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We consider two-player zero-sum games with infinite action spaces and bounded payoff 
functions. The players’ strategies are finitely additive probability measures, called charges. 
Since a strategy profile does not always induce a unique expected payoff, we distinguish 
two extreme attitudes of players. A player is viewed as pessimistic if he always evaluates 
the range of possible expected payoffs by the worst one, and a player is viewed as 
optimistic if he always evaluates it by the best one. This approach results in a definition 
of a pessimistic and an optimistic guarantee level for each player. We provide an extensive 
analysis of the relation between these guarantee levels, and connect them to the classical 
guarantee levels, and to other known techniques to define expected payoffs, based on 
computation of double integrals. In addition, we also examine existence of optimal 
strategies with respect to these guarantee levels.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The theory of zero-sum games starts with von Neumann (1928), who showed that zero-sum games with finite action 
spaces admit a value. Games with infinite action spaces are much more complex, and Wald (1945) demonstrated that such 
games do not always have a value.

When the action spaces are infinite, the definition of mixed strategies is not trivial. In game theory the usual approach 
is to define mixed strategies as countably additive probabilities on the actions. A notable, but less frequent alternative is to 
define mixed strategies as finitely additive probabilities, so-called charges. Since finite additivity is a weaker requirement 
than countable additivity, the latter approach allows for a richer class of mixed strategies. Charges have regularly been 
argued for from a conceptual point of view, but they also provide technical advantages.

In this paper, we are interested in the best expected payoff that a charge can guarantee for a player. Since the expected 
payoff can be defined in various manners, we obtain several guarantee levels. Our goal is to examine these guarantee levels 
in detail, and to find conditions under which the value of a game exists.

Our setup We study general two-player zero-sum games with infinite, possibly uncountable, action spaces and bounded 
payoff functions. The strategy space of a player is the set of probability charges defined on all subsets of that player’s action 
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space. The game is now played as follows. Each player simultaneously selects a probability charge on his action space. These 
choices are then recorded in a strategy profile. An extension of such a profile is a probability charge that is defined on all 
subsets of the set of action profiles that coincides on product sets (rectangles) with the product of the strategies.

Given a strategy profile of probability charges, there may be many such extensions. And any extension induces an ex-
pected payoff to each player, so that the expected payoff may not be uniquely defined. Since the set of expected payoffs 
we can thus construct is not necessarily singleton, we study several ways—some of them novel, some of them introduced 
before—to define the value of the resulting game, or better, class of possible games.

The first two—novel—notions relate to two extreme attitudes of players. In our framework, a player is viewed as pes-
simistic if from the range of possible expected payoffs he always selects the worst one. Equivalently, he always selects an 
extension that results in the worst possible payoff.1 In contrast, a player is viewed as optimistic if from the range of possi-
ble expected payoffs he always selects the best one. This approach results in a definition of a pessimistic and an optimistic 
guarantee level for each player.

The second pair of notions relate to the two possible ways to compute double integrals with respect to the chosen 
probability charges. Each double integral assigns an expected payoff to both players. Note that for these notions the choice 
of extension depends only on the strategy profile, not on the payoff function of the zero-sum game.

Our contribution Starting with a given zero-sum game, endowing each player with one of the above approaches to compute 
expected payoffs yields a new game. We argue that, given a zero-sum game, the resulting games may all be different. In 
each such a resulting game, a player can compute the maximum payoff he can guarantee for himself, which leads to a 
guarantee level for that player. We provide an extensive analysis of the relation between these guarantee levels. In addition, 
we also examine existence of optimal strategies with respect to these guarantee levels. Our main findings are:

[1] The pessimistic guarantee level for player 1, the optimistic guarantee level for player 2, and the guarantee levels for both 
players in which we first integrate with respect to the strategy of the 2nd player and then with respect to the 1st player, all 
coincide. Similarly, the optimistic guarantee level for player 1, the pessimistic guarantee level for player 2 and the guarantee 
levels arising from the reverse order of integration all coincide as well (cf. Theorem 4.1).

[2] Moreover, the guarantee levels defined above can be calculated by computing so-called finitistic guarantee levels, asso-
ciated with finite approximations of the resulting games (cf. Theorem 4.1).

[3] Thus, when one player is optimistic, and the other is pessimistic, for any zero-sum game we start with, the resulting 
(zero-sum) game has a value. The same holds when both players use the same order of integration for the approach based 
on double integrals: the resulting game is still zero-sum, and the value exists (cf. Corollary 6.1 and 6.2).

This is a novel result in the sense that we establish an existence result for a class of payoff functions that is outside the 
scope of earlier papers such as Capraro and Scarsini (2013), Harris et al. (2005), Marinacci (1997) and Reny (1999).

A counterexample illustrates that it is not a general fact that the game has a value when the resulting game is zero-sum. 
We construct a zero-sum game (a game in which the players agree on how to compute expected payoffs) in which the 
guarantee levels for the players do not coincide. In other words, the resulting zero-sum game does not have a value (cf. 
Example 6.1).

[4] We prove that players always have optimal strategies with respect to the optimistic guarantee level (cf. Theorem 5.1). We 
also show that a pessimistic optimal strategy of a player, when it exists,2 is also optimal for that player when he computes 
payoffs by a double integral where the integration is first over strategies of his opponent (cf. Proposition 5.3).

[5] For countable action spaces we show that the classical guarantee level for a player, when players only play countably 
additive probability distributions, coincides with the pessimistic guarantee level of that player (cf. Theorem 4.3).

1.1. Related literature

Probabilities There are different ways of defining probabilities. Countable additivity is a usual assumption of probability. 
However, from a conceptual point of view, the weaker assumption of finite additivity was also argued for, see de Finetti
(1975), Savage (1972), and Dubins et al. (2014). Since finite additivity is the weaker assumption, it is also more basic. 
It allows for a richer class of probabilities, and facilitates constructions such as a uniform probability distribution over 
the natural numbers (see Schirokauer and Kadane, 2007). Moreover, translation invariant charges can be defined on all 
subsets of the real line, and translation and rotation invariant charges can be defined on all subsets of the plane. A notable 
advantage of finitely additive measures, more briefly called charges, is that they avoid the problem of measure (cf. Aliprantis 
and Border, 2005). Finally, in decision theory and game theory, only approximate solutions may be achieved with countably 
additive strategies, while exact solutions can be achieved when using charges (e.g. Sudderth, 2016). For a more extensive 
summary of the history of finite additivity and its relation to countable additivity, see Bingham (2010).

1 Note that this type of selection of the extension crucially depends on the payoffs of the game, not merely on the strategy profile that is chosen.
2 Existence of optimal strategies for pessimistic players is an open question.
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Decision theory and game theory In decision theory, charges have been used in various models, notably in de Finetti (1975), 
Savage (1972) and Dubins et al. (2014). Charges also gained recognition in game theory, such as in Marinacci (1997), Capraro 
and Scarsini (2013), Harris et al. (2005), and Maitra and Sudderth (1993, 1998), but to a lesser extent. One possible reason 
is that in a game setting it can occur that multiple players choose actions simultaneously. If each of them uses a probability 
charge for the choice of his action, then on the space of action profiles, as pointed out above, those choices induce a unique 
charge only on the field generated by the cylinder sets. This field is fairly restricted, and consequently, there is only a limited 
class of payoff functions for which the expected payoff is uniquely defined. For instance, Marinacci (1997) and Harris et al.
(2005) consider only payoff functions that can be uniformly approximated by simple functions on this field.

In our setup we study a wider range of utility functions, however we consider only games that are zero-sum. As men-
tioned before, Marinacci (1997) and Harris et al. (2005) consider a restricted class of utility functions where the extension is 
unique. In this setting they prove the existence of Nash-equilibrium in nonzero-sum games. Capraro and Scarsini (2013) take 
specific types of extensions, specific classes of payoff functions and also prove existence of Nash-equilibrium in nonzero-sum 
games. These results indicate that generalization of our results to nonzero-sum games may require a considerable restriction 
of the set of utility functions.

Relating to our first pair of notions, a well-known definition of pessimism by Wald (1950) is when the decision maker 
assumes that whichever act he might choose, the worst state will be realized. In our framework, the pessimistic player 
assumes that from a range of possible expected payoffs the worst one will be realized.

Relating to our second pair of notions, taking a fixed order of integration as the expected payoff has been analyzed before 
by Heath and Sudderth (1972), and Maitra and Sudderth (1993, 1998). Yanovskaya (1970) and Kindler (1983) consider the 
double integral as an expected payoff only when different orders of integration yield the same expected payoff. For all other 
strategy profiles, i.e. when the order of integration does make a difference, they set an arbitrary number as an expected 
payoff. Schervish and Seidenfeld (1996) take convex combinations of the two orders of integration in zero-sum games, and 
take those as possible expected payoffs. Capraro and Scarsini (2013) also look at convex combinations of different orders of 
integration, but they consider countable n-player nonzero-sum games defined through an algebraic operator. We compare 
their approach to ours through Example 3.4.

As mentioned earlier, when the players agree on how to compute expected payoffs, the resulting game is zero-sum. 
However, this is not true in general when players disagree on the computation. This is comparable to the model of Aumann
(1974), where the players might assign different subjective probabilities to the same event, and consequently, the resulting 
game might not be zero-sum anymore.

Ambiguity Our pessimistic approach is somewhat related to ambiguity. For example, the maximin expected utility model 
proposed by Gilboa and Schmeidler (1989) also computes the lowest expected utility over a set of possible probability 
distributions.

When using charges as strategies in game theory, one of the intriguing questions is how to define an integral over the 
product of action spaces. A problem of integration also arises when modeling ambiguity through non-additive probabilities, 
so-called capacities. Schmeidler (1989) made use of the Choquet integral, and Lehrer (2009) defined a concave integral, 
which can be interpreted as uncertainty aversion.

Structure of the paper Our paper is structured as follows. In Section 2 we discuss some preliminaries. In Section 3 we 
introduce the zero-sum games we consider and the different ways of calculating expected payoffs. Section 4 contains our 
solution concepts and main results. Section 5 deals with optimal strategies, and Section 6 is about games where the players 
consider the same extension.

2. Preliminaries

In this section we provide a brief summary on probability charges. For further reading, we refer to Rao and Rao (1983)
and Dunford and Schwartz (1964).

Let X be an infinite set. By P(X) denote the set of all subsets of X . The set of all finite subsets of X is denoted by F(X). 
A probability charge on X is a function μ : P(X) → [0, 1] such that μ(X) = 1 and for all disjoint sets E, F ∈ P(X) it holds 
that μ(E ∪ F ) = μ(E) +μ(F ).3 We denote the set of all probability charges on X by C(X), and the set of countably additive 
probability measures on X by �(X). Thus, �(X) ⊆ C(X). For x ∈ X , δ(x) denotes the Dirac measure on x. So, for every set 
B ⊂ X ,

δ(x)(B) =
{

1 if x ∈ B,

0 if x /∈ B.

Note that δ(x) ∈ �(X) for every x ∈ X .

3 A probability charge is thus finitely additive, but not necessarily countably additive.
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A function s : X → R is called a simple function if there are c1, . . . , cm ∈ R and a partition {B1, . . . , Bm} of X such that 
s = ∑m

i=1 ciIBi , where IBi is the characteristic function of the set Bi . With respect to a probability charge μ on X , the 
integral of s is defined by 

∫
X sdμ = ∑m

i=1 ci · μ(Bi).
Let μ be a probability charge on X , and let f : X → R be a bounded function. The integral 

∫
X f dμ is defined as the 

supremum of all real numbers 
∫

X sdμ, where s is a simple function and s ≤ f . Note that, since f is bounded, the integral 
is finite.

When X is countably infinite, we say that μ ∈ C(X) is a pure probability charge if μ({x}) = 0 for every x ∈ X .4 It follows 
from Theorem C.3 that pure charges exist.5 We denote the set of all pure probability charges on X by Q(X). Since pure 
charges are not countably additive, this shows that in this case �(X) is a strict subset of C(X).

3. Games with charges

In this section, we define the model of games with charges.
We focus on two-player zero-sum games. For i = 1, 2, the set Ai is the set of actions of player i. The sets Ai are not 

empty, and may be, but need not be, infinite. Let u : A1 × A2 →R be a bounded payoff function. The zero-sum game g(u) is 
a game that is played as follows. Player 1 chooses an action m ∈ A1 and independently player 2 chooses an action n ∈ A2. 
Subsequently, player 1 receives a payoff u(m, n) from player 2. Then the game ends.

A special class of zero-sum games are binary games. Consider a set W ⊆ A1 × A2. The set W is called the winning set of 
player 1. In the binary game defined by W , the payoff function u : A1 × A2 → {0, 1} is the characteristic function of W . That 
is, u(m, n) = 1 when (m, n) ∈ W , and u(m, n) = 0 otherwise.

Example 3.1. The following binary game is a version of the Wald game (Wald, 1945). The action sets are A1 = A2 = N. The 
payoff for m ∈ A1 and n ∈ A2 is u(m, n) = 1 if m ≥ n and u(m, n) = 0 if m < n. The payoffs are represented in the following 
matrix, where player 1 is the row player and player 2 is the column player.

u 1 2 3 . . .

1 1 0 0 . . .

2 1 1 0 . . .

3 1 1 1 . . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .

3.1. Basic definitions

Consider a zero-sum game g(u) with payoff function u. A strategy for a player i is a probability charge μi ∈ C(Ai). A 
pair of strategies, one for each player, is called a strategy profile.

Consider a strategy profile (μ1, μ2). In order to define the expected payoff for the players when they use this profile, 
we need a bit of notation.

A set E ⊆ A1 × A2 is called a rectangle if there are sets E1 ⊆ A1 and E2 ⊆ A2 with E = E1 × E2. A probability charge μ
on P(A1 × A2) is called an extension of (μ1, μ2) if for all rectangles E = E1 × E2 it holds that μ(E) = μ1(E1) · μ2(E2). The 
set of extensions of (μ1, μ2) is denoted by < μ1, μ2 >.6 All extensions of a given pair (μ1, μ2) coincide on the algebra 
generated by the collection of rectangles. They may differ on other sets E ⊆ A1 × A2. Consequently, the expected payoff for 
the players will generally depend on the specific extension we consider. In this paper we closely study several specific ways 
to extend such a strategy profile (μ1, μ2).

Formally, for a given extension μ of profile (μ1, μ2), the expected payoff U (μ) is defined by

U (μ) =
∫

A1×A2

u(m,n)dμ.

Thus, given a zero-sum game g(u), this construction gives rise to many ways to define a game with charges. Let each player 
i be endowed with a function τi : C(A1) × C(A2) → C(A1 × A2). If for every profile (μ1, μ2) we have that τi(μ1, μ2) is an 
extension of (μ1, μ2), such a function is called an extension function.

For given extension functions τ1, τ2, the expected payoffs U τ1 (μ1, μ2) and U τ2 (μ1, μ2) of profile (μ1, μ2) are defined 
by

U τ1(μ1,μ2) = U (τ1(μ1,μ2)) and U τ2(μ1,μ2) = U (τ2(μ1,μ2)).

4 The definition of a pure charge can be generalized to sets that are uncountably infinite. However, in the general case the definition is more involved.
5 In Theorem C.3 we can take for instance F to be the field of all finite subsets of X and their complements.
6 Using Axiom of Choice, it can be shown that < μ1, μ2 > is not empty. For more details, see Appendix C.
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Thus, in this paper we record payments for player 2 instead of rewards. This way we constructed a new two-player game 
G(τ1, τ2) = (U τ1 , −U τ2 ). When τ1 = τ2, the resulting game is again a zero-sum game. But in general this need not be the 
case.

Example 3.2. Let W be the winning set of a binary game. Consider a strategy profile (μ1, μ2) in this game. Then, for any 
extension function τ1, the payoff for player 1 is exactly

U τ1(μ1,μ2) =
∫

A1×A2

u(m,n)dτ1(μ1,μ2) = τ1(μ1,μ2)(W ).

The payment that player 2 expects to make is U τ2 (μ1, μ2) = τ2(μ1, μ2)(W ). Hence, his utility is −U τ2 (μ1, μ2). 


We will hardly ever explicitly specify the extension function in question, but simply explain the specific way extensions 
are constructed, and then leave it implicit how the game with charges is precisely defined.

3.2. Optimistic and pessimistic players

In this subsection we introduce two extreme cases of behavior, that depend on the attitude of the players. Our approach 
is based on the following Lemma.

Lemma 3.1. Let μ1 ∈ C(A1), μ2 ∈ C(A2) and the bounded utility function u be given. There exist extensions μ∗, μ∗ ∈< μ1, μ2 >

with

U (μ∗) ≥ U (κ) and U (μ∗) ≤ U (κ) for all κ ∈< μ1,μ2 > .

Proof. We construct μ∗ . The construction of μ∗ is similar. For every k ∈N, let νk denote an extension of (μ1, μ2) such that 
U (νk) ≥ sup

κ∈<μ1,μ2>
U (κ) − 1

k . Take any pure probability charge τ on N. Define the probability charge μ∗ by

μ∗(E) =
∫

k∈N
νk(E)dτ for every E ∈ P(A1 × A2).

Take a K ∈N and κ ∈< μ1, μ2 >. We have

U (μ∗) =
∫

A1×A2

u(m,n)dμ∗ =
∫

k∈N

∫
A1×A2

u(m,n)dνk dτ =
∫

k∈N
U (νk)dτ ≥ U (κ) − 1

K ,

where the second equality comes from Lemma A.2, and the inequality is due to the fact that τ ({K , K + 1, . . .}) = 1. Since K
was arbitrary, U (μ∗) ≥ U (κ). �

Player 1 is optimistic if, given profile (μ1, μ2), he selects an extension μ∗ with

U (μ∗) ≥ U (κ) for all κ ∈< μ1,μ2 > .

Due to the previous Lemma, such a selection is possible. The optimistic utility for player 1 is then defined by U o(μ1, μ2) =
U (μ∗).

In the same way, player 1 is pessimistic, if he selects an extension μ∗ with

U (μ∗) ≤ U (κ) for all κ ∈< μ1,μ2 > .

The pessimistic utility of player 1 is then defined by U p(μ1, μ2) = U (μ∗).
Thus, an optimistic player 1 selects an extension μ∗ of (μ1, μ2) that, amongst all possible extensions, offers him the 

best expected payoff. A pessimistic player 1 selects an extension μ∗ that offers him the worst expected payoff. However, 
since player 2 has to pay the amounts specified by the payoff function, an optimistic player 2 selects an extension μ∗ that 
offers player 1 the worst expected payoff, and a pessimistic player 2 selects an extension μ∗ of (μ1, μ2) that, amongst all 
possible extensions, offers player 1 the best expected payoff.7

7 Given a profile (μ1, μ2), the optimistic payoff of player 1 is equal to the infimum of the (uniquely defined) expected payoffs from step functions, as 
defined in Harris et al. (2005), that are larger than or equal to the payoff function for every profile of pure actions. This feature of optimistic expected 
payoff was pointed out to us by Ehud Lehrer. Of course a similar remark holds for pessimistic payoffs. Compare Lemma 1 of Lehrer (2009).
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3.3. Double integrals

As already mentioned in the Introduction, a stream of literature uses expected payoffs defined via double integrals as 
their starting point. This type of extension of a profile (μ1, μ2) is defined as follows. For every set E ∈P(N ×N), define

μ(E) =
∫

m∈A1

∫
n∈A2

IE(m,n)dμ2 dμ1,
8

where IE denotes the characteristic function of the set E . We define U 21(μ1, μ2) = U (μ), where 21 refers to integrating 
first with respect to μ2 and then with respect to μ1. We have the following basic observation.

Lemma 3.2. It holds that

U 21(μ1,μ2) =
∫

m∈A1

∫
n∈A2

u(m,n)dμ2 dμ1.

Proof. Let (μ1, μ2) be a strategy profile. Let μ be the extension of (μ1, μ2) as defined above. Take X = A1 × A2, and let S
be the set of all simple functions on X . Define for any bounded function u on X

φ(u) =
∫

(m,n)∈X

u(m,n)dμ.

Define ψ(u) by

ψ(u) =
∫

m∈A1

∫
n∈A2

u(m,n)dμ2 dμ1.

It is straightforward to check that Lemma A.1 applies. This completes the proof. �
We can also reverse the order of integration, the resulting expected utility function is denoted by U 12(μ1, μ2).

Remark 3.1. Fix probability charges μ1 ∈ C(A1), μ2 ∈ C(A2) and a bounded payoff function u. The Fubini-equality is∫
m∈A1

∫
n∈A2

u(m,n)dμ2 dμ1 =
∫

n∈A2

∫
m∈A1

u(m,n)dμ1 dμ2 =
∫

A1×A2

u(m,n)dτ

for any extension τ ∈< μ1, μ2 >.

Fubini’s theorem gives conditions under which the Fubini-equality holds. However, the following example shows that the 
Fubini-equality does not hold in general.

Example 3.3. Consider the Wald game again from Example 3.1. Take pure probability charges μ1 ∈ Q(A1) and μ2 ∈ Q(A2). 
In this case the Fubini-equality does not hold, since

U 21(μ1,μ2) =
∫

m∈A1

0 dμ1 = 0 whereas U 12(μ1,μ2) =
∫

n∈A2

1 dμ2 = 1. 


3.4. All games are different

Thus, a single zero-sum game may generate different expected utility functions. In this section we show that different 
choices for extensions can result in different games with charges.

In general, of course, games induced by different extension functions might coincide, even though the extension functions 
are different. An extreme case are constant-payoff games, where all possible extension functions generate the same game. 
However, we have the following observation.

Proposition 3.3. Let (μ1, μ2) be a strategy profile. Let κ and μ be two different extensions of this profile. Then there is a zero-sum 
game g(u) with U (κ) �= U (μ).

8 In this case we first integrate the function IE (m, n) with respect to μ2. This integral will depend only on m. Then we integrate with respect to μ1.
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Proof. Since κ �= μ, there is a set W with κ(W ) �= μ(W ). Let g(u) be the binary game with winning set W . Then U (κ) =
κ(W ) �= μ(W ) = U (μ). �

For the specific cases of U o , U p , U 21 and U 12 , we present a zero-sum game g(u) for which all four extensions 
are different. More precisely, we present a binary game g(u) and strategies μ1 ∈ C(N), μ2 ∈ C(N), and κ1 ∈ C(N) with 
U p(μ1, μ2) = 0, U o(μ1, μ2) = 1, U 21(μ1, μ2) = U 12(μ1, μ2) = 1

2 , U 21(κ1, μ2) = 1 and U 12(κ1, μ2) = 0. Thus, U o , U p , U 21

and U 12 define four different games, even though they are derived from the same zero-sum game.

Example 3.4. Consider the following binary game. Let A1 = A2 =N. When player 1 plays m and player 2 plays n, the payoff 
u(m, n) is defined by

u(m,n) =

⎧⎪⎨
⎪⎩

1 if m ≥ n and m is odd

1 if m ≤ n and m is even

0 otherwise.

The game can be represented as follows.

u 1 2 3 4 5 6 . . .

1 1 0 0 0 0 0 . . .

2 0 1 1 1 1 1 . . .

3 1 1 1 0 0 0 . . .

4 0 0 0 1 1 1 . . .

5 1 1 1 1 1 0 . . .

6 0 0 0 0 0 1 . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

Write E = {m ∈N : m is even} and O  = {m ∈N : m is odd}. Take a pure probability charge μ1 for player 1 such that

μ1(E) = μ1(O ) = 1

2
.9

Let μ2 be an arbitrary pure probability charge for player 2. Then for the double integrals we have

U 12(μ1,μ2) =
∫

n∈N

∫
m∈O

u(m,n)dμ1 dμ2 +
∫

n∈N

∫
m∈E

u(m,n)dμ1 dμ2

=
∫

n∈N

∫
m∈O
m≥n

1 dμ1 dμ2 +
∫

n∈N

∫
m∈E
m>n

0 dμ1 dμ2

=
∫

n∈N

1

2
dμ2 +

∫
n∈N

0 dμ2 = 1

2
+ 0 = 1

2
.

Similarly,

U 21(μ1,μ2) =
∫

m∈O

∫
n∈N

u(m,n)dμ2 dμ1 +
∫

m∈E

∫
n∈N

u(m,n)dμ2 dμ1

=
∫

m∈O

0 dμ1 +
∫

m∈E

1 dμ1 = 0 + 1

2
= 1

2
.

We verify that U p(μ1, μ2) = 0. Write

K = {(m,n) ∈N×N | m is even and m ≤ n}.
Define, as in Appendix C,

α(μ1,μ2)(K ) = sup

{
k∑

i=1

μ1(Ci) · μ2(Di) | Ci × Di are mutually disjoint, contained in K

}
.

9 By Theorem C.3, we can in fact construct such a pure charge.
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We show that α(μ1, μ2)(K ) = 0. Let A × B be a non-empty rectangle with A × B ⊆ K . We show that μ1(A) · μ2(B) = 0. 
Suppose that A is infinite. Take any n ∈ B . Since A is infinite, there is m ∈ A with m > n. Then m > n and (m, n) ∈ K , 
which contradicts the definition of K . So, A is finite. Hence, since μ1 is a pure charge, μ1(A) · μ2(B) = 0. It follows that 
α(μ1, μ2)(K ) = 0.

Now define

L = {(m,n) ∈N×N | m is odd and m ≥ n}.
Since also μ2 is a pure charge, we can show that α(μ1, μ2)(L) = 0. However, let W denote the winning set of the game. 
Then W = K ∪ L, so that also α(μ1, μ2)(W ) = 0. The claim that U p(μ1, μ2) = 0 then follows from Proposition C.5. In the 
same way we can verify that U o(μ1, μ2) = 1.

Now, let κ1 be a pure charge with κ1(E) = 1. Again, such a charge exists by Theorem C.3. Then U 21(κ1, μ2) = 1 and 
U 12(κ1, μ2) = 0. 


Remark 3.2. The above example distinguishes our work from the work by Schervish and Seidenfeld (1996), and Capraro 
and Scarsini (2013). Those two articles consider convex combinations of the different orders of integration. Note that the 
optimistic and pessimistic approaches are not of that type. In the above example, U 21(μ1, μ2) = U 12(μ1, μ2) = 1

2 . So, 
convex combinations of these two payoff functions also result in a payoff of 1

2 . But the pessimistic and optimistic expected 
payoffs are different in this case, namely U p(μ1, μ2) = 0 and U o(μ1, μ2) = 1.

4. Guarantee level

Thus, a single zero-sum game g(u) generates many different games with charges. We study the solutions for a few of 
the more natural and interesting choices out of the various possibilities.

4.1. Definitions

Let g(u) be a zero-sum game. When (μ1, μ2) has a unique extension μ, we write U (< μ1, μ2 >) instead of U (μ). 
Now we turn to the definition of a guarantee level in probability charges. We first briefly discuss the definition for general 
extension functions. Let g(u) be a zero-sum game, and let τ1 : C(A1) × C(A2) → C(A1 × A2) and τ2 : C(A1) × C(A2) →
C(A1 × A2) be two extension functions. The resulting game is (U τ1 , −U τ2 ).10

Definition 4.1. The τ1-guarantee level vτ1
1 for player 1, and the τ2-guarantee level vτ2

2 for player 2 are defined by

vτ1
1 = sup

μ1∈C(A1)

inf
μ2∈C(A2)

U τ1(μ1,μ2) and vτ2
2 = inf

μ2∈C(A2)
sup

μ1∈C(A1)

U τ2(μ1,μ2).

If the two extension functions coincide, that is τ = τ1 = τ2, and vτ
1 = vτ

2 , then we say that the τ -value vτ of the resulting 
game (U τ , −U τ ) exists.

In the specific cases that we mainly study—optimistic and pessimistic extensions, and double integrals—the definitions 
look as follows.

Definition 4.2. The optimistic guarantee level vo
1 for player 1, and the optimistic guarantee level vo

2 for player 2 are defined 
by

vo
1 = sup

μ1∈C(A1)

inf
μ2∈C(A2)

U o(μ1,μ2) and vo
2 = inf

μ2∈C(A2)
sup

μ1∈C(A1)

U p(μ1,μ2).

The pessimistic guarantee level v p
1 for player 1, and the pessimistic guarantee level v p

2 for player 2 are defined by

v p
1 = sup

μ1∈C(A1)

inf
μ2∈C(A2)

U p(μ1,μ2) and v p
2 = inf

μ2∈C(A2)
sup

μ1∈C(A1)

U o(μ1,μ2).

The 21-guarantee level v21
1 for player 1, and the 21-guarantee level v21

2 for player 2 are defined by

v21
1 = sup

μ1∈C(A1)

inf
μ2∈C(A2)

U 21(μ1,μ2) and v21
2 = inf

μ2∈C(A2)
sup

μ1∈C(A1)

U 21(μ1,μ2).

In the same way we can define v12
1 and v12

2 . The fact that the pessimistic guarantee level for player 2 involves U o and 
the optimistic guarantee level involves U p is due to the fact that player 2 still views the amounts specified by the utility 
function as payments, not as rewards.

10 Thus, given a strategy profile (μ1, μ2), even though the players do not need to have an agreement on the outcome of the game, we still assume that 
player 1 expects to receive an amount U τ1 (μ1, μ2), while player 2 expects to pay the amount U τ2 (μ1, μ2).
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4.2. Finitistic guarantee levels

We also introduce several guarantee levels that do not originate from extensions of strategy profiles, but from approxi-
mations of a (zero-sum) game by finite games. Let D(Ai) be the set of probability charges (or equivalently, measures) for 
player i with finite support. Note that D(Ai) is dense in C(Ai) with respect to the topology of weak convergence.11 We 
define

vd
1 = sup

μ1∈D(A1)

inf
μ2∈D(A2)

U (< μ1,μ2 >) and vd
2 = inf

μ2∈D(A2)
sup

μ1∈D(A1)

U (< μ1,μ2 >).

For two non-empty finite sets F1 ∈ F(A1) and F2 ∈ F(A2), consider the game G(F1, F2) in which player 1 is restricted to 
F1 and player 2 is restricted to F2. This game has a value, say v(F1, F2). We define

v f
1 = sup

F1∈F(A1)

inf
F2∈F(A2)

v(F1, F2) and v f
2 = inf

F2∈F(A2)
sup

F1∈F(A1)

v(F1, F2).

4.3. The main result

We provide the precise relationship between all guarantee levels defined above in the following Theorem. The result is 
surprising in the sense that all guarantee levels appear to coincide, despite the fact that the games from which they are 
derived are, in general, all different. The proof of Theorem 4.1 can be found in Appendix B, Theorem B.2.

Theorem 4.1. Let g(u) be any zero-sum game. The guarantee levels of the players satisfy

v f
1 = vd

1 = v p
1 = vo

2 = v21
1 = v21

2 and v f
2 = vd

2 = v p
2 = vo

1 = v12
2 = v12

1 .

Note that, even though the double integral U 21 might differ from the pessimistic expected payoff U p , the corresponding 
guarantee levels for player 1 coincide. That is, v21

1 = v p
1 .

We identify a specific class of games for which all guarantee levels in Theorem 4.1 coincide. We say that a function 
is a simple function when it is a finite linear combination of indicator functions of sets of the form A × B , with A ⊆ A1
and B ⊆ A2. Harris et al. (2005) call a payoff function u : A1 × A2 → R integrable when u is the uniform limit of simple 
functions. An integrable payoff function’s expected payoff is uniquely defined for any strategy profile. Marinacci (1997) and 
Harris et al. (2005) prove the existence of Nash-equilibrium in nonzero-sum games with integrable payoff functions.

We have the following result, which extends the classic result of von Neumann (1928).

Corollary 4.2. Let g(u) be a zero-sum game, where u is an integrable function. Then all guarantee levels are equal.

Proof. For an integrable function, the Fubini-equality (cf. Remark 3.1) holds for any pair of probability charges. For a de-
tailed proof, see Marinacci (1997, Proposition 3). This implies that v21

1 = v12
1 . The result is now a direct consequence of 

Theorem 4.1. �
This result is also in line with the findings of Harris et al. (2005). They show that, under the condition that the utility 

functions of an n-person normal form game are integrable, the resulting game played with charges is uniquely defined, and 
admits a Nash equilibrium.

4.4. The classical guarantee level

In this subsection we examine the classical guarantee levels of the players, which are defined through countably additive 
strategies. We restrict our attention to games where the action spaces of the players are countable. First we provide a 
formal definition of these classical guarantee levels, and then in Theorem 4.3 we relate them to the guarantee levels defined 
through charges and to the finitistic guarantee levels. As we show, the classical guarantee level of each player coincides 
with his pessimistic guarantee level.

Suppose that A1 = A2 = N. A zero-sum game g(u) defined by a bounded payoff function u : N ×N → R is called count-
ably infinite.12 For this case, the (classical) guarantee level for player 1 and, respectively, the (classical) guarantee level for 
player 2 are defined as

v1 = sup
p1∈�(A1)

inf
p2∈�(A2)

U (< p1, p2 >) and v2 = inf
p2∈�(A2)

sup
p1∈�(A1)

U (< p1, p2 >).

11 Note that this topology is not metrizable, so one needs to work with nets and not only sequences.
12 Note that the choice of N is not relevant, only the cardinality matters. The results hold for any set with countable cardinality.
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Theorem 4.3. Let g(u) be any countably infinite zero-sum game. The guarantee levels of the players satisfy

v1 = v f
1 = vd

1 = v p
1 = vo

2 = v21
1 = v21

2 and v2 = v f
2 = vd

2 = v p
2 = vo

1 = v12
2 = v12

1 .

Proof. A. We show that vd
1 ≤ v1. Take μ1 ∈D(N). Then

inf
μ2∈�(N)

U (< μ1,μ2 >) = inf
n∈N U (< μ1, δ(n) >) = inf

μ2∈D(N)
U (< μ1,μ2 >).

Therefore,

v1 = sup
μ1∈�(N)

inf
μ2∈�(N)

U (< μ1,μ2 >)

≥ sup
μ1∈D(N)

inf
μ2∈�(N)

U (< μ1,μ2 >)

= sup
μ1∈D(N)

inf
μ2∈D(N)

U (< μ1,μ2 >)

= vd
1.

B. We show that v1 ≤ v21
1 . Take any p1 ∈ �(N) and any μ2 ∈ C(N). Then by Lemma A.3

U 21(p1,μ2) = U (< p1,μ2 >) =
∫

n∈N

∫
m∈N

u(m,n)dp1 dμ2

≥
∫

n∈N

(
inf
n∈N U (< p1, δ(n) >)

)
dμ2

= inf
n∈N U (< p1, δ(n) >)

= inf
p2∈�(N)

U (< p1, p2 >).

So, since the last expression does not depend on μ2,

inf
μ2∈C(N)

U 21(p1,μ2) ≥ inf
p2∈�(N)

U (< p1, p2 >).

Hence,

v21
1 = sup

μ1∈C(N)

inf
μ2∈C(N)

U 21(μ1,μ2)

≥ sup
p1∈�(N)

inf
μ2∈C(N)

U 21(p1,μ2)

≥ sup
p1∈�(N)

inf
p2∈�(N)

U (< p1, p2 >)

= v1.

The first half of the assertion now follows from Theorem 4.1. The proof of the second half is similar. �
We always have v1 ≤ v2. Theorem 4.3 has the following corollary for the case when v1 = v2 holds, that is, when the 

classical value exists.

Corollary 4.4. The classical value exists in a countably infinite zero-sum game if and only if all guarantee levels in Theorem 4.3 coincide.

5. Optimality

When using countably additive strategies, even though the value of a game may exist, players may have only approximate 
optimal strategies. We investigate to which extent the use of charges guarantees existence of optimal strategies.

Let g(u) be a zero-sum game, and let τ1 : C(A1) × C(A2) → C(A1 × A2) and τ2 : C(A1) × C(A2) → C(A1 × A2) be the 
extension functions employed by the respective players. Thus the resulting game is (U τ1 , −U τ2 ).

Definition 5.1. A probability charge μ1 ∈ C(A1) is a τ1-optimal strategy for player 1 if for all strategies μ2 ∈ C(A2) it holds 
that

U τ1(μ1,μ2) ≥ vτ1 .
1
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A probability charge μ2 ∈ C(A2) is a τ2-optimal strategy for player 2 if for all strategies μ1 ∈ C(A1) it holds that

U τ2(μ1,μ2) ≤ vτ2
2 .

5.1. Optimistic optimality

When player 1 uses U o to evaluate outcomes, we say that an optimal strategy for player 1 is optimistic optimal. When 
player 2 uses −U p to evaluate outcomes, we say that an optimal strategy for player 2 is optimistic optimal. We have the 
following result.

Theorem 5.1. Both players have optimistic optimal strategies.

Proof. By Lemma B.1, player 2 has a strategy σ2 ∈ C(A2) such that for every μ1 ∈ C(A1) it holds that

U 21(μ1,σ2) ≤ v f
1 .

Since v f
1 = vo

2 by Theorem 4.1, it follows that σ2 is optimistic optimal for player 2. The proof for player 1 is similar. �
Remark 5.1. We show how to construct optimistic optimal strategies directly. For each k ∈ N, let p1k ∈ �(A1) be such that, 
for every p2 ∈ �(A2),

U (〈p1k, p2〉) ≥ v − 1
k .

Let μ1 be a pure charge. Define the probability charge κ1 by

κ1(E) =
∫

k∈N
p1k(E)dμ1 for all E ⊆ A1 × A2.

Let μ2 be any probability charge of player 2. Take a K ∈ N. Then for every n ∈ A2,∫
m∈A1

u(m,n)dκ1 =
∫

k∈N

∫
m∈A1

u(m,n)dp1k dμ1

=
∫

k≥K

∫
m∈A1

u(m,n)dp1k dμ1

≥
∫

k≥K

(
v − 1

k

)
dμ1 ≥ v − 1

K .

The first equality comes from Lemma A.2, and the second equality is due to the fact that μ1({K , K + 1, . . .}) = 1. Since K
was chosen arbitrarily, we find that∫

m∈A1

u(m,n)dκ1 ≥ v.

Then for every probability charge μ2 of player 2,

U o(κ1,μ2) ≥
∫

n∈A2

∫
m∈A1

u(m,n)dκ1 dμ2 ≥
∫

n∈A2

v dμ2 = v.

Hence, κ1 is optimistic optimal for player 1. 


Example 5.1. Also in zero-sum games that do not have a classical value, players have optimistic optimal strategies. Consider 
the Wald game

u 1 2 3 . . .

1 1 0 0 . . .

2 1 1 0 . . .

3 1 1 1 . . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .
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defined in Example 3.1. It is well-known that this game does not have a classical value, and countably additive optimal 
strategies do not exist.

We show that vo
1 = 1 and that the set of optimistic optimal strategies for player 1 is exactly the set Q(N) of pure 

probability charges. Take κ1 ∈Q(N) and take any μ2 ∈ C(N). We verify that U o(κ1, μ2) = 1. Write

W = {(m,n) ∈N×N | m ≥ n}.
We show that β(κ1, μ2)(K ) = 1, where

β(κ1,μ2)(K ) = inf

{
k∑

i=1

κ1(Ci) · μ2(Di) | Ci × Di are mutually disjoint, and cover K

}

as defined in Appendix C. Let A × B be a non-empty rectangle with A × B ∩ W = φ. We show that κ1(A) · μ2(B) = 0. 
Suppose that A is infinite. Take any n ∈ B . Since A is infinite, there is m ∈ A with m ≥ n. Then (m, n) ∈ W , which contradicts 
the assumption that A × B ∩ W = φ. So, A is finite. Hence, since μ1 is a pure charge, μ1(A) · μ2(B) = 0. It follows that 
β(κ1, μ2)(W ) = 1.

So, by Proposition C.5 there exists an extension μ of (κ1, μ2) such that μ(W ) = 1. This implies that U o(κ1, μ2) = 1. 
Since μ2 ∈ C(N) was chosen arbitrarily, it follows that vo

1 = 1, and κ1 is optimistic optimal for player 1.
Now take μ1 ∈ C(N) with μ1 /∈ Q(N). We show that μ1 is not optimistic optimal for player 1. Let κ2 ∈ Q(N). Write 

μ1 = λ · p1 + (1 − λ) · κ1 with p1 ∈ �(N), κ1 ∈Q(N) and λ > 0. Then

U o(μ1, κ2) = λ · U o(p1, κ2) + (1 − λ) · U o(κ1, κ2) = (1 − λ) · U o(κ1, κ2) < 1.

Hence, μ1 is not optimistic optimal for player 1. 


Example 5.2. We show that an optimistic optimal strategy may be neither countably additive nor a pure probability charge, 
and may have to be a real mixture of the two.

Again consider the game from Example 3.4

u 1 2 3 4 5 6 . . .

1 1 0 0 0 0 0 . . .

2 0 1 1 1 1 1 . . .

3 1 1 1 0 0 0 . . .

4 0 0 0 1 1 1 . . .

5 1 1 1 1 1 0 . . .

6 0 0 0 0 0 1 . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

First we show that vo
2 = 1

2 . Suppose that player 1 plays the first row with probability 1
2 and the second row with 

probability 1
2 . Then the expected payoff is exactly 1

2 regardless of what player 2 does. So, v1 ≥ 1
2 .

Conversely, let p ∈ �(N) be any countably additive strategy for player 1. Let ε > 0. Take a number m such that ∑∞
k=m p(k) < ε. Take n with n > m, and let player 2 play the first column with probability 1

2 and column n with probabil-
ity 1

2 . Then the expected payoff for player 1 is at most 1
2 + ε. These observations imply that v1 = 1

2 . Hence, by Theorem 4.3
also vo

2 = 1
2 .

Now notice that for any pure probability charge μ1 with μ1(O ) = 1 (where O stands for the set of odd numbers) and 
for any countably additive strategy p2, we have U (< μ1, p2 >) = 1. Hence, countably additive strategies are not optimistic 
optimal for player 2.

Next, if player 1 uses the Dirac measure δ(2) on action 2, and player 2 uses a pure probability charge μ2, then
U (< δ(2), μ2 >) = 1. Hence, an optimistic optimal strategy for player 2 cannot be a pure probability charge either.

Consequently, any optimistic optimal strategy for player 2 must be a real mixture of a countably additive strategy and a 
pure probability charge. For completeness, we provide an optimistic optimal strategy for player 2. Let μ2 = 1

2 · δ(1) + 1
2 · κ2

where δ(1) is the Dirac measure on action 1 and κ is any pure probability charge on N. Take a strategy μ1 of player 1. We 
write d1 = ∑

m∈N μ1(m), and μ1 = d1 p1 + (1 − d1)κ1 with p1 ∈ �(N) and κ1 ∈Q(N). Then

U p(μ1,μ2) = 1
2 · d1 · U (< p1, δ(1) >) + 1

2 · (1 − d1) · U (< κ1, δ(1) >)

+ 1
2 · d1 · U (< p1, κ2 >) + 1

2 · (1 − d1)U p(κ1, κ2)

= 1
2 · d1 · p1(O ) + 1

2 · (1 − d1) · κ1(O ) + 1
2 · d1 · p1(E) + 1

2 · (1 − d1) · 0

= 1
2 · d1 + 1

2 · (1 − d1) · κ1(O )

≤ 1
2 · d1 + 1

2 · (1 − d1)

= 1 .
2
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Here, the inequality follows from κ1(O ) ≤ 1. Since vo
2 = 1

2 , the strategy μ2 is optimistic optimal for player 2. 


5.2. Pessimistic optimality

When player 1 uses U p to evaluate outcomes, we say that an optimal strategy for player 1 is pessimistic optimal. When 
player 2 uses −U o to evaluate outcomes, we say that an optimal strategy for player 2 is pessimistic optimal.

Example 5.3. We do not know whether pessimistic optimal strategies always exist. The game below shows that the set 
of pessimistic optimal strategies may be non-trivial. We show that in this example pessimistic optimal strategies exist. 
However, countably additive strategies are not pessimistic optimal, and also not every pure charge is pessimistic optimal.

Consider the following binary game. Let A1 = A2 = N and define the payoff function u by

u(m,n) =
{

0 if m = n

1 otherwise.

The payoffs are displayed in the following figure.

u 1 2 3 . . .

1 0 1 1 . . .

2 1 0 1 . . .

3 1 1 0 . . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .

In this game player 1 has to hide at a certain place m ∈ N. Player 2 wins if he searches at the place where player 1 is 
hidden, otherwise player 1 wins.

First we argue that v p
1 = 1. Take k ∈ N and consider the countably additive strategy pk for player 1 such that

pk(m) =
{

1
k if m ≤ k

0 otherwise.

It is clear that U (< pk, μ2 >) ≥ k−1
k for every μ2 ∈ C(N). Therefore v p

1 = 1 indeed.
Now notice that no strategy p1 ∈ �(N) can be pessimistic optimal for player 1. There exists n ∈ N such that p1(n) > 0, 

so if player 2 plays the Dirac measure δ(n), then U (< p1, δ(n) >) < 1. Also notice that a pure charge μ ∈ Q(N) with 
μ(B) ∈ {0, 1} for all B ⊆N is not pessimistic optimal either, since if player 2 also plays μ, then U p(< μ, μ >) = 0.

Now we define the strategy κ1 for player 1 and show that it is pessimistic optimal. For k ∈ N, and � ∈N with 1 ≤ � ≤ 2k , 
define

Ek
� =

{
2k · n + � | n ∈N∪ {0}

}
.

There exists a pure charge κ1 with the property that, for all k and �, κ1(Ek
�) =

(
1
2

)k
.13 Suppose player 1 plays charge κ1. 

Let μ2 be any charge for player 2.
One possible cover of the diagonal is

(E × E) ∪ (O × O ),

where E is the set of even numbers and O is the set of odd numbers. This cover has a probability of 1
2 · μ2(E) + 1

2 · μ2(O )

= 1
2 . In general, for fixed k,

2k⋃
�=1

(
Ek

� × Ek
�

)

covers the diagonal. The probability of this cover is

2k∑
�=1

(
1
2

)k · μ2(Ek
�) =

(
1
2

)k
.

13 Since for each k the collection of sets Ek
� is a partition, it is straightforward to define κ1 on the smallest field containing all singletons and all sets Ek

� . 
The existence of such a charge κ1 defined on all subsets of N then follows from Theorem C.3.
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Thus, the infimum of the probabilities of these covers of the diagonal is 0. This implies that U p(< κ1, μ2 >) = 1. Thus, κ1
is pessimistic optimal for player 1.

As a final remark, note that, since v p
1 = 1, also vo

1 = 1. Then, just like in the Wald game, the set Q(N) of all pure 
probability charges is the set of optimistic optimal strategies for player 1.14 


We do not know whether pessimistic optimal strategies always exist. For showing that optimistic optimal strategies 
exist, both in Theorem 5.1 and in Remark 5.1 we used an argument based on double integrals. More precisely, in both cases 
we used the fact that the optimistic payoff for player 1 is the same or higher than his payoff calculated through double 
integrals. The same argument cannot be used for pessimistic optimal strategies. We found games where pessimistic optimal 
strategies do exist, but we do not know whether this is the case in general for all games.

5.3. Optimality for double integrals

When player 1 (player 2) uses U 21 to evaluate outcomes, we say that an optimal strategy for player 1 (player 2) is 
21-optimal. The notion of 12-optimality can be defined similarly.

Theorem 5.2. Player 2 has 21-optimal strategies. Player 1 has 12-optimal strategies.

Proof. The first half of the assertion is an immediate consequence of Lemma B.1 and the fact from Theorem 4.1 that 
v f

1 = v21
2 . The proof of the second half is similar. �

Proposition 5.3. Let κ1 be a pessimistic optimal strategy for player 1. Then it is an 21-optimal strategy for player 1. Similarly, if a 
strategy is pessimistic optimal for player 2, then it is also 12-optimal for player 2.

Proof. The first half of the assertion is an immediate consequence of Theorem 4.1 and the fact that U p ≤ U 21 . The proof of 
the second half is similar. �
6. Zero-sum games with charges

When both players take the same extension function, the resulting game with charges is also zero-sum. In this section 
we analyze when—meaning for which types of extensions—such a resulting game has a value. The following two results are 
both direct consequences of Theorem 4.1.

Corollary 6.1. Suppose that one player is optimistic, and that the other player is pessimistic. Then every resulting zero-sum game with 
charges has a value.

Corollary 6.2. Suppose that player 1 evaluates via U 21 and that player 2 evaluates via −U 21. Then every resulting zero-sum game 
with charges has a value. Similarly, there is a value, when player 1 evaluates via U 12 and player 2 evaluates via −U 12.

Thus, when the players agree on a given order of integration as an expected payoff, for example U 21 , then any zero-sum 
game with charges has a value. This is well-known in the literature. Heath and Sudderth (1972) also show in Theorem 3 
that v21

1 = v21
2 .

It is tempting to think that, whenever the players agree on the extension and consequently the resulting game is zero-
sum, this game automatically has a value. However, the next example shows this is not true.

Example 6.1. Even when the players agree on the extension function, and the resulting game with charges is zero-sum, the 
value of the game need not exist. Again consider the Wald game from Example 3.1 with payoff matrix

u 1 2 3 . . .

1 1 0 0 . . .

2 1 1 0 . . .

3 1 1 1 . . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .

14 Also Capraro and Scarsini (2013) analyze this game in Example 6.9. in their paper. Even though they consider different payoff extensions, they also find 
that the set of optimal strategies equals the set of pure charges for this game. Additionally, Pivato (2014) in subsection 4.2 looks at a game with the same 
payoff function on pure action profiles, but the players’ mixed strategies are nonstandard probabilities. He shows in Proposition 8 that if each player plays 
a uniform distribution, then this strategy profile is a Nash-equilibrium.
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We construct a total ordering on the set C(N) of probability charges on N. Take a countable sequence (μk)k∈N of pure 
probability charges where μk �= μn if k �= n, and write Q = {μk|k ∈ N}. By Axiom of Choice, we can take a total ordering 
� of the set C(N)\Q of the remaining probability charges on N. This total ordering can be extended to the set C(N) of 
probability charges on N as follows. For the elements of the sequence, if n > k, then μn � μk . For any ν ∈ C(N)\Q and for 
any n ∈N we define μn � ν . Hence, the total ordering � of the set C(N) is such that, for every probability charge ν ∈ C(N), 
there is a pure probability charge μ ∈ Q with μ � ν .

Next, for any pair of probability charges (μ1, μ2) we define an extension τ (μ1, μ2) by letting for all K ⊆ N

τ (μ1,μ2)(K ) =

⎧⎪⎨
⎪⎩

∫
n∈N

∫
m∈N

IK (m,n)dμ1 dμ2 if μ1 � μ2∫
m∈N

∫
n∈N

IK (m,n)dμ2 dμ1 if μ2 � μ1.

Note that τ (μ1, μ2) is indeed an extension of (μ1, μ2). When we apply this extension function to the Wald game, by 
Lemma 3.2 the resulting zero-sum game on charges is

U (μ1,μ2) =
{

U 12(μ1,μ2) if μ1 � μ2

U 21(μ1,μ2) if μ2 � μ1.

Intuitively, if μ1 is equal to μ2 or μ1 is enumerated later than μ2 by �, then the inner integral is taken with respect the 
strategy of player 1. As we know, this favors player 1 in the Wald game. Otherwise, the inner integral is taken with respect 
to the strategy of player 2.

Take any μ1 ∈ C(N). Then, by our construction of the total ordering �, there is a pure charge μ2 such that μ2 � μ1. Then 
U τ (μ1, μ2) = 0. So, supμ1∈C(N) infμ2∈C(N) U τ (μ1, μ2) = 0. Similarly, one can show that infμ2∈C(N) supμ1∈C(N) U τ (μ1, μ2) =
1.

Thus there exists an extension τ (μ1, μ2) for each pair of probability charges (μ1, μ2) with

sup
μ1∈C(N)

inf
μ2∈C(N)

U τ (μ1,μ2) < inf
μ2∈C(N)

sup
μ1∈C(N)

U τ (μ1,μ2).

So, the supremum and the infimum are not interchangeable for τ , and the value vτ does not exist. 


Example 6.2. On the other hand, when both players are optimistic, by Theorem 5.1 both players have optimal strategies. 
However, the resulting game need not be a zero-sum game. For example, again consider the Wald game from Example 3.1. 
Clearly, for every p1 ∈ �(N) it holds that

inf
n∈Nu(< p1,n >) = 0.

Hence, v1 = 0. We obtain similarly that v2 = 1. 


7. Concluding remarks

We studied the effect of using finitely additive probability distributions, charges, in the context of zero-sum games. Due 
to the ambiguity associated with extending strategy profiles to charges on the space of pure action profiles, the use of 
charges gives rise to several methods to define the guarantee level of a player.

Specifically, we studied optimistic and pessimistic guarantee levels, and guarantee levels associated with double integrals. 
We showed that the pessimistic guarantee level for player 1, the optimistic guarantee level for player 2, and the guarantee 
levels for both players in which we first integrate with respect to the strategy of the 2nd player and then with respect to 
the 1st player, all coincide. Moreover, these guarantee levels can be calculated by computing the finitistic guarantee levels.

Thus, when player 1 is optimistic, and player 2 is pessimistic, any resulting (zero-sum) game has a value. The same 
holds when both players use the same order of integration for the approach based on double integrals. We also proved that 
players always have optimal strategies with respect to the optimistic guarantee level.

In conclusion, charges are useful to define the value of an arbitrary zero-sum game, and optimistic players always have 
optimal strategies. It is still an open question whether pessimistic players always have optimal strategies.

Appendix A. Tools

Lemma A.1. Let X be a non-empty set. Let F be the set of all bounded functions f : X → R. Let S be the set of all simple functions in 
F . Let φ : F → R be a mapping such that for every f ∈ F

φ( f ) = sup{φ(s) : s ∈ S and s ≤ f }.
Let ψ : F →R be linear and monotone. Suppose that φ(s) = ψ(s) for all s ∈ S. Then φ = ψ .
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Proof. For every s ∈ S and f ∈ F with s ≤ f we have φ(s) = ψ(s) ≤ ψ( f ). Hence, for every f ∈ F

φ( f ) = sup{φ(s) : s ∈ S and s ≤ f } ≤ ψ( f ).

Take f ∈ F . We prove φ( f ) ≥ ψ( f ). Take ε > 0. It is easy to see that there exists a simple function s such that s ≤ f ≤
s + ε.15 Thus

ψ( f ) ≤ ψ(s + ε) = ψ(s) + ψ(ε) = φ(s) + εψ(1) ≤ φ( f ) + εψ(1).

Since ε > 0 is arbitrary, ψ( f ) ≤ φ( f ). �
Lemma A.2. Let X be a non-empty set. Let I be a set of indices. For each k ∈ I , let μk be a probability charge on X. Let τ be a probability 
charge on I . Consider the probability charge σ on X defined by

σ(E) =
∫

k∈I

μk(E)dτ for all E ⊆ X .

Then, for any bounded function f : X →R,∫
X

f (x)dσ =
∫

k∈I

∫
X

f (x)dμk dτ .

Proof. For any simple function s : X →R, where s = ∑m
i=1 ciIFi , we have

∫
X

s(x)dσ =
m∑

i=1

ci · σ(Fi) =
m∑

i=1

ci

∫
k∈I

μk(Fi)dτ

=
∫

k∈I

m∑
i=1

ciμk(Fi)dτ

=
∫

k∈I

∫
X

s(x)dμk dτ ,

where the first equality is based on the definition of the integral of a simple function and the second equality on the 
definition of σ . In view of Lemma A.1, taking φ( f ) = ∫

X f (x)dσ and ψ( f ) = ∫
k∈I

∫
X f (x) dμk dτ , the proof is complete. �

For a set A1, let �(A1) be the collection of probability charges p1 ∈ C(A1) for which there is a sequence of points 
a1

1, a
2
1, . . . in A1 and non-negative real numbers c1, c2, . . . such that p1 = ∑

k ck · δ(ak
1), where δ(ak

1) denotes the Dirac 
measure on ak

1. Note that automatically 
∑

k ck = 1. We assume that all points ak
1 are different.

Lemma A.3. Let p1 ∈ �(A1) and μ2 ∈ C(A2). Then there is a unique μ ∈ C(A1 × A2) such that μ ∈< p1, μ2 >. Consequently, the 
Fubini-equality (cf. Remark 3.1) holds for the pair (p1, μ2) and any bounded payoff function.

Proof. By Proposition C.5, we know that < p1, μ2 > is not empty. Take μ ∈< p1, μ2 > and κ ∈< p1, μ2 >. Take a set 
W ⊆ A1 × A2. We show that μ(W ) = κ(W ).

A. We say that a set R ⊆ A1 × A2 is a rectangle if there are B1 ⊆ A1 and B2 ⊆ A2 such that R = B1 × B2. Observe that 
μ(R) = p1(B1) · μ2(B2) = κ(R) for all rectangles R .

B. Take any ε > 0. Take K ∈ N such that 
∑

k>K ck ≤ ε. For k ≤ K , define

Bk = {(a1,a2) ∈ W | a1 = ak
1} and B =

⋃
k≤K

Bk.

Notice that each Bk is a rectangle. So, μ(Bk) = κ(Bk) for each k. Further, since all points ak
1 are different, B is a finite union 

of disjoint rectangles Bk , k ≤ K . So, since μ and κ are finitely additive, we also have μ(B) = κ(B).

15 See p. 272 in the appendix by WD Sudderth, D Gilat and R Purves in Dubins et al. (2014). Indeed, consider the inverse images f −1[zε, (z + 1)ε), where 
z is an integer. Since f is bounded, only finitely many of them are non-empty. If f −1[zε, (z + 1)ε) is non-empty, then let s take value zε on this set. It 
follows that s ≤ f ≤ s + ε.
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C. Also define

Z1 = A1 \ {ak
1 ∈ A1 | k ≤ K }

and Z = Z1 × A2. Then Z is a rectangle, so that μ(Z) = p1(Z1) · μ2(A2) ≤ ε · 1 = ε. In the same way we find κ(Z) ≤ ε.

D. Now notice that B ⊆ W ⊆ B ∪ Z , and B and Z are disjoint. So, by the additivity and monotonicity of μ, μ(B) ≤
μ(W ) ≤ μ(B) + μ(Z) ≤ μ(B) + ε. Hence, since κ(B) = μ(B), κ(B) ≤ μ(W ) ≤ κ(B) + ε. However, also κ(B) ≤ κ(W ) ≤
κ(B) + ε. It follows that μ(W ) = κ(W ). �
Appendix B. Proof of Theorem 4.1

Lemma B.1. Player 2 has a strategy σ2 ∈ C(A2) such that for every μ1 ∈ C(A1) we have

U 21(μ1,σ2) ≤ v f
1 .

Player 1 has a similar strategy σ1.

Proof. A. Take F1 ∈F(A1). Take k ∈ N. By definition of v f
1 there is a set F2k ∈F(A2) with

v(F1, F2k) ≤ v f
1 + 1

k .

Let p2k ∈ �(F2k) be an optimal strategy for player 2 in the game G(F1, F2k). Naturally, p2k can also be seen as an element 
of C(A2).

B. Let λ be any pure probability charge on N. Define a strategy σ2,F1 ∈ C(A2) for player 2 by

σ2,F1(B) =
∫

k∈N
p2k(B)dλ for all B ⊆ A2.

C. For each m ∈ F1, let δ(m) denote the Dirac measure on m. We have

U (< δ(m),σ2,F1 >) =
∫

n∈A2

u(m,n)dσ2,F1 =
∫

k∈N

∫
n∈A2

u(m,n)dp2k dλ

≤
∫

k∈N

(
v f

1 + 1

k

)
dλ = v f

1 . (B.1)

Here the second equality follows from Lemma A.2 and the definition of σ2,F1 in part B. The inequality comes from the 
definition of p2k in part A. The last equality is a consequence of the fact that λ({1, . . . , K }) = 0 for every K ∈ N.

D. Let τ be a probability charge as in Lemma C.4 on F(A1). Thus, for every m ∈ A1 we have

τ ({F1 ∈ F(A1) | m ∈ F1}) = 1.

Define a strategy σ2 ∈ C(A2) for player 2 by

σ2(B) =
∫

F1∈F(A1)

σ2,F1(B)dτ for all B ⊆ A2.

E. We show that for every μ1 ∈ C(A1)

U 21(μ1,σ2) ≤ v f
1 .

For every m ∈ A1 we have∫
n∈A2

u(m,n)dσ2 =
∫

F1∈F1

∫
n∈A2

u(m,n)dσ2,F1 dτ =
∫

F1∈F1

U (< δ(m),σ2,F1 >)dτ

=
∫

F1∈{F∈F1|m∈F }
U (< δ(m),σ2,F1 >)dτ ≤ v f

1 .

Here the first equality follows from Lemma A.2 and the definition of σ2 in part D. The third equality holds due to our choice 
of τ in part D. In the final step we can use inequality (B.1) from part A, since now m ∈ F1.
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F. Since an integral is monotonic, for any μ1 ∈ C(A1)

U 21(μ1,σ2) =
∫

m∈A1

∫
n∈A2

u(m,n)dσ2 dμ1 ≤
∫

m∈A1

v f
1 dμ1 = v f

1 .

This concludes the proof. �
Theorem B.2. Let u be any zero-sum game. The guarantee levels of the players satisfy

v f
1 = vd

1 = v p
1 = vo

2 = v21
1 = v21

2 and v f
2 = vd

2 = v p
2 = vo

1 = v12
2 = v12

1 .

Moreover, if σ1 and σ2 are strategies as in Lemma B.1, then σ1 is optimistic optimal for player 1, and σ2 is optimistic optimal for 
player 2.

Proof. First we show that v p
1 ≤ vo

2 ≤ v f
1 . Then we show that v f

1 ≤ vd
1 ≤ v p

1 ≤ v21
1 ≤ v21

2 ≤ v f
1 , and that σ2 is optimistic 

optimal for player 2.

A. We show that v p
1 ≤ vo

2. It is clear from the definitions that v p
1 ≤ vo

2.

B. We show that vo
2 ≤ v f

1 . Let σ2 ∈ C(A2) be a strategy for player 2 as in Lemma B.1. Then, for every μ1 ∈ C(A1) we 
have

U p(μ1,σ2) ≤ U 21(μ1,σ2) ≤ v f
1 .

Therefore,

vo
2 = inf

μ2∈C(A2)
sup

μ1∈C(A1)

U p(μ1,μ2) ≤ sup
μ1∈C(A1)

U p(μ1,σ2) ≤ v f
1 .

C. We show that v f
1 ≤ vd

1. Take F1 ∈F(A1). Then

sup
μ1∈�(F1)

inf
μ2∈D(A2)

U (< μ1,μ2 >) = sup
μ1∈�(F1)

inf
n∈A2

U (< μ1, δ(n) >)

≥ inf
F2∈F2

sup
μ1∈�(F1)

inf
n∈F2

U (< μ1, δ(n) >)

= inf
F2∈F2

w(F1, F2).

Hence, vd
1 ≥ v f

1 .

D. We show that vd
1 ≤ v p

1 . Take a p1 ∈D(A1) and a μ2 ∈ C(A2). Let δ(n) denote the Dirac measure on n ∈ A2. Then

U (< p1,μ2 >) =
∫

n∈A2

U (< p1, δ(n) >)dμ2 ≥ inf
n∈A2

U (< p1, δ(n) >).

We used the fact that, since p1 ∈ �(A1), the extension for (p1, μ2) is unique by Lemma A.3. So,

inf
μ2∈C(A1)

U (< p1,μ2 >) ≥ inf
n∈A2

U (< p1, δ(n) >) ≥ inf
p2∈D(A2)

U (< p1, p2 >).

It follows that

sup
p1∈D(A1)

inf
μ2∈C(A2)

U (< p1,μ2 >) ≥ sup
p1∈D(A1)

inf
p2∈D(A2)

U (< p1, p2 >) = vd
1.

So,

v p
1 = sup

μ1∈C(A1)

inf
μ2∈C(A2)

U p(μ1,μ2) ≥ sup
p1∈D(A1)

inf
μ2∈C(A2)

U p(p1,μ2) ≥ vd
1.

E. We show that v p
1 ≤ v21

1 . Let μ1 ∈ C(A1) and μ2 ∈ C(A2) be two probability charges. We know from Lemma 3.2 that 
the probability charge κ defined by

κ(E) =
∫

m∈A1

∫
n∈A2

IE(m,n)dμ2 dμ1 for all E ⊆ N

is an extension of the strategy profile (μ1, μ2), and that by definition U 21(μ1, μ2) = U (κ). Hence, by definition of 
U p(μ1, μ2), we have U p(μ1, μ2) ≤ U (κ) = U 21(μ1, μ2). So,
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v p
1 = sup

μ1∈C(A1)

inf
μ2∈C(A2)

U p(μ1,μ2) ≤ sup
μ1∈C(A1)

inf
μ2∈C(A2)

U 21(μ1,μ2) ≤ v21
1 .

F. We argue that v21
1 ≤ v21

2 . It is clear from the definitions that v21
1 ≤ v21

2 .

G. We argue that v21
2 ≤ v f

1 . It follows from Lemma B.1 that v21
2 ≤ v f

1 .

H. Hence, v1 = v f
1 = vd

1 = v p
1 = vo

2 = v21
1 = v21

2 . It now follows from Lemma B.1 that σ2 is optimistic optimal for 
player 2. �
Appendix C. Existence of charges

A collection F of subsets of a non-empty set X is called a field if:

[1] φ ∈F
[2] if A ∈F then X \ A ∈F and

[3] if A1, . . . , An are elements of F , then 
n⋃

i=1
Ai ∈F .

The following observation can be found as 1.(ii) on page 268 in Loś and Marczewski (1949).

Lemma C.1. Let F be a field on X, and let E ⊆ X be given. There exists a smallest field F(E) that contains both E and all elements 
of F . Moreover,

S ∈ F(E) ⇔ there are A, B ∈ F with S = (A ∩ E) ∪ (B \ E).

Proof. Suppose that F �=P(X) and E /∈F . It is clear that a smallest field F(E) exists that contains both E and all elements 
of F . It is also clear that all elements of the form (A ∩ E) ∪ (B \ E) with A, B ∈F are contained in F(E).

Define the set G by

S ∈ G ⇔ there are A, B ∈ F with S = (A ∩ E) ∪ (B \ E).

We show that G is a field that contains both E and all elements of F . Then F(E) ⊆ G , which concludes the proof.
We show that F ⊆ G and E ∈ G . Take C ∈ F . Then, by choosing A = B = C , we see that C ∈ G . So, F ⊆ G . Further, by 

choosing A = X , B = φ, we see that E ∈ G .
We show that G is a field. Clearly, φ ∈ G . Take S ∈ G . Take A, B ∈ F with S = (A ∩ E) ∪ (B \ E). Then X \ S = (Ac ∩ E) ∪

(Bc \ E). Since F is a field, we know that Ac, Bc ∈F , and we can conclude that X \ S ∈ G .
Take S1, . . . , Sn ∈ G . Take Ak, Bk ∈F with Sk = (Ak ∩ E) ∪ (Bk \ E). Then

⋃
k

Sk =
[(⋃

k

Ak

)
∩ E

]
∪

[(⋃
k

Bk

)
\ E

]
.

Since F is a field, 
⋃

k Ak, 
⋃

k Bk ∈F . Hence, 
⋃

k Sk ∈ G . �
A function μ : F → [0, 1] is called a charge on F if μ(X) = 1, and μ(A ∪ B) = μ(A) +μ(B) for all disjoint sets A, B ∈F . 

In particular μ(φ) = 0 for any charge μ.
Take E ⊆ X . A charge ν on F(E) is called an extension to F(E) of a charge μ on F if ν(A) = μ(A) for all A ∈ F . Take 

Y ⊂ X .

α(μ)(Y ) = sup {μ(A) | A ∈ F, A ⊆ Y } and β(μ)(Y ) = inf {μ(B) | B ∈ F, Y ⊆ B} .

Clearly α(μ)(Y ) ≤ β(μ)(Y ). The following observation, which we prove for completeness, follows from Theorem 2 in Loś 
and Marczewski (1949).

Lemma C.2. Let F be a field, and let μ be a charge on F . Let E ∈P(X) and r ∈ R with α(μ)(E) ≤ r ≤ β(μ)(E). Then there exists an 
extension ν of μ to F(E) such that ν(E) = r.

Proof. We show there exists a charge ν on F(E) with ν(A) = μ(A) for all A ∈F and ν(E) = r.

A. We first define an extension ν with ν(E) = α(μ)(E). Define ν : F(E) → R as follows. Take S ∈ F(E). Take A, B ∈ F
with S = (A ∩ E) ∪ (B \ E). Define

ν(S) = α(μ)(A ∩ E) + μ(B) − α(μ)(B ∩ E).
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A1. We show that this is a valid definition. Take A′, B ′ ∈F with S = (A′ ∩ E) ∪ (B ′ \ E). Then A ∩ E = A′ ∩ E . So, clearly

α(μ)(A ∩ E) = α(μ)(A′ ∩ E).

Also B \ E = B ′ \ E . Write H = B \ B ′ and J = B ′ \ B . Then H, J ∈F . So, μ(B) − μ(H) = μ(B ∩ B ′) = μ(B ′) − μ( J ). Hence, it 
remains to show that

α(μ)(B ∩ E) − μ(H) = α(μ)(B ′ ∩ E) − μ( J ).

Take D ∈F with D ⊆ B ∩ E . Write G = D \ H . Then G ∪ J ∈F , and G ∪ J ⊆ B ′ ∩ E . So,

μ(D) − μ(H) ≤ μ(G ∪ H) − μ(H)

= μ(G) + μ(H) − μ(H)

= μ(G) + μ( J ) − μ( J )

= μ(G ∪ J ) − μ( J )

≤ α(μ)(B ′ ∩ E) − μ( J ).

This shows that

α(μ)(B ∩ E) − μ(H) ≤ α(μ)(B ′ ∩ E) − μ( J ).

The reverse inequality follows similarly. This shows that the definition of ν is sound.

A2. Take F ∈F . We show that ν(F ) = μ(F ). Take A = B = F . Then

ν(F ) = α(μ)(A ∩ E) + μ(B) − α(μ)(B ∩ E) = μ(B) = μ(F ).

We show that ν(E) = α(μ)(E). Take A = X and B = φ. Then

ν(E) = α(μ)(X ∩ E) + μ(φ) − α(μ)(φ ∩ E) = α(μ)(E).

A3. Take two sets A and B in F for which A ∩ E and B ∩ E are disjoint. We show that α(μ)(A ∩ E) + α(μ)(B ∩ E) =
α(μ)((A ∪ B) ∩ E). It is clear that α(μ)(A ∩ E) + α(μ)(B ∩ E) ≤ α(μ)((A ∪ B) ∩ E). We show the reverse inequality. Take a 
C ∈F with C ⊆ (A ∪ B) ∩ E). Define U = C ∩ A and V = C ∩ B . Then U , V ∈F , U ∩ V = φ, and C = U ∪ V . So,

μ(C) = μ(U ) + μ(V ) ≤ α(μ)(A ∩ E) + α(μ)(B ∩ E).

This completes the proof.

A4. We show that ν is additive on F(E). Take two disjoint sets S and T in F(E). We show that ν(S) + ν(T ) = ν(S ∪ T ). 
Take sets A, B, C, D ∈F such that S = (A ∩ E) ∪ (B \ E) and T = (C ∩ E) ∪ (D \ E). First note that

S ∪ T = ((A ∪ C) ∩ E) ∪ ((B ∪ D) \ E).

Note that A ∩ E and C ∩ E are disjoint. Moreover, B and D can be chosen in such a way that B ∩ D = φ. Then, using A3,

ν(S) + ν(T ) = α(μ)(A ∩ E) + μ(B) − α(B ∩ E) + α(μ)(C ∩ E) + μ(D) − α(D ∩ E)

= α(μ)((A ∪ C) ∩ E) + μ(B ∪ D) − α((B ∪ D) ∩ E)

= ν(S ∪ T ).

B. In the same way we can construct κ on G with κ(E) = β(μ)(E). Taking a convex combination shows that we can find 
a ν on G with ν(E) = r. �

Let P(X) denote the collection of subsets of X . Note that P(X) is a field. Let μ be a charge on F . An extension of μ is 
a charge ν on P(X) with ν(A) = μ(A) for all A ∈F . Let μ be an extension of (μ1, μ2). By monotonicity of μ,

α(μ)(E) ≤ μ(E) ≤ β(μ)(E)

for every set E ∈P(X × X).

Theorem C.3. Assume Axiom of Choice. Let F be a field, and let μ be a charge on F . Let E ∈ P(X) and r ∈ R with α(μ)(E) ≤ r ≤
β(μ)(E). Then there exists an extension ν of μ such that ν(E) = r.

Proof. The statement now follows from Lemma C.2 and the Lemma of Zorn. �
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Corollary C.4. Let � be a non-empty set. Let F denote the collection of all finite subsets of �. Then there is a probability charge τ on 
F such that for every ω ∈ �

τ({F ∈ F | ω ∈ F }) = 1.

Proof. Take F , G ∈F . Define

V [F , G] = {H ∈ F | F ⊆ H and G ∩ H = φ}.
Let V be the collection of all finite unions of such sets V [F , G]. This collection is a field. Moreover, define τ on V as the 
linear extension of

τ (V [F , G]) =
{

1 if G = φ

0 otherwise.

Then τ is a probability charge on V . The result now follows directly from Theorem C.3. �
For probability charges μ1 ∈ C(A1) and μ2 ∈ C(A2) and a set E ∈P(A1 × A2), we define

α(μ1,μ2)(E) = sup

{
k∑

i=1

μ1(Ci) · μ2(Di) | Ci × Di are mutually disjoint, contained in E

}
,

and

β(μ1,μ2)(E) = inf

{
k∑

i=1

μ1(Ci) · μ2(Di) | Ci × Di are mutually disjoint, and cover E

}
.

Clearly, α(μ1, μ2)(E) ≤ β(μ1, μ2)(E). Let μ be an extension of (μ1, μ2). By monotonicity of μ,

α(μ1,μ2)(E) ≤ μ(E) ≤ β(μ1,μ2)(E)

for every set E ∈P(A1 × A2).

Proposition C.5. Let μ1 ∈ C(A1) and μ2 ∈ C(A2). Let E ∈ P(A1 × A2) and r ∈ R with α(μ1, μ2)(E) ≤ r ≤ β(μ1, μ2)(E). Then 
there exists an extension μ of (μ1, μ2) such that μ(E) = r.
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