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Stability Conditions for Coupled Oscillators in Linear Arrays

Pablo E. Baldivieso∗, J. J. P. Veerman†

February 20, 2019

Abstract

In this paper, we give necessary conditions for stability of flocks in R. We focus on linear arrays
with decentralized agents, where each agent interacts with only a few its neighbors. We obtain explicit
expressions for necessary conditions for asymptotic stability in the case that the systems consists of a
periodic arrangement of two or three different types of agents, i.e. configurations as follows: ...2-1-2-1 or
...3-2-1-3-2-1. Previous literature indicated that the (necessary) condition for stability in the case of a
single agent (...1-1-1) held that the first moment of certain coefficients governing the interactions between
agents has to be zero. Here, we show that that does not generalize. Instead, the (necessary) condition
in the cases considered is that the first momentum plus a nonlinear correction term must be zero.

1 Introduction

Linear arrays of agents, or particles have been studied in many areas such as flock formations, see [13], [16]
and vehicular platooning, see [3], [6], and [11]. In this paper, we direct our attention to flocks in R, namely
N cars driving on a one-lane road. These equations have the following general form

d

dt

(

z

ż

)

=

(

0 I

Lx Lv

)(

z

ż

)

, (1)

where I is the N ×N identity, Lx and Lv are N ×N so-called Laplacian matrices. The symbol z is used for
the N positions of the agents on the line. This equation is meant to express the idea that the acceleration of
the kth agent depends on the positions relative to it of some of his neighbors — this is expressed through the
matrix Lx — and on the velocities relative to it — expressed through Lv. Agents whose response depends
only on positions and velocities relative to them are called decentralized. The fact they are decentralized
implies that Lx and Lv have row-sum zero. Hence they share many charateristics with the usual Laplacian
operator (for details, see [10] and [15]). Ultimately, what we want to know is the behavior of the flock when
the following happens. For t ≤ 0 the flock is in equilibrium, that is: zi = 0 and żi is constant. For t ≥ 0, the
first car changes its velocity, and the others “try” to follow.

But here a double complication arises. First, Lx and Lv do not (generally) commute, and thus we have
no analytical means of solving these equations, and second, there may be non-trivial boundary conditions at
the beginning and end of the flock.

This problem was partially overcome in [4] and [5]. In those papers a series of conjectures was proposed
that relate solutions of the system on the real line (with non-trivial boundary conditions) to solutions of
system on the circle (i.e. periodic boundary conditions). The reason this simplifies the equations is that for
systems on the circle, the Laplacians Lx and Lv become circulant matrices. Since circulant matrices can
be simultaneously diagonalized ([14]), this renders the system on the circle, at least in principle, soluble by
analytical means. Note that this takes care of both problems just mentioned, because on the circle there is
no boundary, and, hence, no dependence on boundary conditions. That is: any quantitative outcome of the
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theory will be independent of boundary conditions. Naturally, flocks with few agents may be substantially
influenced by boundary conditions. So, the theory that results from using the circular flocks to understand
flocks on the line is asymptotic in N , the number of agents in the system. That is to say, it gives a
prediction for the trajectories of the individual agents; and the relative difference between predicted and
actual trajectories should go to zero as the number of agents, N , tends to infinity.

Thus we can solve these systems on the circle. The delicate part in this, of course, is to find out how
exactly to transition from solutions in the circular flock to solution of the flock on the line. This is described
in the conjectures formulated in [5]. These conjectures are quite detailed, but in spirit they are akin to the
traditional “periodic boundary” approach commonly used in physical systems [1]. However, physical systems
such as crystals have symmetric interactions, whereas the equations we consider (generally) do not. Indeed,
it is quite reasonable to allow for the possibility to react differently to a trajectory of car behind than to
a car in front. As a result, the validity of the “periodic boundary” approach commonly used in physical
systems does not imply validity of the conjectures in [5]. However, fairly extensive numerical testing has
been performed by [5], [9], and [8], to the effect that in all simulations, the theory appears to have been
confirmed.

The theory developed in [4] and [5] can also be used to develop a necessary condition for stability of the
flock. Let P be the parameter space, then such a condition typically has the form f(p) = 0 where f : P → R.
Let us take as example the systems studied in [4] and [5].

z̈k = gx



zk +
∑

j 6=0

ρx,jzk+j



+ gv



żk +
∑

j 6=0

ρv,j żk+j



 . (2)

Here, the assumption is that all agents are equal, and so each agent interacts the same way with the kth agent
in front (or behind) it. Due to the Laplacian property of Lx and Lv, we have

∑

j 6=0 ρx,j =
∑

j 6=0 ρv,j = −1.
What was proved in [4] is that if

∑

j 6=0 ρx,jj 6= 0, then for large N the system on the circle is unstable. The
conjectures in [5] then imply that if that condition holds, then for large N the system on the line has some
form of instability. This means that either the system on the line is unstable (Definition 1.1), or it is stable
but has a transient that grows exponentially in N , the number of agents (Definition 1.2). This was called
flock unstable in [5]. Both types of instabilities are undesirable if we want to have large efficient traffic flow.
Thus

∑

j 6=0 ρx,jj = 0 is a necessary condition for stability (though generally not sufficient).
Thus, it seemed that there was a very general principle that first moment of the coeffients of the spatial

Laplacian Lx to the stability of the system. This was confirmed by [9] and [8] in more detail and accompanied
by extensive simulations. In looking to prove such a far-reaching statement, we, very unexpectedly, found
that for more complicated systems — presented in this work — that statement is generally false. In what
follows, we will show that for certain systems where we allow more than 1 type of agent, a necessary condition
for stability may still be derived, but its form is more complicated than the previous papers led to expect.
Corollaries 3.1 and 2.1 show that in the cases at hand, a nonlinear correction to the first moment needs to
be taken into account. We also present numerical simulations to show that, in spite of this, the predictions
to which the theory developed leads us, are still asymptotically (for large N) accurate.

This is of considerable importance if one studies the effect of non-symmetric interactions in these systems.
Indeed, these formulas show that, surprisingly, stability is a co-dimension one phenomenon! Thus, without
the help of these formulae, it would be nigh impossible to find stable flocks with non-symmetric interactions
(in the spatial Laplacian) by experiment, and one might be tempted to conclude that there are none. On the
other hand, the non-symmetric stable interactions are important, because they allow us to further optimize
these systems for applications. In addition, they provide qualitatively new types of solutions (see [8]).

For future reference, we need a definition of stability. In consequence of the fact that Lv and Lx are
Laplacians, we see that for arbitrary constant x0 and v0 (1) has a solution zi = x0+v0t. This is desirable for
a flock. It does mean, however, that the matrix associated with this linear system must have a Jordan block
of dimension 2 associated to the eigenvalue 0. In this paper, we will call a flock stable if all other eigenvalues
have strictly negative real part.
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3 2 1 3 2 1 3 2 1

j=3 j=2 j=1

Figure 1: Periodic arrangement of flock with three types of agents, labeled by 1,2, and 3. At time t = 0, the
first agent start moving to the right.

Definition 1.1. The system (1) is linearly stable if it has one eigenvalue zero with geometric multiplicity
one and algebraic multiplicity two, and all other eigenvalues have real part less than zero. The system is
unstable if at least one eigenvalue has positive real part.

Definition 1.2. The system (1) is flock-stable if it is linearly stable and if transients grow less than expo-
nentially fast in the number of agents. It is called flock-unstable if the growth is exponential.

2 Periodic Arrangements with Nearest Neighbor Interactions.

Linear flocks in R of type ...1-1-1 with nearest neighbor interactions have been thoroughly studied ([5], [9]).
The necessary condition for stability is that the first moment of the coefficients of the spatial Laplacian
must be zero. For flocks of type ...2-1-2-1, the same is true. Details of the latter can be found in [2]. Here
we will look at the arrangement ...3-2-1-3-2-1. Thus we consider of linear arrays with 3N (N of each type)

agents in which each agent interacts with its nearest neighbors. The quantities z
(i)
j are the deviations from

the equilibrium position at a fixed distance from the leader (or “positions”, for short). the quantities ż
(i)
j ,

i = 1, 2, 3, and j = 1 . . .N are their derivatives with respect to time.
The equations of motions for each type of particle are (see Figure 1):

z̈
(1)
j = g(1)x

(

z
(1)
j + ρ

(1)
x,1z

(2)
j + ρ

(1)
x,−1z

(3)
j−1

)

+ g(1)v

(

ż
(1)
j + ρ

(1)
v,1ż

(2)
j + ρ

(1)
v,−1ż

(3)
j−1

)

z̈
(2)
j = g(2)x

(

z
(2)
j + ρ

(2)
x,1z

(3)
j + ρ

(2)
x,−1z

(1)
j

)

+ g(2)v

(

ż
(2)
j + ρ

(2)
v,1ż

(3)
j + ρ

(2)
v,−1ż

(1)
j

)

z̈
(3)
j = g(3)x

(

z
(3)
j + ρ

(3)
x,1z

(1)
j+1 + ρ

(3)
x,−1z

(2)
j

)

+ g(3)v

(

ż
(3)
j + ρ

(3)
v,1ż

(1)
j+1 + ρ

(3)
v,−1ż

(2)
j

)

. (3)

We assume the flocks to be decentralized, that is: the acceleration of an individual depends only on observation
relative to that individual. For example, the first of the equations in equation (3), should be thought of as:

z̈
(1)
j = g(1)x

[

ρ
(1)
x,1

(

z
(2)
j − z

(1)
j

)

+ ρ
(1)
x,−1

(

z
(3)
j−1 − z

(1)
j

)]

+ g(1)x

[

ρ
(1)
x,1

(

ż
(2)
j − ż

(1)
j

)

+ ρ
(1)
x,−1

(

ż
(3)
j−1 − ż

(1)
j

)]

.

This leads to the following constraints: for i ∈ {1, 2, 3}

ρ
(i)
x,1 + ρ

(i)
x,−1 = −1, ρ

(i)
v,1 + ρ

(i)
v,−1 = −1 . (4)

We will assume that g
(1)
x , g

(2)
x , g

(3)
x , g

(1)
v , g

(2)
v , and g

(3)
v are real numbers.

According to the strategy described in the introduction, instability in the system with periodic boundary
condition will imply some form of instability (Definition 1.1 or Definition 1.2) in the system on the real line
if N is large. Thus our task reduces to deriving a criterion for instability for the system, given periodic

3



boundary conditions. The system subject to periodic boundary conditions is described as follows.

d

dt

















z(1)

z(2)

z(3)

ż(1)

ż(2)

ż(3)

















=



















0 0 0 I 0 0

0 0 0 0 I 0

0 0 0 0 0 I

g
(1)
x I g

(1)
x ρ

(1)
x,1I g

(1)
x ρ

(1)
x,−1P− g

(1)
v I g

(1)
v ρ

(1)
v,1I g

(1)
v ρ

(1)
v,−1P−

g
(2)
x ρ

(2)
x,−1I g

(2)
x I g

(2)
x ρ

(2)
x,1I g

(2)
v ρ

(2)
v,−1I g

(2)
v I g

(2)
v ρ

(2)
v,1I

g
(3)
x ρ

(3)
x,1P+ g

(3)
x ρ

(3)
x,−1I g

(3)
x I g

(3)
v ρ

(3)
v,1P+ g

(3)
v ρ

(3)
v,−1I g

(3)
v I



































z(1)

z(2)

z(3)

ż(1)

ż(2)

ż(3)

















,

(5)

where P+ and its inverse P− are N ×N permutations matrices

P+ =



















0 1 0 · · · 0

0 0 1
. . .

...
...

. . .
. . .

. . . 0

0
. . .

. . . 0 1
1 0 · · · 0 0



















, P− =



















0 0 · · · 0 1

1 0 0
. . . 0

0 1
. . .

. . .
...

...
. . .

. . . 0 0
0 · · · 0 1 0



















. (6)

We will abbreviate equation (5) simply as

d

dt

(

z

ż

)

= M

(

z

ż

)

. (7)

Definition 2.1. From now on, we set φm = 2πm
N

, m ∈ {0, · · ·N − 1}. When there is no ambiguity, we will
often drop the subscript from φm. We let vm be the n-vector whose jth component equals eijφm .

Proposition 2.1. The eigenvalues ν and associated eigenvectors uν(φm) of M satisfy

uν(φm) =

















ǫ1vm

ǫ2vm

ǫ3vm

νǫ1vm

νǫ2vm

νǫ3vm

















.

For each m ∈ {0, · · ·N − 1} given, there are six eigenpairs (counting multiplicity) determined by solving the
following equation for ν and ǫi:








g
(1)
x + νg

(1)
v − ν2 g

(1)
x ρ

(1)
x,1 + νg

(1)
v ρ

(1)
v,1

(

g
(1)
x ρ

(1)
x,−1 + νg

(1)
v ρ

(1)
v,−1

)

e−iφ

g
(2)
x ρ

(2)
x,−1 + νg

(2)
v ρ

(2)
v,−1 g

(2)
x + νg

(2)
v − ν2 g

(2)
x ρ

(2)
x,1 + νg

(2)
v ρ

(2)
v,1

(

g
(3)
x ρ

(3)
x,1 + νg

(3)
v ρ

(3)
v,1

)

eiφ g
(3)
x ρ

(3)
x,−1 + νg

(3)
v ρ

(3)
v,−1 g

(3)
x + νg

(3)
v − ν2













ǫ1
ǫ2
ǫ3



 =





0
0
0



 .

Proof. From equations (5) and (7), we see that an eigenvector

(

z

ż

)

associated to the eigenvalue ν satisfies

ż = νz. Now Pn
+ = I, and so ǫiφm and vm are the eigenvalues and eigenvectors of P+, and ǫ−iφm and vm of

P−. Then by substituting uν into (5), one sees that these are the eigenvectors of M.
For the second part, we can write

Mu = νu , (8)

substitute the form of the eigenvector just derived, and substitute that in equation (5). We obtain three
non-trivial equations (from the last three lines of (5)), which can be simplified and rearranged to give the
second part of the proposition.
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In short, we can find all eigenpairs by setting to zero the determinant of the matrix in Proposition 2.1. We
obtain a polynomial Q of degree six in ν. In its full glory, the polynomial is more than a little cumbersome.

From now on, we take superscripts g and ρ modulo 3. For example, g
(5)
x = g

(2)
x . This allows us to manage

the expressions a little better.

Definition 2.2. Let a, b, c, d, and t be real numbers, define

D(a, b, c; t) ≡ abc(eit − 1)− (1 + a)(1 + b)(1 + c)(e−it − 1) ,

E(a, b, c, d) ≡ ab(1 + c+ cd) .

The following Lemma is the result of substantial bookkeeping which we leave to the reader.

Lemma 2.1. When φ = 0, the matrix of Proposition 2.1 has determinant Q(ν) equal to

−ν2
∑3

i=1 E(g
(i)
x , g

(i+1)
x , ρ

(i)
x,1, ρ

(i+1)
x,1 )

−ν3
∑3

i=1 E(g
(i)
x , g

(i+1)
v , ρ

(i)
x,1, ρ

(i+1)
v,1 ) + E(g

(i)
v , g

(i+1)
x , ρ

(i)
v,1, ρ

(i+1)
x,1 )

−ν4
∑3

i=1 [g
(i)
x + E(g

(i)
x , g

(i+1)
x , ρ

(i)
x,1, ρ

(i+1)
x,1 )]

+ν5
∑3

i=1 g
(i)
x

−ν6 1

.

The full expression of the constant term of Q(ν) is a0(φ), where

a0(φ) = g(1)x g(2)x g(3)x D(ρ
(1)
x,1, ρ

(2)
x,1, ρ

(3)
x,1;φ) .

To simplify the statement of the main results further, we also need the following definition.

Definition 2.3. For j and k positive, we define

α
(k)
x,j ≡ ρ

(k)
x,j + ρ

(k)
x,−j and β

(k)
x,j ≡ ρ

(k)
x,j − ρ

(k)
x,−j .

Because of the constraint (4), the α’s are equal to 1 in this case (but not in the next section).

Theorem 2.1. If any of the following conditions are violated, then for large N , the system given by (3) on
the circle is not stable:

(i) g
(1)
x 6= 0, g

(2)
x 6= 0, and g

(3)
x 6= 0 and

(ii)
∑3

i=1 E(g
(i)
x , g

(i+1)
x , ρ

(i)
x,1, ρ

(i+1)
x,1 ) 6= 0 and

(iii)

3
∑

i=1

β
(i)
x,1 +

3
∏

i=1

β
(i)
x,1 = 0 .

Proof. We start with part (i). Suppose for example that g
(1)
x = 0. Then the first row of the matrix in

Proposition 2.1 has a factor ν. Since the determinant is a linear function of the rows, it follows that the
determinant of that matrix also has a factor ν. This implies that the zero eigenvalue has multiplicity of at
least N , contradicting Definition 1.1.

Suppose (ii) is false. Then for φ = 0, we get multiplicity 3 for the eigenvalue zero. This violates Definition
1.1. (In addition, we may get eigenvalues with positive real part, if Corollary 3.2 applies.)

Part (iii) must hold, because if we assume part (ii), then by Lemma 2.1, the system satisfies all conditions
of Proposition 3.2, except the condition that a′0(0) 6= 0. That proposition implies instability, and so to avoid
the system from being unstable, we must have a′0(0) = 0. Part (i) plus the second part of Lemma 2.1 then
imply

∂

∂φ
D(ρ

(1)
x,1, ρ

(2)
x,1, ρ

(3)
x,1;φ)

∣

∣

φ=0
= 0 .

5



Use Definition 2.3 and the constraints (4), to substitute

ρ
(i)
x,1 =

1

2

(

β
(i)
x,1 − 1

)

(9)

in this equation. Part (iii) follows by differentiation and setting φ = 0.

Now, the conjectures in [5] state that instability on the circle implies some form of instability on the line.
It seems unlikely that the system on the line can be stable if one of the gx’s is zero. However, we have no
proof of this. Thus we have to formulate the corollary for systems on the line carefully.

Corollary 2.1. The conjectures of [5] imply the following. If g
(1)
x 6= 0, g

(2)
x 6= 0, and g

(3)
x 6= 0 and

3
∑

i=1

β
(i)
x,1 +

3
∏

i=1

β
(i)
x,1 6= 0 ,

then for large N , the system on the line given by 3 has some form of instability (Definitions 1.1 or 1.2).

Figure 2: a) Boundary Condition Type I. Maximum amplitude of −221.0 at t = 244.6. b) Boundary Condition
Type II. Maximum amplitude of −220.8 at t = −244.4. c) Dynamics of a flock unstable system.

The surprise is that the first moment
∑3

i=1 β
(i)
x,1 apparently needs an unexpected cubic correction,

∏3
i=1 β

(i)
x,1. We perform simulations to see if this conclusion is borne out by simulations on the real line

(independent of reasonable boundary conditions).
Similar to what was done in [8], we consider two sets of boundary conditions. We will call them Type

I and Type II boundary conditions. Since we want to maintain the centralized character of the systems,

6



both sets of boundary conditions must maintain the “Laplacian” property, namely that row-sums of each

Laplacian are zero. Type I adjusts the central coefficients ρ
(i)
x,0, and ρ

(i)
v,0 on the boundaries as follows:

z̈
(1)
1 = 0

z̈
(3)
N = g(3)x

(

−ρ
(3)
x,−1z

(3)
N + ρ

(3)
x,−1z

(2)
N

)

+ g(3)v

(

−ρ
(3)
v,−1ż

(3)
N + ρ

(3)
v,−1ż

(2)
N

)

In Type II boundary conditions, we keep the central coefficients ρ
(i)
x,0, and ρ

(i)
v,0 equal to 1 and we adjust

the remaining coefficients accordingly:

z̈
(1)
1 = 0

z̈
(3)
N = g(3)x

(

z
(3)
N − z

(2)
N

)

+ g(3)v

(

ż
(3)
N − ż

(2)
N

)

We run simulations of the system in R considering these two boundary conditions with initial condition:

z
(i)
k (0) = ż

(i)
k (0) = 0 except ż

(1)
1 (0) = 1 .

Figure 2a) and 2b) are a numerical simulations on the line with parameters satisfying Corollary 2.1:

N = 60 (of each type), g
(1)
x = g

(2)
x = g

(3)
x = −1

ρ
(1)
x,1 = −0.6, ρ

(2)
x,1 = −0.8, ρ

(3)
x,1 = −0.142857..., ρ

(1)
x,1 = ρ

(2)
v,1 = ρ

(3)
v,1 = −0.3

Thus
∑3

i=1 β
(i)
x,1 = −0.0858, while

∑3
i=1 β

(i)
x,1+

∏3
i=1 β

(i)
x,1 = 0. So it is far from satisfying the first, but satisfies

the stability condition derived in this section. From the figures, it is apparent that the system is stable, and
that the outcome is largely independent of the type of boundary condition.

On the other hand, Figure 2c) shows the dynamics of a flock unstable system. Here, the parameters

N = 60 (of each type), g
(1)
x = g

(2)
x = g

(3)
x = −1

ρ
(1)
x,1 = −0.6, ρ

(2)
x,1 = −0.8, ρ

(3)
x,1 = −0.1, ρ

(1)
x,1 = ρ

(2)
v,1 = ρ

(3)
v,1 = −0.3

satisfy
∑3

i=1 β
(i)
x,1 = 0, but not the condition derived in this section.

3 Periodic Arrangements with Next Nearest Neighbor Interac-

tions

Next nearest neighbor interaction means that an agent can see up to two agents in front and behind it.
Although such systems with identical agents were included in [4], they were more thoroughly studied in [8],
where it was shown that for certain parameter values, these systems can generate so-called reflectionless
waves. In this section, we consider the stability problem for the more complicated case of flocks of type
...2-1-2-1 with next nearest neighbor interaction (see Figure 3).

As before, we formulate the system with periodic boundary conditions and analyze the condition for
instability. With the same notation as before, the relevant equations of motion become

z̈
(1)
k = g(1)x (z

(1)
k + ρ

(1)
v,1z

(2)
k + ρ

(1)
v,−1z

(2)
k−1 + ρ

(1)
v,2z

(1)
k+1 + ρ

(1)
v,−2z

(1)
k−1)

+ g(1)v (ż
(1)
k + ρ

(1)
v,1ż

(2)
k + ρ

(1)
v,−1ż

(2)
k−1 + ρ

(1)
v,2ż

(1)
k+1 + ρ

(1)
v,−2ż

(1)
k−1)

z̈
(2)
k = g(2)x (z

(2)
k + ρ

(2)
x,−1z

(1)
k + ρ

(2)
x,1z

(1)
k+1 + ρ

(2)
x,−2z

(2)
k−1 + ρ

(2)
x,2z

(2)
k+1)

+ g(2)v (ż
(2)
k + ρ

(2)
v,−1ż

(1)
k + ρ

(2)
v,1ż

(1)
k+1 + ρ

(2)
v,−2ż

(2)
k−1 + ρ

(2)
v,2ż

(2)
k+1)

. (10)
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2 1 2 1 2 1

j=3 j=2 j=1

2 1

j=4

Figure 3: Periodic arrangement of flock with two types of agents, labeled by 1 and 2. Each agent uses
information from four others; the arrows indicate information flow. At time t = 0, the first agent start
moving to the right.

Because we assume the equations are decentralized, we get the constraints:

2
∑

j=−2,j 6=0

ρ
(i)
x,j = −1 ,

2
∑

j=−2,j 6=0

ρ
(i)
v,j = −1 . (11)

As before, the system can be written more compactly as (7). But now M is given by











0 0 I 0

0 0 0 I

g
(1)
x B

(1)
x g

(1)
x A

(1)
x g

(1)
v B

(1)
v g

(1)
v A

(1)
v

g
(2)
x A

(2)
x g

(2)
x B

(2)
x g

(2)
v A

(2)
v g

(2)
v B

(2)
v











. (12)

The N×N matrices A and B are defined below in terms of the permutation matrices P± of (6). All matrices
A and B are circulant N ×N matrices. Thus in the basis vm given in Definition 2.1 is an eigenbasis for all,
and the eigenvalues are trivial to compute. We list all matrices and their eigenvalues here.

A
(1)
x = ρ

(1)
x,1I+ ρ

(1)
x,−1P− ; λ

(1)
x (φ) = ρ

(1)
x,1 + ρ

(1)
x,−1e

−iφ .

A
(2)
x = ρ

(2)
x,−1I+ ρ

(2)
x,1P+ ; λ

(2)
x (φ) = ρ

(2)
x,−1 + ρ

(2)
x,1e

iφ .

A
(1)
v = ρ

(1)
v,1I+ ρ

(1)
v,−1P− ; λ

(1)
v (φ) = ρ

(1)
v,1 + ρ

(1)
v,−1e

−iφ .

A
(2)
v = ρ

(2)
v,−1I+ ρ

(2)
v,1P+ ; λ

(2)
v (φ) = ρ

(2)
v,−1 + ρ

(2)
v,1e

iφ .

B
(1)
x = I+ ρ

(1)
x,−2P− + ρ

(1)
x,2P+ ; µ

(1)
x (φ) = 1 + ρ

(1)
x,2e

iφ + ρ
(1)
x,−2e

−iφ .

B
(2)
x = I+ ρ

(2)
x,−2P− + ρ

(2)
x,2P+ ; µ

(2)
x (φ) = 1 + ρ

(2)
x,2e

iφ + ρ
(2)
x,−2e

−iφ .

B
(1)
v = I+ ρ

(1)
v,−2P− + ρ

(1)
v,2P+ ; µ

(1)
v (φ) = 1 + ρ

(1)
v,2e

iφ + ρ
(1)
v,−2e

−iφ .

B
(2)
v = I+ ρ

(2)
v,−2P− + ρ

(2)
v,2P+ ; µ

(2)
v (φ) = 1 + ρ

(2)
v,2e

iφ + ρ
(2)
v,−2e

−iφ .

(13)

The following proposition is derived in the same way as the analogous proposition in the previous Section.

Proposition 3.1. The eigenvalues ν and associated eigenvectors uν(φm) of M satisfy

uν(φm) =









ǫ1vm

ǫ2vm

νǫ1vm

νǫ2vm









.

For each m ∈ {0, · · ·N −1} given, there are four eigenpairs (counting multiplicity) determined by solving the
following equation for ν and ǫi (we dropped the argument φ):

(

g
(1)
x µ

(1)
x + νg

(1)
v µ

(1)
v − ν2 g

(1)
x λ

(1)
x + νg

(1)
v λ

(1)
v

g
(2)
x λ

(2)
x + νg

(2)
v λ

(2)
v g

(2)
x µ

(2)
x + νg

(2)
v µ

(2)
v − ν2

)

(

ǫ1
ǫ2

)

=

(

0
0

)

.
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Lemma 3.1. When φ = 0, the matrix of Proposition 3.1 has determinant Q(ν) equal to

ν2
[

ν2 + ν
(

g(1)v α
(1)
v,1 + g(2)v α

(2)
v,1

)

+
(

g(1)x α
(1)
x,1 + g(2)x α

(2)
x,1

)]

.

The full expression of the constant term of Q(ν) is a0(φ), where

a0(φ) = g(1)x g(2)x

(

µ(1)
x (φ)µ(2)

x (φ) − λ(1)
x (φ)λ(2)

x (φ)
)

.

Proof. The full determinant of the matrix in Proposition 3.1 is equal to

1 g
(1)
x g

(2)
x

(

µ
(1)
x µ

(2)
x − λ

(1)
x λ

(2)
x

)

+ν
(

g
(1)
x g

(2)
v

(

µ
(1)
x µ

(2)
v − λ

(1)
x λ

(2)
v

)

+ g
(1)
v g

(2)
x

(

µ
(1)
v µ

(2)
x − λ

(1)
v λ

(2)
x

))

+ν2
(

−g
(1)
x µ

(1)
x − g

(2)
x µ

(2)
x + g

(1)
v g

(2)
v

(

µ
(1)
v µ

(2)
v − λ

(2)
v λ

(2)
v

))

+ν3
(

−g
(1)
v µ

(1)
v − g

(2)
v µ

(2)
v

)

+ν4 1

.

Now set φ = 0. From (13) and recalling Definition 2.3, we see that for r ∈ {x, v} and i ∈ {1, 2}:

µ(i)
r (0) = 1 + α

(i)
r,2 and λ(i)

r (0) = α
(i)
r,1 .

Note that the constraint (11) gives for r ∈ {x, v}

1 + α
(i)
r,1 + α

(i)
r,2 = 0 =⇒ −µ(i)

r (0) = λ(i)
r (0) = α

(i)
r,1 .

Substituting this, and some algebra, yields the Lemma.

The next results are entirely analogous to the ones in the previous section, and we mention them almost
without comment or proof.

Theorem 3.1. Let g
(1)
x and g

(2)
x be real numbers. Then necessary conditions for stability of (10) are

(i) g
(1)
x 6= 0 and g

(2)
x 6= 0, and

(ii) g
(1)
x α

(1)
x,1 + g

(2)
x α

(2)
x,1 > 0, and g

(1)
v α

(1)
v,1 + g

(2)
v α

(2)
v,1 > 0 and

(iii) α
(2)
x,1

(

β
(1)
x,1 + 2β

(1)
x,2

)

+ α
(1)
x,1

(

β
(2)
x,1 + 2β

(2)
x,2

)

= 0.

Proof. By and large, this proof is very similar to that of Theorem 2.1. Part (ii) is now more easily derived
by explicitly solving for the zero in Q(ν) when φ = 0 (see Lemma 3.1). In (iii), it is best to differentiate the
formula in the second part of Lemma 3.1 directly. The derivatives of the λ’s and µ’s are easily expressed
directly in the α’s and β’s.

Corollary 3.1. The conjectures of [5] imply the following. If g
(1)
x 6= 0 and g

(2)
x 6= 0 and

α
(2)
x,1

(

β
(1)
x,1 + 2β

(1)
x,2

)

+ α
(1)
x,1

(

β
(2)
x,1 + 2β

(2)
x,2

)

6= 0 ,

then for large N , the system on the line given by (10) has some form of instability (Definitions 1.1 or 1.2).

Denoting the first moment of the coefficients ρ
(i)
x,j of agent of type i by M (i), we can reformulate this

condition as:

M (1) +M (2) −
α
(1)
x,1

α
(1)
x,1 + α

(1)
x,2

M (1) −
α
(2)
x,1

α
(1)
x,1 + α

(1)
x,2

M (1) 6= 0 .
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Figure 4: a) Boundary Condition Type I. Maximum amplitude of −303.9 at t = 314.7. b) Boundary Condition
Type II. Maximum amplitude of −303.1 at t = 314.3. c) Dynamics of an unstable system.

Thus, we see that the first moment apparently needs a quadratic correction. Again, we do some experiments
to make sure that this phenomenon actually occurs in the simulations.

As before, we also check for dependence on (non-trivial) boundary condition. In type I boundary condi-

tions, the central coefficients ρ
(i)
x,0, and ρ

(i)
v,0 are adjusted.

z̈
(1)
1 = 0

z̈
(1)
N = g(1)x

(

−(ρ
(1)
x,1 + ρ

(1)
x,−1 + ρ

(1)
x,−2)z

(1)
N + ρ

(1)
x,1z

(2)
N + ρ

(1)
x,−1z

(2)
N−1 + ρ

(1)
x,−2z

(1)
N−1

)

+ g(1)v

(

−(ρ
(1)
v,1 + ρ

(1)
v,−1 + ρ

(1)
v,−2)ż

(1)
N + ρ

(1)
v,1ż

(2)
N + ρ

(1)
v,−1ż

(2)
N−1 + ρ

(1)
v,−2ż

(1)
N−1

)

z̈
(2)
1 = g(2)x

(

−(ρ
(2)
x,−1 + ρ

(2)
x,1 + ρ

(2)
x,2)z

(2)
1 + ρ

(2)
x,−1z

(1)
1 + ρ

(2)
x,1z

(1)
2 + ρ

(2)
x,2z

(2)
2

)

+ g(2)v

(

−(ρ
(2)
v,−1 + ρ

(2)
v,1 + ρ

(2)
v,2)ż

(2)
1 + ρ

(2)
v,−1ż

(1)
1 + ρ

(2)
v,1ż

(1)
2 + ρ

(2)
v,2ż

(2)
2

)

z̈
(2)
N = g(2)x

(

−(ρ
(2)
x,−1 + ρ

(2)
x,−2)z

(2)
N + ρ

(2)
x,−1z

(1)
N + ρ

(2)
x,−2z

(2)
N−1

)

+ g(2)v

(

−(ρ
(2)
v,−1 + ρ

(2)
v,−2)ż

(2)
N + ρ

(2)
v,−1ż

(1)
N + ρ

(2)
v,−2ż

(2)
N−1

)

.

For Type II BC, we keep the central coefficients ρ
(i)
x,0, and ρ

(i)
v,0 equal to 1 and we adjust the remaining
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coefficients accordingly such that the sum of coefficients is zero as follows:

z̈
(1)
1 = 0

z̈
(1)
N = g(1)x

(

z
(1)
N + ρ

(1)
x,1z

(2)
N + ρ

(1)
x,−1z

(2)
N−1 − (1 + ρ

(1)
x,1 + ρ

(1)
x,−1)z

(1)
N−1

)

+ g(1)v

(

ż
(1)
N + ρ

(1)
v,1ż

(2)
N + ρ

(1)
v,−1ż

(2)
N−1 − (1 + ρ

(1)
z,1 + ρ

(1)
v,−1)ż

(1)
N−1

)

z̈
(2)
1 = g(2)x

(

z
(2)
1 + ρ

(2)
x,−1z

(1)
1 + ρ

(2)
x,1z

(1)
2 − (1 + ρ

(2)
x,1 + ρ

(2)
x,−1)z

(2)
2

)

+ g(2)v

(

ż
(2)
1 + ρ

(2)
v,−1ż

(1)
1 + ρ

(2)
v,1ż

(1)
2 − (1 + ρ

(2)
v,1 + ρ

(2)
v,−1)ż

(2)
2

)

z̈
(2)
N = g(2)x

(

z
(2)
N + (ρ

(2)
x,1 + ρ

(2)
x,−1)z

(1)
N + (ρ

(2)
x,2 + ρ

(2)
x,−2)z

(2)
N−1

)

+ g(2)v

(

ż
(2)
N + (ρ

(2)
v,1 + ρ

(2)
v,−1)ż

(1)
N + (ρ

(2)
v,2 + ρ

(2)
v,−2)ż

(2)
N−1

)

We run simulations of the system in R considering these two boundary conditions with initial condition:

z
(i)
k (0) = ż

(i)
k (0) = 0 except ż

(1)
1 (0) = 1 .

Figures 4a) and 4b) show the dynamics of a system with next nearest neighbor interactions and boundary
conditions Type I and Type II respectively. The parameters were chosen to satisfy Theorem 3.1 as follows:

ρ
(1)
x,1 = −0.0833 · · · , ρ(1)x,−1 = −0.25, ρ

(1)
x,2 = −0.333 · · · , ρ(1)x,−2 = −0.333 · · ·

ρ
(2)
x,1 = −0.45, ρ

(2)
x,−1 = −0.15, ρ

(2)
x,2 = −0.20, ρ

(2)
x,−2 = −0.20

ρ
(1)
v,1 = −0.30, ρ

(1)
v,−1 = −0.70, ρ

(1)
v,2 = 0, ρ

(1)
v,−2 = 0

ρ
(2)
v,1 = −0.30, ρ

(2)
v,−1 = −0.70, ρ

(2)
v,2 = 0, ρ

(2)
v,−2 = 0

N = 200 (of each type), g(1)x = g(2)x = g(1)v = g(2)v = −1

(14)

On the other hand, Figure 4c) shows the dynamics of a system in R with an evident instability of some
type. All parameters are the same as in the previous simulation just above except

ρ
(1)
x,1 = −0.30, ρ

(1)
x,−1 = −0.25, ρ

(1)
x,2 = −0.25, ρ

(1)
x,−2 = −0.20

ρ
(2)
x,1 = −0.30, ρ

(2)
x,−1 = −0.55, ρ

(2)
x,2 = −0.10, ρ

(2)
x,−2 = −0.05 .

(15)

These were chosen to satisfy
∑

i∈{1,2} β
(i)
x,1 + 2β

(i)
x,2 = 0, but not the condition of Corollary 3.1.

Appendix

Proposition 3.2. For n ≥ 2, define Qn as follows:

Qn(z) =

n
∑

i=2

ai(t)z
i + 2a1(t)z + a0(t) ,

where the ai are analytic functions on R modulo 2π. Assume further that

a0(0) = a1(0) = 0 and a2(0) 6= 0 and a′0(0) 6= 0 .

Then there is a neighborhood N of the origin and an ǫ > 0 in which the zeros of {Qn(t)}t∈(−ǫ,ǫ) form two
differentiable curves intersecting orthogonally at the origin.
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z  (t)

1/2(ct)

k+

Figure 5: The curve γL around zk,+(t) (solid) which itself is on a curve tangent to
√
ct (dashed).

In particular, it follows that near the origin, the solutions form a perpendicular cross and thus at least one
on the arms of the cross extends into the right half-plane.

Proof. We start with n = 2. In this case, we can write out the solutions:

z±(t) =
−a1 ±

√

−a0a2 + a21
a2

= ±
√

−a0

a2

√

1− a21
a0a2

− a1

a2
.

Let us define a curve δ(t) to be tangent to a curve η(t) at the origin for t = 0 if δ(0) = η(0) = 0 and

lim
t→0

|δ(t) − η(t)|
|η(t)| = 0 .

One checks that we need all the assumptions on the coefficients ai, i ∈ {0, 1, 2}, to show that z±(t) is tangent

to ±
√

−a′0(0)

a2(0)
t.

We proceed by doing n−2 induction steps. Given Qn, we form all the intermediate polynomials {Qk}nk=2.
Consider t ∈ Nǫ = (−ǫ, ǫ) for ǫ small. We wish to prove that t ∈ Nǫ, the solutions of Qk form two curves

zk,±(t) tangent at the origin to ±
√

−a′0(0)

a2(0)
t which we will from now one denote by ±

√
ct. See Figure 5.

We proved the statement holds for n = 2. The induction hypothesis is that the above statement holds for
some fixed k ∈ {2, · · ·n− 1}. Fix an arbitrarily large L. Then fix ǫ > 0 small enough, so that the conditions
in the following hold. Qk has no other zeros in an 2

√

|cǫ| neighborhood. So in the
√

|cǫ| neighborhood, Qk

can be written as (z − zk,+)(z − zk,−)Q̃k(t, z), where |Q̃k(t, z)| ≥ 1
2 |Q̃k(0, 0)| 6= 0. Let γL(s) be the curve

zk,+(t) +
|zk,+(t)|

L
eis. By the induction hypothesis, zk,±(t) are tangent to ±

√
ct. Now we have for ǫ small

enough
|ak+1(t)γ

k+1
L | ≤ |ak+1(t)| |zk,+(t)|k+1 |1 + L−1|k+1

≤ 2|ak+1(0)| |2ct|
k+1

2 .

|Qk(γL)| = |γL − zk,+| |γL − zk,−| |Q̃k(t, γL)| where Q̃k(0, 0) 6= 0

=
|zk,+(t)|

L
|zk,+(t)(1 + 1

L
eis)− zk,−(t)| |Q̃k(t, z)|

≥
√

|ct|
2L

√

|ct|
2

|Q̃k(0, 0)|
2

.

Thus we can choose t small enough so that, on γL, |ak+1(t)z
k+1| is smaller than |Qk(z)|. Since neither

function has poles, Rouché’s theorem [12] implies that ak+1(t)z
k+1 + Qk(z) has the same number of zeros

inside γL as does Qk(z), namely one. Thus Qk+1(z) has a unique zero within γL. Since we can do this
for any value of L (at the price of making ǫ small enough), it follows that zk+1,+(t) is tangent to zk,+(t)
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and hence to
√
ct. Since we need only finitely many induction steps to get to zn,+(t), the statement of the

proposition follows.

We also need the following Corollary. The proof is similar, except that the base case now is not quadratic
anymore. This complicates the first step of the proof. Since our main results do not depend on it, the details
of its proof will appear elsewhere.

Corollary 3.2. For n > k ≥ 2, define Qn as follows:

Qn(z) =

n
∑

i=k

ai(t)z
i +

k−1
∑

i=0

ai(t)z
i ,

where the ai are analytic functions on R modulo 2π. Assume further that

For i ∈ {0 · · ·k − 1} : ai(0) = 0 , and ak(0) 6= 0 and a′0(0) 6= 0 .

Then there is a neighborhood N of the origin in which the zeros of Qn form k differentiable curves intersecting
at equal angles at the origin.
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