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Stanley lists the class of Dyck paths where all returns to the axis are of odd length as one of the many objects enu-
merated by (shifted) Catalan numbers. By the standard bijection in this context, these special Dyck paths correspond
to a class of rooted plane trees, so-called Catalan–Stanley trees.

This paper investigates a deterministic growth procedure for these trees by which any Catalan–Stanley tree can be
grown from the tree of size one after some number of rounds; a parameter that will be referred to as the age of the
tree. Asymptotic analyses are carried out for the age of a random Catalan–Stanley tree of given size as well as for the
“speed” of the growth process by comparing the size of a given tree to the size of its ancestors.
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1 Introduction
It is well-known that the nth Catalan number Cn = 1

n+1

(
2n
n

)
enumerates Dyck paths of length 2n. In [9],

Stanley lists a variety of other combinatorial interpretations of the Catalan numbers, one of them being
the number of Dyck paths from (0, 0) to (2n + 2, 0) such that any maximal sequence of consecutive
(1,−1) steps ending on the x-axis has odd length. At this point it is interesting to note that there are more
subclasses of Dyck paths, also enumerated by Catalan numbers, that are defined via parity restrictions on
the length of the returns to the x-axis as well (see, e.g., [1]). The height of the class of Dyck paths with
odd-length returns to the origin has already been studied in [8] with the result that the main term of the
height is equal to the main term of the height of general Dyck paths as investigated in [2].

By the well-known glove bijection, this special class of Dyck paths corresponds to a special class S of
rooted plane trees, where the distance between the rightmost node in all branches attached to the root and
the root is odd. This bijection is illustrated in Figure 1.

The trees in the combinatorial class S are the central object of study in this paper.
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,

Fig. 1: Bijection between Dyck paths with odd returns to zero and Catalan–Stanley trees. � marks all peaks before a
descent to the x-axis and all rightmost leaves in the branches attached to the root, respectively.

Definition. Let S be the combinatorial class of all rooted plane trees τ , where the rightmost leaves in all
branches attached to the root of τ have an odd distance to the root. In particular, itself, i.e., the tree
consisting of just the root belongs to S as well. We call the trees in S Catalan–Stanley trees.

There are some recent approaches (see [6, 7]) in which classical tree parameters like the register func-
tion for binary trees are analyzed by, in a nutshell, finding a proper way to grow tree families in a way that
the parameter of interest corresponds to the age of the tree within this (deterministic) growth process.

Following this idea, the aim of this paper is to define a “natural” growth process enabling us to grow
any Catalan–Stanley tree from , and then to analyze the corresponding tree parameters.

In Section 2 we define such a growth process and analyze some properties of it. In particular, in
Proposition 2.4 we characterize the family of trees that can be grown by applying a fixed number of
growth iterations to some given tree family. This is then used to derive generating functions related to the
parameters investigated in Sections 3 and 4.

Section 3 contains an analysis of the age of Catalan–Stanley trees, asymptotic expansions for the ex-
pected age among all trees of size n and the corresponding variance are given in Theorem 1.

Section 4 is devoted to the analysis of how fast trees of given size can be grown by investigating the
size of the rth ancestor tree compared to the size of the original tree. This is characterized in Theorem 2.

We use the open-source computer mathematics software SageMath [10] with its included module for
computing with asymptotic expansions [5] in order to carry out the computationally heavy parts of this pa-
per. The corresponding worksheet can be found at https://benjamin-hackl.at/publications/
catalan-stanley/.

2 Growing Catalan–Stanley Trees
We denote the combinatorial class of rooted plane trees with T , and the corresponding generating function
enumerating these trees with respect to their size by T (z). For the sake of readability, we omit the
argument of T (z) = T throughout this paper. By means of the symbolic method [4, Chapter I], the
combinatorial class T satisfies the construction T = × SEQ(T ). It translates into the functional

https://benjamin-hackl.at/publications/catalan-stanley/
https://benjamin-hackl.at/publications/catalan-stanley/
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equation

T (z) =
z

1− T (z)
⇐⇒ z + T (z)2 = T (z), (1)

which will be used throughout the paper. Additionally, it is easy to see by solving the quadratic equation
in (1) and choosing the correct branch of the solution, we have the well-known formula T (z) = 1−

√
1−4z
2 .

Proposition 2.1. The generating function of the combinatorial class S of Catalan–Stanley trees, where t
marks all the rightmost nodes in the branches attached to the root of the tree and z marks all other nodes,
is given by

S(z, t) = z +
zt

1− t− T 2
. (2)

In particular, there is one Catalan–Stanley tree of size 1 and Cn−2 Catalan–Stanley trees of size n for
n ≥ 2.

S = +

SEQ

( T
T

)
SEQ

( T
T

)
. . . SEQ

( T
T

)

≥ 1 branches

Fig. 2: Symbolic specification of the combinatorial class S of Catalan–Stanley trees. Nodes represented by � are
marked by the variable t, all other nodes are marked by z.

Proof: By using the symbolic method [4, Chapter I], the symbolic representation of S given in Figure 2
(which is based on the decomposition of the rightmost path in each subtree of the root into a sequence of
pairs of rooted plane trees and the final rightmost leaf �) translates into the functional equation

S(z, t) = z +
z t
1−T 2

1− t
1−T 2

,

which simplifies to the equation given in (2).
In order to enumerate Catalan–Stanley trees with respect to their size, we consider S(z, z), which

simplifies to z(T + 1) and thus proves the statement.

We want to describe how to grow all Catalan–Stanley trees beginning from the tree that has only one
node, .

We consider the tree reduction ρ : S → S that operates on a given Catalan–Stanley tree τ (or just the
root) as follows:
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7→ 7→ 7→

Fig. 3: Illustration of the reduction operator ρ, � marks the rightmost leaves in the branches attached to the root.

Start from all nodes that are represented by t, i.e. the rightmost leaves in the branches attached to
the root: if the node is a child of the root, it is simply deleted. Otherwise we delete all subtrees of the
grandparent of the node and mark the resulting leaf, i.e., the former grandparent, with t.

This tree reduction is illustrated in Figure 3. While the reduction ρ is certainly not injective as there
are several trees with the same reduction τ ∈ S, it is easy to construct a tree reducing to some given
τ ∈ S by basically inserting chains of length 2 before all rightmost leaves in the branches attached to the
root. This allows us to think of the operator ρ−1 mapping a given tree (or some family of trees) to the
respective set of preimages as a tree expansion operator. In this context, we also want to define the age of
a Catalan–Stanley tree.

Definition. Let τ ∈ S be a Catalan–Stanley tree. Then we define α(τ), the age of τ , to be the number of
expansions required to grow τ from the tree of size one, . In particular, we want

α(τ) = r ⇐⇒ τ ∈ (ρ−1)r( ) and τ 6∈ (ρ−1)r−1( )

for r ∈ Z≥1, and we set α( ) = 0.

Remark. Naturally, the concept of the age of a tree strongly depends on the underlying reduction proce-
dure. In particular, for the reduction procedure considered in this article we have α(τ) = r if and only if
the maximum depth of the rightmost leaves in the branches attached to the root is 2r − 1.

Before we delve into the analysis of the age of Catalan–Stanley trees, we need to be able to translate
the tree expansion given by ρ−1 into a suitable form so that we can actually use it in our analysis. The
following proposition shows that ρ−1 can be expressed in the language of generating functions.

Proposition 2.2. Let F ⊆ S be a family of Catalan–Stanley trees with bivariate generating function
f(z, t), where t marks rightmost leaves in the branches attached to the root and z marks all other nodes.
Then the generating function of ρ−1(F), the family of trees whose reduction is in F , is given by

Φ(f(z, t)) =
1

1− t
f
(
z,

t

1− t
T 2
)
. (3)

Proof: From a combinatorial point of view it is obvious that the operator Φ has to be linear, meaning that
we can focus on determining all possible expansions of some tree represented by the monomial zntk, i.e.
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a tree where the root has k children (and thus k different rightmost leaves in the branches attached to the
root), and n other nodes.

In order to expand such a tree represented by zntk we begin by inserting a chain of length two before
every rightmost leaf in order to ensure that the distance to the root is still odd. These newly inserted
nodes can now be considered to be roots of some rooted plane trees, meaning that we actually insert two
arbitrary rooted plane trees before every node represented by t. This corresponds to a factor of tkT 2k.

In addition to this operation, we are also allowed to add new children to the root, i.e. we can add
sequences of nodes represented by t before or after every child of the root. As observed above, the root
has k children and thus there are k+1 positions where such a sequence can be attached. This corresponds
to a factor of (1− t)−(k+1).

Finally, we observe that nodes that are represented by z are not expanded in any way, meaning that zn

remains as it is.
Putting everything together yields that

Φ(zntk) =
1

1− t
zn
( tT 2

1− t

)k
,

which, by linearity of Φ, proves the statement.

Corollary 2.3. The generating function S(z, t) satisfies the functional equation

Φ(S(z, t)) = S(z, t).

Proof: This follows immediately from the fact that the reduction operator ρ is surjective, as discussed
above.

Actually, in order to carry out a thorough analysis of this growth process for Catalan–Stanley trees
we need to have more information on the iterated application of the expansion. In particular, we need a
precise characterization of the family of Catalan–Stanley trees that can be grown from some given tree
family by expanding it a fixed number of times.

Proposition 2.4. Let r ∈ Z≥0 be fixed and F ⊆ S be a family of Catalan–Stanley trees with bivariate
generating function f(z, t). Then the family of trees obtained by expanding the trees in F r times is
enumerated by the generating function

Φr(f(z, t)) =
1

1− t 1−T 2r

1−T 2

f
(
z,

tT 2r

1− t 1−T 2r

1−T 2

)
. (4)

Proof: By linearity, it is sufficient to determine the generating function for the family of trees obtained by
expanding some tree represented by zntk. Consider the closely related multiplicative operator Ψ with

Ψ(f(z, t)) = f
(
z,

t

1− t
T 2
)
.

It is easy to see that we can write the r-fold application of Φ with the help of Ψ as

Φr(f(z, t)) = Ψr(f(z, t))

r−1∏
j=0

1

1−Ψj(t)
.
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As Ψ is multiplicative, we have
Ψr(zntk) = Ψr(z)nΨr(t)k,

meaning that we only have to investigate the r-fold application of Ψ to z and to t.
We immediately see that Ψr(z) = z, as Ψ maps z to z itself. For Ψr(t), we can prove by induction that

the relation

Ψr(t) =
tT 2r

1− t 1−T 2r

1−T 2

holds for r ≥ 0. Finally, observe that for j ≥ 1 we have

Ψj(t) =
Ψj−1(t)

1−Ψj−1(t)
T 2, (5)

and thus

Ψr(t) =
Ψr−1(t)

1−Ψr−1(t)
T 2 =

Ψr−2(t)

(1−Ψr−2(t))(1−Ψr−1(t))
T 4 = · · · = tT 2r∏r−1

j=0(1−Ψj(t))

by iteratively using (5) in the numerator. With our explicit formula for Ψr(t) from above this yields

r−1∏
j=0

(1−Ψj(t)) = 1− t1− T
2r

1− T 2

for r ≥ 1. Putting everything together we obtain

Φr(zntk) =
1

1− t 1−T 2r

1−T 2

znΨr(t)k,

which proves (4) by linearity of Φr.

From this characterization we immediately obtain the generating functions for all the classes of objects
we will investigate in the following sections.

Corollary 2.5. Let r ∈ Z≥0. The generating function F≤r (z, t) enumerating Catalan–Stanley trees of
age less than or equal to r where t marks the rightmost leaves in the branches attached to the root and z
marks all other nodes is given by

F≤r (z, t) =
z

1− t 1−T 2r

1−T 2

. (6)

Proof: As we defined ρ( ) = we have ∈ ρ−1( ), which implies F≤r (z, t) is given by Φr(z).

Corollary 2.6. Let r ≥ 0. Then the generating function Gr(z, v) enumerating Catalan–Stanley trees
where z marks the tree size and v marks the size of the r-fold reduced tree, is given by

Gr(z, v) = Φr(S(zv, tv))|t=z =
1

1− z 1−T 2r

1−T 2

S

(
zv,

zT 2r

1− z 1−T 2r

1−T 2

v

)
. (7)
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Proof: Observe that the generating function S(zv, tv) enumerates Catalan–Stanley trees with respect
to the number of rightmost leaves in the branches attached to the root (marked by t), the number of
other nodes (marked by z), and the size of the tree (marked by v). Applying the operator Φr to this
generating function thus yields a generating function where v still marks the size of the tree, t and z
however enumerate the number of rightmost leaves in the branches attached to the root and all other
nodes of the r-fold expanded tree, respectively. After setting t = z, we obtain a generating function
where v marks the size of the original tree and z the size of the r-fold expanded tree—which is equivalent
to the formulation in the corollary.

3 The Age of Catalan–Stanley Trees
In this section we want to give a proper analysis of the parameter α defined in the previous section.
Formally, we do this by considering the random variable Dn modeling the age of a tree of size n, where
all Catalan–Stanley trees of size n are equally likely.
Remark. It is noteworthy that in [7] it was shown that the well-known register function of a binary tree
can also be obtained as the number of times some reduction can be applied to the binary tree until it
degenerates. The age of a Catalan–Stanley tree can thus be seen as a “register function”-type parameter
as well.

First of all, we are interested in the minimum and maximum age a tree of size n can have.

Proposition 3.1. Let n ∈ Z≥2. Then the bounds

1 ≤ Dn ≤
⌊n

2

⌋
(8)

hold and are sharp, i.e. there are trees τ , τ ′ ∈ S of size n ≥ 2 such that Dn(τ) = 1 and Dn(τ ′) = bn/2c
hold. The only tree of size 1 is , and it satisfies D1( ) = 0.

Proof: Note that only , the tree of size 1 has age 0, therefore the lower bound is certainly valid for
trees of size n ≥ 2. This lower bound is sharp, as the tree with n − 1 children attached to the root is a
Catalan–Stanley tree and has age 1.

For the upper bound, first observe that given a tree of size n ≥ 3 the reduction ρ always removes at
least 2 nodes from the tree. If the tree is of size 2, then ρ only removes one node. Given an arbitrary
Catalan–Stanley tree τ of age r and size n, this means that

1 = | | = |ρr(τ)| ≤ |τ | − 2 · (r − 1)− 1 = n− 2r + 1,

where |τ | denotes the size of the tree τ . This yields r ≤ n/2, and as r is known to be an integer we may
take the floor of the number on the right-hand side of the inequality. This proves that the upper bound
in (8) is valid.

The upper bound is sharp because we can construct appropriate families of trees precisely reaching the
upper bound: for even n, the chain of size n is a Catalan–Stanley tree of age n/2. For odd n = 2m+1 we
consider the chain of size 2m and attach one node to the root of it. The resulting tree is a Catalan–Stanley
tree of age m = bn/2c, and thus proves that the bound is sharp.

By investigating the generating functions obtained from Corollary 2.5 we can characterize the limiting
distribution of the age of Catalan–Stanley trees when the size n tends to∞.
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Theorem 1. Consider n → ∞. Then the age of a (uniformly random) Catalan–Stanley tree of size n
behaves according to a discrete limiting distribution where

P(Dn = r) =
(4(4r(3r − 1) + 1)

(4r + 2)2
− 4(4r+1(3r + 2) + 1)

(4r+1 + 2)2

)
−
(6 · 64r(2r3 − 5r2 + 4r − 1)− 6 · 16r(16r3 − 24r2 + 10r − 1) + 24 · 4r(2r3 − r2)

(4r + 2)4

− 6 · 64r+1(2r3 + r2)− 6 · 16r+1(16r3 + 24r2 + 10r + 1) + 24 · 4r+1(2r3 + 5r2 + 4r + 1)

(4r+1 + 2)4

)
n−1

+O
(r5

3r
n−2

)
(9)

for r ∈ Z≥1, and the O-term holds uniformly in r. Additionally, by setting

c0 =
∑
r≥1

4r+1(3r − 1) + 4

(4r + 2)2

= 2.7182536428679528526648361928219367344585435680344 . . . ,

c1 = −
∑
r≥1

6 · 64r(2r3 − 5r2 + 4r − 1)− 6 · 16r(16r3 − 24r2 + 10r − 1) + 24 · 4r(2r − 1)r2

(4r + 2)4

= −4.2220971510158840823821873477600478080816411210406 . . . ,

c2 =
∑
r≥1

(2r − 1)
4r+1(3r − 1) + 4

(4r + 2)2
− c20

= 0.91845604214374797357797147814019496503688953933967 . . . ,

c3 = −
∑
r≥1

(2r − 1)

(4r + 2)4
(
6 · 64r(2r3 − 5r2 + 4r − 1)− 6 · 16r(16r3 − 24r2 + 10r − 1)

+ 24 · 4r(2r − 1)r2
)
− 2c0c1

= −9.1621753200836274996912436568310268988536534594942 . . . ,

the expected age and the corresponding variance are given by the asymptotic expansions

EDn = c0 + c1n
−1 +O(n−2), (10)

VDn = c2 + c3n
−1 +O(n−2). (11)

Proof: For the sake of convenience we set F≤r (z) := F≤r (z, z), where F≤r (z, t) is given in (6). This
univariate generating function now enumerates Catalan–Stanley trees of age ≤ r with respect to the tree
size.
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We begin by observing that F≥r (z), the generating function enumerating Catalan–Stanley trees of age
≥ r with respect to the tree size is given by

F≥r (z) = S(z, z)− F≤r−1(z) = z(1 + T )− z

1− z 1−T 2r−2

1−T 2

= z(1 + T )
T 2r−1

1 + T 2r−1 , (12)

where the last equation follows after some elementary manipulations and by using (1).
Now let fn,r := [zn]F≥r (z) denote the number of Catalan–Stanley trees of size n and age ≥ r. As we

consider all Catalan–Stanley trees of size n to be equally likely, we find

P(Dn = r) = P(Dn ≥ r)− P(Dn ≥ r + 1) =
fn,r − fn,r+1

Cn−2
.

We use singularity analysis (see [3] and [4, Chapter VI]) in order to obtain an asymptotic expansion for
fn,r. To do so, we first observe that z = 1/4 is the dominant singularity of T and thus also of F≥r (z). We
then consider z to be in some ∆-domain at 1/4 (see [4, Definition VI.1]). The task of expanding F≥r (z)

for z → 1/4 now largely consists of handling the term T 2r−1

1+T 2r−1 . Observe that we can write

T 2r−1

1 + T 2r−1 =
1

1 + T 1−2r =
1

1 + 22r−1(1−
√

1− 4z )1−2r
,

=
1

(1 + 22r−1)
(
1 + 22r−1

1+22r−1

∑
j≥1

(
2r+j−2

j

)
(1− 4z)j/2

)
which results in

T 2r−1

1 + T 2r−1 =
2

4r + 2
− 2 · 4r(2r − 1)

(4r + 2)2
(1− 4z)1/2

+
2 · 4r (4r(r − 1)− 2r)(2r − 1)

(4r + 2)3
(1− 4z)

− 2 · 4r(16r(2r2 − 5r + 3)− 4r+2(r2 − r) + 8r2 + 4r)(2r − 1)

3(4r + 2)4
(1− 4z)3/2 +O

(r4
3r

(1− 4z)2
)
,

where the O-term holds uniformly in r. Multiplying this expansion with the expansion of z(1 +T ) yields
the expansion

F≥r (z) =
3

4(4r + 2)
− 4r(3r − 1) + 1

2(4r + 2)2
(1− 4z)1/2

+
16r(6r2 − 7r − 1)− 2 · 4r(6r2 − 5r + 7)− 12

4(4r + 2)3
(1− 4z)

− 64r(2r3 − 5r2 + r)− 2 · 16r(8r3 − 12r2 + 11r − 2) + 4r+1(2r3 − r2 − 3r)− 4

2(4r + 2)4
(1− 4z)3/2

+O
(r4

3r
(1− 4z)2

)
.
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By means of singularity analysis we extract the nth coefficient and find

fn,r =
4r(3r − 1) + 1

4
√
π (4r + 2)2

4nn−3/2 −
(3 · 64r(8r3 − 20r2 + r + 1)

32
√
π (4r + 2)4

− 3 · 16r(64r3 − 96r2 + 100r − 19)− 12 · 4r(8r3 − 4r2 − 15r) + 60

32
√
π (4r + 2)4

)
4nn−5/2

+O
(r5

3r
4nn−7/2

)
.

Computing the difference fn,r−fn,r+1 and dividing by the Catalan number Cn−2 then yields the expres-
sion for P(Dn = r) given in (9).

The expected value can then be computed with the help of the well-known formula

EDn =
∑
r≥1

P(Dn ≥ r),

which proves (10). Finally, the variance can be obtained from VDn = E(D2
n)− (EDn)2, where

E(D2
n) =

∑
r≥1

r2P(Dn = r) =
∑
r≥1

(2r − 1)P(Dn ≥ r),

which proves (11).

In addition to the asymptotic expansions given in Theorem 1 we can also determine an exact formula
for the expected value EDn. The key tools in this context are Cauchy’s integral formula as well as the
substitution z = u

(1+u)2 .

Proposition 3.2. Let n ∈ Z≥2. The expected age of the Catalan–Stanley trees of size n is given by

EDn =
1

Cn−2

∑
k≥1

(−1)k+1σodd
0 (k)

((
2n− 4− k
n− 3

)
+

(
2n− 4− k
n− 2

)
− 2

(
2n− 4− k
n− 1

))
, (13)

where σodd
0 (k) denotes the number of odd divisors of k.

Proof: We begin by explicitly extracting the coefficient [zn]F≥r (z). The expected value can then be
obtained by summation over r and division by Cn−2.

With the help of the substitution z = u
(1+u)2 we can bring F≥r (z) into the more suitable form

F≥r (z) =
(1 + 2u)u2r

(1 + u)3(u2r−1 + (1 + u)2r−1)
.

We extract the coefficient of zn now by means of Cauchy’s integral formula. Let γ be a small contour
winding around the origin once. Then we have

[zn]F≥r (z) =
1

2πi

∮
γ

F≥r (z)

zn+1
dz =

1

2πi

∮
γ̃

(1 + u)2n+2

un+1

(1 + 2u)u2r

(1 + u)3(u2r−1 + (1 + u)2r−1)

1− u
(1 + u)3

du
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= [un−2r](1 + 2u)(1− u)(1 + u)2n−2r−3
1

1 + ( u
1+u )2r−1

= [un−2r](1 + u− 2u2)
∑
j≥1

(−1)j−1u(2r−1)(j−1)(1 + u)2n−4−j(2r−1)

=
∑
j≥1

(−1)j−1

((
2n− 4− j(2r − 1)

n− 3

)
+

(
2n− 4− j(2r − 1)

n− 2

)

− 2

(
2n− 4− j(2r − 1)

n− 1

))
,

(14)

where γ̃, the integration contour of the second integral, is the transformation of γ under the transformation
z = u/(1 + u)2 and is also a small contour winding around the origin once.

Now consider the auxiliary sum

ϑ(k) :=
∑
j,r≥1

j(2r−1)=k

(−1)j−1.

It is easy to see by distinguishing between even and odd k that with the help of σodd
0 (k), ϑ(k) can be

written as ϑ(k) = (−1)k−1σodd
0 (k).

Summing the expression from (14) over r ≥ 1, simplifying the resulting double sum by means of the
auxiliary sum ϑ, and finally dividing by Cn−2 then proves (13).

4 Analysis of Ancestors
In this section we focus on characterizing the effect of the (repeatedly applied) reduction ρ on a random
Catalan–Stanley tree of size n. We are particularly interested in studying the size of the reduced tree. In
the light of the fact that all Catalan–Stanley trees can be grown from by means of the growth process
induced by ρ, we can think of the rth reduction of some tree τ as the rth ancestor of τ .

In order to formally conduct this analysis, we consider the random variable Xn,r modeling the size of
the rth ancestor of some tree of size n, where all Catalan–Stanley trees of size n are equally likely.

Similar to our approach in Proposition 3.1 we can determine precise bounds for Xn,r as well.

Proposition 4.1. Let n ∈ Z≥2 and r ∈ Z≥1. Then the bounds

1 ≤ Xn,r ≤ n− 2(r − 1)− 1 (15)

hold for r ≤ bn/2c and are sharp, i.e. there are trees τ , τ ′ ∈ S of size n ≥ 2 such that Xn,r(τ) = 1 and
Xn,r(τ

′) = n− 2(r − 1)− 1. For r > bn/2c the variable Xn,r is deterministic with Xn,r = 1.

Proof: Assume that r ≤ bn/2c. The lower bound is obvious as trees cannot reduce further than to , and
as the first ancestor of the tree with n − 1 children attached to the root already is the lower bound is
valid and sharp.

For the upper bound we follow the same argumentation as in the proof of Proposition 3.1 to arrive at

1 ≤ |ρr(τ)| ≤ |τ | − 2(r − 1)− 1 = n− 2r + 1
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for some Catalan–Stanley tree of size n, which proves that the upper bound is valid. Any tree τ of size n
having the chain of length 2 as its (r−1)th ancestor satisfies Xn,r(τ) = n−2(r−1)−1 and thus proves
that the upper bound is sharp. This proves (15).

In the case of r > bn/2c we observe that as the bn/2cth ancestor of any Catalan–Stanley tree of size n
already is certain to be by Proposition 3.1, the rth ancestor is as well.

With the generating function Gr(z, v) enumerating Catalan–Stanley trees with respect to their size
(marked by n) and the size of their rth ancestor (marked by v) from Corollary 2.6 we can write the
probability generating function of Xn,r as

EvXn,r =
1

Cn−2
[zn]Gr(z, v).

This allows us to extract parameters like the expected size of the rth ancestor and the corresponding
variance.

Theorem 2. Let r ∈ Z≥0 be fixed and consider n → ∞. Then the expected value and the variance of
the random variable Xn,r modeling the size of the rth ancestor of a (uniformly random) Catalan–Stanley
tree of size n are given by the asymptotic expansions

EXn,r =
1

4r
n+

2 · 4r − 2r2 + r − 2

2 · 4r
+

(2r + 1)(2r − 1)(r − 3)r

2 · 4r+1
n−1 +O(n−3/2), (16)

VXn,r =
(2r + 1)(2r − 1)

16r
n2 −

√
π(4r(3r + 1)− 1)

3 · 16r
n3/2

+
18 · 4rr2 + 3 · 4rr − 38 · 4r + 36r2 − 42r + 38

18 · 16r
n

+
5
√
π (4r(3r + 1)− 1)

8 · 16r
n1/2 +O(1). (17)

Proof: The strategy behind this proof is to determine the first and second factorial moment of Xn,r by
extracting the coefficient of zn in the derivatives ∂d

∂vd
Gr(z, v)|v=1 for d ∈ {1, 2} and normalizing the

result by dividing by Cn−2.
We begin with the expected value. With the help of SageMath [10] we find for z → 1/4

∂

∂v
Gr(z, v)|v=1 =

1

4r+2
(1− 4z)−1/2 +

3 · 4r − r
2 · 4r+1

− 2 · 4r − 2r2 + r + 2

4r+2
(1− 4z)1/2

− 9 · 4r + 2r3 − 3r2 − 5r

6 · 4r+1
(1− 4z) +O((1− 4z)3/2),

where the O-constant depends implicitly on r. Extracting the coefficient of zn and dividing by Cn−2
yields the expansion given in (16).

Following the same approach for the second derivative yields the expansion

∂2

∂v2
Gr(z, v)|v=1 =

1

2 · 4r+2
(1− 4z)−3/2 − 4r(3r + 1)− 1

3 · 16r+1
(1− 4z)−1
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+
4r(18r2 + 3r + 7)− 24r + 2

18 · 16r+1
(1− 4z)−1/2 +O(1),

such that after applying singularity analysis and division by Cn−2 we obtain the expansion

EX2
n,r =

1

4r
n2 −

√
π (4r(3r + 1)− 1)

3 · 16r
n3/2 +

4r(18r2 + 3r − 20)− 24r + 2

18 · 16r
n

+
5
√
π (4r(3r + 1)− 1)

8 · 16r
n1/2 +O(1)

for the second factorial moment EX2
n,r. Applying the well-known formula

VXn,r = EX2
n,r + EXn,r − (EXn,r)

2

then leads to the asymptotic expansion for the variance given in (17) and thus proves the statement.

Besides the asymptotic expansion given in Theorem 2, we are also interested in finding an exact formula
for the expected value EXn,r. We can do so by means of Cauchy’s integral formula.

Proposition 4.2. Let n, r ∈ Z≥1. Then the expected size of the rth ancestor of a random Catalan–Stanley
tree of size n is given by

EXn,r =
1

Cn−2

(
2n− 2r − 4

n− 2

)
+ 1. (18)

Proof: We rewrite the derivative g(z) := ∂
∂vGr(z, v)|v=1 into a more suitable form which makes it easier

to extract the coefficients. To do so, we use the substitution z = u/(1 + u)2 again, allowing us to express
the derivative as

g(z) =
u2r+2

(1− u)(1 + u)2r+3
+

(1 + 2u)u

(1 + u)3
.

Note that as T = u
1+u , the summand (1+2u)u

(1+u)3 actually represents z(1 + T ), implying that the coefficient
of zn in this summand is given by Cn−2. Now let γ be a small contour winding around the origin once,
so that with Cauchy’s integral formula we obtain

[zn]g(z) =
1

2πi

∮
γ

g(z)

zn+1
dz =

1

2πi

∮
γ̃

(1 + u)2n+2

un+1

u2r+2

(1− u)(1 + u)2r+3

1− u
(1 + u)3

du+ Cn−2

= [un−2r−2](1 + u)2n−2r−4 + Cn−2 =

(
2n− 2r − 4

n− 2r − 2

)
+ Cn−2,

where γ̃ is the image of γ under the transformation (and is still a small contour winding around the origin
once). Dividing by Cn−2 then proves (18).
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