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Abstract

Moulin (1988) shows that there exists no social choice rule, that satisfies the fol-

lowing two criteria at the same time: the Condorcet criterion and the participation

criterion, a.k.a., No Show Paradox. We extend these criteria to social welfare rules, i.e.,

rules that choose rankings for each preference profile. We show that the impossibility

does not hold, and one particular rule, the Kemeny rule satisfies both the Condorcet

and the participation criteria.
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1 Introduction

Two of the most well-known criteria for social choice rules are the Condorcet criterion

and the participation criterion. The former, introduced by Marquis de Condorcet (1765),

requires that if there is a candidate who beats all others in a pairwise comparison then it

should be the unique winner. The rules that satisfy this property are also called Condorcet

methods. The latter, introduced in Fishburn and Brams (1983) as No Show Paradox,

requires that attending to an election should be somewhat incentive compatible. To be

more precise, for any voter, participating an election should not change the result into a

less desirable outcome1 for that voter. Moulin (1988) shows that the Condorcet criterion

and the participation criterion are incompatible2. To put it differently, there exists no

Condorcet method which satisfies the participation criterion, hence they are all vulnerable

to No Show Paradox.

We extend these two criteria to social welfare rules, i.e., rules that assign rankings of

alternatives to each preference profile instead of a winning alternative. Thereafter we inves-

tigate whether the incompatibility between the Condorcet and the participation concepts

still exists for the social welfare rules. Young and Levenglick (1978) introduce a natural

extension of the Condorcet concept to social welfare rules. To the best of our knowledge,

an extension of the participation criterion to social welfare rules does not exist.

In this paper, we propose a weaker version of the Condorcet concept developed in Young

and Levenglick (1978) as the Condorcet criterion. We also introduce a natural extension

of the participation criterion for social welfare rules. As expected many social welfare rules

fail to satisfy both at the same time. However, we find that one particular rule satisfies

both criteria, the Kemeny3 rule. Hence we show that the incompatibility, introduced in

Moulin (1988), between the two concepts does not exist on the domain of social welfare

rules.

The rest of this paper is organized as follows. In Section 2, we define the notation

and the model. In Section 3, we introduce the Condorcet and the participation criteria

for social welfare rules. Section 4 discusses various social welfare rules and shows that the

Kemeny rule satisfies both criteria. Section 5, concludes the paper with discussion and

open questions.

1For further results related to participation criteria or No Show Paradox, see Pérez (2001); Felsenthal

and Nurmi (2016); Brandt et al. (2016); Núñez and Sanver (2017).
2 The incompatibility holds so long as there are at least four alternatives and twenty-five individuals.
3Kemeny rule, also known as Kemeny-Young method, is introduced in Young and Levenglick (1978).

See also Can and Storcken (2013b) for another characterization.
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2 Model

Let N = {1, 2, . . . , n} be a non-empty and finite set of n individuals and A be a non-empty

and finite set of m alternatives. Let L denote the set of all possible linear orders (strict

rankings) over A, i.e., complete, transitive, and antisymmetric binary relations over A. For

a generic R ∈ L, and any two alternatives a, b ∈ A, (a, b) ∈ R is interpreted as “a is at

least as good as b at R”. In case a and b are two distinct alternatives the relation is strict.

To simplify notation, we write ab ∈ R instead of (a, b) ∈ R. Similarly R = abcd denotes a

full ranking where R = {aa, ab, ac, ad, bb, bc, bd, cc, cd, dd}.
A (preference) profile p = (p(1), . . . , p(n)) is an n-tuple vector in LN , where p(i) is the

preference ordering of individual i over A. Given p ∈ LN , the profile of all individuals

except i is denoted by p−i ∈ LN\{i}, i.e., p−i = (p(1), . . . , p(i − 1), p(i + 1), . . . , p(n)). We

denote the number of individuals who prefer a to b minus the number of individuals who

prefer b to a, by nab(p). Formally, nab(p) = |{i ∈ N : ab ∈ p(i)}|−|{i ∈ N : ba ∈ p(i)}|. We

define the corresponding tournament Tp of a profile p by Tp = {ab ∈ A× A : nab(p) > 0}.
Moreover, we say a beats b whenever ab ∈ Tp.

We denote the utility of an agent i over the set of alternatives by ui : A→ R such that

ui(a) ≥ ui(b) if and only if ρ(a, p(i)) ≤ ρ(b, p(i)) where for any a ∈ A, ρ(a, p(i)) = |x ∈ A :

xa ∈ p(i)|, i.e., the rank of a at p(i). Similarly, we denote the utility of an agent i over the

set of rankings by Ui : L→ R such that Ui(R) ≥ Ui(R′) if and only if δ(p(i), R) ≤ δ(p(i), R′)
where for any R,R′ ∈ L, δ(R,R′) = |R \R′|+ |R′ \R|, i.e., the Kemeny distance4 between

R and R′. Note that, as R and R′ are both linear orders, we have, |R \ R′| = |R′ \ R|.
Furthermore |R \ R′| = |R| − |R ∩ R′| = m(m − 1) − |R ∩ R′|. Therefore, the Kemeny

distance can also be denoted by δ(R,R′) = 2|R \R′| = 2|R′ \R| = 2m(m− 1)− 2|R ∩R′|.

3 Condorcet criteria vs participation criteria

We first remind the reader of the formal definitions of the Condorcet and the participation

criteria on social choice rules. Thereafter we extend these concepts to social welfare rules.

3.1 Social choice rules

A social choice rule ψ : LN → 2A \ ∅, maps every profile p to a non-empty subset of

alternatives.

Let p ∈ LN be a profile, then an alternative a ∈ A is called the Condorcet winner

whenever nab(p) > 0, for all b ∈ A \ {a}.
4Kemeny distance is introduced and characterized in Kemeny (1959), an improved characterization can

be found in Can and Storcken (2013a).
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Definition 1 (Condorcet Criterion (CCC)) A social choice rule ψ satisfies Condorcet

criterion for choice rules whenever for all p ∈ LN , with a Condorcet winner a ∈ A, we have

ψ(p) = a.

Definition 2 (Participation Criterion (PCC)) A social choice rule ψ satisfies partic-

ipation criterion for choice rules whenever for all p ∈ LN , and for all i ∈ N ,

max
a∈ψ(p)

ui(a) ≥ max
b∈ψ(p−i)

ui(b).

That is, the best outcome of the social choice rule for each individual when he participates

is at least as good as the best outcome when he does not participate.

3.2 Social welfare rules

A social welfare rule ϕ : LN → 2L\∅, maps every preference profile p to a non-empty subset

of linear orders. Typically the Arrovian framework considers the range of welfare rules to

be weak orders, i.e., the outcome is a single ranking that might admit ties. Consider for

instance the cyclical profile with three individuals and three alternatives, p = (abc, bca, cab).

The Borda score of each alternative equals 3. Hence the outcome of Borda welfare function

is a single weak order, ϕBorda(p) = a ∼ b ∼ c, where “∼” denotes the indifference. However,

there are rules that aggregate preference profiles into multiple strict rankings without ties

such as the Kemeny rule. The Kemeny rule would assign the following three rankings as

the outcome to the aforementioned profile, ϕKemeny(p) = {abc, bca, cab}.
Note that, any weak order can be extended to a set of strict rankings, by simple breaking

all ties neutrally. Therefore each Arrovian social welfare function can also be treated as a

social welfare correspondence assigning possibly multiple5 strict rankings as the outcome.

This does not only give comparability across rules, but also provides a unified axiomatic

framework to analyse all ranking aggregators. In what follows we shall consider social

welfare rules that assign a set of strict rankings to each preference profile. In this context

the outcome of the Borda rule in the example above will be all possible linear extensions

of the weak order ϕBorda(p) = a ∼ b ∼ c, i.e., ϕBorda(p) = {abc, acb, bac, bca, cab, cba} .

Let p ∈ LN be a profile, then a ranking R ∈ L is called the Condorcet ranking whenever

nab(p) > 0 for all distinct ab ∈ R.

Definition 3 (Condorcet Criterion (CCW )) A social welfare rule ϕ satisfies Con-

dorcet criterion whenever for all p ∈ LN , with a Condorcet ranking R ∈ L, we have

ϕ(p) = R.

5For multiplicity in social choice rules and related participation criteria, see Jimeno et al. (2009).
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Definition 4 (Participation Criterion (PCW )) A social welfare rule ϕ satisfies par-

ticipation criterion whenever for all p ∈ LN , and for all i ∈ N ,

max
R∈ϕ(p)

Ui(R) ≥ max
R′∈ϕ(p−i)

Ui(R
′).

That is, the best outcome of the social welfare rule for each individual when he participates

is at least as good as the best outcome when he does not participate.

4 Results

In this section, we investigate the Copeland, Minimax, Borda and Kemeny welfare rules

to see whether they satisfy the Condorcet criterion (CCW ) and participation criterion

(PCW ).

4.1 Copeland rule

According to the Copeland6 social choice rule, the winner is the candidate(s), which has the

highest Copeland score. The Copeland score of a candidate is the number of alternatives

that are beaten by that candidate.

A natural extension of this social choice rule to the social welfare domain is by ordering

the alternatives based on their Copeland scores. Formally, let Cscore(a, p) = |{b ∈ A :

ab ∈ Tp}|. The Copeland rule is defined as follows,

ϕCopeland(p) = {R ∈ L : C(p) ⊆ R},

where C(p) = {ab ∈ A × A : Cscore(a, p) ≥ Cscore(b, p)} is the ordering of the alterna-

tives with respect to their scores. The Copeland rule chooses all linear extensions of this

(possibly) weak ordering.

Proposition 1 Copeland rule does not satisfy PCW.

Proof. See Appendix A.1.

Proposition 2 Copeland rule satisfies CCW.

Proof. See Appendix A.2.

6Copeland (1951)
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4.2 Minimax rule

According to the Minimax7 social choice rule, the winner is the candidate(s), which has

the lowest Minimax score. The Minimax score of a candidate is the maximum number of

individuals who prefer another particular alternative to that candidate.

A natural extension of this social choice rule to the social welfare domain is by ordering

the alternatives based on their Minimax scores. Formally, let Mscore(a, p) = max
b∈A\{a}

|{i ∈

N : ba ∈ p(i)}|. The Minimax rule is defined as follows,

ϕMinimax(p) = {R ∈ L : M(p) ⊆ R},

where M(p) = {ab ∈ A × A : Mscore(a, p) ≤ Mscore(b, p)} is the ordering of alterna-

tives with respect to their scores. The Minimax rule chooses all linear extensions of this

(possibly) weak ordering.

Proposition 3 Minimax does not satisfy PCW.

Proof. See Appendix B.1.

Proposition 4 Minimax does not satisfy CCW.

Proof. See Appendix B.2.

4.3 Borda rule

According to the Borda8 social choice rule, the winner is the candidate(s), which has the

highest Borda score. Roughly speaking, Borda score of a candidate is the total number of

alternatives that are less desirable than that candidate, across all individuals.

A natural extension of this social choice rule to the social welfare domain is by ordering

the alternatives based on their Borda scores. Formally, let Bscore(a, p) =
∑

i∈N |{b ∈
A \ {a} : ab ∈ p(i)}|. The Borda rule is defined as follows,

ϕBorda(p) = {R ∈ L : B(p) ⊆ R},

where B(p) = {ab ∈ A × A : Bscore(a, p) ≥ Bscore(b, p)} is the ordering of alternatives

with respect to their scores. The Borda rule chooses all linear extensions of this (possibly)

weak ordering.

Proposition 5 Borda satisfies PCW.

7Black et al. (1958); Simpson (1969); Kramer (1977)
8de Borda (1953); Black et al. (1958)
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Proof. See Appendix C.1.

Proposition 6 Borda does not satisfy CCW.

Proof. See Appendix C.2.

4.4 Kemeny rule

The notion of Kemeny distance between two linear orders can be extended to the distance

between a linear order and a profile. That is the distance of a linear order to a profile is

the sum of the Kemeny distances of the linear order to each individual’s preference. The

outcome of the Kemeny rule is the set of linear orders which minimizes this distance to the

profile. Formally, the Kemeny rule is defined as follows,

ϕKemeny(p) = {R ∈ L : δ(p,R) ≤ δ(p,R′) for all R′ ∈ L},

in which δ(p,R) =
∑
i∈N

δ(p(i), R).

Proposition 7 Kemeny Rule satisfies PCW.

Proof. Let p be a profile. Let R̄ ∈ argmax
R∈ϕKemeny(p)

Ui(R) and R̂ ∈ argmax
R∈ϕKemeny(p−i)

Ui(R) for

any agent i in the set of individuals. Since R̄ ∈ ϕKemeny(p), by definition of the Kemeny

rule,
∑
i∈N

δ(p(i), R̄) ≤
∑
i∈N

δ(p(i), R̂), hence

∑
j∈N\{i}

δ(p(j), R̄) + δ(p(i), R̄) ≤
∑

j∈N\{i}

δ(p(j), R̂) + δ(p(i), R̂) (1)

Since R̂ = ϕKemeny(p−i), by definition of the Kemeny rule,∑
j∈N\{i}

δ(p−i(j), R̂) ≤
∑

j∈N\{i}

δ(p−i(j), R̄).

As p(j) = p−i(j) for all j ∈ N \ {i}, then above equation is equivalent to,∑
j∈N\{i}

δ(p(j), R̂) ≤
∑

j∈N\{i}

δ(p(j), R̄). (2)

Adding δ(p(i), R̂) to both sides of Equation 2 results in,∑
j∈N\{i}

δ(p(j), R̂) + δ(p(i), R̂) ≤
∑

j∈N\{i}

δ(p(j), R̄) + δ(p(i), R̂). (3)
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Combining Equations 1 and 3 results in,∑
j∈N\{i}

δ(p(j), R̄) + δ(p(i), R̄) ≤
∑

j∈N\{i}

δ(p(j), R̄) + δ(p(i), R̂).

Therefore, δ(p(i), R̄) ≤ δ(p(i), R̂) which completes the proof.

Proposition 8 Kemeny satisfies CCW.

Proof. Let p be a profile such that R is the Condorcet ranking. Lemma 12 in Can and

Storcken (2013b) shows that the outcome of the Kemeny rule coincides with the linear

extensions of the pairwise majority relation, i.e., Tp. As this equals the unique Condorcet

ranking R, we conclude R = ϕKemeny(p).

5 Conclusion

This paper extends the two appealing, albeit conflicting, criteria on social choice rules

to social welfare rules. We show that several welfare rules fail to satisfy both of these

criteria at the same time. However, we also find that the Kemeny rule satisfies both of

these extended criteria. This shows that there is at least one welfare rule that is incentive

compatible, i.e., voters do not have a reason to abstain, and at the same time respecting

majority opinion in a Condorcet consistent fashion.

We show that rules that have both social choice and social welfare versions might

behave differently in these two domains. Copeland rule satisfies the Condorcet criteria

both as a (social) choice and as a (social) welfare rule, but both versions fail respective

participation criteria. The Minimax rule satisfies Condorcet criteria as a choice rule but

fails it as a welfare rule. Both versions fail respective participation criteria too. Borda rule

fails the Condorcet criteria both as a choice and as a welfare rule but both versions satisfy

the respective participation criteria. Interestingly, the Kemeny rule satisfies Condorcet

criteria both as a choice and as a welfare rule, yet only the welfare version satisfies the

corresponding participation criterion. Table 1 shows a summary of the results.

We think the question is still very much open especially because it is not clear whether

there are more social welfare rules that satisfy both of these criteria, i.e., CCW and PCW.

It might as well be that these, together with other axioms, characterize the Kemeny rule,

or perhaps a class of rules, with similar characteristics, e.g., Slater rule9 rule.

9See Slater (1961); Nurmi (2014).
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Table 1: Summary of the results.

Rule CCC PCC CCW PCW

Copeland X × X ×
Minimax X × × ×

Borda × X × X
Kemeny X × X X

X : satisfy, × : not satisfy
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Núñez, M. and M. R. Sanver (2017). Revisiting the connection between the no-show

paradox and monotonicity. Mathematical Social Sciences 86, 59–67.

Nurmi, H. (2014). Are we done with preference rankings? if we are, then what? Operations

Research and Decisions 24 (4), 63–74.
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A Proofs for Copeland rule

A.1 Copeland does not satisfy PCW.

Proof of Proposition 1. Consider the following profile p with twenty-one individuals

and the set of alternatives A = {a, b, c, d}.

3 3 4 5 6

a a b d b

d d c b d

b c a c a

c b d a c

It can be verified that Tp = {da, db, dc, ba, bc, ac} and hence ϕCopeland(p) = {dbac}. Now

assume the agent i with the preference ranking p(i) = bdac, decides not to participate. Then

it can be verified that Tp−i = {db, dc, ba, bc, ac} and therefore ϕCopeland(p−i) = {bdac, dbac}.
As bdac maximizes the utility of individual i and Ui(bdca) > Ui(dbac), it follows that

Copeland does not satisfy PCW.

A.2 Copeland satisfies CCW.

Proof of Proposition 2. Let p be a profile and let R = a1a2...am be the Condorcet

ranking of the profile. By definition of Condorcet ranking naiak > 0 for all i ∈ {1, . . . ,m}
and k ∈ {i + 1, . . . ,m}. Since Cscore(ai, p) = |ak ∈ A : aiak ∈ Tp| = |{ai+1, ai+2, . . . ,

am}| = m − i, then by definition of Copeland rule a1a2 . . . am will be the outcome which

coincides with the Condorcet ranking.

B Proofs for Minimax rule

B.1 Minimax does not satisfy PCW.

Proof of Proposition 3. Consider the following profile p with seventeen individuals

and the set of alternatives A = {a, b, c, d}.

3 2 2 2 2 2 2 2

a d a c b c d b

b c d b d a c a

c a b a a b a d

d b c d c d b c

11



The above profile can be summarized in the following “profile matrix” p̄ where the cell xy

in p̄ denotes the number of individuals that prefer x to y.

p̄ =


a b c d

a 0 11 9 11

b 6 0 9 11

c 8 8 0 7

d 6 6 10 0


It can be verified that ϕMinimax(p) = {acbd, acdb}. Now assume the agent i with the

preference ranking p(i) = abcd decides not to participate. Then it can be verified that the

profile matrix would be as the following,

p̄−i =


a b c d

a 0 10 8 10

b 6 0 8 10

c 8 8 0 6

d 6 6 10 0


It can be verified that ϕMinimax(p−i) = {abcd, abdc, acbd, acdb, adbc, adcb}. It is easy

to see that acbd ∈ argmax
R∈ϕMinimax(p)

Ui(R) and abcd ∈ argmax
R∈ϕMinimax(p−i)

Ui(R). Since Ui(abcd) >

Ui(acbd), it follows that Minimax does not satisfy PCW.

B.2 Minimax does not satisfy CCW.

Proof of Proposition 4. Let A = {a, b, c} and p = (abc, abc, abc, cab, cba) be a profile.

It is obvious that the Condorcet ranking is abc. It can be verified that Mscore(a, p) = 2,

Mscore(b, p) = 4, and Mscore(c, p) = 3 and hence ϕMinimax(p) = {acb}. Therefore

Minimax does not satisfies Condorcet criterion for welfare rules.

C Proofs for Borda rule

C.1 Borda satisfies PCW.

Proof of Proposition 5. Consider any profile p ∈ LN . Let R̂ ∈ argmax
R∈ϕBorda(p−i)

Ui(R) and

R̄ ∈ argmax
R∈ϕBorda(p)

Ui(R) for some i ∈ N .

12



We first show that (p(i) ∩ R̂) ⊆ (p(i) ∩ R̄). Take any distinct pair of alternatives

ab ∈ (R̂ ∩ p(i)). Since ab ∈ R̂ we have,

Bscore(a, p−i) ≥ Bscore(b, p−i). (4)

Also since ab ∈ p(i) we have,

Bscore(a, p(i)) > Bscore(b, p(i)). (5)

By definition, Bscore(a, p) = Bscore(a, p−i) + Bscore(a, p(i)). Then by Equations 4 and

5, we have Bscore(a, p) > Bscore(b, p) and hence ab ∈ R̄. Since ab ∈ p(i), we have

(p(i) ∩ R̂) ⊆ (p(i) ∩ R̄) which implies,

|p(i) ∩ R̂| ≤ |p(i) ∩ R̄|. (6)

Using the definition of the Kemeny distance we have,

δ(p(i), R̂) = 2
(
m(m− 1)− |p(i) ∩ R̂|

)
δ(p(i), R̄) = 2

(
m(m− 1)− |p(i) ∩ R̄|

)
Equation 6, together with the two equations above, yields δ(p(i), R̄) ≤ δ(p(i), R̂).

Therefore Ui(R̄) ≥ Ui(R̂).

C.2 Borda does not satisfy CCW.

Proof of Proposition 6. Let A = {a, b, c} and p = (abc, abc, abc, cab, cab) be a profile.

It is straight forward to see that abc is the Condorcet ranking. As Bscore(a, p) = 8,

Bscore(b, p) = 3 and Bscore(c, p) = 4, then acb is the Borda ranking. Hence Borda does

not satisfy CCW.
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