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Abstract

This paper constructs a normative framework to quantify the difference between two match-

ings in roommate markets. We investigate the “cost of transformation” from one mechanism

to another, based on the differences in the outputs of these mechanisms. Several conditions are

introduced to ensure this cost reflects the welfare effect of the transformation on individuals. We

introduce a measure called the Borda measure, which is fully characterized by these conditions.

Several possible applications of this measure under different contexts interpretations are also

discussed, such as measuring how unstable, how unfair, or how inefficient a matching is.
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1 Introduction

Matching theory analyzes markets where agents, e.g., buyers and sellers, hospitals and interns,

high schools and students, are matched according to their preferences, and thereby conduct some

transactions within the relevant context. Some of the well-known mechanisms are the deferred

acceptance (introduced by Gale and Shapley (1962), characterized by Kojima and Manea (2010)

and Morrill (2013a)), the Boston mechanism (characterized by Afacan (2013) and Kojima and Ünver

(2014)), and the top trading cycle (introduced by Shapley and Scarf (1974) and or characterized

by Morrill (2013b) and Pycia and Ünver (2017)). These mechanisms produce matchings with

various normative features1, e.g., stability, Pareto efficiency, fairness, etc. They also have different

computational complexity2.

Given two mechanisms with different features and complexity, a measure on matchings can be

used to compare the outcomes of the mechanisms and hence quantify the cost of transformation

from one mechanism to the other. Such a measure can be interpreted in various ways. For instance,

it can be interpreted as the cost of stability if one mechanism is not stable and the other is, or as

the cost of simplicity if one mechanism complex and the other is not, e.g., in terms of computation.

The most intuitive way to compare two matchings is by simply looking at the number of indi-

viduals who are matched differently. This measure3 would be zero if the matchings are identical in

all pairs, and would be maximal if they have nothing in common, i.e., the matchings are disjoint.

However, this method neglects individuals’ preferences in the market, i.e., it does not matter how

individuals rank their partners in corresponding matchings. Therefore it is not sensible to use it as

a measure with the interpretation of cost of transformation.

In this paper, we introduce several conditions to endogenize preferences in quantification of

dissimilarity between two matchings in a roommate market4. The Metric condition requires the

measure to be a metric5 on matchings. Betweenness requires that if every individual ranks a

matching between two other matchings in their preference, the measure must be additive on these

three matchings6. Monotonicity implies that if from one market to another, the set of agents

1For comparisons of some of these methods, see Abdulkadiroglu and Sönmez (2003); Abdulkadiroğlu et al. (2005);

Ergin and Sönmez (2006); Chen and Sönmez (2006); Erdil and Ergin (2008); Kesten (2010); Abdulkadiroğlu et al.

(2011); Kesten and Ünver (2015).
2See Irving (1985), Irving et al. (2000), Manlove et al. (2002)
3See Klaus et al. (2010) for an example of such a measure in stochastic markets.
4A roommate market is a one-sided one-to-one matching market. However, since the roommate markets are

superdomains of the marriage markets, all the results apply the to latter as well.
5A metric is a function which satisfies non-negativity, identity of indiscernibles, symmetry, and triangular Inequality.
6This is a standard strengthening of triangular inequality where the weak inequality becomes equality, e.g., when

three points are on a line in the Euclidian sense (see Kemeny (1959)).
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ranked between two matchings expand, the measure should also increase. Anonymity requires that

relabelling of individuals do not effect the measure. Independence of irrelevant newcomers, implies

that when an “irrelevant” newcomer7 joins the market, the measure is unchanged if he or she

remains single in both matchings. Finally normalization sets the minimal possible value for two

disjoint matchings to the size of the market.

We introduce the Borda measure on matchings which depends on how each individual ranks

their partners under those matchings. Given a market, the measure is the sum of absolute values

of the differences in the Borda scores8 of the two matchings for each individual. We show that the

Borda measure is the only method that satisfies all the aforementioned conditions. We formulate

our result on the domain of roommate markets since we are also interested in markets that are not

necessarily solvable, i.e., markets in which there are no stable matchings. This creates richness in

the way the measure can be employed to compare any two matchings. When the measure is applied

on the set of stable matchings only, it can serve as a utility to find a “fair” compromise among

stable matchings, e.g., between men-optimal and women-optimal stable matchings in a marriage

market. Furthermore it can also be used to quantify the level of positive discrimination or favorism

in the choice of stable matchings in a marriage market.

The paper proceed as follows. In Section 2, we present the notation and the definition. Section 3

introduces the proposed conditions and the Borda measure. Section 4 is devoted to the proof of our

main results. Finally, Section 5 concludes the paper.

2 Model

We consider a countable and infinite set of potential individuals, denoted by N , with a non-empty

and finite subset N ( N interpreted as a set of agents9. For each i ∈ N , let Ri denote the

preference of agent i, that is a complete, transitive and antisymmetric binary relation over N , while

R ≡ (Ri)i∈N is the preference profile. We say an agent j is “at least as good as” agent k for agent

i whenever j Ri k. We denote the position of agent j in the preference Ri, by rank(j, Ri) = |{k ∈
N : k Ri j}|. A generic roommate market (also referred to as a roommate problem) is denoted by

P = (N,R), and the set of all possible roommate problems over a particular set of agents N by

P(N). We denote the domain of all roommate problems by D = 〈P(N)〉N(N , i.e., the set of all

7We consider a newcomer irrelevant when he prefers being single to being matched with the incumbents, and the

incumbents prefer being matched among themselves to being matched with the newcomer.
8The Borda score of a matching for an individual is the number of alternatives that are ranked strictly below the

partner of the individual in that matching.
9We assume that N has cardinality n and the agents are labelled 1, 2, . . . , n.
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possible roommate problem over all possible set of agents.

A matching µ is a permutation on N such that for all i, j ∈ N , µ(i) = j if and only if µ(j) = i.

We refer to j as the partner (roommate) of µ(i) at matching µ, and in case µ(i) = i, i is said to

be a single at matching µ. A matching in which every agent is single is referred to as the identity

matching and is denoted by µI . We denote the set of all possible matchings on N byM(N). Given

any problem P = (N,R) and any two matchings µ, µ̄ ∈M(N), the set of agents that are preferred

between µ(i) and µ̄(i) according to Ri forms an interval denoted by [µ, µ̄]Ri . Formally,

[µ, µ̄]Ri = {j ∈ N : µ Ri j Ri µ̄ or µ̄ Ri j Ri µ}.

The length of an interval is denoted by |µ, µ̄|Ri = #[µ1, µ2]Ri − 1, i.e., the cardinality of the interval

minus 1 (as an example in Figure 4, [µ1, µ3]R1 = {2, 4, 3} and |µ1, µ3|R1 = 2 ).

We say a matching µ̄ is between matchings µ and ¯̄µ, if µ̄(i) ∈ [µ, ¯̄µ]Ri for all i ∈ N , i.e., µ̄(i) is

contained in the interval defined by µ and ¯̄µ for all agent. Given any sequence of matching µ1, . . . , µt

in M(N) we say µ1, . . . , µt are “on a line” and denote it as [µ1 − µ2 − · · · − µt] if µj is between µi

and µk for all 1 6 i 6 j 6 k 6 t. We say a matching µ is weakly above µ̄ whenever µ(i)Ri µ̄(i) for

all i ∈ N . In addition, we say µ and µ̄ are adjacent whenever |µ, µ̄|Ri = 1 for all i ∈ N .

Consider problem P = (N,R) and π as a permutation over the set of agents. We denote the

permuted preference profile by Rπ where for all i, j, k ∈ N , j Ri k if and only if π(j)Rππ(i) π(k) and

define the permuted problem P π = (N,Rπ) accordingly. Given a matching µ ∈ M(N), we denote

the permuted matching by µπ where for all i, j ∈ N , µ(i) = j if and only if µπ(π(i)) = π(j).10 The

permutations are denoted by the cycle notation, e.g., π = (123)(45) denotes π(1) = 2, π(2) = 3,

π(3) = 1, π(4) = 5, π(5) = 4 and π(i) = i for all i ∈ N \ {1, 2, 3, 4, 5}.

We consider particular variable population scenarios wherein a problem is extended by an ir-

relevant newcomer. Consider a problem P = (N,R), and a newcomer agent a ∈ N \ N , and an

extension of the problem P̂ = (N ∪ {a}, R̂) by agent a, such that for all i, j ∈ N we have,

1. rank(a, R̂a) = 1, i.e., the newcomer prefers to be single,

2. rank(j, Ri) = rank(j, R̂i), i.e., preferences of the incumbents over incumbents are unchanged,

3. rank(j, R̂i) < rank(a, R̂i), i.e., the newcomer is ranked at the bottom by all incumbents.

Similarly, we say µ̄ ∈M(N∪{a}), is the extension of a matching µ ∈M(N) by agent a ∈ N \N ,

whenever µ̄(i) = µ(i) for all i ∈ N , and µ̄(a) = a. Let A = {a1, a2, . . . , ak}, be a set of agents such

10This is a typical definition for permutations in roommate markets, as examples of this see Klaus (2017); Özkal-

Sanver (2010); Sasaki and Toda (1992).
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that N ∩A = ∅. Consider the sequence P a0 , P a1 , P a2 , . . . , P ak of problems such that P a0 = P and,

P at is an extension of P at−1 by agent at ∈ A. Then we say P ak is an extension of P by the set of

agents A. Similarly, we can define the extension of a matching with a set of agents.

3 Conditions and measure

Given a problem P = (N,R) ∈ D, and two matchings µ, µ̄ ∈M(N), a distance function, δP (µ, µ̄) :

M(N)×M(N)→ R+ assigns a non-negative real number to each pair of matchings. We consider

measures on matchings, i.e., collections of distance functions on all possible problems in the domain,

denoted by:

δ = 〈δP 〉P∈D.

Condition 1 (Metric conditions): δ satisfies metric condition if for all problems P = (N,R) ∈ D
and all matchings µ, µ̄ ∈M(N)

I. δP (µ, µ̄) > 0 ( non-negativity),

II. δP (µ, µ̄) = 0 if and only if µ = µ̄ (identity of indiscernibles),

III. δP (µ, µ̄) = δP (µ̄, µ) (symmetry),

IV. δP (µ, ¯̄µ) ≤ δP (µ, µ̄) + δP (µ̄, ¯̄µ) (triangular inequality).

The following condition is the betweenness condition which is an strengthening of the triangular

inequality. It requires that if a matching is such that the partner of each agent is included in

the interval defined by two other matching then the measure should be additive on these three

matchings.

Condition 2 (Betweenness): δ satisfies betweenness if for all problems P = (N,R) ∈ D and for

all matchings µ, µ̄, ¯̄µ ∈M(N) such that µ̄ is between µ, ¯̄µ

δP (µ, ¯̄µ) = δP (µ, µ̄) + δP (µ̄, ¯̄µ).

The anonymity condition is a well-known condition which implies that the naming of the agents are

irrelevant.

Condition 3 (Anonymity): δ satisfies anonymity if for all problems P = (N,R) ∈ D and for all

matchings µ, µ̄ ∈M(N) and permutation π : N → N

δP (µ, µ̄) = δPπ(µπ, µ̄π).
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Consider two problem with the same matchings such that in one of them the interval is expanded

at least for one agent. Then it is natural to require that the measure assign a greater value to the

problem with greater interval. Monotonicity condition reflect this idea.

Condition 4 (Monotonicity): δ satisfies monotonicity if for all problems P = (N,R) ∈ D and

P̂ = (N, R̂) ∈ D and all matchings µ, µ̄ ∈M(N) such that [µ, µ̄]Ri ⊆ [µ, µ̄]
R̂i

for all i ∈ N

δP (µ, µ̄) ≤ δ
P̂

(µ, µ̄).

Remark 1. Immediate implication of monotonicity is that if for two matchings µ and µ̄, the

intervals remain the same across two problems, then the distance should not change. Furthermore

changing the relative order of µ, µ̄ in individual preferences, does not alter the distance as long as

the intervals remain the same.

The following condition deals with the extension of the problems and the extension of matchings.

That is if a problem as well as the two matchings are extended by a newcomer the measure should

be unchanged.

Condition 5 (Independence of irrelevant newcomers): δ satisfies Independence of irrelevant

newcomers if for all problem P = (N,R) ∈ D and any extension P̂ = (N̂ , R̂) ∈ D and all matchings

µ, µ̄ ∈M(N) with the extension µ∗, µ̄∗ ∈M(N̂) by some agent a ∈ N \N

δP (µ, µ̄) = δ
P̂

(µ∗, µ̄∗).

Remark 2. Immediate implication of independence of irrelevant newcomers is that if P̂ , µ∗, µ̄∗ are

an extension of the P, µ, µ̄, by a set of agents A, then δP (µ, µ̄) = δ
P̂

(µ∗, µ̄∗).

The normalization condition acts as an anchor point and sets the minimum distance for any two

disjoint matching, i.e., matchings that have nothing in common, to be in accordance with the size of

the problem. Formally, given any problem P = (N,R) ∈ D, and any two matchings µ, µ̄ ∈ M(N),

we say µ and µ̄ are disjoint, whenever µ(i) 6= µ̄(i) for all i ∈ N .

Condition 6 (Normalization): δ satisfies normalization if for all disjoint matchings µ, µ̄ ∈M(N)

min
P∈P(N)

{δP (µ, µ̄)} = |N |.

Finally, we define the Borda measure. The Borda measure for a given problem is the total sum

of absolute value of the rank difference between each agent’s partner in two given matching. This

corresponds to the sum of the lengths of each individual interval formed by the two matchings.

Formally,
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Borda Measure: A measure is called the Borda Measure, denoted by δBorda, whenever for all

P = (N,R) ∈ D, and for all matchings µ, µ̄ ∈M(N)

δBordaP (µ, µ̄) =
∑
i∈N

∣∣µ, µ̄∣∣
Ri
.

The reader can verify that the Borda measure satisfies the six conditions introduced above. We

will show that it is indeed the only measure which satisfies all these conditions, hence a characteri-

zation. In the following sections, we use P = (N,R) ∈ D to denote a generic problem with |N | = n

and δP denotes associated distance function with this problem which satisfies metric, anonymity,

betweenness, monotonicity, independence of irrelevant newcomers and normalization.

4 Results

First, we propose a lemma which enables to decompose the distance between any two matchings into

(possibly) several components (matchings). Then, by using this lemma in section 4.1, we show that

the distance between any matching and the identity matching equals the Borda measure. Finally, in

section 4.2 by using the results of section 4.1 we show that the distance between any two matchings

equals the Borda measure.

To state the first lemma, let µ, µ̄ ∈ M(N) be two matchings and S be a subset of agents that

are matched among themselves in µ and µ̄. Formally, let S ⊆ N denote a subset of agents such

that µ(i), µ̄(i) ∈ S for all i ∈ S. Based on the set S we define the following two matchings, say µS

and µS̄

1. for all i ∈ S let µS(i) = µ(i) and for all i ∈ N \ S let µS(i) = µ̄(i),

2. for all i ∈ S let µS̄(i) = µ̄(i) and for all i ∈ N \ S let µS̄(i) = µ(i).

In the following lemma we show that the distance between µ, µ̄ can be decomposed into the sum of

the distances from µS and µS̄ to µ (or µ̄). Figure 1 shows a demonstration of this decomposition.

1 2 . . . n
P

µ̄

µ

µS

µS̄

Figure 1: The general view of the Decomposition Lemma.
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Lemma 1 (Decomposition Lemma). Let µ, µ̄ ∈M(N). Then, for all S ⊆ N such that µ(i), µ̄(i) ∈ S
for all i ∈ S, we have

δP (µ, µ̄) = δP (µ, µS̄) + δP (µ, µS) = δP (µS̄ , µ̄) + δP (µS , µ̄).

Proof. By definition of µS̄ and µS , both are between µ and µ̄, hence betweenness yields

δP (µ, µ̄) = δP (µ, µS̄) + δP (µS̄ , µ̄) and, (1)

δP (µ, µ̄) = δP (µ, µS) + δP (µS , µ̄). (2)

Since µ and µ̄ are both between µS and µS̄ betweenness results in

δP (µS , µS̄) = δP (µS , µ) + δP (µ, µS̄) and,

δP (µS , µS̄) = δP (µS , µ̄) + δP (µ̄, µS̄).

The four above equations yield

δP (µ, µS̄) + δP (µS̄ , µ̄) = δP (µ, µS) + δP (µS , µ̄) and,

δP (µS , µ) + δP (µ, µS̄) = δP (µS , µ̄) + δP (µ̄, µS̄).

by subtracting these from each other δP (µS̄ , µ̄)− δP (µS , µ) = δP (µ, µS)− δP (µ̄, µS̄). Hence,

δP (µS̄ , µ̄) = δP (µS , µ). (3)

Plugging Equation 3 into Equation 1 yields δP (µ, µ̄) = δP (µ, µS̄) + δP (µ, µS), and plugging Equa-

tion 3 into Equation 2 results in δP (µ, µ̄) = δP (µS̄ , µ̄) + δP (µS , µ̄). �

4.1 Comparing any matching with the identity matching

In this section we focus on the distance between any matching and the identity matching. By

Remark 1, as long as the intervals between two matchings remain the same the distance will be

unchanged. Therefore without loss of generality, we draw the identity matching below the one-

couple matchings. Furthermore, in order to keep figures simple, we often denote the matchings as

straight lines whenever possible.

Consider a matching in which only two agents, say µ(i) = j with i 6= j, are matched and

the rest of the agents are single. We call such a matching a one-couple matching and denote

it by µij . Given a problem P = (N,R), we say a one-couple matching µij is of length (x, y)

whenever (|µij(i), i|Ri , |µij(j), j|Rj ) = (x, y). Note that for a one-couple matching of length (x, y),

δBordaP (µij , µI) = x+ y.
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Remark 3. Consider any matching µ with k distinct couples. Then, by Decomposition Lemma,

and letting S = {i, j} and S̄ = N \ S for each couple of µ, the distance between µ and µI can

be decomposed as the sum of distances of each of these k one-couple matchings, and the identity

matching.

According to Remark 3, to compute the distance between any matching and the identity match-

ing, we only need to focus on the distance between a one-couple matching and the identity matching.

Then the total distance equals to the sum of each of these one-couple matchings. In the sequel, we

will show that the distance between a one-couple matching and identity matching is the same for

all problems whenever the interval lengths are the same. In Lemma 2, we show this for the case

where the interval length is (x, 1), see Figure 2. Then in Lemma 3, we extend this to any interval

length (x, y), see Figure 3.

1 . . . i . . . j . . . n
P

x-1

j

i
1 . . . i . . . j . . . n
...

...
...

...
...

...
...

µij µI

Figure 2: A one-couple matching µij with interval length (x, 1).

1 . . . i . . . j . . . n
P

x-1

j
i

1 . . . i . . . j . . . n
...

...
...

...
...

...
...

µij µI

y-1

Figure 3: A one-couple matching µij with interval length (x, y).

Lemma 2. Consider any N,N ′ ( N . Let µij ∈ M(N) ba a one-couple matching with interval

length (x, 1) in any problem P ∈ P(N), and µi
′j′ ∈ M(N ′) ba a one-couple matching with interval

length (x, 1) in any problem P ′ ∈ P(N ′), where x is a strictly positive integer. Let µI and µI
′

denote

the identity matchings in corresponding problems, then

δP (µij , µI) = δP ′(µ
i′j′ , µI

′
).
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Proof. See Appendix A.1. �

Lemma 2, shows that the distance between the identity matching and all one-couple matchings

with interval length (x, 1), are equal to each other across all the problems. To simplify notation we

denote this distance by αx1. The next lemma extends Lemma 2 to any one-couple matching with

interval length (x, y).

Lemma 3. Consider any set of agents and any problem N ( N , and any problem P ∈ P(N). Let

µij ∈M(N) be a one-couple matching with interval length (x, y), where x and y are strictly positive

integers. Then

δP (µij , µI) = αx1 + αy1 − α11.

Proof. See Appendix A.2. �

Lemma 3, shows that the distance between the identity matching and all one-couple matchings

with interval length (x, y), are equal to each other across all the problems. To simplify notation we

denote this distance by αxy. Next as a particular case of Lemma 3, we show that for any strictly

positive integer x, αxx = 2x, i.e., the distance between a one-couple matching with interval length

(x, x) and the identity matching must equal 2x.

Lemma 4. Let µij be a one-couple matching in M(N) with interval length (x, x) where x is a

strictly positive integer. Then δP (µij , µI) = 2x.

Proof. See Appendix A.3. �

Now we propose our first result, Theorem 1. When all six conditions in Section 2 are imposed

on a measure δ, Theorem 1 states that the distance between the identity matching and any other

matching must equal the Borda measure.

Theorem 1. For any problem P = (N,R) and any µ ∈M(N) we have

δP (µ, µI) = δBordaP (µ, µI).

Proof. By Decomposition Lemma, the distance between µ and the identity matching, is the sum

of k distinct one-couple matchings. By Lemma 3, the distance between any one-couple matching

with interval length (x, x) and the identity matching is αxx = 2αx1 − α11. By Lemma 4, αxx = 2x

and α11 = 2, hence αx1 = 2x+2
2 = x + 1. Using Lemma 3 the distance between any one-couple

matching with interval length (x, y) and the identity matching is αxy = αx1 +αy1−α11. Therefore,
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αxy = (x + 1) + (y + 1) − 2 = x + y, which is the same as the Borda measure for any one-couple

matching with the interval length (x, y). �

4.2 Comparing any two non-identity matching

In this section, we generalize Theorem 1 to any two matchings. To do so, first we porpose two

propositions for four agents problems, and use these two propositions as the blocks to prove Theorem

2.

Proposition 1. Consider a problem P over four agents with the preference profile and the matchings

shown in Figure 4. Note that one singleton is nested between µ1 and µ2 and one is nested between

µ2 and µ3. In such specific cases, δP (µ1, µ2) = δP (µ2, µ3) = α21 +α11, i.e., they are equal the Borda

measure.

1 2 3 4
P

1 1 4 4

2 2 2 3

4 3 3 1

3 4 1 2

µ1

µ2

µ3

Figure 4: A problem over four agent with one singleton agent between the matchings.

Proof. See Appendix B.1. �

Proposition 2. Consider a problem P over four agents with the preference profile and the matchings

shown in Figure 5. Note that two singletons are nested between µ1 and µ2 and two are nested between

µ2 and µ3. In such specific cases, δP (µ1, µ2) = δP (µ2, µ3) = α22 +α11, i.e., they are equal to Borda

measure.

1 2 3 4
P

4 3 2 1

1 2 1 2

3 4 3 4

2 1 4 3

µ1

µ2

µ3

Figure 5: Problem P over four agents with two singleton agents between the matchings.

Proof. See Appendix B.2. �
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Finally we propose our main result, Theorem 2. Note that the previous theorem, Theorem 1,

shows the measure to be equal to the Borda measure when comparing a matching only with the

identity matching. Theorem 2 extends this result to comparing a matching with any other. When

all six conditions in Section 2 are imposed on a measure δ, Theorem 2 states that the distance

between any two matching must equal the Borda measure.

Theorem 2. For any problem P = (N,R) and µ, µ̃ ∈M(N), we have

δP (µ, µ̃) = δBordaP (µ, µ̃).

Proof. Take any N = {1, 2, . . . , n} as the set of agents and consider any P ∈ P(N). If µ = µ̃, then

by metric conditions δP (µ, µ̃) = 0 =
∑
i∈N
|µ, µ̃|Ri and it equals to δBordaP (µ, µ̃). If µ = µI (or µ̃ = µI),

then by Theorem 1, δP (µ, µ̃) = δBordaP (µ, µ̃). Therefore consider any µ, µ̃ ∈M(N) \ {µI} such that

µ 6= µ̃.

In what follows, if the number of agents is odd, we can use extensions of P, µ, µ̃ by one irrelevant

newcomer. By independence of irrelevant newcomers, the distance is unchanged. So without loss

of generality we can assume that the number of agents to be even.

By Remark 1, we assume that µ is weakly above µ̃. Let N ′ = {1′, 2′, . . . , n′}, be a set of agents

such that |N | = |N ′| and N ∩N ′ = ∅. Let N̄ = N ∪N ′. Let P ∗, µ∗, µ̃∗ be an extension of P, µ, µ̃ by

the set N ′. By Remark 2, δP (µ, µ̃) = δP ∗(µ
∗, µ̃∗). For simplicity we abuse the notation and write

P , µ and µ̃ instead of writing P ∗, µ∗ and µ̃∗, respectively. Let us define two additional matchings

µB, µT ∈M(N̄) such that:

• for all i ∈ N , µB(i) = i′ ∈ N ′,

• for all odd i ∈ N , µT (i) = (i+ 1)′ ∈ N ′ and for all even i ∈ N , µT (i) = (i− 1)′ ∈ N ′.

Next we construct the following problem P̄ = (N̄ , R̄) on the same set of agents, N̄ such that

1. [µ, µ̃]Ri = [µ, µ̃]R̄i for all i ∈ N̄ , i.e., the intervals of µ and µ̃ in P̄ are the same as those in P ,

2. µT is weakly above µB, µB is weakly above µ (and they are adjacent), and µ is weakly above

µ̃,

3. if i ∈ [µ, µ̃]R̄i then [µT , µB]R̄i = {µT (i), µB(i)}, i.e., if i is nested between µ(i) and µ̃(i) then

no agent is nested between µT (i) and µB(i),

4. if i 6∈ [µ, µ̃]R̄i then [µT , µB]R̄i = {µT (i), i, µB(i)}, i.e., if i is not nested between µ(i) and µ̃(i)

then only i is nested between µT (i) and µB(i).
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Figure 6 shows a general view of the structure of problem P̄ .

1 2 3 4 n 1′ 2′ 3′ 4′ n′
P̄

2′

1′

1

1′

2

2′

4′

3

3′
3′

4′

4

1 2 3 4 n

2 1 4 3 n-1

1′ 2′ 3′ 4′ n′

µ̃

µ

µB
µT

Figure 6: General view.

Note that by construction [µ, µ̃]Ri = [µ, µ̃]R̄i for all i ∈ N̄ therefore by monotonicity δP (µ, µ̃) =

δP̄ (µ, µ̃). Since [µT − µB − µ − µ̃] are on a line, then by betweenness δP̄ (µT , µ̃) = δP̄ (µT , µB) +

δP̄ (µB, µ) + δP̄ (µ, µ̃) and hence

δP̄ (µ, µ̃) = δP̄ (µT , µ̃)− δP̄ (µT , µB)− δP̄ (µB, µ). (4)

In the next three steps we show that the distance between each of the three pairs of matchings

on the right hand side of Equation 4 equals the Borda measure. This in return implies δP̄ (µ, µ̃) =

δBorda
P̄

(µ, µ̃).

Step 1. (Showing that δP̄ (µT , µ̃) equals Borda measure.) By construction of P̄ , [µT − µI − µ̃]

are on a line. Then by betweenness and Theorem 1, δP̄ (µT , µ̃) = δBorda
P̄

(µT , µ̃).

Step 2. (Showing that δP̄ (µT , µB) equals Borda measure.) Consider the following partition of

N̄ into sets of agents each, T1 = {1, 2, 1′, 2′}, T2 = {3, 4, 3′, 4′}, . . . , Tn
2

= {n−1, n, (n−1)′, n′} where

N̄ =

n
2⋃
l=1

Tl. Let µTl denote a matching where µTl(i) = µT (i) for all i ∈ Tl, and µTl(i) = µB(i) for

all i ∈ N̄ \ Tl. By construction for all l ∈ {1, . . . , n2 }, µ
Tl is between µT and µB. By Decomposition

Lemma

δP̄ (µT , µB) =

n
2∑
l=1

δP̄ (µTl , µB).

In the squeal, we denote a generic µTl by simply µS . Based on the construction of µT and µB,

each of these matchings µS will have one of the following three structures,

1. No singleton is nested between µS and µB (see Figure 7),
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2. Only one singleton is nested between µS and µB (see Figure 8 and 11),

3. Two singleton is nested between µS and µB (see Figure 12).

In each case we show that the distance equals the Borda measure.

• Case 1. (no singleton) Consider the case that no singleton is nested between µS and µB

(Figure 7).

. . . i i+ 1 i′ (i+ 1)′ . . .
P̄

. . . i′ (i+ 1)′ i (i+ 1) . . .

. . . (i+ 1)′ i′ (i+ 1) i . . .

µS µB

Figure 7: The no singleton structure.

By construction of P̄ we can consider any problem ¯̄P where [µS − µB − µI ] are on a line,

and the intervals of µS and µB are unchanged, i.e., [µS , µB]R̄i = [µS , µB] ¯̄Ri
for all i ∈ N̄ . By

Remark 1, the distance is unchanged, therefore by betweenness, and Theorem 1, δP̄ (µS , µB)

also equals the Borda measure.

• Case 2. (one singleton) Consider the case that exactly one singleton is nested between

µS and µB. By construction of µT and µB the singleton is either i or i + 1. Therefore, two

situations are plausible,

I. i is the singleton nested (see Figure 8).

. . . i i+ 1 i′ (i+ 1)′ . . .
P̄

. . . i (i+ 1)′ i (i+ 1) . . .

. . . (i+ 1)′ i′ (i+ 1) i . . .

i′
µS µB

Figure 8: The one singleton structure with i as the singleton.

Consider the four agent problem P in Proposition 1, and rename the agents as 2 = i, 4 =

i + 1, 3 = i′ and 1 = (i + 1)′. Let P̂ be an extension of this problem P , by the set of

agents A = N̄ \ {i, i′, (i + 1), (i + 1)′}, and µ̂1 and µ̂2 be the extension of µ1 and µ2 by

the set A, respectively (see Figure 9). By Remark 2,

δP (µ1, µ2) = δ
P̂

(µ̂1, µ̂2). (5)
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1 . . . i i+ 1 i′ (i+ 1)′ . . . n′
P̂

1

. . . i (i+ 1)′ i (i+ 1) . . .

. . . (i+ 1)′ i′ (i+ 1) i . . . n′

i′

µ̂1
µ̂2

Figure 9: The four agents problem P of Proposition 1 after adding the set of

agents A as irrelevant newcomers.

Now, consider another problem P ′ shown in Figure 10. Note that by monotonicity

δ
P̂

(µ̂1, µ̂2) = δP ′(µ̂
1, µ̂2). (6)

1 . . . i i+ 1 i′ (i+ 1)′ . . . n′
P ′

1

. . . i (i+ 1)′ i (i+ 1) . . .

n′. . . (i+ 1)′ i′ (i+ 1) i . . .

i′

µ̂1
µ̂2

µS µB

Figure 10: The problem P ′.

Note that the structure of the four matchings, µ̂1, µ̂2, µSµ, in problem P ′ above corre-

sponds to the four matchings in Figure 1 (to µ̄, µS̄ , µS , µB respectively). Therefore by

Equation 3 in Decomposition Lemma we have

δP ′(µ̂
1, µ̂2) = δP ′(µ

S , µB). (7)

Putting together Equations 5, 6 and 7 results in δP (µ1, µ2) = δP ′(µ
S , µB). As in Proposi-

tion 1, we showed that δP (µ1, µ2) equals the Borda measure then δP ′(µ
S , µB) also equals

the Borda measure. Furthermore by monotonicity, δP ′(µ
S , µB) = δP̄ (µS , µB), hence

δP̄ (µS , µB) equals the Borda measure.

II. (i+ 1) is the singleton nested (see Figure 11).

. . . i i+ 1 i′ (i+ 1)′ . . .
P̄

. . . (i+ 1)′ i′ (i+ 1) i . . .

. . . i′ (i+ 1)

(i+ 1)′

i (i+ 1) . . . µBµS

Figure 11: The one singleton structure with i+ 1 as the singleton.

By Proposition 1, and renaming the agents as 4 = i, 2 = i+ 1, 1 = i′ and 3 = (i+ 1)′ and

a similar argument to aforementioned, we have δP̄ (µS , µB) equals the Borda measure.
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• Case 3. (two singleton) Consider the case that exactly two singletons are nested between

µS and µB. By the construction of µT and µB only i and i + 1 can be the singletons (see

Figure 12).

. . . i i+ 1 i′ (i+ 1)′ . . .
P̄

. . . (i+ 1)′ i′ (i+ 1) i . . .

. . . i

i′

i+ 1

(i+ 1)′
i (i+ 1) . . . µBµS

Figure 12: The two singleton structure with both i and i+ 1 as the singleton agents.

Renaming the agents in Proposition 2, as 1 = i, 2 = i+ 1, 3 = i′, 4 = (i+ 1)′ and by a similar

argument to the situation where i single, we have δP̄ (µS , µB) equals the Borda measure.

Step 3. (Showing that δP̄ (µB, µ) equals the Borda measure.) By construction of P̄ we can consider

any problem ¯̄P where [µB − µ − µI ] are on a line, and the intervals of µB and µ are unchanged,

i.e., [µB, µ]R̄i = [µB, µ] ¯̄Ri
for all i ∈ N̄ . By Remark 1, the distance is unchanged, therefore by

betweenness, and Theorem 1, δP̄ (µB, µ) also equals the Borda measure.

All in all, putting together the above three steps and Equation 4, completes the proof. �

5 Conclusion

Different mechanisms exhibit various desirable (or undesirable) features. In case a social planner

decides to transform the design of a system by changing the mechanism employed, the question

is how much change this will mean for individuals. This paper proposes a way to quantify this

difference based on the outputs mechanisms produce, i.e., matchings. We interpret this difference

as the cost of transformation in general. We quantify the cost of transformation by introducing

normative conditions on functions. These conditions mostly address the effect of the transformation

on individuals, instead of merely looking at the number of disjoint matches. We introduced the

Borda measure and showed this to be the only one satisfying these conditions on the domain of

roommate markets.

The Borda measure is an attempt to answer “how much?”. Depending on the context and the

matchings compared, the measure is interpreted as a parameter that quantifies different things. In

the sequel we briefly contemplate about possible applications of this measure and interpretations of

it. We also dwell upon some open questions and directions for future research.
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5.1 Possible applications

As we have discussed, different mechanisms have different computational requirements and different

properties. Therefore, there is a trade-off between gains and losses caused by switching between

two mechanisms. In such situations a measure can be used as a tool which quantifies the trade-off

between these mechanisms, and hence gives the cost of transformation for changing one mechanism

to another. It can be considered as the cost of changing an efficient output with a stable one (such

an argument works for the school choice market). It can also be considered as the cost of sacrificing

some desirable feature, like strategy proofness, in order to get some other. Another application is

quantifying the cost of changing an unstable output to a stable one, i.e. cost of stability. One can

similarly utilize the measure as parameters of cost of efficiency, cost of strategy proofness, and cost

of fairness, etc.

Consider cases when a designer needs a refinement from a set of matchings, perhaps induced by

a solution concept for a market. Note that the Borda measure can be used to compare a restricted

set of matchings only, e.g., the core of matching markets which contains multiple stable matchings.

Borda measure can act as a tool to refine this set or make a choice among the stable matchings. In

marriage markets the interpretation is very exciting. The core of marriage markets forms a lattice

structure with men-optimal and women-optimal matchings as two extremes. It is not difficult to

see that, within the core, these two matchings are the farthest pair (due to the lattice structure).

The Borda measure can pick a stable matching which has the minimal total distance to all other

stable matchings, acting as a tool to find the “median stable matching” in the lattice. Furthermore,

given any choice among the set of stable matchings, one can immediately measure, how “close”

this outcome is to the men-optimal (or women-optimal) stable matchings. Namely, the measure

quantifies the “gender-bias”, or “favorism”. In case the outcome was of a deliberate policy, it can

be utilized as a measure of positive-discrimination towards a particular side of the market.

5.2 Directions for further research

Our framework assumes no indifference in preferences, i.e., there are no ties. The measure could

possibly be extended to address the cases where ties are allowed. In such domains, however, there

can be situations where there are two disjoint matchings and every agent is indifferent between

their partners in these matchings. In such situations, one approach is to assign zero value to the

distance of the matchings. This, however, violates the metric condition, in particular the identity
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of indiscernibles. So metric condition must be modified into a pseudometric11 condition for that

approach. This allows two disjoint matchings to also admit a value equal to zero.

The framework we developed for the Borda measure is applicable to one-to-one matching mar-

kets only. An immediate extension is to many-to-one situations where various interesting real life

applications exists, hospital interns to hospitals, students to schools etc. One additional complica-

tion in such markets is the introduction of quotas. An approach to utilize the the Borda measure

in these markets can be creating clones of each agent corresponding to their quotas, e.g., treating

a hospital with quota 10 would be considering 10 hospitals with the same preference instead. A

natural modification of the Borda measure then can be utilized in this setup considering best (and

worst) case scenarios.
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Kesten, O. and M. U. Ünver (2015). A theory of school-choice lotteries. Theoretical Eco-

nomics 10 (2), 543–595.

Klaus, B. (2017). Consistency and its converse for roommate markets. Games and Economic

Behavior 104, 43–58.

Klaus, B., F. Klijn, and M. Walzl (2010). Stochastic stability for roommate markets. Journal of

Economic Theory 145 (6), 2218–2240.

Kojima, F. and M. Manea (2010). Axioms for deferred acceptance. Econometrica 78 (2), 633–653.
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Appendix

A Proofs of Section 4.1

A.1 Proof of Lemma 2

Proof. Consider an extension P̄ of P and the extension µ̄ij and µ̄I of matchings µij and µI by

the set of agents N ′ \ N , respectively. By Remark 2, δP (µij , µI) = δP̄ (µ̄ij , µ̄I). Therefore, with

abuse of notation we write P , µij and µI instead of P̄ , µ̄ij and µ̄I , respectively. Also, consider an

extension P̄ ′ of P ′ and the extension µ̄i
′j′ and µ̄I

′
of matchings µi

′j′ and µI
′

by the set of agents

N \N ′, respectively. By Remark 2, δP (µi
′j′ , µI

′
) = δP̄ (µ̄i

′j′ , µ̄I
′
). Therefore, with abuse of notation

we write P ′, µi
′j′ and µI

′
instead of P̄ ′, µ̄i

′j′ and µ̄I
′
, respectively. Note that now both P and P ′

(as well as the matchings) are defined on the same set of agents N̄ = N ′ ∪N . We consider two case

either x = 1 or x > 1.

Case 1. x = 1: That is no agent is nested between j and i in µij and no agent is nested

between j′ and i′ in µi
′j′ . Consider permutation π = (ii′)(jj′). Applying this permutation on P ,

and using anonymity condition yields δP (µij , µI) = δPπ((µij)π, (µI)π). Since by this permutation,

(µij)π = µi
′j′ and (µI)π = µI

′
, then δPπ((µij)π, (µI)π) = δPπ(µi

′j′ , µI
′
). As both problems are

defined on the same set of agents monotonicity implies δPπ(µi
′j′ , µI

′
) = δP ′(µ

i′j′ , µI
′
). Therefore,

δP (µij , µI) = δP ′(µ
i′j′ , µI

′
).

Case 2. x>1: Let the set of agents nested between j and i in Ri be Z = {z1, . . . , zx−1}, and

the agents nested between j′ and i′ in R′i′ be Z ′ = {z′1, . . . , z′x−1}. We consider two situation either

Z = Z ′ or Z 6= Z ′.

I. Z = Z ′. Consider permutation π = (ii′)(jj′). Applying this permutation on P , and us-

ing anonymity condition yields δP (µij , µI) = δPπ((µij)π, (µI)π). Since by this permuta-

tion, (µij)π = µi
′j′ and (µI)π = µI

′
, then δPπ((µij)π, (µI)π) = δPπ(µi

′j′ , µI
′
), and (since

Z = Z ′ and both problems are defined on the same set of agents) monotonicity implies

δPπ(µi
′j′ , µI

′
) = δP ′(µ

i′j′ , µI
′
). Therefore, δP (µij , µI) = δP ′(µ

i′j′ , µI
′
).

II. Z 6= Z ′. In this case we add the same set of irrelevant newcomers to both problems P and

P ′, and map the agents in Z and Z ′ to these newcomers so that the set of agents that are

nested between the two matchings in these two problems become the same, then part I implies

the result. Formally, let A = {a1, . . . , ax−1}, be a set of agents such that N̄ ∩ A = ∅. Next,

let P̂ and P̂ ′ be an extension of P and P ′ by the set of agents A, respectively. Also, let µ̂ij
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and µ̂I be the extension of µij and µI , and µ̂i
′j′ and µ̂I

′
be the extension of µi

′j′ and µI
′
,

respectively all by the same set of agents A. By Remark 2, δP (µij , µI) = δ
P̂

(µ̂ij , µ̂I) and

δP ′(µ
i′j′ , µI

′
) = δ

P̂ ′(µ̂
i′j′ , µ̂I

′
). With abuse of notation, we write P , µij and µI instead of P̂ ,

µ̂ij and µ̂I , and we write P ′, µi
′j′ and µI

′
instead of P̂ ′, µ̂i

′j′ and µ̂I
′
, respectively.

Consider permutation π = (ztat) for all t ∈ {1, . . . , x − 1}. Applying this permutation on P

causes the agents nested between j and i in Ri to become the set of agents A. Also, applying

permutation π′ = (z′tat) for all t ∈ {1, . . . , x − 1} on problem P ′ causes the agents nested

between j′ and i′ in R′i′ to become the set of agents A. In both problems anonymity results

the distance to be unchanged. Now as the set of agents nested between the two matchings in

P and P ′ are the identical, part I yields δP (µij , µI) = δP ′(µ
i′j′ , µI

′
).

�

A.2 Proof of Lemma 3

Proof. Consider an extension P̄ = (N ∪ {a, b}, R̄) of P and extensions µ̄ij , µ̄I ∈ M(N ∪ {a, b})
of µij , µI ∈ M(N), respectively, by the set of agents A = {a, b}. By Remark 2, δP (µij , µI) =

δP̄ (µ̄ij , µ̄I). Therefore, with abuse of notation we write P , µij and µI instead of P̄ , µ̄ij and µ̄I ,

respectively.

. . . i . . . j . . . a b
P

a b

j
i

i j
a a
b b

µij

µI

x-1 y-1

Figure 13: Problem P after adding the two newcomers a and b.

Consider any problem P 1 = (N1, R1), shown in Figure 14, with N1 = N and R1 such that

• rank(a,R1
i ) = 1 and [µij , µI ]Ri = [µij , µI ]R1

i
,

• rank(b, R1
j ) = 1 and [µij , µI ]Rj = [µij , µI ]R1

j
,

• rank(i, R1
a) = 1, rank(b, R1

a) = n+ 1, and rank(a,R1
a) = n+ 2,
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• rank(j, R1
b) = 1, rank(a,R1

b) = n+ 1, and rank(b, R1
b) = n+ 2.

By monotonicity we have

δP (µij , µI) = δP 1(µij , µI). (8)

Therefore it is sufficient to prove that δP 1(µij , µI) = αx1 + αy1 − α11.

Consider, in P 1, the matchings µ ∈ M(N1) with µ(i) = j, µ(a) = b and µ(t) = t for any other

agent t and µT ∈M(N1) with µT (i) = a, µT (j) = b and µT (t) = t for any other agent t.

. . . i . . . j . . . a b
P 1

a b

i ja b

j
i

i j
b a

µT

µ
µij µI

x-1 y-1

Figure 14: Problem P 1 = (N1, R1).

Claim. δP 1(µ, µI) = αx1 + αy1.

Consider a new problem P 2 shown in Figure 15. Problem P 2 is the permuted problem of P 1

with π = (aj). With this permutation the identity matching remains the same, hence in P 2 we

write µI instead of µπI .

. . . i . . . j . . . a b
P 2

j i b a

a

b

i

j

i j a b

(µT )π

µπ

µI

x-1 y-1

Figure 15: Problem P 2 after permuting problem P 1 in Figure 14 with π = (aj).

Using the anonymity condition the following equations holds,

δP 1(µT , µ) = δP 2((µT )π, µπ). (9)

Consider a new problem P 3 shown in Figure 16. Problem P 3 is almost identical to problem P 2

except that the position of the partners of each agent in (µT )π and µπ are swapped. By monotonicity
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condition for P 2 and P 3, δP 2((µT )π, µπ) = δP 3((µT )π, µπ). Plugging this into Equation 9 we have,

δP 1(µT , µ) = δP 3((µT )π, µπ). (10)

. . . i . . . j . . . a b
P 3

a b i j

j
b

i a

i j a b

µπ

(µT )π

µI

x-1 y-1

Figure 16: Problem P 3, after swapping the positions of µπ and (µT )π in problem P 2 in Figure 15.

Since µ is between µT and µI in problem P 1, and (µT )π is between µπ and µI in problem P 3,

betweenness yields

δP 1(µT , µI) = δP 1(µT , µ) + δP 1(µ, µI) and, (11)

δP 3(µπ, µI) = δP 3(µπ, (µT )π) + δP 3((µT )π, µI). (12)

Note that by permutation π, µπ = µT hence δP 3(µT , µI) = δP 3(µπ, µI). Considering this and the

monotonicity condition for problems P 1 and P 3, δP 1(µT , µI) = δP 3(µT , µI). Therefore the left hand

sides of Equations 11 and 12 are equal which yields

δP 1(µT , µ) + δP 1(µ, µI) = δP 3(µπ, (µT )π) + δP 3((µT )π, µI).

Combining this with Equation 10 results in δP 1(µ, µI) = δP 3((µT )π, µI). Finally, by Decomposi-

tion Lemma on P 3 and Lemma 2, δP 3((µT )π, µI) = αx1 +αy1. Hence δP 1(µ, µI) = αx1 +αy1, which

concludes the claim.

By Decomposition Lemma for matching µ in problem P 1 we have δP 1(µ, µI) = δP 1(µij , µI) +

δP 1(µab, µI). By the above claim δP 1(µ, µI) = αx1 + αy1 and by Lemma 2 δP 1(µab, µI) = α11. So,

δP 1(µij , µI) = αx1 + αy1 − α11. By Equation 8, δP (µij , µI) = αx1 + αy1 − α11. Finally, by Lemma

2, the right hand side of this equation is independent of the set of agents N ( N . Therefore, for all

N ( N , for all problems P ∈ P(N) and for all one-couple matchings µij with the interval length

(x, y),

δP (µij , µI) = αx1 + αy1 − α11.

�
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A.3 Proof of Lemma 4

Proof. To show this, we first consider problem P̄ = (N̄ , R̄) with N̄ = {1, 2, . . . , 2x} shown in

Figure 17. Let µ̄x,x+1 be the one-couple matching with interval length (x, x). Note that the

structure of matchings µ̄x, . . . , µ̄1 in problem P̄ is such that

• µ̄x(1) = 2x, µ̄x(2) = 2x− 1, so on and so forth,

• for all k ∈ {2, . . . , x}, and for all i ∈ N̄ , µ̄k−1(i) = µ̄k((i+ 2) mod (2x)), e.g., µ̄x−1(2x− 1) =

µ̄k(1) = 2x,

• for all k ∈ {1, . . . , x}, µ̄k and µ̄k−1 are adjacent.

1 2 3 . . . x x+1 . . . 2x− 1 2x
P̄...

...
...

...
...

...
...

...
...

2x 2x-1 2x-2 · · · x+1 x · · · 2 1

2x-2 2x-3 2x-4 · · · · · · · · · · · · 2x 2x-1

2x-4 2x-5 2x-6 · · · · · · · · · · · · 2x-2 2x-3
...

...
...

...
...

...
...

...
...

2 1 2x · · · · · · · · · · · · 4 3

1 2 3 · · · · · · · · · · · · 2x-1 2x
...

...
...

...
...

...
...

...
...

µ̄x

µ̄x,x+1

µ̄1

µ̄x−2

µ̄x−1

...

µ̄I = µ̄0

Figure 17: Problem P̄ = (N̄ , R̄).

Claim. δP̄ (µ̄x,x+1, µ̄I) = 2x.

Proof. To ease the notation in this problem we denote the identity matching by µ̄0. Note that

by construction of P̄ , for all t ∈ {0, . . . , x− 1}, we have µ̄t and µ̄t+1 are disjoint. By normalization,

for each µ̄t, µ̄t+1, there exists a problem P t ∈ P(N̄) such that δP t(µ̄
t, µ̄t+1) = |N̄ | and is minimal.

Note that for all t ∈ {0, . . . , x−1} and for all i ∈ N̄ , as µ̄t, µ̄t+1 have the minimal possible intervals,

we have [µ̄t, µ̄t+1]R̄i ⊆ [µ̄t, µ̄t+1]Rti . Therefore monotonicity implies that δP̄ (µ̄t, µ̄t+1) = |N̄ |. As

[µ̄x − µ̄x+1 − · · · − µ̄1 − µ̄0] are on a line then betweenness yields

δP̄ (µ̄x, µ̄0) =
x−1∑
t=0

δP̄ (µ̄t, µ̄t+1) = x|N̄ |. (13)

On the other hand, by Decomposition Lemma, the distance between µ̄x and µ̄0 can be decom-

posed as the sum of |N̄ |2 one-couple matching each with the same interval length (x, x). Hence

δP̄ (µ̄x, µ̄0) = |N̄ |
2 αxx. Together with Equation 13, αxx = 2x which completes the proof of the claim.
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Now consider the original problem P = (N,R) and the aforementioned problem P̄ = (N̄ , R̄).

Without loss of generality let N = {1, . . . , n} and N̄ = {1, . . . , 2x}. Based based on n and 2x three

cases are possible,

Case 1. n = 2x. By Lemma 3, the distance between any one-couple matching with interval

length (x, x), and the identity matching is the same and independent of the identity of agents in the

intervals. As µij and µ̄x,x+1 are defined on the same set of agents and same interval length (x, x),

they should have the same distance, hence δP (µij , µI) = δP̄ (µ̄x,x+1, µ̄I). As proven in the claim the

latter equals 2x. Therefore, δP (µij , µI) = 2x.

Case 2. n < 2x. Let P̂ , µ̂ij , µ̂I be an extension of P, µij , µI by the set of agents N̄ \ N as

irrelevant newcomers. By Remark 2 we have δP (µij , µI) = δ
P̂

(µ̂ij , µ̂I). Now as both P̂ and P̄ are

defined on the same set of agents, Case 1, yields δ
P̂

(µ̂ij , µ̂I) = δP̄ (µ̄x,x+1, µ̄I). The two equations

together imply δP (µij , µI) = δP̄ (µ̄x,x+1, µ̄I). As proven in the claim the latter equals 2x. Therefore,

δP (µij , µI) = 2x.

Case 3. n > 2x. Let P̂ , µ̂x,x+1, µ̂I be an extension of P̄ , µ̄x,x+1, µ̄I by the set of agents N \ N̄
as irrelevant newcomers. By Remark 2 we have δP̄ (µ̄x,x+1, µ̄I) = δ

P̂
(µ̂x,x+1, µ̂I). Now as both P̂

and P are defined on the same set of agents, Case 1, yields δ
P̂

(µ̂x,x+1, µ̂I) = δP (µij , µI). The two

equations together imply δP (µij , µI) = δP̄ (µ̄x,x+1, µ̄I). As proven in the claim the latter equals 2x.

Therefore, δP (µij , µI) = 2x. �

B Proofs of Section 4.2

B.1 Proof of Proposition 1

δP (µ1, µ2) = δP (µ2, µ3) = α21 + α11.

where P is the problem of Figure 4.

Proof. To prove this, first we show δP (µ1, µ2) = δP (µ2, µ3). To do this, consider permutation

π = (23). Applying this permutation on P results in problem P π shown on the right hand side of

Figure 18.
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1 2 3 4
P

1 1 4 4

2 2 2 3

4 3 3 1

3 4 1 2

µ1

µ2

µ3

1 2 3 4
P π

1 4 1 4

3 3 3 2

4 2 2 1

2 1 4 3

µ3 = (µ1)π

µ2 = (µ2)π

µ1 = (µ3)π

Figure 18: The original problem P of Proposition 1 (on the left) and the permuted problem P π (on

the right) after permuting with π = (23).

By the anonymity condition

δP (µ2, µ1) = δPπ((µ2)π, (µ1)π).

As under permutation π, (µ1)π = µ3 and (µ2)π = µ2 monotonicity condition results in

δPπ((µ2)π, (µ1)π) = δP (µ3, µ2).

The above two equations yield,

δP (µ2, µ1) = δP (µ3, µ2).

By betweenness of µ2 in problem P , δP (µ1, µ3) = δP (µ1, µ2) + δP (µ2, µ3), and using the above

equality

δP (µ1, µ2) = δP (µ2, µ3) =
δP (µ1, µ3)

2
. (14)

Hence, it is sufficient to show that δP (µ1, µ3) equals the Borda measure. To show this, let P̄ , µ̄1, µ̄2

and µ̄3 be an extension of problem P, µ1, µ2 and µ3, respectively, by the set of agents A =

{1′, 2′, 3′, 4′} (see Figure 19). By Remark 2, δP (µ1, µ2) = δP̄ (µ̄1, µ̄2) and δP (µ2, µ3) = δP̄ (µ̄2, µ̄3).

Hence, with abuse of notation we write P, µ1, µ2 and µ3 instead of P̄ , µ̄1, µ̄2 and µ̄3, respectively.

1 2 3 4 1′ 2′ 3′ 4′
P

1 1 4 4 1′ 2′ 3′ 4′

2 2 2 3

4 3 3 1

3 4 1 2

1′ 1′ 1′ 1′

2′ 2′ 2′ 2′

3′ 3′ 3′ 3′

4′ 4′ 4′ 4′

µ3

µ2
µ1

Figure 19: An extension of problem P in Figure 4 by the set of agents A = {1′, 2′, 3′, 4′}.
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To show that δP (µ1, µ3) equals the Borda measure, consider problem P̂ shown in Figure 20. In

this problem, [µ4 − µ1 − µ2 − µ3] are on a line hence,

δ
P̂

(µ4, µ3) = δ
P̂

(µ4, µ1) + δ
P̂

(µ1, µ2) + δ
P̂

(µ2, µ3). (15)

Via monotonicity condition δP (µ1, µ2) = δ
P̂

(µ1, µ2) and δP (µ2, µ3) = δ
P̂

(µ2, µ3). Plugging this into

Equation 14, δ
P̂

(µ1, µ2) = δ
P̂

(µ2, µ3). Therefore Equation 15 yields

δ
P̂

(µ1, µ2) = δ
P̂

(µ2, µ3) =
δ
P̂

(µ4, µ3)− δ
P̂

(µ4, µ1)

2
. (16)

Hence, it is sufficient to show that δ
P̂

(µ4, µ3) and δ
P̂

(µ4, µ1) both equal the Borda measure.

As in P̂ the identity matching is between µ4 and µ3, betweenness condition and Theorem 1

results that δ
P̂

(µ4, µ3) equals the Borda measure. The following claim shows, δ
P̂

(µ4, µ1) also equals

the Borda measure.

1 2 3 4 1′ 2′ 3′ 4′
P̂

1′ 2′ 3′ 4′

1 1 4 4

2 2 2 3

4 3 3 1 1 2 3 4

3 4 1 2 1′ 2′ 3′ 4′
...

...
...

...
...

...
...

...
µ3

µ4

µ2
µ1

Figure 20: Problem P̂ .

Claim. δ
P̂

(µ4, µ1) = 2(α21 + α11).

Proof. Consider the problem P̃ shown in Figure 21, by monotonicity condition δ
P̂

(µ4, µ1) = δ
P̃

(µ4, µ1).

To show that δ
P̃

(µ4, µ1) = 2(α21 + α11) first we show that δ
P̃

(µ4, µ1) = δ
P̃

(µ1, µ5). In order to do

this, applying permutation π = (12)(34), on P̃ results in problem P̃ π which is shown in Figure 22.

1 2 3 4 1′ 2′ 3′ 4′
P̃...

...
...

...
...

...
...

...
1′ 2′ 3′ 4′ 1 2 3 4

1 1 4 4 1′ 2′ 3′ 4′

2 2 3 3 2 1 4 3

2′ 1′ 4′ 3′
...

...
...

...
...

...
...

...

µ4

µ5

µ1

Figure 21: Problem P̃ .
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1 2 3 4 1′ 2′ 3′ 4′
P̃ π...

...
...

...
...

...
...

...
2′ 1′ 4′ 3′ 2 1 4 3

2 2 3 3 1′ 2′ 3′ 4′

1 1 4 4 1 2 3 4

1′ 2′ 3′ 4′
...

...
...

...
...

...
...

...

(µ4)π = µ5

(µ5)π = µ4

(µ1)π = µ1

Figure 22: Problem P̃ π after permuting P̃ in Figure 23 with π = (12)(34).

By the anonymity condition δ
P̃

(µ1, µ4) = δ
P̃π

((µ1)π, (µ4)π). Since (µ1)π = µ1 and (µ4)π =

µ5, by monotonicity condition we have δ
P̃

(µ1, µ5) = δ
P̃π

((µ1)π, (µ4)π), which shows δ
P̃

(µ1, µ4) =

δ
P̃

(µ1, µ5). Considering this and as in problem P̃ matching µ1 is between µ4 and µ5, we have

δ
P̃

(µ4, µ1) = δ
P̃

(µ1, µ5) =
δ
P̃

(µ4, µ5)

2
.

On the other hand, betweenness of µI in problem P̃ yields δ
P̃

(µ4, µ5) = δ
P̃

(µ4, µI) + δ
P̃

(µI , µ5).

Using Decomposition Lemma and lemma 3, δ
P̃

(µ4, µ5) = 4(α21 + α11). Therefore, δ
P̃

(µ4, µ1) =

δ
P̃

(µ1, µ5) = 2(α21 + α11). Now, monotonicity condition for problems P̂ and P̃ yields δ
P̂

(µ4, µ1) =

δ
P̃

(µ4, µ1), which completes the proof of the Claim. �

Therefore, with respect to Equation 16, δ
P̂

(µ1, µ2) = δ
P̂

(µ2, µ3) = α21 + α11. As monotonicity

condition results in δ
P̂

(µ1, µ2) = δP (µ1, µ2) and δ
P̂

(µ2, µ3) = δP (µ2, µ3), this complete the proof of

Proposition 2. �

B.2 Proof of Proposition 2

δP (µ1, µ2) = δP (µ2, µ3) = α22 + α11.

where P is the problem of Figure 5.

Proof. To prove this, first consider problem P̄ shown on the right hand side of Figure 23. The

problem is almost identical to the one in Figure 5 (the problem shown on the left). The only

difference is that, the position of each agent’s partner is swapped in µ2 and µ3. We claim that

δP̄ (µ1, µ3) = δP̄ (µ3, µ2) = α22 + α11.
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1 2 3 4
P

4 3 2 1

1 2 1 2

3 4 3 4

2 1 4 3

µ1

µ2

µ3

1 2 3 4
P̄

4 3 2 1

1 2 4 3

2 1 3 4

3 4 1 2

µ1

µ3

µ2

Figure 23: The original problem P of Proposition 2 (on the left) and problem P̄ (on the right) after

swapping the positions of µ2 and µ3 in problem P .

Claim. δP̄ (µ1, µ3) = δP̄ (µ3, µ2) = α22 + α11.

Proof of claim. To prove the claim, first we show that δP̄ (µ1, µ3) = δP̄ (µ3, µ2). To do this, consider

permutation π = (1324), applying this permutation on P̄ results in problem P̄ π, which is shown in

Figure 24. By the anonymity condition

δP̄ (µ1, µ3) = δP̄π((µ1)π, (µ3)π).

1 2 3 4
P̄ π

3 4 1 2

2 1 3 4

1 2 4 3

4 3 2 1

µ2 = (µ1)π

µ3 = (µ3)π

µ1 = (µ2)π

Figure 24: Permuted problem P̄ π after permuting problem P̄ of Figure 23 with π = (1324).

Note that (µ1)π = µ2, (µ2)π = µ1 and (µ3)π = µ3. As the intervals between (µ1)π and (µ3)π in

problem P̄ π and the intervals between µ2 and µ3 in problem P̄ are the same, by monotonicity

δP̄π((µ1)π, (µ3)π) = δP̄ (µ3, µ2).

The above two equations yields

δP̄ (µ1, µ3) = δP̄ (µ3, µ2).

Now, as in problem P̄ the identity matching is between µ1 and µ2, by Decomposition Lemma,

Lemma 3 and betweenness condition, δP̄ (µ1, µ2) = 2(α22+α11). As in problem P̄ , µ3 is also between
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µ1 and µ2 we have

2(α22 + α11) = δP̄ (µ1, µ2)

= δP̄ (µ1, µ3) + δP̄ (µ3, µ2)

= 2δP̄ (µ1, µ3)

⇒ δP̄ (µ1, µ3) = δP̄ (µ3, µ2) = α22 + α11

which completes the proof of the claim. �

Now going back to problem P of Figure 5, by betweenness of µI in P , and Decomposition

Lemma and Lemma 3, δP (µ1, µ3) = 2(α22 + α11). Monotonicity condition for problem P and P̄

results δP (µ2, µ3) = δP̄ (µ2, µ3) = α22 + α11. Now, since µ2 is between µ1 and µ3 in problem P ,

betweenness yields δP (µ1, µ3) = δP (µ1, µ2) + δP (µ2, µ3). Therefore, δP (µ1, µ2) = α22 + α11. �
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