition of initial conditions. All terms in
(6) aremomentum conserving due to the translational invariance of the spinmodel, and of even degree in the
fermionic operators because of the 2 symmetry.

TheHamiltonian (6) is of quartic degree in the fermionic operators η, h†. This is different from the
conventional long-range Isingmodel in a transverse field [20–23]where, instead ofpert, a perturbation

 å a
+

-( )J d m 2x l m l
x

l m
x

, with long-range couplings between the x-components of the spin operators is used,
which leads to fermionic terms of arbitrarily high degree. The somewhat less conventionalHamiltonian (1)–(3)
we chose is a convenientmodel for studying approximationmethods for the dynamics of the spin chain: all
deviations from the exact dynamics are expected to be genuine effects of the approximationsmade in the time-
evolution equations, as no approximations have to bemade on the level of theHamiltonian.

2.2. Equations ofmotion
The time-evolution equation of an operator in theHeisenberg picture is given by the vonNeumann equation

  = [ ] ( )di , , 7t

where ºdt t

d

d
. To construct a quantumkinetic theory for themodel (1)–(3), we require time-evolution

equations of normal-ordered products of fermionic operators. For example, for h h= †
k k, a straightforward

but tedious calculation yields

åh h h h h h h h

h h h h h h h h

= - - - D
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(
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, 8

k
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k k k k k k k k
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where d d d dD = + + +- -( )k k
k

k
k

k
k

k
k

I
1 2 3 4, d dD = D - --( ) ( )k k k

k
k
k

II I
1 1, d dD = D - - -( ) ( )k k k

k
k

k
III II

2 2, etc.
The right-hand side of equation (7) generally involves time-evolved operators distinct from. Therefore, to
solve the equation ofmotion (8), similar equations ofmotion have to be derived for the operators occurring on
the right-hand side. In general, this will lead to a systemof coupled differential equationswhose number scales
exponentially with the system sizeN. This is a problemof a complexity comparable to that of solving the von
Neumann equation for the density operator in the Schrödinger picture, which is intractable already formoderate
system sizes inmost cases.

Our aim is tofind a smaller differential system that is suitable for approximating the dynamics generated by
theHamiltonian (1), while being numerically tractable for larger system sizes. For this purpose, it will be
convenient to classify operators according to their degree and their p-particle number.

Definition 1.Consider a product  =  q1 of fermionic operators h hÎ { }† ,i k ki i
. Denote by Îa the

number of annihilation operators in, and by Îc the number of creation operators. If all annihilation
operators are to the right of all creation operators, the operator is said to be normal-ordered. The degree of
such a normal-ordered product is then defined as = +a cdeg , andwe call the integer p=max (a, c) the
p-particle number of .
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Wedefine the class Cp
deg as the unique set of normal-ordered products of fermionic operators with a given degree

and a given p-particle number, e.g.

h h h h= " ¢ Î º¢{ } { } ( )† †k kC , Br , 9k k2
1

where Br denotes the Brillouin zone, and the rightmost expression is a slightly abusive shorthand notation.We
furthermore define superclasses of, respectively, fixed p-particle number and degree

Î Î +   ⎢⎣ ⎥⎦
≔ ⋃ ≔ ⋃ ( )C C , C C . 10p

p p

p

p

p

deg ,2
deg deg

,deg
deg

deg 1
2

The union = =⋃F Cp
N p

0 , whose number of elements is exponentially large in the system sizeN, then spans the
vector space of all fermionic operators acting on Fock space. To reduce the size of the systemof coupled
differential equations generated by (7), we introduce a truncation T F as the union of, in general, several
classes Cp

deg. For example

 h h h h hh h h= ºÈ È { } ( )† † † †T C C C , , , , , 110 1 2

corresponds to a truncation at the quadratic level, neglecting all terms of degree larger than two in the differential
system. Afirst requirement onT to be a useful truncation is that it gives access to the observable(s) of interest.
For instance, the spin component l

z , expressed in terms of the fermionic operators ηk and h†
k, is a linear

combination of the identity and of some quadratic operators (see equation (55)). For simulating the dynamics of
l

z , the truncationmust therefore contain at least the terms in (11), even though that selectionmay not be
sufficient to obtain a good approximation.Other choices of observablesmay require larger truncations.
Additionally, for the sake of numerical efficiency, wewant T to contain only themost relevant terms to describe
the dynamics, at least for the time-window and observable of interest, and for the level of precision required. In
that sense, kinetic theory can be seen as a perturbation theorywhich aims at structuring the set of all operators
into a hierarchy, and then truncates that hierarchy at a chosen level.

Such truncation schemes, as is evident from the definitions of the degree and the p-particle number, are
based on the concept of normal ordering, and at least some kind of ordering is required for a consistent
classification of operators and the establishment of a hierarchy. Even if both, theHamiltonian and the
observable are given in normal-ordered form, the commutator in (7)will usually create non-normally ordered
terms in the systemof coupled differential equations, which have to be normal-ordered before a truncation can
be performed. For the applications considered in the present paper, the number of coupled differential
equations typically scales likeN 2 orN 3 with the system sizeN, and is therefore very large for system sizes of tens
or even hundreds of spins.Hence, normal-ordering by hand is an arduous task. To avoid this, we have developed
an algorithm, whichwe call the linear kinetic equations (LKEs) code, that takes care of the following tasks.

(i) Symbolic calculation, for unspecified indices k1, k2,K, of the normal ordering of the commutators between
all types of elements in T. Technically this is equivalent to the derivation ofWick’s second theorem [24, 25].

(ii) Use the results of (i) to derive, from equation (7), the differential systemD for all operators Î T.

(iii) For a given initial density operator ρ, define X0 as the vector composed of all  rá ñ = ( )Tr . Numerically
solve the coupled linear differential equations =Ẋ DX with initial conditionX(0)=X0.

(iv) FromX(t), calculate the expectation value of the spin observable of interest, e.g. á ñ( )tl
z .

Our LKE code is different fromother kinetic equations techniques, like the one developed in [15, 16] for
Hubbard-type latticemodels, in that it does not require the conditions ofWick’sfirst theorem to hold.
Moreover, our approach gives direct access to correlation functions.

2.3. Initial states
In principle, the LKE code described above is not restricted to specific initial states, but specific choicesmay
simplify the problemby reducing the size of the differential systemD. In particular, spatially homogeneous
initial states, which are invariant under discrete lattice translations, are a convenient choice, because they
simplify the fermionic representation of observables like l

z (see appendix A.3). This symmetry, as well as other
ones, can be used to reduce the size of the differential systemof kinetic equations, an issue that is discussed in
detail in appendix B. In principle, and for convenience, one could choose a homogeneous initial state that has a
simple form in the fermionic basis.More relevant for physical applications, however, are initial states that have a
simple form in the spin basis, as in this case it ismore likely that such a state can be prepared experimentally.

A homogeneous initial state with a particularly simple form in the spin basis is a fully z-polarised state
 ∣ ⟩, defined such that it satisfies   = -   ∣ ⟩ ∣ ⟩/S 1 2l

z for all l. Since the time evolution is calculated in
the η-basis, the initial state needs to be transformed into that basis as well. Fortunately, fully polarised spin
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states have a convenient expression in the fermionic language. For instance, one can show that the fully down
z-polarised spin state is transformed into the Bogoliubov basis according to

 ñ = ñ∣ ∣ ( )⌊ ⌋ 0 , 12N 2

where ñ∣0 denotes the Bogoliubov vacuum and

 å å h h h h+ -
p= < < < <

- -  


⎛
⎝
⎜⎜

⎞
⎠
⎟⎟≔ ( ) ( )† † † †

W
i

v

u

v

u

1
1 13n

n s

n
s

k k

k

k

k

k
k k k k

1 0 s

s

s
s s

1

1

1
1 1

for Î  ⌊ ⌋n N1, 2 . uk and vk, defined in appendix A.1, are the coefficients of the Bogoliubov transformation
that diagonalises the integrable part of theHamiltonian, andWn is a normalisation constant defined by

å å= +
p= < < < <




⎛
⎝⎜

⎞
⎠⎟ ( )W

v

u

v

u
1 . 14n

s

n

k k

k

k

k

k

2

1 0

2

s

s

s1

1

1

We then define down truncated polarised states as

y ñ = ñ∣ ∣ ( )0 15n
n

with Î - ⌊ ⌋n N1, 2 1 . For small sizes and/or largemagnetic field amplitudes ∣ ∣h , any of these states is a
good approximation of the ‘proper’ polarised state (12). However, for large systems or smallmagnetic fields, the
LKE code is expected to performwell only for initial states (15)with small n, an effect that will become clearer in
the context of the p-particle structure introduced in section 3.1 and further discussed in appendixD.1.

The symmetry properties of the truncated polarised states y ñ∣ n can be used to further reduce the size of the
differential systemof kinetic equations. Firstly, these states belong to the even sector of the Fock space, and the
time evolution under theHamiltonian (6)preserves this evenness. Secondly, fermions created by the operator n

in (13) always come in pairs with oppositemomenta ki and−ki, and one can show that a differential system
restricted to products of operators that take into account this pair structure is sufficient to describe not only the
initial state, but also the time evolution of a truncated polarised state. Similar to the classes of operators defined
in equations (9) and (10), we denote by C̃

p
deg the set of products of fermionic operators with a certain degree and

p-particle number, with the additional constraints of satisfyingmomentum conservation, belonging to the even
sector of the Fock space, and taking into account the pair structure of n. A detailed account of these symmetries
and a definition of the symmetry-reduced classes C̃

p
deg is given in appendix B.

Lastly, it is worth noting that the truncated polarised states (15) do not satisfy the conditions ofWick’s first
theorem. This is an interesting observation because of the fact that, different fromother quantumkinetic
equations that can be found in the literature, our LKE code does not rely on the validity ofWick’s theorem. For
instance, for the state y ñ∣ 1 one can show that

h h h h h h h há ñ - á ñá ñ = -- - ¢ ¢ - - ¢ ¢
¢

¢

- -( ) ( )† † † † v v

u u
W W , 16k k k k k k k k

k k

k k
1

4
1

2

and henceWick’sfirst theoremdoes not apply. Similar conclusions can be drawn for all truncated polarised
states.

3. Truncations andhierarchies

Our aim is to establish a hierarchy between operators according to their relevance for the time evolution, and
then truncate that hierarchy at a certain level in order to reduce the size of the differential systemof kinetic
equations and render it numericallymoremanageable. For instance, in aweakly-interacting classical kinetic
theory, onewould first select the ballistic terms, for which the particles are noninteracting. If higher accuracy is
needed onewould include two-particle scattering terms, and so on. In this sectionwe adapt this intuitive
classical picture to the fermionicHamiltonian (6) and comment on the role of initial conditions for selecting a
suitable truncation scheme. In section 3.3we assess the quality of the approximations by benchmarking the
results fromdifferent truncation schemes against exact results.

There is no rigorous theory that demands that hierarchies and truncation schemes be based on normal
ordering, but on themore intuitive level one can reason as follows. Consider two fermionic states

x xñ ¢ñ Î
=

∣ ∣ ≔ ⨁ ( )( )H H, , 17q

i

q
i

0

i.e. both states reside in the sector of Fock space that corresponds to atmost q fermions. Then, for any normal-
ordered product of fermionic operators Î Cdeg, it follows that x xá ¢ñ =∣ ∣ 0 if > qdeg 2 , whereas such a
matrix element can be nonzero if  qdeg 2 . The same is not truewithout normal-ordering, i.e. for a non-
normal-ordered product of fermionic operators, thematrix element x xá ¢ñ∣ ∣ can be nonzero regardless of the
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degree of . This implies that, when disregarding non-normal-ordered operators of, say, deg=4, one is
neglecting information not only about three andmore fermions, but also about single fermions and pairs of
fermions. This would contradict the intuitive, classical idea of a truncation scheme thatwe invoked at the
beginning of this section. For amore detailed discussion of the reasoning behind normal ordering, see
chapter 4.1 of [25].

3.1.Definitions of truncations
Truncations based on the degree of operators.Based on the discussion in the preceding paragraph, it is natural to
base a hierarchy of fermionic operators on their degree. Correspondingly, a truncation scheme

=

˜ ≔ ⋃ ˜ ( )T C 18
j

jdeg
0

deg

is defined such that it contains only normal-ordered products of fermionic operators up to a certain degree (and
which additionallymeet the symmetry requirements discussed in appendix B). The cardinality of T̃deg, and
therefore the number of variables in =Ẋ DX , scales likeNdeg/2 with the number of sitesN. For instance, at the
quartic level, we have

 h h h h hh h h h h h h h h h h hh h hhh hhhh= º
=

{ }˜ ⋃ ˜ ( )† † † † † † † † † † † † †T C ; , , ; , , , , , 19
j

j4
0

4

where the symbol; is used to easily distinguish between the classes.
Truncations based on the p-particle number.Modifying the idea leading to the hierarchy (18), one can order

the operators according to the integer

 x x x x= + Î " ñ ¢ñ Î á ¢ñ ={ }∣ ∣ ∣ ∣ ( )p q H1 max , , 0 , 20q

which is precisely the p-particle number introduced in section 2.2. The corresponding truncation is defined as

=

˜ ≔ ⋃ ˜ ( )T C , 21p

j

p
j

0

which, for example, yields

 h h h h hh h h hh h h h h h hhh h h h hhh

h h h h hhhh h h h h hh h h hhhh h h h h hhhh

= º
=

{

}

˜ ⋃ ˜

( )

† † † † † † † † † † † †

† † † † † † † † † † † † † †

T C ; ; , , ; , , ;

, , , , . 22

j

j4

0

4

The two truncations T̃p and T̃deg are equivalent forHamiltonianswhich obey fermion number conservation
(assuming that deg=2p), but they differ in cases where, like in our fermionicHamiltonian (6), terms like ηη or
h h† † create or destroy pairs of fermions. The cardinality of T̃p scales likeNpwith the system sizeN.

Truncation based on degree and p-particle number.Wecan combine the ordering principles of the previous
paragraphs in different ways.We introduce the truncation

= È-˜ ˜ ˜ ( )T T C , 23
p p
deg deg 2 deg

adding to the terms in -T̃deg 2 only those of a specific degree and p-particle number. For example, for deg=6
and p=3we have

 h h h h hh h h h h h h h h h h hh h hhh hhhh h h h hhhº { }˜ ( )† † † † † † † † † † † † † † † †T ; , , ; , , , , ; . 246
3

The number of normal-ordered products in T̃6
3
scales likeN3 with the numberN of spins.

3.2.Domain of validity of the truncations
The truncations introduced above are expected to yield good approximations of the dynamics for sufficiently
short times. Longer times can be reached by tuning and/or ρ in away such that expectation values of higher-
degree fermionic operators are small. Themain parameter for tuning the spinHamiltonian (1)–(3) is the long-
range variableα. The largerα, the closer the fermionic version (6) of theHamiltonian is to the noninteracting
integrable case. The smaller the interactions are, the longer it takes to build up correlations between fermions,
and hence higher-degree fermionic operators remain close to their initial values for a longer time.

Another requirement for a truncation to yield a good approximation is that the initial state ρ is uncorrelated
or atmost weakly correlated in the fermionic basis.Moreover, when using a truncation based on the p-particle
hierarchy of section 3.1, the approximationworks particularly well for initial states with a small fermion density.
Bymeans of the particle–hole transformation of appendix C.2 the validity can be extended to initial states having
either a small fermion density or a small hole density

6
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 r r- [ ( ) ( )] ( )min Tr , 1 Tr 1 2, 25

where

 å h h= ( )†

N

1
26

k
k k

is the (Bogoliubov) fermion density operator. Note that, as observed in appendixD.1, for sufficiently small
magnetic field amplitudes the fully-polarised state  ñ∣ is expected to violate condition (25). However, for a
given system sizeN, one can choose n sufficiently small such that the truncated polarised state y ñ∣ n falls into the
range of validity of the truncation. Similarly, the validity of the condition (25) can be enforced by increasing, at
fixed n, the system sizeN.

3.3. Benchmarking
In this sectionwe assess the performance of the LKE codewhen using the truncations introduced in section 3.1.
We compare to exact diagonalization (ED) results [26] for system sizes up toN=20. As ameasure for the
accuracy, we use an indicator proportional to the time-integrated Euclidean distance between the LKE
expectation value and the ED expectation value
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Based on the results for various truncation schemes shown infigure 1, wemake the following observations: for
sufficiently short times, the accuracies of the truncations follow the hierarchy

    ˜ ˜ ˜ ˜ ˜ ˜ ( )T _ T T _ T T T , 282
2

4 6
3

6
4 4

where the symbol a b means that the truncation a is less accurate than b, and_ means that, based on the data
shown infigure 1, we conjecture that the related truncations are equivalent in the largeα limit.We note that the
intuitive idea of a hierarchy based on the p-particle number and the degree is confirmed7, but that ‘shortcuts’

Figure 1.Comparison of the performance of the LKE code for several truncation schemes, based on the accuracy quantifier (27) as a
function of time t, forα=3 (top) andα=5 (bottom), and for system sizesN=10 (left) andN=20 (right). Some of the truncation
schemes show very similar accuracies, which indicates that irrelevant classes of fermionic operators are contained in some of them. All
data are for fully-polarised initial states  ñ∣ (or y ñ∣ ⌊ ⌋N 2 in the fermionic language), and for parameter values Jx=Jz=h=−1 in
theHamiltonian.

7
Amore detailed benchmarking, whichwe do not showhere, reveals that - ˜ ˜T Tp p1 for  p1 4 on the one hand, and - ˜ ˜T Tdeg 2 deg

for  2 deg 6 on the other hand, providing evidence of both, a degree hierarchy and a p-particle hierarchy.However, after the quartic
level, such schemes are coarse, and it is the purpose offigure 1 to propose intermediate levels of approximation.

7
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seem to exist, i.e. lower-order truncations that achievemore or less the same level of accuracy. For instance, T̃4

and T̃6
3
give results of essentially the same accuracy, although thefirst truncation contains a significantly smaller

number of operators, and is therefore numerically favourable.We found these observations to hold for all system
sizes N 30 for whichwe had ED results available for comparison, andwe do not see any reasonwhy the
observed patterns should not remain valid for larger systemswith otherwise similar parameter values.

As a rule of thumb, on a regular desktop computer we can deal with system sizes∼103when using a
truncation scheme forwhich the corresponding differential system in the LKE code scales linearly withN;
system sizes of order∼102when the scaling is quadratic inN; and sizes of order∼40 in the case of cubic scaling.
Quadratic truncations, while scaling linearly withN, cannot capture effects beyond integrability, and hence are
not suitable for our purposes. In the followingwe use the compromise T̃4, which scales quadratically inN

8, as
our default truncation for the applications discussed in section 4.

It is not easy to come upwith a clear statement about the times and parameter values for which our quantum
kinetic theory is valid.We can, however, get at least a rough idea by plotting the accuracy quantifier (27) for
various system sizes. The left plot infigure 2, which is for the initial state y ñ∣ 1 , indicates that the accuracy Dá ñ˜l

z
T4

remains excellent up to a time t≈N, which for the parameters used equals the traversal time t  ∣ ∣N Jxtrav

discussed inmore detail in section 4.1.Moreover, the accuracy clearly improves with increasing system sizeN,
which is a very reassuring featurewhenmoving beyond the smallN available for benchmarking and on to larger

= ( )N O 102 in the applications of section 4.We believe that this increasing accuracy is caused, at least to some
extend, by the choice of the initial state y ñ∣ 1 , whose fermionic density is bounded fromabove by a decreasing
function ofN, see appendixD.1. The right plot offigure 2 shows the same kind of size-scaling analysis for the
initial state  ñ∣ , which supports similar conclusions as for y ñ∣ 1 , even though the scalingwith system size is less
pronounced.

Because of the perturbative character of our quantumkinetic theory, the truncated time-evolution is
expected to become less accurate for smaller values ofα. This expectation is in agreement with the data shown in
figure 3, which further confirms the improved accuracy with increasingN over a range ofα-values. Overall the
plot illustrates three limits inwhich the LKE code is applicable: sufficiently short times t, sufficiently largeα,
and/or sufficiently large system sizesN. Furthermore, choosing an initial state with a low fermionic density is
another (and particularly powerful)way to improve the performance of the code, as illustrated infigure 2 and
detailed in appendixD.1.

All benchmarking has been done for single-site observables l
z .We expect correlation operators, like  k

z
l
z ,

to bemore strongly affected by errors, but we have not verified this numerically.

4. Prethermalisation and thermalisation in the long-range Ising chain

Anonintegrable isolated quantum systemof large but finite size is expected to thermalise in a probabilistic sense,
meaning that, at sufficiently late times, the expectation value á ñ( )t of a physically reasonable observable is
very close to its thermal equilibrium expectation value á ñth formost t [27, 28]. Fluctuations around

Figure 2. System-size scaling analysis of the accuracy quantifier (27) for the initial states y ñ∣ 1 (left) and  ñ∣ (right). Parameter values
areα=4 and h=−0.51, andwe use the truncation T̃4.We conjecture that, at least for y ñ∣ 1 , our quantumkinetic theory gives high-
accuracy results at least until the traversal time t  ∣ ∣N Jxtrav , and that the accuracy improves further with increasing the system size
N.

8
Another promising quartic choice that scales quadratically withN is È È˜ ˜ ˜ ⪯ ˜T C C T2 4

2
4
3 3.
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equilibrium are present, but their size is suppressed for large system sizesN; andwhile large deviations from
equilibriummay occur, they are extremely rare.

In the transverse-field Ising chainwith long-range interactions (1)–(3), the integrability ofint is broken by
the presence ofpert which, for the largeα-valueswe are considering, is a weak perturbation. The relaxation to
equilibriumofweakly nonintegrable systems, consisting of an integrable part plus a small nonintegrable
perturbation, has been studied extensively in the literature (see [5] and references therein). For such systems, an
out-of-equilibrium initial state typically approaches equilibrium in two stages [7]: on a rather short timescale, a
long-lasting prethermalised nonequilibrium state is reached. This state is described by a so-calledGGE [8, 9],
which, in addition to conservation of energy, takes into account also all the other conserved local charges of the
integrable part of theHamiltonian. Proper thermal equilibrium, as described by the ordinaryGibbs ensemble, is
expected to be approached onlymuch later, once the integrability-breaking perturbation becomes relevant.

We expect similar behaviour in the transverse-field Ising chainwith long-range interactions, butwith the
difference thatpert in (3) contains integrable aswell as nonintegrable contributions, as is evident from the
presence of quadratic as well as quartic terms in the fermionicHamiltonian (6). Both types of contributions are
of smallmagnitude, controlled by a combination of the parameters Jz andα. Notwithstanding the similar
magnitudes of the integrable and nonintegrable contributions inpert, the two termswill have different effects
on the equilibration of the system. The integrable portion ofpert will contribute a small shift to theGGE that is
reached in the initial relaxation step due toint. The nonintegrable portion ofpert is generically expected to
effect proper thermalisation to aGibbs state on a timescale proportional to the squared inverse of themagnitude
of the nonintegrable term [5].

In the followingwemake use of the LKE codewith a suitable truncation scheme in order to probe the
relaxation dynamics of the transverse-field Ising chainwith long-range interactions. As our local observable of
interest we choose l

z , the z-component of the spin at site l. This observable has the advantage of being of a
simple formnot only in the spin framework, but also in the fermionic language, where it is a quadratic
operator (55).

Figure 3. (a)The accuracy quantifier (27) plotted as a function ofα for various times t and system sizesN. Systemparameters are
Jx=Jz=h=−1, the initial state is y ñ∣ 1 , andwe used the truncation T̃4.We used the (somewhat arbitrarily chosen) dotted line
Dá ñ = -˜ 10l

z
T

2
4 as a threshold value, belowwhichwe declare our numerical results as sufficiently accurate. To illustrate the choice of

this threshold valuewe plot the time evolution of (c) the expectation value of á ñl
z and (b) its accuracy quantifier forα=2.5 and

N=20. In all three plots, the dotted line, respectively the orange dot, correspond to the same parameter values and accuracy
thresholds.
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4.1.Quadratic fermionicHamiltonian
Todistinguish effects of nonintegrability from those of the integrablemodel, we define theHamiltonian

  å h h h h h h= + + +- -( )( ) ( ) ( ) ( )† † †A k A k A k 29
k

k k k k k k2 0 I II III

consisting of only the quadratic terms in the fermionicHamiltonian (6).2 differs fromint for finiteα, owing
to the fact thatpert contains not only quartic, but also quadratic contributions. For any quadraticHamiltonian,
the truncation scheme T̃2 yields exact results

9, and the use of such a low-order truncation schemewill allow us to
deal with fairly large system sizes of2 in the following.

Using that scheme in the LKE code, we show infigure 4 exact results for the time evolution of á ñl
z generated

by the quadraticHamiltonian2 for various values of the long-range parameterα. Themost striking feature in
this plot are the drastic changes, occurring periodically in the time evolutionwith a period of approximately
1200. These features have been termed traversals in [29], and they can be understood as afinite-size effect: the
dynamics is controlled by pairs of quasiparticles travelling across the chain in opposite directions, and forint

themaximumvelocity of quasiparticle propagation is known [30]. Because of the periodic boundary conditions,
the effect of returning quasiparticles that have travelled the full length of the circle will be felt after a time
t  ∣ ∣N Jxtrav andmultiples thereof. For a < ¥ this timescale changes only slightly. Asfigure 4 illustrates, the
traversals spoil the relaxation behaviour that is visible up to t;1200. In this way,finite system sizes limit the
timescales that can be assessed. For the quest of observing equilibration, which occurs on the slowest relevant
timescale of a system, this poses a challenge.

Fromnowonwewill focus exclusively on times t up to τtrav. In that timewindowwe observe infigure 4 a
rapid rise of á ñl

z from approximately−0.335 (see (101) and the discussion in appendixD.2.2) to an
α-dependent value around−0.3.We estimate the corresponding timescale to be

åt  ∣ ∣ ( )N , 30
k

k

which yields a value τ; 1 for the parameters offigure 4, in agreement with the results shown in the plot. After
that fast initial rise, a prethermalisation plateau is reached.We expect, but have not explicitly confirmed, that the
attained long-time values agreewith theGGE equilibrium values of2 for the initial state used.

4.2. Beyond integrability
In this sectionwe go beyond integrability by considering the full nonquadratic fermionicHamiltonian (6),
which is equivalent to the long-range spinmodel (1)–(3). In this case the quadratic truncation scheme T̃2 is not
sufficient anymore, andwe opt instead for using T̃4 as a compromise between accuracy and numerical efficiency
(see section 3.3). T̃4 scales quadratically with the system size, which restricts the system sizes we can deal with on
a regular desktop computer toN=120.Withmoderate effort and using less than 30 Gb of RAMon a cluster we
obtained data forN=180, but the system sizes can certainly be pushedwell beyond 200withmore effort.
Because of the traversals discussed in section 4.1, the system sizes ofN=180will limit the timescales that can
faithfully be observed to τtrav;180.

Figure 4.Time evolution of á ñl
z under the dynamics generated by 2 for system sizeN=1200with parameter values Jx=Jz=−1

and h=−0.51. The colours represent different values of the long-range parameterα, as indicated in the legend. Time evolution starts
from a truncated polarised initial state y ñ∣ 1 and is calculatedwith the LKE code using the truncation T̃2, which yields exact results for
the quadraticHamiltonian considered. Themain features that can beobserved are a rapid initial relaxation on a timescale of the order 1,
followedbya prethermalisation plateau,which canbeobserveduntilfinite-size traversals obfuscate the relaxation at around t; 1200;
seemain text for details.

9
This is a consequence of the fact that  Î ˜di SpanTt 2 for all Î T̃ ;2 see appendix B.
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Infigure 5 the time evolution of á ñl
z is shown for various values of the long-range parameterα, for the full

nonintegrableHamiltonian as well as for the quadraticHamiltonian2. The left panel offigure 5 shows that,
for transversemagnetic field = -h 1, the dynamics under (solid lines) and2 (dashed lines) are almost
indistinguishable. Prethermal values are rapidly reached, and no subsequent drift towards the thermal values
(indicated by straight solid lines) is evident on the accessible timescale. For h=−0.51 (right panel offigure 5),
which is close to the quantum critical point of themodel10, dashed and solid lines clearly differ, indicating that
the quartic terms in the nonintegrableHamiltonian have a sizeable effect on the dynamics, at least for the
smallerα-values considered.Moreover, the presence of nonintegrable terms appears to promote
thermalisation, shifting the time-evolving expectation values closer to their thermal equilibrium value.

The thermal equilibrium values shown infigure 5 are calculated according to

   bá ñ = b-( ) ( ) ( )ZTr e , 31l
z

l
z

th

where b = b-( ) ( )Z Tr e is the partition function. Sincewe are considering an isolated systemwhere energy is
conserved, the inverse temperatureβ isfixed through the initial state y ñ∣ 1 implicitly via

  y y
b

n
á ñ

= º
b

¥ ¥

-

¥

∣ ∣ ( )
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( )
N NZ

lim lim
Tr e

lim , 32
N N N

1 1

th

at least under the idealisation of the thermodynamic limit. IfN isfinite but sufficiently large, we expect (32) to
still be valid. Based on this assumptionwe use ED for spin chains of up to 24 sites to determineβ and á ñl

z
th. For

the energy density y yá ñ∣ ∣ N1 1 , an exact expression is known, see (96). ED results for νth for several small
system sizes are then extrapolated to the system sizes of interest, as illustrated infigure 6. For amagnetic field
h=−1, we find an inverse temperatureβ;−2.8,more or less independent of the value ofα. For h=−0.51,
β ranges from;−4.7 to;−5.9 forα between 4 and 8. Smallerα are not considered, as the validity of the
approximations in our quantumkinetic theory become questionable in that case.

Negative inverse temperaturesβ are known to occur in equilibrium systemswith (upper and lower)
bounded energy spectra if the entropy decreases as a function of energy in the high-energy region [31].
According to (65), in ourmodel the transition frompositive to negativeβ takes place at the energy νth=0. From
equation (65)we furthermore find n b <b b=( )∣d 0th 0 , and it is reasonable to assume that b n b ( )th is
monotonous11, which is consistent with the numerical results offigure 5. According to (98) the initial states we
use correspond to positive energy densities, which, by virtue of the abovemonotonicity argument, imply
negative temperatures. In appendix C.1we propose amethod that allows us to tune the energy density of the

Figure 5.Time evolution of á ñl
z for system sizeN=180, coupling constants Jx=Jz=−1, andmagneticfields h=−1 (left) and

h=−0.51 (right). Solid lines correspond to the dynamics under the full nonintegrable Hamiltonian  (6), starting from the initial
state y ñ∣ 1 and obtainedwith the LKE code and the truncation T̃4. The dotted lines show the exact dynamics under the quadratic
Hamiltonian 2 using the truncation T̃2.Where dotted lines are not visible, they coincide with their solid counterparts. Thermal
equilibrium expectation values are shown as coloured squares. As expected, a first traversal occurs around t;N.

10
We have not studied the location of the critical point ∣ ∣hc for finiteα. For a perturbation of the form  å a

+
-( )d ml m l

x
l m
x

, this question has
been addressed in [22]. Unlike in that case, our perturbation (3) couples spin components in themagnetic field direction, and for that reason
we expect that the location of the critical point remains largely unaffected. For the parameter values we use, we hence expect that h=−0.51
is in the ferromagnetic phase for allα, which seems to be confirmed by numerical results.
11

For instance, the condition * Ì -( )sp is sufficient to obtain dβ νth(β)<0.Moreover, from (45)we know that the eigenvalues of int

are all strictly negative as long as h<0, which is always the case in this section. Perturbation theory therefore proves the strict positivity of
the spectrumof the full Hamiltonian (6) for a sufficiently large (but finite) value ofα.
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initial state, and hence the effective temperature, while still using truncated polarised states and staying in the
regimewhere our quantumkinetic theory remains valid.

4.3. Spreading of correlations
The linear quantumkinetic theorywe developed in section 2.2 does notmake use of aWick factorisation of
correlations. This not only allows us to deal with correlated initial states, as discussed at the end of section 2.3,
but also provides access to a subset of fermionic correlation functions. At the level of the T̃4-truncation (19) that
we use, we obtain all the fermionic correlations functions necessary for calculating the spin–spin correlations
 á ñ+l

x
l
x

1 ,  á ñ+l
x

l
x

2 , and  á ñ+l
z

l m
z for all Î - ⌊ ⌋ ⌊ ⌋m N N2 , 2 (see appendix A.4 for explicit formulas). As

an example, we show infigure 7 the time-evolution of the connected zz-correlation function

   á ñ = á ñ - á ñ+ ( )33m
z

l
z

l m
z

l
z 2

for h=−1 and h=−0.51, starting from the initial state y ñ∣ 1 . This state has nonvanishing correlations in the
spin basis, which, as is visible from the short-time behaviour in figure 7, are smaller for h=−1, and larger for

Figure 6.Extrapolation procedure to obtain the thermal values shown as squares infigure 5. In the left plot the thermal energy density
n b( )th , obtained by ED, is plotted for parameter valuesα=4, h=−1, and different system sizesN. The dotted line represents the
energy density ν1 of the initial state y ñ∣ 1 , calculated according to equation (96). For each value ofNwe read off theβ-value that
corresponds to n1 (black crosses). In the right plot, thesefinite-size values ofβ are plotted as a function of system-sizeN (crosses
connected by a line). Using a power-law fit, we extrapolate to larger sizes (crosses for 1/N<1/24, not connected by a line), obtaining
for exampleβ(N=180);−2.8183. Sincewe haveβ(N=24)=−2.8120 for the largest system size forwhichwe had EDdata, we
estimate the precision of the extrapolation to be of order 10−3. Using the extrapolated value ofβ, we calculate the spin thermal
equilibrium value   bb-( ) ( )ZTr el

z by ED and subsequently extrapolate the finite-size results to the desired larger system size of
interest.

Figure 7.Plot of á ñlog m
z

10 in the space–time plane (m, t) formagnetic fields h=−1 (left) and h=−0.51 (right). The initial state is
y ñ∣ 1 , and the time evolution is under the nonintegrableHamiltonian (6)with parametersN=120,α=4 and coupling constants
Jx=Jz=−1. Correlations smaller than 10−5 are irrelevant forwhat wewant to illustrate in this plot, andwe therefore rescaled the
colour bar to this threshold, i.e. the plots actually show - á ñ( )max 5, log m

z
10 .
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h=−0.51. This h-dependence is a consequence of the fact that tuning hnot onlymodifies theHamiltonian (6),
but also changes the initial state (13), which affects themagnitude of the correlations (59). As discussed in
appendixD.1, y ñ∣ 1 becomes a good approximation of  ñ∣ in the limit of large negativemagnetic fields, which
is consistent with our observation of weaker initial correlations for amagnetic field of largermagnitude.

Infigure 7we show á ñm
z as a function of time t and distancem between lattice sites.We observe a rapid

decay, on a timescale of the order one, of the nonlocal (i.e.m-independent) initial correlations, followed by a
‘lightcone’-like spreading of correlations in space and time [16, 32–35]. In the presence of long-range
interactions, a variety of analytical, numerical, as well as experimental results indicate that, at least for sufficiently
small values ofα, the linear shape of the cone gets replaced by a curved shape [36–41]. Forα=4 as used in
figure 7 a curved shape is not visible, and it has in fact been conjectured that correlations spread strictly linearly
forα larger than some critical value [42].

The spatial decay of the correlations, i.e. them-dependence of á ñm
z at a given time t, appears significantly

sharper in the left plot (h=−1) offigure 7 compared to the right plot (h=−0.5), a feature that is particularly
striking at small ∣ ∣m . This observation is consistent with the expectation that the correlation length diverges in
the vicinity of the quantum critical point, which forα=4 is expected to be close to the quantum critical point
hc=−1/2 ofint. Strictly speaking this argument is valid only for the groundstate and in equilibrium, but it is
reasonable to expect signatures of quantum critically to persist at small Bogoliubov particle densities á ñ. The
initial state y ñ∣ 1 has indeed a small á ñ (90) and, since the integrability breaking is weak, this remains true for
fairly long times t>0. Furthermore, while global equilibriumhas not yet been reached, regions that are some
distance away from the edges of the lightcone seem to have equilibrated at least locally, with a correlation length
that is presumably similar to that of the global equilibrium. Assuming all this heuristic reasoning to be valid, we
interpret the qualitative differences between the two plots infigure 7 as consequences of the distance of the
magnetic field values h=−1, respectively h=−0.51, from the quantumphase transition.

5. Conclusions

Wehave constructed quantumkinetic equations for describing the nonequilibriumdynamics of a transverse-
field Ising chainwith aweak integrability-breaking perturbation. The computationalmethodwe developed
makes use of the Jordan–Wigner fermionic representation of the transverse-field Isingmodel and takes into
account the integrability-breaking perturbation up to a certain degree in the time-evolution equations of
operators.Which operators to include andwhich operators to neglect in the time-evolution equations is a
crucial issue and strongly affects the accuracy of the approximation. In section 3we have introduced, discussed,
and benchmarked several truncation schemes, all of which are based on the normal-ordering of products of
fermionic operators. Based on the numerical benchmarking, we found the quartic truncation scheme T̃4 to be
numerically efficient and at the same time adequate for studying effects beyond integrability. Truncation
schemes involving sixth order terms can reduce errors in time-evolved expectation values by almost an order of
magnitude, but become very costly in computation time. Using the truncation scheme T̃4, which scales
quadratically in the system sizeN, we reached sizes of up toN=120 on a desktop computer and up toN=180
on a cluster, butwithmore effort and/or high-performance computing facilities this value can certainly be
pushed quite a bit further.

Themodel we have studied is the integrable transverse-field Ising chainwith nearest-neighbour interactions
(2), with an added integrability-breaking long-range perturbation (3). The perturbation can bemade small by
choosing either the coupling coefficient Jz in (3) to be small, or the long-range exponentα to be large. The latter
case, whichwe focus on in this paper, is, to the best of our knowledge, the first perturbative technique that uses
1/α as a small parameter. The perturbation (3)we chose for this study is an unconventional one: unlike in the
conventional transverse-field Ising chainwith long-range interactions where both, nearest-neighbour and long-
range couplings are orthogonal to the field direction, we chose amodel where the long-range couplingpert is
alignedwith themagnetic field (in the z-direction in our choice of reference frame). This choice avoids so-called
Jordan–Wigner strings in the fermionic representation of operators, which simplifies calculations.
Perturbations that can bewritten entirely in terms of l

z operators can be treatedwith themethods introduced in
this paper, including also three-spin interactions like   l

z
m
z

n
z or even higher orders in spin operators.

Perturbations containing l
x or l

y spin operators aremore difficult to deal with. For example, a pair interaction
  +l

x
l m
x translated into the fermionic picturewill consist of fermionic operators not only on sites l and l+m,

but also on all sites in between. For short interaction rangesm, like in next-nearest neighbour interactions, these
terms can certainly be dealt with, but for largerm it is not clear to uswhether calculating a normal-ordered
fermionicHamiltonian in this case is analytically (or computationally) feasible.

Research on systemswith long-range interactions usually focusses on one of the following two cases:
(i) systemswhere the long-range exponentα is smaller than the spatial dimension of the system. In this case a

13

New J. Phys. 21 (2019) 093021 CDuval andMKastner



number of unconventional thermodynamic and dynamic properties are known to occur, including thermal
phase transitions in one-dimensionalmodels [43], nonequivalence of statistical ensembles [44–46], and others.
Our quantumkinetic theory applies to this regimewhen Jz in (3) is sufficiently small, but we have not studied this
case in detail in the present work. (ii)Values of the long-range exponentα that are relevant for recent
experiments with ultracold atoms. For spin-1/2models, these are in particular a = 3 (magnetic atoms, polar
molecules, Rydberg atoms) andα=6 (Rydberg atoms); see [47] for an overview. The latter case should certainly
fall into the range of validity of our quantumkinetic perturbation theorywhen using 1/α as a small parameter.

An important feature of our theory is that we do not assume the conditions ofWick’sfirst theorem to hold,
i.e. unlike in some relatedwork [15], we do not reduce expectation values of quartic fermionic terms into
products of expectation values of quadratic termsThis comeswith some advantages and some disadvantages. A
disadvantage is that we need to solve a substantially larger set of coupled differential equations, which leads to
restrictions on the accessible system sizes. This is attenuated to some extend by the fact that we deal with
ordinary linear differential equations, whereas application ofWick’s theorem leads to nonlinearities.Moreover,
since quartic terms are not broken up into quadratic ones, we have access to the corresponding quantum
correlation functions. In the language of spinmodels, this gives us access not only to spin expectation values, but
also to spin–spin correlation functions, as shown infigure 7.

As an application of our perturbative schemewe studied the influence of the small parameter 1/α on
prethermalisation and thermalisation in theweakly long-range transverse-field Ising chain. Finite-size effects
restrict the accessible timescales to t;N, which in turn implies a limitation on the relaxation phenomena one
can observe. Relaxation due to the integrable part2 occurs on a timescale ofO(1) and is easily observed.
Thermalisation to aGibbs state, induced by the nonintegrable part ofpert, takes place on a slower timescale.
While wewere not able to observe the full approach to thermal equilibrium in time, we do see that the presence
of nonintegrable terms pushes the spin expectation values closer to their thermal values. This effect ismore
pronounced closer to the quantum critical point of themodel, butwe do not have a satisfactory explanation for
this observation.
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AppendixA. Transformation into the diagonal basis ofint

As discussed in section 2.1, wewant to express theHamiltonian aswell as observables of interest as normal-
ordered products of the fermionic operators that diagonalise the integrable part of theHamiltonian. The
reasoning behind this strategy is that high-order terms in those normal-ordered operator products are expected
to be less relevant for the dynamics, and the kinetic equations derived in this paper are obtained by neglecting
certain classes of normal-ordered fermionic operators. In appendix A.1we briefly recapitulate the standard
result of diagonalising the transverse-field Ising chainwith nearest-neighbour interactions bymeans of a
Jordan–Wigner transformation, followed by a Fourier and a Bogoliubov transformation. In appendix A.2 we
express the long-range contributionpert in terms of the Bogoliubov fermions of appendix A.1, and in the
appendices A.3 andA.4we do the same for spin components l

z and spin–spin correlations, whichwill be our
observables of interest.

A.1. Integrable part
The integrable partint of ourHamiltonian (1)–(3) describes a one-dimensional Ising chain in a transverse
magnetic fieldwith nearest-neighbour interactions. In this sectionwe review the standard procedure ofmapping
this part of theHamiltonian to noninteracting fermions bymeans of Jordan–Wigner, Fourier, and Bogoliubov
transformations; see [19, 30, 48] formore detailed accounts.

A.1.1. Jordan–Wigner transformation. We consider the set of operators m m†,i j satisfying the fermionic
anticommutation relations

m m d m m m m= = = { }{ } { } ( )† † †, , , 0 , . 34i j i j i j i j,
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Defining the Jordan–Wigner transformation

  åm p m m m= = - Î+ +

=

-

 
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )† † † l N, exp i for 2, 35l

j

l

j j l1 1
1

1

with - +≔ ( )†S Sl l and + -≔ [ ]S S S2 ,l
z

l l , it is straightforward to verify that the fermionic anticommutation
relations of m m†,i j imply that  ,l l

z obey spin commutation relations, as required. Expressing the integrable

part of theHamiltonian (2) in terms of the fermionic operators m m†,i j one obtains

 å åm m m m m m m m m m= + - - + -+ + + + ( )( ) ( )† † † † †J
h

4
. 36x

l
l l l l l l l l

l
l lint 1 1 1 1

1

2

A.1.2. Fourier transformation. The spinHamiltonian is invariant under discrete translations, which suggests to
search for the eigenvectors ofint among the Fouriermodes of a one-dimensional lattice with periodic
boundary conditions. Our convention for the discrete Fourier transformation is

åm m= ˜ ( )
N

1
e . 37l

k

kl
k

i

The periodic boundaries impose conditions on the permissiblemomenta k overwhich the sum in (37) extends,
dependent on the total number of fermions on the chain. This number is obtained through the operator

 å m m= ( )† , 38
l

l l

andwe denote its eigenvalues byM. Then the permissible values of themomenta are given by = +p ( )k q 1 2
N

2

with Î - q N0, 1 ifM is even, and by = pk q
N

2 ifM is odd.

The fermionic parity (i.e. the evenness or oddness ofM) is conserved under the time evolution not only of
the integrable part, but also of the fullHamiltonian,   =p[ ], e 0i .Wewill restrict our attention to initial states
from the even parity sector, and parity conservationwill preserve that restriction for all later times. For
convenience, within that sectorwe shift the Brillouin zone to be as symmetric as possible around zero by
choosing the integers Î - - ⌊ ⌋ ⌊ ⌋q N N2 , 2 1 in the above definition of themomenta.

To prepare for the Bogoliubov transformation to follow, we expressint as a sumofmatrix products

 å m m
m

m
= - + -

-

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )˜ ˜

˜
˜

( )†
†

Nh
R

2
, 39

k
k k k

k

k
int

where

=
-

⎛
⎝⎜

⎞
⎠⎟ ( )R

a b

b

i 2

i 2 0
40k

k k

k

with

= + = ( )a h
J

k b
J

k
2

cos ,
2

sin . 41k
x

k
x

Since =†R Rk k, equation (39) can be diagonalized bymeans of a unitary transformation.

A.1.3. Bogoliubov transformation. We introduce the change of basis

= Î
⎛
⎝⎜

⎞
⎠⎟ ( ) ( )U

u v
v u

i
i

SU 2 , 42k
k k

k k

where Îu v,k k .We denote by h h†,k k the image of the Fourier basis under this rotation, i.e.

m

m

h

h
h h

h h
= =

-

- +- -

-

-

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

˜
˜

( )†
†

†

†

†U
u v

v u

i

i
. 43

k

k
k

k

k

k k k k

k k k k

Since =( )Udet 1k , there exists a real number xk such that = =( ) ( )u x v xcos , sink k k k . Requiring

 s s= + - + +⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( ) ( ) ( ) ( )†U R U

a a
x

b
x

b
x

a
x

2 2
sin 2

2
cos 2

2
sin 2

2
cos 2 44k k k

k k
k

k
k

y k
k

k
k

z

to be diagonal yields the Bogoliubov angle = - ( )x b atank k k
1

2
1 . Expressingint in terms of the thus defined

fermionic operators h h†,k k one obtains the diagonalHamiltonian (4)with the dispersion relation
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 = +( ) ( )a a bsgn . 45k k k k
2 2

This dispersion relation differs from the one in (5), and also fromwhat is given inmost papers and textbooks, by
the factor of ( )asgn k [49]. This variant turns out to be useful in appendix C.2, wherewe define a particle–hole
mapping to reach the high-temperature regime, a transformation that, at least in the ferromagnetic phase, is
equivalent (in the active viewpoint of symmetries) to a reversal of themagnetic field h.

A.2. Perturbation
In this sectionwe express the long-range perturbation (3) of theHamiltonian in terms of the Bogoliubov
fermions h h†,k k defined in appendix A.1.3.

A.2.1. Jordan–Wigner and Fourier transformations. Inserting the definitions of m m†,l l and m m˜ ˜†,k k into (3), we
obtain

 å å
z a

m m d m m m m= - +
-
a( )( )

˜ ˜ [ ( )]
( )

˜ ˜ ˜ ˜ ( )† † †J J

N

m k k

d m2 2

cos
, 46

k
k

z N

k
k k

z

m
pert

1

4
,

1 2
1 2 3 4

where

d
p

=
- + - =⎧⎨⎩

( ) ( )k k k k1 if 0 mod 2 ,

0 else,
47k

1 2 3 4

restricts the summation tomomentum-conserving termsmodulo 2π.We have used the shorthand notation
m m˜ ≔ ˜i ki

and the truncated zeta-function

åz a
a

=

-

( ) ≔ ( )
d

1
. 48N

m

N

2

2

A.2.2. Bogoliubov transformation. Performing the Bogoliubov transformation m h h= - -˜ †u vij j j j j, the long-

range part (46) of theHamiltonian becomes

 å

å

z a
h h h h h h

d h h d h h h h

h h d h h h h

= - - ¢ + -

+
-

+ ¢ - +

´ + ¢ - +

a

- -

- -

- -

⎜ ⎟⎛
⎝

⎞
⎠

( )
( )

( )
( )

( ( ))

( )

† † †

† † †

† † †

J
X Z Y

J

N

m k k

d
X Z Y Y

X Z Y Y

2

1

4
i

2

cos
i i

i i , 49

k
k

z N

k
kk k k kk kk k k k k

z

m

pert

,

1 2
12 1 2 12 1,2 12 1 2 21 1 2

34 3 4 34 3,4 34 3 4 43 3 4

wherewe have defined

º = -( ) ( )X X k k u u v v a, , 50ij i j k k k ki j i j

º =( ) ( )Y Y k k u v b, , 50ij i j k ki j

º =( ) ( )Z Z k k u u c, , 50ij i j k ki j

¢ º ¢ = -( ) ( )Z Z k k Z X d, . 50ij i j ij ij

Whennormal-ordering the terms in the second sumof (49), further quadratic termswill emerge, which can be
mergedwith the quadratic terms inint. The fullHamiltonian can finally bewritten as

  å

å

h h h h h h

h h h h h h h h h h h h

= + + +

+ + +¼+

- -

- - - - -

( )
( )

( ) ( ) ( )

( ) ( ) ( ) ( )

† † †

† † † † †k k k

A k A k A k

B B B , 51
k

k
k k k k k k0 I II III

I 1 2 3 4 II 1 2 3 4 V 1 2 3 4

where  = H0 0 with

å åz a= - + G + +
¢

¢ ¢ ¢ ¢( ) ( ) ( )H NJ
J

N
c Y Y Y

1

2

1

2 2
52

k
k z N N

z

k k
kk k k kk k k0

2

,

is proportional to the identity operator, and hence irrelevant for the dynamics.Here we have introduced the
notations

åº =
-

- a
< < -

( )
[ ( )]
( )

( )c c k k
m k k

m N m
a,

cos

min ,
, 53ij i j

m N

i j

1 1

åG = - + ¢ ( )
N

Z b
1

2

1
, 53N

k
kk
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åz a= G + +
¢

¢ ¢ ¢ ¢( ) ( ) ( ) ( )A k J Y
J

N
c X Y Y ci

i

2
, 53z N kk N

z

k
kk kk kk k kI

 åz a= + G + - +
¢

¢ ¢ ¢ ¢
⎡⎣ ⎤⎦( ) ( ) ( ) ( ) ( )A k k J X

J

N
c X Y Y d

2
, 53z N kk N

z

k
kk kk kk k kII

2 2

= -( ) ( ) ( )A k A k e, 53III I

d= -( ) ( )kB
J

N
c Y Y f

2
, 53k

z
I 12 21 43

d=( ) ( )kB
J

N
c X Y g2i

2
, 53k

z
II 12 12 43

d d= - + ¢ + ¢- ( )( )( ) ( )kB
J

N
c Y Y

J

N
c Z Z Z Z h2

2 2
, 53k k

z z
III 12 12 43 1, 3 13 13 24 24

d= -( ) ( )kB
J

N
c X Y i2i

2
, 53k

z
IV 12 34 12

d= -( ) ( )kB
J

N
c Y Y j

2
. 53k

z
V 12 12 34

Note that Î( )A kII and Î( ) ( )A k A k, iI III
2. Hermiticity imposes =A AII II, which implies Î( )A kII , but

Î( ) ( )A k A k, iI III
2 is not a necessary condition to fulfil =A AI III. In addition, - = -( ) ( )A k A kI I ,

- = -( ) ( )A k A kIII III (consequence of the statistics), and - =( ) ( )A k A kII II . Similarly, Î( )kBIII ,
Î( ) ( )k kB B, iII IV

2, and Î( ) ( )k kB B, ,I V
2. Hermiticity of the quartic part is guaranteed by the relations

=( ) ( )B B1, 2, 3, 4 2, 1, 4, 3I V , =( ) ( )B B1, 2, 3, 4 4, 3, 2, 1II IV , and =( ) ( )B B1, 2, 3, 4 4, 3, 2, 1III III . Finally,
- =( ) ( )k kB BI I , - = -( ) ( )k kB BII II , - =( ) ( )k kB BIII III , with similar relations for B B,IV V.

A.3. Transformation of l
z

Similarly, by performing Jordan–Wigner, Fourier, and Bogoliubov transformations, the z-component of the
spin operator can be expressed in terms of the Bogoliubov fermions

 å h h h h h h= G + - +- - + - +( ) ( )( ) † ( ) ( ) † †

N
X Y Y

1
e i e i e . 54l

z
N

k k l k k l k k l

1,2
12

i
1 2 21

i
1 2 12

i
1 2

1 2 1 2 1 2

In general, this expressions contains also terms of the form h há ñ†
1 2 , h há ñ-1 2 , and h há ñ-

† †
1 2 , which, for ¹k k1 2, are

notmomentum conserving. For (discrete) translationally invariant initial states, however, we show in
appendix B that such nonmomentum-conserving terms have zero expectation values at all times. Therefore, the
expectation value of (54) at time t simplifies to

 å h h h h h há ñ = G + á ñ + á ñ - á ñ- -( ) ( )† † †

N
X Y Y

1
i i . 55l

z
N

k
kk k k kk k k kk k k

This is an important simplification for the LKE code, as it allows us to restrict the set of operators considered in
the code tomomentum-conserving products of Bogoliubov fermions.

A.4. Transformation of correlation functions
In the spin picture we define the connected xx-correlation function as

   á ñ º á ñ - á ñ+ ( ). 56x
l
x

l
x

l
x

1 1
2

Because of the 2 symmetry ofHamiltonian and initial statewe are using, we have á ñ = 0l
x at all times and

hence   á ñ = á ñ+
x

l
x

l
x

1 1 . By performing Jordan–Wigner, Fourier, andBogoliubov transformations and assuming
a translationally invariant state, this correlation function turns out to be quadratic when expressed in terms of
the Bogoliubov fermions

 å h h h h h há ñ = + á ñ + á ñ - á ñ- -
⎡⎣ ⎤⎦( )( ) ( ) ( ) ( ) ( ) ( )† † †p q q q q

N
k k k k k

1

2
Tr i i , 57x

k

T
k k k k k k1 0 I II I

where

= =
¢

-
=

-
= ⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠( ) ( )

( )
( ) ( ) ( ) ( )p q q qk

k

k
k

Z
Y

k
Y
X

k
X
Y

cos

sin
, ,

2
,

2
. 58kk

kk

kk

kk

kk

kk
0 I II

Similarly, correlation functions   á ñ = á ñ+m
x

l
x

l m
x can be expressed in terms of Bogoliubov fermions for anym,

and they turn out to be of degree 2m in the fermionic basis.With the T̃4 truncation (19)we are using in
sections 4.2 and 4.3we have access to all quartic fermionic operators, but not to all sixth-order terms, so that we
can calculate á ñx

2 , but not the xx correlations of spins that are further than two lattice sites apart.
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For the zz-correlation functionwith respect to a translationally invariant state we find

  å

å

h h h h h h

h h h h h h h h h h h h

á ñ = + á ñ + á ñ + á ñ

+ á ñ + á ñ + + á ñ

+ - -

- - - - -

( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

† † †

† † † † †k k k

C m R k m R k m R k m

S m S m S m

, , ,

, , ... , 59
k

l
z

l m
z

k
k k k k k k0 I II III

I 1 2 3 4 II 1 2 3 4 V 1 2 3 4

with

g gº = -( ) ( ) [ ( )] ( )m k k m m k k a, , cos , 60ij i j i j

å g z a= +  
⎡
⎣⎢

⎤
⎦⎥( ) ( { ( ) ( ) }) ( )C m

J N
H k c m b

2 1

2
, , 1 , 60

z k
k i j i j N0 0 , ,

g z a=  ( ) ( { ( ) ( ) }) ( )R k m
J N

A k c m c,
2

, , 1 , 60
z

i j i j NI I , ,

g z a=   -( ) [ ( { ( ) ( ) }) ] ( )R k m
J N

A k c m d,
2

, , 1 , 60
z

i j i j N kII II , ,

= -( ) ( ) ( )R k m R k m e, , , 60III I

g l=  = ¼l l( ) ( { ( )}) ( )k kS m
J N

B c m f,
2

, , for , , . 60I V
z

i j i j, ,

Making use of á ñl
z (55) then allows us to express the connected zz-correlation function (33) in the fermionic

basis. Since the resulting expression is quartic in the fermionic operators, it follows that the T̃4 truncation (19) is
sufficient for calculating á ñm

z for arbitrarym.

Appendix B. Symmetries

In section 2.2we have introduced truncations of the equations ofmotion based on the notions of the degree and
the p-particle number of products of fermionic operators. The idea behind such a truncation is the knowledge
(or belief, or hope) that the neglected classes of operators do not contribute significantly to the dynamics of the
quantities of interest, at least on a certain time scale. Neglecting these operators drastically reduces the size of the
differential system that needs to be considered. In addition to such approximately vanishing quantities,
symmetries of theHamiltonian and/or the initial statemay lead to a strict decoupling of equations ofmotion, in
the sense that the differential equations for a certain set of fermionic products is strictly independent of some
other set of fermionic products (although the conversemay in general not be true). Such a decoupling can, on
top of the truncation that is essentially introduced by hand, further reduce the size of the differential system.

For instance, in the Schrödinger picture, if is a normal-ordered product that does not commutewith a
given symmetry  , i.e. Î C , and if the operators  r, , verify the conditions

(a) at time t, if r =[ ( ) ]t , 0, then r =[ ( ) ]tTr 0 holds true,

(b)   =[ ], 0,

(c) r =[ ( ) ]0 , 0,

then it follows12 that r =( ( ) )tTr 0 for all t. As a result, operators in the complement C can be safely ignored,
without any approximation, when constructing the differential systemof kinetic equations. As pointed out in
section 2.3, the truncated polarised states (15) that we use as initial states have the following symmetries and
resulting conservation laws.

(i) Discrete translation invariance of the initial states y ñ∣ n and theHamiltonian , resulting in conservation of
the total latticemomentum. For the example of the class of products of fermionic operators of degree 2 and
p-particle number 1 in (9), the symmetry-reduced set is then given by h h " Î{ ∣ }† k Brk k , which scales with
system size asN instead ofN 2. Similarly,momentum conservation reduces the number of operators in any
of the classes Cp

4 to scale with system size likeN 3 instead ofN 4.

(ii) Spin inversion symmetry in the x-direction of the spin Hamiltonian (1), leading to conservation of the
fermionic parity p h há å ñ( )†exp i k k k in the fermionic picture. Since the truncated polarised initial states y ñ∣ n

12
For infinitesimal dt, hypotheses (a) and (b) imply that r r r+ = - +( ) [ ] ( )t t t td i , d commutes with  , so that r ¢ =( ( ) )tTr 0 for

all ¢ >t t .
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lie entirely in the even parity sector of the Fock space, all odd-degree normal-ordered products of fermionic
operators strictly do not contribute and can be excluded from the differential systemof kinetic equations13 .

(iii) Fermions created by the operator n in (13) always come in pairs with opposite momenta ki and −ki.
Through the definition of the truncated polarised states y ñ∣ n in equation (15), this implies that

y h h y y h h yá ñ = á ñ "- -∣ ∣ ∣ ∣ ( )† † k n, . 61n
k k

n n
k k

n

To exploit in the kinetic equations the symmetries (i)–(iii), we define, based on the classes Cp
deg of normal-

ordered products of fermionic operators defined in section 2.2, the symmetry-restricted classes



   h h h h h h=

=

Î Î Î

Æ
- -

⎧
⎨⎪

⎩⎪
{ }˜ { } ( )† † †C C p

for deg 0,

with , , for deg, 2 ,

else.

62
p p

i k k k k k kdeg 1 deg 2 deg i i i i i i

This definition excludes, in agreementwith (ii), all normal-ordered products of odd degree, and the construction
via pair operators i in the second line of (62) guaranteesmomentum conservation (i) aswell as the pair
structure (iii). For example, the class C̃4

2
contains only elements of the form h h h h- - ¢ ¢

† †
k k k k and h h h h¢ ¢

† †
k k k k .We

define C̃p and C̃deg analogous to (10), and the union

=
=

˜ ⋃ ˜ ( )F C 63
p

N
p

0

contains all normal-ordered products of fermionic operators that satisfy the symmetry restrictions (i)–(iii). A
proper subset ˜ ˜T F can then serve as a truncation of the differential systemof kinetic equations.

For a truncated polarised initial state r y y= ñá∣ ∣n n , we have r =( )Tr 0 for all Î ⧹˜F F.Moreover, for all

 Î˜ F̃, onefinds  Î˜ ˜di SpanFt
14. Hence, a differential system that contains only products of operators from

the set F̃ is sufficient to describe not only the initial state, but also the time evolution of a truncated polarised
state. The symmetry restrictions reduce the number of operators to be considered in the LKE code significantly,
for example fromN 4 toN2 when going from Cp

4 to C̃
p
4 .

AppendixC.Dynamics and thermodynamics in the high-temperature limit

In section 4.2we employed EDof small,finite systems for calculating thermal expectation values, and
extrapolated these values to large system sizesN. In this sectionwe discuss how, without resorting to EDnor to
conventional diagrammatic perturbation theory at equilibrium [16], thermal expectation values in the high-
temperature limit can be obtained for large system sizes.We calculate, up to second order in the inverse
temperatureβ, analytical expressions for the thermal values of both the energy density á ñ N and the spin
observable á ñSl

z .
The truncated down-polarised states y ñ∣ n that were introduced in (15), and forwhich our LKE codewas

tailored, do not usually fall into the regimewhere b  1, and the same holds true for their up-polarised
counterparts, whichwe denote by c ñ∣ n . However, by considering a suitable superposition of y ñ∣ n and c ñ∣ n the
energy density can be tuned into the high-temperature regime. Under suitable conditions one can then argue
that the dynamics of y ñ∣ n and c ñ∣ n decouples.Making use of a particle–hole transformation, the LKE code can be
used for the calculation of the decoupled time evolution of c ñ∣ n , and the outcome can be compared to the
thermal values obtained from a high-temperature expansion.

C.1. Thermal equilibrium results in the high-temperature limit
For sufficiently high temperatures, the Boltzmann factor can be expanded up to second order inβ,

  b b b= - + +b- ( ) ( )Oe 1 2 . 642 2 3

Based on this expansion, andmaking use of  =( )Tr 0, one can derive, up to the same order inβ, the thermal
expectation value of the energy density [50]

13
Many odd-degree normal-ordered products are also nonmomentum-conserving, and have already been eliminated in (i), e.g. all hk for

which pÎ { }k 0, .More generally, the set S of operators of degree +j N2 1 2 that can bewritten as normal-ordered products of a
momentum-conserving product of degree 2j times ηπ has also been eliminated before, and S scales like 2j−1.
14

This follows from a similar property of the ( )p 2 -subset È=˜ ˜ ˜T C C2 0 2, where it turns out that   Î[ ] ˜, SpanT2 for all  Î ˜, T2.
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 u b b b b b= - - +b-( )( ) ≔ ( ) ( ) ( )Z K K OTr e , 65th 1 2
2 3

where = >-K N2 Tr 0N
1

2 and = - - -K N2 TrN
2

2 3 .Wefind

z a= + + ( ) ( )K h J J2 2 2 2 , 66x z N1
2 2 2 4 2 5

with the partial zeta-function ζN as defined in (48), which, forα>1/2, converges in the large-N limit. At next
order, after a long calculationwefind

å åz a= - -
a a a

< < - < < -
Î

( )
( ) ( ) ( )

( )K h J
J

d m d n d q

3

2 2

1 1 1
67z N

z

m N n N
n L

2 6
2

3

8
1 1 1 1

with º +q m n Nmod and = - - - + -{ }L N m N m N m1 , , 1 . Equations (66) and (67) can be
evaluatedwithout toomuch effort for very large system sizes. For the purpose of benchmarking the LKE code,
we are interested inα substantially larger than 1/2. For such values we observe thatK1 andK2 converge quickly
with increasingN, being essentially indistinguishable from their infinite-system limit already for system sizes
∼102. In that same regime ofα-valueswe alsofind that K K2 1. In fact, we expectmore generally that odd
orders inβ dominate the Taylor expansion (65), because νth (β) is approximately an odd function. Along similar
lines, we obtain

b
z a

b bá ñ = - + +
( )

( ) ( )S
h hJ

O
2 2

68l
z z N

th 2 5
2 3

for the observable of interest, and again the quadratic term inβ is negligible ifα is appreciably larger than 1/2.
Based on these results, we can obtain accurate thermal expectation valuesυth and á ñSl

z
th for the system sizes of

order∼102wewant to benchmark against (or formuch larger ones), in the regime of not-too-smallα and small
inverse temperaturesβ.

C.2. Particle–hole conjugation
The truncated polarised initial states y ñ∣ n , being highly ordered, are typically outside the high-temperature
regime.Our strategy for obtaining a high-temperature initial state is to define, in the fermionic picture, a unitary
particle–hole transformation, whichmaps fermions onto empty sites and vice versa. In the spin picture, this
corresponds to transforming a fully down-polarised state  ñ∣ into a fully up-polarised state  ñ∣ . Similarly,
a truncated down-polarised state y ñ∣ n is transformed into a truncated up-polarised state c ñ∣ n , andwefind that a
suitably chosen linear combination of the two states falls into the high-temperature regime, as demonstrated in
appendixD.2.1 for n=1 and = ⌊ ⌋n N 2 .

We define the particle–hole transformation as the unitary operator  that transforms Jordan–Wigner
fermionic operators according to

 m m= ( )† †. 69l l

Under this transformation, all Jordan–Wigner fermionic states aremapped onto their particle–hole counter-
parts, e.g.  ñ = ñ∣ ∣1011 0100 . From equation (69) it follows that  acts on Bogoliubov fermionic operators as

 h h= - ( )† † . 70k k

Bymeans of this transformation, we define truncated up-polarised states as

c yñ ñ∣ ≔ ∣ ( ). 71n n

Tounderstand how theHamiltonian is transformed under  , we note that, in the spin framework, the spin
operators are transformed like

     - - -+ +( ) (( ) ( ) ) ( ), , 1 , 1 , . 72l
x

l
y

l
z l

l
x l

l
y

l
z1 1

Transforming theHamiltonian (1) under  corresponds to a sign reversal of constants

  = - -( ) ( ) ( )†h J h J, , . 73x x

In the case of >∣ ∣ ∣ ∣h J2 x , towhichwe apply the LKE code in this paper, we have + =( ) ( )h J k hsgn 2 cos sgnx for
allmomenta k, which implies that, according to (45), themagnetic field reversal effected by  amounts to
replacing òk→−òk inint. For the perturbationpert, the dictionary (53c)–(53j) remains unchanged.

C.3.Decoupled dynamics
For truncated down-polarised states y ñ∣ n with small n, we have by construction that the number of fermions is
small, y h h yá å ñ ∣ ∣† N 2n

k k k
n . As discussed in section 3.2, this is a requirement for our kinetic theory to

provide a good approximation. For the truncated up-polarised states c ñ∣ n , in contrast, we have a large number of
fermions, c h h cá å ñ ∣ ∣† N 2n

k k k
n , and the kinetic theory is expected to fail. However, such a state has only a
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small number of holes, and by applying the particle–hole transformation  introduced in appendix C.2, it can
bemapped to a state that satisfies the requirement of a small fermion number. Likewise bymeans of  , the
corresponding kinetic equations are obtained

   

      

c c c c

y y y y

á ñ = á - ñ

= á - ñ = - á ñ

∣ ∣ ∣ ∣
∣ ˜ ˜ ∣ ˜ ∣ ∣ ( )† †

d

d

i

i , 74

t
n

l
z n n

l
z

l
z n

n
l
z

l
z n

t
n

l
z n

where  - -˜ ≔ ( )h J, x is the transformedHamiltonian and d̃t denotes the time-differential operator under
̃. The time-evolution of a superposition

f y cñ = ñ + ñ∣ ∣ ∣ ( )y y 75n n n
1 2

of truncated up- and down-polarised states is then given by

   f f y y y cá ñ = á ñ + ñá∣ ∣ ∣ ∣ { ([ ]∣ ∣)} ( )d D y y2 Im Tr , , 76t
n

l
z n

t
n

l
z n

l
z n n

1 2

wherewe have defined -≔ ∣ ∣ ∣ ∣ ˜D y d y dt t t1
2

2
2 . If y ñ∣ n and c ñ∣ n are few-fermion vectors, the second termon the

right hand side of equation (76) is small. This is a consequence of the fact that the p-particle number of the terms
in  [ ], l

z is atmost p=4, and hence does not couple few-fermion states to few-hole states in Fock space.
Therefore, forα and t sufficiently small, the dynamics of few-fermion and few-hole states approximately
decouples

 f f y yá ñ á ñ∣ ∣ ∣ ∣ ( )d D . 77t
n

l
z n

t
n

l
z n

On the practical side, this implies that the time-evolution of a superposition f ñ∣ n of truncated up- and down-
polarised initial state can be computedwith the LKE code bymaking use of the originalHamiltonian aswell as
itsfield-inverted counterpart ̃.We expect that the decoupling approximation (77)workswell when n is small,
and, forfixed n, becomes better with increasingN. The excellent performance of the LKE code and the
decoupling approximation is illustrated and benchmarked infigure C1.

AppendixD. Initial conditions

D.1. Truncated polarised states and p-particle structure
In this subsectionwe sketch themain steps required in rewriting  ñ∣ in the η-basis.We also comment on the
link between this state and the p-particle structure, elaborating in particular on the role of the system sizeN and

FigureC1.Benchmarking of several variants of the LKE code, including the decoupled kinetic equations (77), against exact
diagonalization (ED) results. As initial states we choose a fully up-polarised state  ñ∣ (top), a fully down-polarised state  ñ∣
(bottom), and an equal superposition of the two,  ñ +  ñ ∣ ∣1 2 1 2 (centre). The bottomplot shows that, for a fully-down
polarised initial state, the ‘plain’ kinetic equations (as derived in themain body of the paper)with a T̃4-truncation reproduce the ED
results with excellent accuracy for all times shown. Indeed, according tofigure 1 the error at t=30 is of order Dá ñ -˜ 10l

z
T

2
4 . For a

fully-up polarised initial state, which corresponds to a large number of particles in the fermionic language, the plain kinetic theory
with a T̃4-truncation fails after relatively short times, as shown in the top plot. As explained in appendix C.3, a particle–hole
transformationmaps this state onto a few-particle state, and the dynamics obtainedwith a particle–hole-transformed kinetic theory
shows excellent agreement with the ED results. Using an equal superposition of up- and down-polarised states as an initial state,
neither the plain kinetic theory (nor the purely particle–hole-transformed version, which is not shown) are capable of reproducing the
ED results correctly, but the decoupling approximation (77) achieves excellent agreement. The parameters of theHamiltonian (1)–(3)
used for the plots areN=10,α=3, Jx=Jz=h=−1.

21

New J. Phys. 21 (2019) 093021 CDuval andMKastner



the parameter h/Jx. These arguments will provide themainmotivation for using small-n truncated polarised
states in section 4.

Fully polarised state.Applying the Jordan–Wigner and Fourier transformations, the fully down-polarised
spin state  ñ∣ ismapped onto the Fourier vacuum ñ∣0F , defined as the only state satisfying

m ñ = " Î˜ ∣ ( )k0 0 Br. 78k
F

The Bogoliubov transformation m h h- -˜ †u vik k k k k, however,mixes creation and annihilation operators in
such away that the Bogoliubov vacuum ñ∣0 for which

h ñ = " Î∣ ( )k0 0 Br, 79k

is different from ñ∣0F . In the Fock space of Bogoliubov fermions, the Fourier vacuum can be expanded as

å ål l h hñ = ñ + ñ
= < <

¼ 


∣ ∣ ∣ ( )† †0 0 0 , 80
r

N

k k
k k k k

F
0

1
, ,

r

r r

1

1 1

where the l ¼k k, , r1
are the coefficients we need to determine. Since the operator h h- -

†u vik k k k is block anti-
diagonal in the decomposition = ÅH H Heven odd of the Bogoliubov–Fock space, condition (78) remains true
for the restrictions m̃ ∣k even and m̃ ∣k odd of m̃k to the even and odd sectors, respectively. One can then prove that

å l = " Î -
< <

¼
+

+  


∣ ∣ ⌊ ⌋ ( )q N0 0, 2 1 2 , 81
k k

k k, ,
2

q

q

1 2 1

1 2 1

i.e. vectors in the odd sector do not contribute to  ñ∣ . To prove this result, we apply (78) to m̃ ∣k odd, which
yields

 

å å ål h hñ + L - L ñ = " Î

-
-

-
- -

⎪

⎪

⎪

⎪

⎧
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⎩

⎫
⎬
⎭
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( )

( ) ( )
( )

( )
†

( )u u v k0 i 0 0 Br, 82
k

k k
k

k kk k
q

k
q

q
k

k q k
q

q
k

k q
1 1

1 1

where the notation å ( )k q with = ¼ +( ) ( )k q k k, , q1 2 1 denotes a summation over all < < +k k q1 2 1. Herewe have

defined h h
+

≔( )
† †

k q k k q1 2 1
and have labelled by /k k_, a coefficient that contains, respectively excludes, the

momentum k in its definition, e.g.

l
L =

Î ¼¼ ++
⎧⎨⎩

{ }
( )( )

k k kif , , ,

0 else,
83k q

k k k q_ , , 1 2 1q1 2 1

with an analogous definition for L-
( )k q
k . Projecting equation (82) onto ñ∣0 onefinds thatλk=0 for all k. For

q 1, we note that h ( )kk q and h- -
†

( )kk q 1 are of degree 2q, so that the projection on any 2q-excited state gives a

recurrence relation between some of the L ( )k q
k and some of the L -( )k q

k
1 . For instance, for q=1 one obtains

å åh h h hL ñ - L ñ = " Î
<

-
-∣ ∣ ( )† † † †u v k0 i 0 0 Br. 84
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k k k k

k
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1

1 1

It then follows that, for any k2, k3 such that- Î{ }k k k,2 3 , we have L = 0k k k
k
, ,2 3

. Otherwise

l l= " Î -- { } ( )v

u
k k ki , , 85k k k

k

k
k, , 11 1

and reasoning by induction leads to equation (81). Applying (78) to m ∣k even gives similar results for all the l ¼k k, , q1 2

coefficients, except that l ¹ 00 . Finally one obtains  ñ = ñ∣ ∣⌊ ⌋ 0N 2 , with

 å å h h h h= + -
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Weprefer equation (86) over the exponential formulation  h h= å p
-

< < -[ ]( )⌊ ⌋
† †W v uexp iN k k k k k2

1
0 that has

been used in the literature [30], as (86)naturally lends itself to the definition of truncated polarised states, as
discussed in the next paragraph.

Truncated polarised states: properties and limitations.The nth truncated polarised state y ñ∣ n , as defined in
equation (15), is obtained by truncating the first sum in (86) at the index s=n. Such a truncation preserves the
reflection symmetry inmomentum space, and therefore allows us tomake use of the symmetry restrictions
discussed in appendix B. Also, the numerical computation of the vector y ñ∣ n scales likeNn, whereas that of the
fully polarised state scales like⌊ ⌋!N 2 . Finally, truncated polarised states comewith the additional advantage of
allowing for a systematic tuning of the particle density such that, bymaking n sufficiently small, the validity of
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the LKE code can be ensured. This can be useful for smallmagnetic fields h, where h háå ñ † N 2k k k in general
does not hold for a (nontruncated) polarised state, as illustrated infigureD1.

A straightforward calculation shows that the expectation value of the fermionic particle density (26)with
respect to any truncated polarised state is given by


å

å
á ñ =

+
y

=

=

( )
N

sL

L

1 2

1
. 88s

n
s

s

n
s

1

1

n

For themoment let us assume that, for sufficiently largeN, n being fixed,

" Î    ( ) ( ) ( ) ( )L N L N L N s n... , 1, , 89s1 2

whichwill be justified towards the end of the section. Then it follows from (88) and (89) that

 á ñy ( )n

N

2
90n

for sufficiently largeN. From the upper bound (90), the criterion (25) for the validity of the p-particle truncation
for a truncated polarised initial state y ñ∣ n immediately follows for p n.Moreover, since y ñ =  ñ∣ ∣n for
= ⌊ ⌋n N 2 , theremust exist a smallest-possible ν for which, for a given system sizeN,  á ñ á ñy n  to a desired

level of accuracy. It seems reasonable to assume that y ñn∣ is then a good approximation of the corresponding
fully-polarised vector.

We chose to present in section 4 LKE results only for y ñ∣ 1 , where (25) holds by construction, independently
of the choice of h/Jx. y ñ∣ 1 is not necessarily a good approximation of the fully polarised state, as for instance in
figure 5 for parameter valuesN=180 and h=−0.51.While also in this case y ñ∣ 1 is a perfectly legitimate choice
as an initial state in the LKE code, it does not have a simple (approximate) representation in the spin picture, and
the physical relevance of such an initial state is unclear.

In the remainder of this sectionwe complete the above reasoning by providing a justification of the
asymptotic property (89).We start by showing that L1 grows linearly withN asymptotically in the large-N limit.
From the definition (87) of Ls, togetherwith the expressions of the Bogoliubov coefficients uk and vk derived in
appendix A.1.3, it follows that

å q=
q

k
Î

( ) ◦ ( ) ( )L N g f , 911
Br

where

q
q

k q
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+
=

+ -

+ +k

⎛
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⎞
⎠⎟( ) ( ) ( )f g y

y

y

sin

cos
,

1

2

1 1

1 1
, 92

2

and k = h J2 x is the order parameter. Forκ>1, each term in the sumof (91) is positive and smaller than one,
which implies ( )L N N1 . To also prove a lower bound on L1, we define, for afixed  p< 0 4, the interval

FigureD1.Bogoliubov fermion densities á ñof the fully down-polarised state  ñ∣ are plotted as a function of the system sizeN for
different values of h and parameter valuesα=4, Jx=Jz=−1. For largerN,  ñ∣ is approximated by a truncated polarised state
y ñ∣ n with n large enough such that, for a given h,  á ñ á ñy y -n n 1 to a precision of 10−3. Formagneticfields h close to−1/2+, a y ñ∣ n

with a fairly large n-value is required to reach the desired level of accuracy, which puts an h-dependent limit on the system sizes for
whichwewere able to calculate á ñ. From the plot we observe that (i) the criterion (25) for the validity of the approximationsmade in
the LKE code does not hold for h close to−1/2; and (ii) atfixedmagneticfield, á ñ tends to a nonzero valuewhenN goes to the large
sizes limit (N∼102). Note that, since the value of n is not kept constant along each of the lines in the plot, such a nonzero limit is not in
contradiction to (90). From this limiting behaviour in combinationwith equation (90) one can infer that, in order to approximate á ñ
to a certain precision, nhas to increase linearly withN, which becomes computationally impractical for larger system sizes. Note that
this analysis only concerns initial states; since  does not commutewith , its expectation value changeswith time, whichmay (and
it practice does) lead to a violation of the criterion (25) at later times.
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   p p= - + - -È[ ] [ ] ( )I , , , 93

chosen such that, for afixedM>1, for all k Î ] ]M1, and θäIwe have
 q p= - >k ( ) [ ( ) ( )] ( )f A f fmin , 0. 94M M

Then it follows that
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where thefirst inequality follows frompositivity of g, and the second from the fact that g is an increasing function
on its domain.Note that g(A)>0 because, by construction,A>0. The third inequality in (95) is then valid
except for very smallN, where the discreteness of the Brillouin zonemay spoil it. Taking the upper and the lower
bound together, it follows that L1(N)=Θ(N). Along similar lines one can show that = Q( ) ( )L N Ns

s , which
implies (89).

D.2. Initial expectation values
In this sectionwe gather expressions of the energy density n = á ñ N and the spin observable á ñl

z for several
specific states: ñ∣0 , y ñ∣ 1 and  ñ∣ , which are referred to in themain text, as well as their particle–hole
counterparts ñ∣N , c ñ∣ 1 and  ñ∣ , which are required in appendix C.

D.2.1. Energy density. We obtain n = á ñ N0 0 for the Bogoliubov vacuum y ñ = ñ∣ ∣00 , and n =⌊ ⌋N 2

z- +h J2 8z for the fully z-polarised state y ñ = ¼ñ∣ ∣⌊ ⌋N 2 . For the truncated polarised state y ñ∣ 1 onefinds
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The particle–hole counterpart n c cá ñ≔ ∣ ∣ N1
1 1 is identical to (96) undermagnetic field reversal h→−h. For

N>8 one finds c yá ñ =∣ ∣ 01 1 , and hence the energy density of the superposition f y cñ = ñ + ñ∣ ∣ ∣y y1
1

1
2

1

simplifies to

n f f n nº á ñ = +f ∣ ∣ ∣ ∣ ∣ ∣ ( )y y , 971 1
1

2
1 2

2
11

where y1 and y2 are complex coefficients normalised such that + =∣ ∣ ∣ ∣y y 11
2

2
2 . As a rule of thumb,

ån - ( )N2 , 98k1

so that for h<0 it followswith (45) that ν1>0 and n < 01 . It is therefore possible to choose y1, y2 such that
νf
1;0, which turns out to be useful in appendix C.2 as a way of constructing initial states in the regime of small
energy densities, which, according to equation (65), correspond to small inverse temperatures. To calculate the
energy densities related to other truncated polarised states, we rely on the LKE code, which gives numerically
exact initial energy densities for all truncations that contain T̃4 as a subset. Finally, for the state f ñ∣ ⌊ ⌋N 2 , which is
used infigure C1, one can check that

u
z

=
-

+f
∣ ∣ ∣ ∣

( )⌊ ⌋ h
y y J

2 8
, 99z2

2
1

2

N 2

and thus it is oncemore possible to adjust y1 and y2 such that u =f⌊ ⌋ 0N 2 .

D.2.2. Spin observable. We obtain á ñ = 1 2l
z for a fully z-polarised initial state, and

 á ñ = G = -á ñ ( )100l
z

N l
z

N0

for the Bogoliubov vacuum ñ∣0 and the anti-vacuum ñ∣N , withΓN as defined in (53b). For y ñ∣ 1 wefind

  åá ñ = á ñ - -
>
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where the second termon the right-hand side is a correction to á ñl
z

0 of orderO(1/N). Indeed

  åá ñ - á ñ = +
>
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1 2 . 102l
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1
2
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Moreover, (53b) (and hence (100)) can be regarded as a Riemann sum, and one can take the continuum limit
 ¥N . AtfiniteN, the errormade in the substitution by an integral is bounded by a termof orderO(1/N), and

using (102)we obtain

24

New J. Phys. 21 (2019) 093021 CDuval andMKastner



 ò pá ñ = - + +k ( ) ( ) ( )x f x O N
1
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d 1 1 . 103l
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For Jx=−1 this implies that

  pá ñ = - á ñ = -
-¥ +¥ - +¥

( )lim lim 1 2, lim lim 1 . 104
h N

l
z

h N
l
z

1
1 2

1

Since á ñ+¥ ( )h hlimN l
z

1 is strictly increasing on -¥ -] ]/, 1 2 , equation (104) provides an analytical
justification of the numerically observed initial values of á ñl

z infigures 4 and 5. Infigure 5 for instancewhere
N=180, the initial values predicted by (104) are á ñ - 0.33l

z
1 for h=−0.51 and á ñ - 0.46l

z
1 for h=−1,

at order zero in 1/N. One can then check that, with the exact expression (101), the error is indeed smaller
than 10−2.
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