
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

7-5-1995

Weakest Pre-Condition and Data Flow Testing Weakest Pre-Condition and Data Flow Testing

Griffin David McClellan
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Computer Sciences Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
McClellan, Griffin David, "Weakest Pre-Condition and Data Flow Testing" (1995). Dissertations and Theses.
Paper 5200.

10.15760/etd.7076

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PDXScholar

https://core.ac.uk/display/231428794?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5200&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5200&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/
https://pdxscholar.library.pdx.edu/open_access_etds/5200?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5200&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.15760/etd.7076
mailto:pdxscholar@pdx.edu

THESIS APPROVAL

The abstract and thesis of Griffin David McClellan for the Master of Science
degree in Computer Science were presented July 5, 1995 and accepted by the
thesis committee and the department.

COMMITTEE APPROVALS:

DEPARTMENT APPROVAL:

Dick Hamlet

Jim Hein

'
Dorothy William§, Representative of the
Office Of Graduate Studies

Warren Harrison, Chair
Department of Computer Science

**

ACCEPTED FOR PORTLAND STATE UNIVERSITY BY THE LIBRARY

by , on/-1~~?<=: /9~::,-

Abstract

An abstract of the thesis of Griffin David McClellan for the Master of Science in

Computer Science presented July 5, 1995.

Title: Weakest Pre-Condition and Data Flow Testing

Current data flow testing criteria cannot be applied to test array elements for two

reasons:

1. The criteria are defined in terms of graph theory which is insufficiently

expressive to investigate array elements.

2. Identifying input data which test a specified array element is an

unsolvable problem.

We solve the first problem by redefining the criteria without graph theory. We

address the second problem with the invention of the wp_du method, which is

based on Dijkstra's weakest pre-condition formalism. This method

accomplishes the following: Given a program, a def-use pair and a variable

(which can be an array element), the method computes a logical expression

which characterizes all the input data which test that def-use pair with respect to

that variable. Further, for any data flow criterion, this method can be used to

construct a logical expression which characterizes all test sets which satisfy that

data flow criterion. Although the wp_du method cannot avoid unsolvability, it

does confine the presence of unsolvability to the final step in constructing a test

set.

WEAKEST PRE-CONDITION AND
DATA FLOW TESTING

by

GRIFFIN DAVID MCCLELLAN

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
in

COMPUTER SCIENCE

Portland State University
1995

Contents

Introduction

1 Fundamentals of Path Testing Theory .. 1
Correctness of a Program and Software Testing 1
Partition Testing 2
Path Testing 3

2 Data Flow Testing ... 11
Basic Idea of Data Flow Testing 11
Data Flow Testing Criteria 16
Infeasible Paths and Data Flow Testing 22
Feasible Data Flow Criteria 24
Unsolvability and Feasible Data Flow Criteria 26

3 Program Verification Formalisms ... 29
Symbolic Execution and Data Flow Testing 29
Weakest Pre-Condition 35

4 Data Flow Testing for Array Elements ... 42
Data Flow Criteria Do Not Test Array Elements 42
Data Flow Criteria Expressed Without Graph Theory 45
Data Flow Criteria Extended to Test Array Elements 46

5 The wp_du Method ... 50
What the wp_du Method Does 50
How the wp_du Method Works 51

6 Examples of the wp_du Method ... 56
Example: Squaring 56
Example: Reverse 65

7 Conclusion ... 67

Bibliography ... 68

Introduction
This thesis solves a problem in software testing by applying a method of formal
verification of programs. We assume a modest familiarity with:

• the syntax and proof methods of predicate logic [Gries81]
• formal verification of programs, including Hantler and King's symbolic

execution [HanKin76] and Dijkstra's weakest pre-condition formalism
[Dijkstra 76]

• the mathematical concepts of partitions and equivalence classes
[Durbin92]

• theory of computation, specifically unsolvability [ManGhe87]
• graph theory [ManGhe87]
• finite state machines [ManGhe87]
• control flow and data flow testing [Hamlet88], [RaWey85], [FraWey88]
• programming in an imperative, structured language
• flow charts

Current data flow testing criteria cannot be applied to test array elements for two
reasons:

1. The criteria are defined in terms of graph theory which is insufficiently
expressive to investigate array elements.

2. Identifying input data which test a specified array element is an
unsolvable problem.

We solve the first problem by redefining the criteria without graph theory. We
address the second problem with the invention of the wp_du method, which is
based on Dijkstra's weakest pre-condition formalism. This method
accomplishes the following: Given a program, a def-use pair and a variable
(which can be an array element), the method computes a logical expression
which characterizes all the input data which test that def-use pair with respect to
that variable. Further, for any data flow criterion, this method can be used to
construct a logical expression which characterizes all test sets which satisfy that
data flow criterion. The achievement of the wp_du method is that it reduces the
unsolvable problem of identifying input data which test a specific array element
to the problem of generating solutions to a logical expression.

The first three chapters provide the background and motivation for the problem
solved in this work. These chapters review many of the topics enumerated
above. The fourth chapter provides a framework for the solution, and the
remaining chapters explain and demonstrate the solution. The solution
presented here is the wp_du method, where "wp_du" is pronounced by saying
the name of each letter.

For simplicity, the programming examples will be done in the following subset of
Pascal containing:

• variables of any simple type (integer, real, character, boolean, real, or
enumerated) and arrays with simple base types.

• assignment statements and readln and writeln statements
• if statements
• while statements
• functions where actual parameters are passed by value

Unless otherwise specified, all variables are integers. Further, for reasons that
will become apparent in chapter 5, we also reserve the identifiers status,
defined, not_defined, def_used, and I for our own use.

1 Fundamentals of Path Testing Theory

This chapter reviews the background in testing theory which is required to
appreciate the problem addressed by this thesis.

More specifically, this chapter includes sections which discuss:

• the use of software testing to demonstrate the correctness of a program,
• partition testing, which is a general testing paradigm,
• path testing, which is a kind of partition testing,

Correctness of a Program and Software Testing

Given a program and some kind of description of how that program is supposed
to behave, how can we demonstrate that the program satisfies that description?
This is the correctness problem.

For simplicity, we will interpret any program as behaving like a mathematical
function. That is, when we run the program, we supply it with an input datum
from the set of all possible input data. An input datum may be a number, or a
sequence of numbers, or something vastly more complicated. The program
uses this input datum to compute a result (if the program terminates). (The
cautious reader is assured that a result in mathematical logic [ManGhe87]
justifies interpreting any program and its input in this manner.) We will assume
that, if the program terminates, the description we have of the program's
intended behavior allows us to identify any incorrect computations.

The simplest solution to the correctness problem is to test the program with
every possible input and check for the correct results. However, even if we
overlook the problem of non-terminating programs, the number of possible
inputs to any program executable on a contemporary computer is so vast that
there are very few such programs we could check in this manner before the time
at which our sun is expected to burn out.

A more sophisticated solution to the correctness problem is to prove the
program is correct using some sort of program verification calculus. Although
many such calculi exist [Hoare69] [Dijkstra72] [HanKin76], they are not often
used in practice, because the application of such a calculus is too difficult and
time-consuming. Indeed, proving a program correct with respect to a
description of that program usually takes much longer than designing and
implementing the program, even if a computer helps manage the proof.

Testing is another attempt at solving the correctness problem, and without
question, it is the most commonly used method for demonstrating that a
program does what it was intended to do. The goal of testing is to construct a
set of input data, called the test set, which is a subset of the set of all possible
input data. The ideal test set would have the property that executing the
program with each test datum will reveal all the errors in the program.

Fundamentals of Path Testing Theory page 1

Conversely, if the test set is executed without any errors, then we can conclude
that the program will behave in accordance with its description for all input data.
Of course, the test set must be small enough that the time required to execute
the program once for each test datum is not prohibitive.

Unfortunately, testing cannot solve the correctness problem. More specifically,
there is no algorithm which constructs, for an arbitrary program, the ideal test set
described above. The reason for this is expressed in Dijkstra's pithy
observation: testing can reveal the presence of errors, but not their absence
[Dijkstra72]. This insight is made precise in a proof by Howden involving
recursive function theory [Howden76]. In spite of this result, we study testing
because, at this time, it appears to be the only practical way to reveal errors and
to increase our feeling that a program behaves as we intend it to.

Due to the limitation explained in the previous paragraph, researchers in testing
often do not develop algorithms for generating test sets for programs, but
instead develop specifications of what it means to adequately test a program.
Such a specification is called a testing criterion. There are many different
testing criteria, each with their own prescriptions for what constitutes an
acceptable test of a program. In this thesis, we will encounter many different
testing criteria. If a test set tests all the features which a testing criterion
prescribes, then we say that the test set satisfies that testing criterion for that
program.

A testing criterion may have the following two limitations: First, the criterion may
not indicate how to construct a test set which satisfies that criterion for a given
program. Second, given a program and a testing criterion, we may not be able
to decide in a finite amount of time if a particular test set satisfies the criterion for
that program or even if such a test exists at all. We will explore these issues
later in this chapter.

In summary, although testing cannot be used to solve the correctness problem,
we will nonetheless explore methods for constructing test sets which we hope
will often uncover errors.

Partition Testing

Most of the testing criteria which have been proposed are based on the idea of
partition testing, which divides the set of input data into equivalence classes,
and then constructs a test set by randomly selecting elements from each
equivalence class. A crucial issue in partition testing is the construction of the
equivalence classes. As Hamlet and Taylor observe [HamTay90]:

A partition can be defined using all the information about a program. It
can be based on requirements or specifications (one form of "blackbox"
testing), on features of the code ("structural" testing), even on the process
by which the software was developed, or on the suspicions and fears of a
programmer.

Fundamentals of Path Testing Theory page 2

Although these authors have shown that partition testing is not as effective as
our intuition suggests, we will assume that partition testing is worth pursuing.

Two final comments: First, the equivalence classes produced in partition testing
sometimes contain common elements and therefore are not partitions in the
strict mathematical sense. This is not usually a problem. Second, just as in
abstract algebra, we use predicate logic to describe the equivalence classes.
Examples follow in the next section.

Path Testing

We review a kind of partition testing called path testing. This section has four
parts:

1) the intuitive idea of a path,
2) the graph theoretic definition of path,
3) a short discussion of three simple path testing criteria.
4) the use of predicate logic to characterize the input data which exercise

specific paths,

The Intuitive Idea of a Path

Imagine a program is executed with an input datum. During the execution of the
program, certain statements in the program are executed in a specific order.
Which statements are executed, and in what order, is determined by the
program, the input datum, and the semantics of the language in which the
program is written. Provisionally, we shall say that a path is the list of the
statements that were executed, for some input datum, listed in the order in
which they were executed. If an input datum causes a program to execute the
statements in the path, in the order they appear in the path, we say that the input
datum exercises that path.

A number of subtle points must be addressed.

First, two statements which are identical in appearance, but occur in different
parts of the same program, are considered to be different statements. Thus, a
statement is identified, not just by its syntactic form and semantic content, but by
its position in the program.

Second, if a statement is inside the body of a loop, it may be executed many
times during the execution of the program. In this case, the same statement will
appear in the path as many times as it was executed.

Third, most programming languages define the syntactic form of statements
recursively. The result is that some statements contain other statements. (An
example of this is the block statement in Pascal, which is composed of a
sequence of statements bracketed by the keywords begin and end.) Therefore,
we distinguish between two kinds of statements: simple statements, which do

Fundamentals of Path Testing Theory page 3

not contain other statements, and compound statements, which contain other
statements.

A more precise definition of path is that it is the list of the simple statements that
were executed, for a given input datum, listed in the order they were executed.
When a compound statement is executed, we represent it in a path by listing the
the simple statements within that compound statement, in the order in which
they were executed. Typically, the boolean expressions which control if and
while statements are not included in the path, because their inclusion is
redundant. (The boolean expressions are redundant because they can be
inferred from the list of simple statements which are executed.)

Finally, notice that for many programs, different input data will cause the same
statements to be executed in the same order. We say that these input data
exercise the same path.

The Graph Theoretic Definition of Path

The notion of a path has been formalized using graph theory. In this section, we
display this formalization and investigate a problem created by this definition of
path.

The first step in representing a path using graph theory is to represent the
program itself as a graph. Such a representation is called a program graph (or
flow graph). A program graph is a flow chart with the following differences:

1 . All the different shapes that are used in a flow chart are replaced by circles
called nodes. Thus, the diamond which usually represents a decision is
replaced by a circle, as is the box that usually represents an assignment
statement. The arrows which connect the nodes are called edges. A
program graph is composed entirely of nodes and edges.

2. For the purposes of identification, every node has a unique number. Each
node is either empty or contains just one simple statement. An empty node
is a node which is not associated with any simple statement. Empty nodes
correspond to the beginning of if or while statements in the program.

3. The boolean expressions which control if and while statements do not
appear in nodes. Rather, they label the edges which depart from the empty
node which represents the beginning of the if or while statement.

Three notes: First, we don't represent variable declarations in the program
graph. Second, some authors consolidate any textually contiguous group of
simple statements into a single node. In the interest of simplicity, we do not
follow that approach. Lastly, Rapps and Weyuker offer a formal definition of a
program graph for an unstructured language [RaWey85].

For example, consider the following program fragment, where all the program
variables are integers and odd is a boolean function with its standard meaning.
Fundamentals of Path Testing Theory page 4

if x < 0 then
y := 1

else
y : = 2;

if odd{ x) then
z := 1

else
z := 3;

a := y + z;

Figure 1.1

Its corresponding program graph is:

x < 0 x >= 0

odd(x) not odd(x)

Figure 1.2

Notice that the boolean test of each if statement and its negation are associated
with edges which lead to the then and else clauses of the if statement,

Fundamentals of Path Testing Theory page 5

respectively. The correspondence between simple statements in the example
program and the nodes of the program graph is as follows:

node statement
1 empty (the beginning of the first if statement)
2 y := 1;
3 y := 2;
4 empty (the beginning of the second if statement)
5
6
7

z
z
a

.-

.-

. -

l;
3 ;
y + z;

Figure 1.3

It should be intuitively clear how to construct a program graph from an arbitrary
program.

Using the graph theoretic formalism, a path through the program is defined to
be a sequence of nodes which are connected by edges (respecting the
directions of the arrows). In this work, path will have the aforementioned
definition. A complete path begins with the node associated with the first
statement in the program and ends with the node associated with the last
statement in the program. The set of complete paths for the above program is
1 I 2 I 4 I 5 I 7) ' (1 I 2 I 4 I 6 I 7) ' (1 I 3 I 4 I 5 I 7) ' and (1 I

3, 4, 6, 7) . A path which is not complete, but nonetheless acceptable is (
2 , 4, s) . Some sequences of nodes which are not paths are (7, 6, 4,
3 , 1) , (s , 4 , 2) , and (s , 4 , 6) because they do not respect the
arrows. If a path is a sub-sequence of another path, we say the latter contains
the former. For example, (1, 2 , 4, s, 7) contains (2 , 4, s) .

Three Simple Path Testing Criteria

Given the formalization of the idea of a path, let's examine three path testing
criteria. Recall that a testing criteria is a specification of what features of a
program should be tested. More specifically, a path testing criterion specifies
what kind of paths need to be exercised for the program to be adequately
tested. Often, for a given path testing criterion and program, there are many
sets of paths which satisfy that criterion for that program.

Once we have identified a set of paths which satisfies our chosen criterion, we
need to construct a test set with the property that: after the program has been
run with each test datum, all the paths in our set of paths have been exercised.
Such a test set satisfies that criterion for that program. We address this issue of
identifying the input data which exercise a given path in the next section.

Statement and branch coverage were two of the first widely-used testing
criterion. When applying the former, we require that our test set contain test
data such that after we have executed the program with each test datum, all the
statements in the program will have been executed at least once. When

Fundamentals of Path Testing Theory page 6

applying branch coverage, we require that our test set cause each boolean
expression in an if or while statement to evaluate to true at least once and
false at least once.

Although it may not be immediately obvious, both statement and branch testing
can be regarded as path testing criterion. Statement coverage requires that,
from the set of all possible paths through a program, we choose a set of paths
such that each node in the program graph appears at least once in our set. (For
this reason, statement coverage is also called all nodes testing.) Branch
coverage requires that we choose a set of paths such that every edge appears
at least once in our set. (Branch coverage is also called all edges testing.)

Let's apply these criteria to the following code fragment and its program graph.

readln (x) ;

while not is_prime(x) do begin
write ln (x) ;
x := 2 * x - 1

end;

writeln('done') ;

Figure 1.4

Fundamentals of Path Testing Theory page 7

.,,,,,--- ---
(--1 readln(x) ;--)

------ -~--r

is_prime(x)

not is_prime(x)

(-3--wri teln(;-);)

~~~-I~~~-
c· 4 x: = 2*x - 1; -
·------------~· 

(.------~-~eln( 'd:;--)-:-----. 
,_ -/ ------ ,___.----

Figure 1.5 

Regarding statement coverage, notice that there are many sets of paths we can 
choose which include all the nodes. { ( 1, 2, s ) , ( 1, 2, 3, 4, 2, 
3 , 4, 2, s ) } is such a set. The singleton set containing just ( 1 , 2 , 3 , 
4, 2, s ) is another. The reader should see that the latter is the smallest set 
of paths which satisfies the statement coverage criterion. 

Similarly, there are many sets of paths which include all the edges. { ( 1, 
2 , s ) , ( 1 , 2 , 3 , 4 , 2 , s ) } is one of many sets of paths which 
satisfy the branch coverage criterion. 

Although statement and branch coverage are widely used, it is well known that 
they miss many common errors [FraWey88]. These weaknesses motivated the 
search for more perceptive testing criteria. 

The final testing criterion we discuss here is all-paths testing. All-paths testing 
is often discussed, but never used. In understanding why it is never used, we 
will appreciate a subtle problem with our graph theoretic formalization of the 
idea of a path. 

The all-paths testing criterion requires that a test set cause every path in the 
program to be exercised at least once. The problem with all-paths testing is 
that, for any program with a loop, there are an infinite number of paths through 
Fundamentals of Path Testing Theory page 8 



that program, and exercising an infinite number of paths, would require an 
infinite test set, which is of little use to finite beings. 

To see why any program with a loop contains an infinite number of paths, return 
to the previous program fragment. All of the following are possible paths 
through the program: ( 1, 2 , s ) , ( 1, 2, 3 , 4, 2 , s ) , ( 1, 2 , 3 , 
4 , 2 , 3 , 4 , 2 , s ) , and ( 1 , 2 , 3 , 4 , 2 , 3 , 4 , 2 , 3 , 4 , 2 , s ) . 
Indeed, any path which begins with node 1, contains any number of instances 
of ( 2 , 3 , 4 ) as contiguous sub-paths, and ends with the sub-path ( 2 , s 
) is an acceptable path by our graph theoretic definition. 

Recall that our definition of path is any sequence of nodes which is consistent 
with the arrows in the program graph. The definition does not require that the 
path correspond to some possible execution of the program arising from some 
input datum. In other words, the definition of graph does not require us to pay 
attention to the boolean conditions which annotate some of the edges. For now, 
we just take note of the problem. We address the implications of the problem in 
detail in the chapter on data flow testing. Now we turn to the problem of 
describing the input data which exercise a path or a set of paths. 

Predicate Logic Characterizes the Input Data Which Exercise a Path 

In the previous section, we reviewed three simple path testing criteria. Each of 
those criteria required that we identify a set of paths with some property. Once 
we had the set of paths, we then needed to construct a test set which exercises 
those paths. We discuss this topic in the section on symbolic execution in 
Chapter three. For now, we just want to explore how, given a path, we can 
describe the input data which exercise that path. 

For every path, there is a corresponding set of input data which exercises this 
path. We can use the logical expressions of predicate logic to characterize the 
input data which exercises that path. The following table illustrates the paths 
through the the program in Figure 1.1 and the logical expressions which 
characterize the input data which exercise those paths. 

Rath logical exRression 
( l, 2' 4, 5' 7 ) x < 0 and odd( x ) 
( 1, 2' 4, 6' 7 ) x < 0 and not odd( x ) 
( l, 3 ' 4, 5' 7 ) x >= 0 and odd( x ) 
( 1, 3 ' 4, 6' 7 ) x >= 0 and not odd( x ) 

In the chapter discussing symbolic execution, we will consider how such logical 
expressions can be constructed. 

Finally, notice that, for any path, there exists an equivalence class of input data 
which causes that path to be exercised [Gries81]. We describe that class using 
predicate logic. Further, if we specify a set of paths, we have also specified a 
set of equivalence classes of input data. Each equivalence class contains the 
input data which causes one of the paths to execute. For example, if we specify 
Fundamentals of Path Testing Theory page 9 



the two paths ( 1 , 2 , 4 , s , 7 ) and ( 1 , 3 , 4 , 6 , 7 } then the set of 
input data which will cause one of these two paths to be traversed is 
characterized by the predicate ( x < o and odd ( x ) ) or ( x >= O and 
not odd< x > ) . This observation allows us to reason about paths and later 
translate our reasoning about paths back to classes of input data. 

This concludes our overview of the fundamentals of path testing. In the next 
section, we explore a particular kind of path testing, data flow testing, which 
contains a problem which motivates this thesis. 

Fundamentals of Path Testing Theory page 10 



2 Data Flow Testing 

In the last chapter, we discussed three simple path testing criteria. Each of 
these criteria have disadvantages: statement and branch coverage miss 
common programming errors and all-paths testing, while it detects many errors, 
is often impossible to apply. Researchers in testing theory searched for a 
middle ground between statement and branch testing and all-paths testing. 
One family of criteria discovered in this middle ground was data flow testing, 
which is a type of path testing. 

This section has five parts which discuss: 
1) the basic idea of data flow testing, 
2) three data flow testing criteria, 
3) the problem of infeasible paths, 
4) feasible data flow testing criteria, 
5) unsolvability and feasible data flow criteria 

Before we begin, note that the data flow criteria we define in this chapter do not 
allow us to test individual array elements. In Chapter four, we will extend these 
criteria to overcome this limitation. Finally, in the interest of clarity and 
simplicity, our definitions of the data flow criteria and some of its supporting 
vocabulary are slightly different than the original definitions. All the concepts 
remain the same. 

The Basic Idea of Data Flow Testing _ 

Historically, the first path testing criteria in common use were called control flow 
criteria, meaning they examined the branch and loop structure of the program. 
Statement and branch coverage are both control flow criteria. However, there is 
more to a program than its control structure, for example, the manner in which 
variables are defined and used. This was the insight of Rapps and Weyuker in 
their seminal paper Selecting Software Test Data Using Data Flow Information 
[RaWey85] where they introduced data flow testing. 

There is no better motivation for data flow testing than the following [FraWey88]: 

These [data flow] criteria are based on the intuition that one should not 
feel confident that a variable has been assigned the correct value at 
some point in the program if no test data cause the execution of a path 
from the assignment to a point where the variable's value is 
subsequently used. 

Thus, the basic idea of data flow testing is that we want to exercise, for each 
variable in the program, at least some of the various paths which cause that 
variable to be assigned a value and then used. 

Data Flow Testing page 11 



To clarify this intuition, let's consider the following example which computes x 
mod y for non-negative x and positive y. (Note: there is no error in this 
program.) 

readln ( x, y ) ; 

if ( x >= 0 ) and ( y > 0 ) then begin 
while x >= y do 

x : = x - Yi 

writeln( x ) 
end else 

writeln( 'error' ); 

Figure 2.1 

The corresponding program graph is displayed below. Note that to facilitate 
reading the program graph, the simple statements in the program are displayed 
within their corresponding nodes. 

Data Flow Testing page 12 



...,,.-- ---
(_1_ readln( x, y )~) ------ _ ___,...---

x < 0 or y <= 0 

x >= 0 and y > 0 

x >= y 

c---4-~ = x _ -;~----) 

~~~~I~~~-
c~ 5 wri teln(x) ;~
-----------~

x < y

\

~,,..--6-~ln('er::.--;-~--,)
,_ -~ ------ __,,_----

Figure 2.2

Before we continue with this example, note that data flow testing borrows some
terminology from code optimization. In particular, the phrase 11a variable is
defined 11 means that the variable is assigned a value and to say that 11a variable
is used 11 is to say that the value of the variable is accessed.

To clarify how data flow testing works, let's identify all the possible definitions
and uses of the variables x and y. This identification will be facilitated by the
introduction of a notation for naming places in the program graph where a
variable is defined or used.

Note that variables are always defined in simple statements (either assignment
statements or readln statements). We will represent a statement of definition
with the symbol 11

DEF:
11

, followed by the variable being defined, a comma, and
the node number. Thus, the readln (x, y) ; can be represented as either
DEF: x, 1 or DEF: y, 1, depending on which variable we want to focus on.

Data Flow Testing page 13

When we turn to identifying the places in a program graph where a variable is
used, we see that variables are used in two different ways: within nodes or on
the edges between nodes. In terms of the program itself, this means that a
variable is either used in a simple statement or in a boolean expression
controlling an if or a while statement. Examples of the former are variables
appearing in the right hand side of an assignment statement or in an output
statement. Such examples are called c-uses of the variable, which stands for
11computation" use. Boolean expressions which control if or while statements
are called p-uses of the variables within the boolean expression, which stands
for 11predicate 11 use.

C-uses are represented with the symbol 11
USE:

11
, followed by the variable being

used, a comma, and the node number. The wri teln (x) ; statement can be
represented by USE: x, 5.

Identifying a p-use with a part of the program graph requires some care. In data
flow testing, each edge labelled with a boolean expression is a p-use for each
of the variables occurring in that expression. Recall that each boolean
expression which controls an if or while statement is represented by two edges
in the program graph; one of the edges corresponds to the case where the
expression evaluates to true and the other edge corresponds to the case
where the expression evaluates to false. Therefore, each variable which
occurs in a given boolean expression which controls an if or while statement
has two p-uses in that expression. For example, the p-use of x which occurs in
the while statement is identified with the edges (3, 4) and (3, s) .
These edges are also p-uses of y. ·

The reason each p-use is identified with two edges is because the inventors of
data flow testing wanted to create a criterion which was at least as thorough as
branch coverage. If each p-use is identified with both edges, their hope was
that when we test all p-uses of all variables, we also test all branches in the
program.

We will identify p-uses with the symbol 11
USE:

11
, followed by the variable being

used, a comma, and the appropriate edge, represented as an ordered pair of
nodes which surround the edge.

Finally, note that when we mention "a definition of a variable in a program
graph, 11 we mean the node which corresponds to a statement where that
variable is defined. When we mention "a use of a variable in a program graph, 11

we mean a node or edge which corresponds to a statement where that variable
is used.

The following is a list of all the possible ways in which variable x can be defined
and used:

Data Flow Testing page 14

DEF: x, 1 USE: x, 4
DEF: x, 1 USE: x, 5
DEF: x, 4 USE: x, 4
DEF: x, 4 USE: x, 5
DEF: x, 1 USE: x, (2' 3)
DEF: x, 1 USE: x, (2' 6)
DEF: X, 4 USE: x, (3' 4)
DEF: x, 4 USE: x, (3' 5)

The possible ways in which variable y can be defined and used:

DEF: y, 1 USE: y, 4
DEF: y, 1 USE: y, (2' 3)
DEF: y, 1 USE: y, (2' 6)
DEF: y, 1 USE: y, (3' 4)
DEF: y, 1 USE: y, (3' 5)

Both of these lists where generated by identifying all the definitions of each
variable and then finding all the uses of the variable under consideration which
can be reached by following the edges of the program graph.

Each line of the following two lists represents a definition use pair with respect
to some variable v (def-use pair wrt v) , which is an ordered pair containing a
definition of variable vis defined and a use of v. {vis a free variable ranging
over the variables declared in the program we are considering.) We will
represent a def-use pair as a triple containing the definition, the use, and the
variable. For example, the first two lines of the previous table of def-uses of y
are represented as < 1 , 4 , y > and < 1 , (2 , 3) , y >.

Notice that since every program has a finite number of nodes and edges, the
number of def-use pairs is finite. We will make use of this fact later. When the
context makes clear which variable v we are discussing, we will omit the 11wrt v".

Having identified all possible def-use pairs for all variables, let's review the
intuition underlying data flow testing and look at some examples. To apply data
flow testing, we want to exercise paths which allow us to check that each
variable is defined and used correctly. The application of data flow testing
involves deciding which def-use pairs should be tested, constructing a set of
paths which test those def-use pairs, and then constructing a test set which
exercises that set of paths. This process will be discussed more carefully in the
next section.

To conclude this section, let's construct a set of paths which tests all the def-use
pairs of y. First, let's define a useful locution. A path tests a def-use pair wrt v
when that path is a complete path which includes the definition of v and later,
before vis defined by another statement in the path, includes the use. Notice
the def-use pair< 1, 5, x > is tested by the path (l, 2, 3, 5) , but not
by (l, 2, 3, 4, 3, 5) because xis redefined at node 4 before the use in
node 5.
Data Flow Testing page 15

Now let's commence construction.

The path (1, 2, 6) tests the def-use pair< 1, (2, 6) , y >. The path (
1, 2, 3 , s) tests the def-use pair < 1, (2, 3) , y >. The path (1, 2 ,
3, 4, 3, s) tests the three remaining def-use pairs: < 1, 4, y >, < 1,
(3 , 4) , y >, and < 1 , (3 , s) , y >, as well as retesting < 1 , (2 , 3) , y
>.

As the (1, 2 , 3 , 4, 3 , s) path demonstrates, a single path can test
many def-use pairs. All that is required is that the path include the definition
and later, before the variable is redefined, all the uses.

Conversely, notice that for a given def-use pair, there may be many paths which
include the definition and then before the variable is defined again, include that
use. For example, the def-use pair < 1 , (3 , 5) , y > is tested by both (l,
2 , 3 , s) and (l , 2 , 3 , 4 , 3 , s) .

So, the following set of paths tests all the definitions and uses of y:

{ (1, 2, 6),
l, 2, 3, 5) t

1, 2, 3, 4, 3, 5)
}

Also note the path (1, 2 , 3 , s) is redundant, since (l, 2 , 3 , 4, 3 ,
s) tests the def-use pair tested by the first path. So, the following set of paths
also tests all the definitions and uses of y.

{ (l, 2, 6),
(1, 2, 3, 4, 3, 5)

}

In general, many sets of paths may test the same def-use pairs, although these
sets may have different elements or different numbers of elements.

In the next section, we make these ideas precise.

Data Flow Testing Criteria

Once we have identified all the def-use pairs in a program, the question arises:
which should we test? There is more than one answer. Each answer defines a
different data flow criterion. A data flow criterion specifies what kinds of paths
need to be exercised for a program to be adequately tested with respect to that
criterion. Rapps and Weyuker specify nine different data flow criteria and rate
them by their thoroughness [RaWey85].

Data Flow Testing page 16

This section has two parts: First, we give algorithms for constructing sets of
paths which satisfy three data flow criteria, and then, we give formal definitions
of those data flow criteria in terms of graph theory.

We examine the three data flow criteria which are most commonly used: all
defs, all-p-uses/some-c-uses, and all-uses. We will introduce them in
ascending order, with respect to their thoroughness. More specifically, for each
criterion, we give an algorithm for constructing a set of paths which satisfies that
criterion.

The following algorithms all assume that for every use of a variable, there is a
path which contains a definition of that variable followed by that use. This
assumption can be checked by a simple syntactic analysis. This assumption is
meant to ensure that no variable is used before it is defined, but we will see
later that the situation is not so simple.

Each of the algorithms have a common starting point which is described in the
next paragraph. Start each algorithm with an empty set of paths P.

For each variable, consider each of its definitions. For each such definition,
consider all the uses of that variable that are reachable by following the
program graph before reaching another definition of that variable. From this set
of uses, differentiate the c-uses and the p-uses.

From this point, the action we take is determined by which criteria we are trying
to satisfy. To satisfy each criterion, we may need to select a different set of
paths.

If we are applying the all-defs criterion, then for each definition of each
variable:

• we must choose one use of that variable (either a c-use or a p-use)
which can be reached from that definition without causing another
definition of that variable.

• Next, find a path which tests the def-use pair composed of the
definition and use we are considering. Add this path to the set of
paths P.

Any set of paths P constructed in this way satisfies the all-defs data flow testing
criterion.

Let's apply all-defs testing to the program in the Figure 2.1. For each of the
three definitions, DEF: x, 1, DEF: y, 1, and DEF: x, 4, we must randomly
choose a use which is reachable from that definition before the variable is
defined again. Suppose we choose the following uses:

Data Flow Testing page 17

USE: x, (2 , 3) to follow DEF: x, 1,
USE: y, (2, 3) to follow DEF: y, 1,
USE: x, (3 , s) to follow DEF: x, 4.

Then, the path (1, 2, 3, 4, 3, s) tests all these def-use pairs.
Therefore the singleton set containing that path satisfies the all-defs data flow
criterion. Notice that we have been able to construct a set of paths which
satisfies all-defs but does not exercise all the statements or branches in the
program. We will address the question of rigorously comparing the
thoroughness of the different data flow criteria later. Any other set which
contains (1, 2, 3, 4, 3, s) also satisfies all-defs.

Note we could have chosen USE: y, (2, 6) to follow DEF: y, 1, instead of
USE: y, (2, 3) . Had we done so, we would have been required to include
the path (1, 2 , 6) , which would have caused all the branches of the
program to be traversed. The point is that the all-defs criterion allows us to
choose any use of a variable which follows a particular definition of that
variable, although some choices may lead to more thorough test sets.

If we are applying the all-p-uses/some-c-uses criterion, then tor each
definition of each variable:

• Determine if any p-uses of that variable are reachable from the
definition we are considering, without that variable being redefined.

• If there are any such p-uses, then for each such p-use, find a path
which tests the def-use pair composed of the definition and p-use
under consideration. Add that path to the set of paths P.

• If there are no such p-uses, then identify all the c-uses which are
reachable without defining the variable again. Randomly choose one
of these c-uses. Next, find a path which tests the def-use pair
composed of the definition and c-use under inspection. Add that path
to the set of paths P.

Any set of paths P generated by following the above algorithm satisfies the all-p
uses/some-c-uses data flow testing criterion.

Again using the program from the Figure 2.1, we construct the following def-use
pairs to test:

< l, (2 I 6) I x >
< l, (2 I 3) I x >
< l, (2 I 6), y >
< l, (2, 3), y >
< 4, (3 , 4) I x >
< 4, (3 I 5) I x >

Data Flow Testing page 18

Notice that for each definition of each variable, there is a p-use which follows it,
so there was no need to search for c-uses. A set of paths which tests all these
def-use pairs and thus satisfies all-p-uses/some-c-uses is { (1, 2 , 6) , (
1, 2, 3, 4, 3, 5) }.

An example of a program for which there is definition which is not followed by a
p-use is the following, which computes x div y for non-negative x and positive y:

quotient := O;
readln (x, y) ;

if (x >= 0) and (y > 0) then begin
while x >= y do begin

x := x - Yi
quotient := quotient + 1

end;

writeln(quotient)
end else

writeln('error');

Figure 2.3

The reader should verify that the definition of quotient in the while loop is not
followed by any p-use of that variable. Therefore, if we apply all-p-uses/some-c
uses to this program, the definition of quotient must be tested by a path which
contains that definition and one of the two c-uses which follow that definition.

Finally note that Rapps and Weyuker's paper contains a program which has an
error which is not caught by branch coverage but is caught by all-p-uses/some
c-uses.

If we are applying the all-uses criterion, then for all definitions of all variables:

• Identify all the uses of that variable which are reachable from the
definition under consideration, without redefining the variable we are
considering.

• For each such use, find a path which tests the def-use pair composed
of the definition and use under consideration. Add that path to the set
of paths P.

Any set of paths P generated by following the above algorithm satisfies the all
uses data flow testing criterion.

For the program in Figure 2.1, we construct the following def-use pairs to test:

Data Flow Testing page 19

< l, 4, x >
< 1, 5, x >
< 1, (2 I 6) I x >
< 1, (2 I 3) I x >
< l, (3 I 4) I x >
< 1, (3 I 5) I x >
< 1, (2 I 6) I y >
< 1, (2 I 3) I y >
< 1, (3 I 4) I y >
< l, (3 I 5) I y >
< 4, 5 I x >
< 4, (3 I 4) I x >
< 4, (3 I 5) I x >

The reader should verify that this set of paths tests all these def-use pairs and
thus satisfies all-uses:

{ (1, 2, 6),
1, 2, 3, 5) I

1, 2, 3, 4, 3, 4, 3 5)
}

The all-p-uses/some-c-uses and all-uses criterion occupy the middle ground
between statement and branch coverage on one hand, and all-paths testing on
the other, which Rapps and Weyuker had set out to find. We will be able to
appreciate why this is true when we discuss comparing the various criteria.

The reader can now appreciate why each criteria was given its name: All-uses
checks all the uses which follow all the definitions of each variable. All-p
uses/some-c-uses checks all the p-uses, if any, which follow all the definitions of
each variable, otherwise it checks some c-use for that definition. Finally, all
defs does little more than check one use after all definitions of all the variables.

In what remains of this section, we will give the graph theoretic definitions of the
data flow criteria we have been studying, which are similar to the definitions
proposed by Rapps and Weyuker [RaWey85]. To define the data flow criteria
requires the following auxiliary definitions.

Suppose we have isolated a definition and a use of variable v. (Note that the
use may either be a c-use or a p-use.) A definition clear path with respect to the
def-use pair composed of d and u (def clear path wrt < d, u, v >) is a path,
not necessarily complete, which begins with d, ends with u, and does not
redefine v in any of the nodes between d and u.

Let v be the set of variables declared in the program. Let N be the set of nodes
and E be the set of edges in the program graph. Define:

definition(v) = { all nodes which define variable v }

Data Flow Testing page 20

(Note: Do not confuse this definition with Rapps and Weyuker's def (i) .)

c-use(n) = { all variables which have c-uses in node n }
p-use(i, j) = { all variables which have p-uses on

edge (i, j) }

dcu(v, d) = { all nodes u such that v is a member of
c-use(d) and there is a def-clear path with respect
to v from d to u }

dpu(v, d) = { all edges (j, k) such that vis a
member of p-use (j, k) and there is a def-clear path
with respect to v from d to (j, k) }

Let c be the set of complete paths and let P be a subset of c.

P satisfies all-defs if and only if:

for all variables v in v,
for all nodes din def ini ti on (v) ,

there exists a node u of dcu (v, d) such that

or

P has a member which contains a sub-path which is
a def clear path wrt < d, u, v >

there exists an edge u of dpu (v, d) such that
P has a member which contains a sub-path which is
a def clear path wrt < d, u, v >

P satisfies all-p-uses/some-c-uses if and only if:

for all variables v in v,
for all nodes din definition (v) ,

dpu (v, d) is empty implies
there exists a node u of dcu (v, d) such that

P has a member which contains a sub-path which is
a def clear path wrt < d, u, v >

and
dpu (v, d) is not empty implies

for all edges u in dpu (v, d)

Data Flow Testing

P has a member which contains a sub-path which is
a def clear path wrt < d, u, v >

page 21

P satisfies all-uses if and only if:

for all variables v in v,
for all nodes a in def ini ti on (v)

for all edges u in dpu (v, d)

and

P has a member which contains a sub-path which is
a def clear path wrt < d, u, v >

for all nodes u in dcu (v, d)
P has a member which contains a sub-path which is
a def clear path wrt < d, u, v >

Infeasible Paths and Data Flow Testing

We now turn to a significant problem shared by all path testing criteria:
Suppose a tester has selected a data flow testing criterion. For many programs,
while the tester can construct a set of paths which satisfies that criterion, there
are no test sets which cause that set of paths to execute. How can this be? The
answer is that the tester chose a path which no input datum can exercise. We
explore this problem in this section.

Before we continue, let's reexamine our definition of path. Recall our
discussion of path testing began with an intuitive notion of path. We then
formalized this notion in the language of graph theory.

However, there is a discrepancy between the intuitive and the graph theoretic
notions of a path. Recall that the intuitive idea of a path is that it is the list of the
simple statements which are executed when the program is run with some input
datum. In contrast, the formal notion of a path is a list of nodes which is
consistent with the program graph. The discrepancy is this: there are paths, in
the graph theoretic sense, which do not correspond to any paths, in the intuitive
sense. More specifically, for some programs, there exist lists of nodes which
are consistent with the program graph, but for which there exists no input data
which causes that list of simple statements to be executed. We saw an example
of this in our discussion of the all-paths testing criterion. We find another
example in the following program fragment and its program graph.

Data Flow Testing page 22

readln (x, y) ;

if x = 0 then
y := l;

else
y := O;

if (x = 0) and (y = 0) then
writeln('never')

else
writeln('always') ;

Figure 2.4

__,_- ---
(__ 1_ readln(x , y)~) ------ -~-.,,,,..

c----;-y := ~-----)
----------- -·

(... ----6-~ln('never ·) ;)
' / -------- __..-----.,,,,..

Figure 2.5

----~ y : = ~-----) __ ..,,.----------

____ _,,..._ ------
~-- -,

(7 writeln('always');) ,_ --/ ------ __..-----

Notice that there is no input datum which can make the boolean expression in
the second if statement evaluate to true and display 'never'. If we have our
intuitive idea of path in mind, we say that there is no path which contains the
statement which displays 'never'. However, in the graph theoretic sense, (1,
2, 3, s, 6) , for example, is a perfectly acceptable path. A path which is not
exercised by any input datum is called 11 infeasible 11

, while a path for which there
exists input data which cause that path to be exercised is called 11feasible 11

• Note
that it is a contradiction in terms to speak of the execution of an infeasible path.

Data Flow Testing page 23

Thus, if we attempt to apply all-p-uses/some-c-uses to the above program, we
will be required to exercise a complete path which includes a def-clear path
with respect to the def-use pair< 3, (s, 6) , y >. However, by the previous
argument, there is no input datum which can exercise such a path. Therefore,
there is no way to apply the all-p-uses/some-c-uses data flow testing criterion,
as we defined it in the previous section, to this program.

Note that although the infeasible path in the above example is unlikely to
appear in real programs, Frankl and Weyuker assure us there are many
"reasonable" programs contain infeasible paths [FraWey88]. Thus, due to the
existence of infeasible paths, there are programs which we cannot test with a
given data flow criteria.

The next section deals with Frankl and Weyuker's attempt to circumvent the
problem of infeasible paths.

Feasible Data Flow Criteria

The problem presented in the previous section is that for any data flow criterion,
we may construct a set of paths which satisfies that data flow criterion, but for
which there is no test set which exercises those paths. The source of this
problem is that the data flow criteria do not differentiate between feasible and
infeasible paths.

Frankl and Weyuker define a new family of data flow criteria which are just like
the data flow criteria proposed by Rapps and Weyuker, except that these new
criteria require that every def-use pair must be tested by a feasible path
[FraWey88]. If a def-use pair cannot be tested by a feasible path, then it can be
ignored. These new data flow criteria are called feasible data flow criteria.

More specifically, for each original data flow criterion, there is a corresponding
feasible data flow criterion. Further, each feasible criterion has the same name
as its associated original criterion, followed by an asterisk. So, all-defs*, for
example, is the feasible data flow criterion which corresponds to the original all
defs data flow criterion.

We now give informal definitions for all-defs*, all-p-uses/some-c-uses*, and all
uses*. In general, these definitions will be the same as the definitions for the
original data flow criteria, except that we will require that each path which tests
a def-use pair be feasible. Note we defer issues regarding unsolvability until
the next section. We begin by following the same steps we followed for defining
the original data flow criteria.

For each variable, consider each of its definitions. For each such definition,
consider all the uses can be reached by following the program graph before
reaching another definition of that variable. From this set of uses, differentiate
the c-uses and the p-uses.

Data Flow Testing page 24

From this point, the action we take is determined by which criteria we are trying
to satisfy.

If we are applying the all-defs* criterion, then for each definition of each
variable:

• We must randomly choose one use of that variable (either a c-use or
a p-use) which has two properties: 1) it can be reached from that
definition without causing another definition of that variable and 2)
there exists a feasible path which tests the def-use pair composed of
the definition and use we are considering.

• If such a use exists, then add one of these feasible paths to the set of
paths.

• If there is no use exists (or no such feasible path exists), then we add
nothing to the set of paths.

Any set of paths constructed in this way satisfies the all-defs* data flow testing
criterion.

If we are applying the all-p-uses/some-c-uses criterion*, then for each
definition of each variable:

• Determine if any p-use of that variable has the two properties that : 1)
it is reachable from the definition we are considering, without that
variable being redefined and 2) there exists a feasible path which
tests the def-use pair composed of the definition and p-use under
consideration.

• If such a p-use exists, then add one of these feasible paths to the set
of paths.

• If there are no such p-uses (or no such feasible paths), then identify
all the c-uses which are reachable without defining the variable again
and for which there exists a feasible path which tests the def-use pair
composed of the definition and c-use under inspection. Randomly
choose one of these feasible paths and add it to the set of paths.

Any set of paths generated by following the above algorithm satisfies the all-p
uses/some-c-uses * data flow testing criterion.

Data Flow Testing page 25

If we are applying the all-uses* criterion, then for all definitions of all variables:

• Identify all the uses of that variable which: 1) are reachable from the
definition under consideration, and 2) for which there exists a
feasible path which tests the def-use pair composed of the definition
and use under consideration.

• Add one of these feasible paths to the set of paths.

Any set of paths generated by following the above algorithm satisfies the
all-uses* data flow testing criterion.

Frankl and Weyuker show that for every feasible data flow criteria and every
program, there exists a test set which satisfies that criterion for that program. In
this sense, they solved the problem created by infeasible paths. However, the
feasible data flow criteria have their own set of unpleasant problems. We will
consider these problems soon.

The formal graph theoretic definitions of these criteria require two new
definitions:

fdcu(v, d) = { all nodes u such that v is a member of
c-use(d) and there is a feasible def-clear path with
respect to v from d to u }

fdpu(v, d) = { all edges (j, k) such that vis a
member of p-use (j, k) and there is a feasible def
clear path with respect to v from d to (j, k) }

To obtain the definitions of the feasible data flow criteria from the definitions of
the original data flow criteria, simply replace each instance of functions dcu and
dpu in the original definitions with the functions fdcu and fdpu, respectively
and replace each reference to a def clear path with a reference to a feasible, def
clear path.

The feasible data flow criteria have two problems, a small one and a large one.
The small problem is that any programming error which creates an infeasible
path will be ignored by all our feasible criteria. The big problem is discussed in
the next section.

Unsolvability and Feasible Data Flow Criteria

We have seen that the feasible data flow criteria were proposed to remedy a
problem concerning infeasible paths in the original data flow criteria. Basically,
the feasible data flow criteria are identical to the original data flow criteria
except that they ignore infeasible paths. Unfortunately, the feasible data flow
criteria have a problem at least as serious as the problem they were invented to
solve: there exist paths which we cannot identify as feasible or infeasible. Note
that, granted the law of the excluded middle, each path truly is either feasible or

Data Flow Testing page 26

infeasible, but there exist paths for which we cannot determine the actual case.
This is the issue we explore in this section.

We begin by discussing the general notion of unsolvability (also called
undecidability), then we observe that identifying an arbitrary path as feasible or
infeasible is an unsolvable problem. Finally, we investigate the implications of
this observation for feasible data flow testing.

A problem is unsolvable if we can demonstrate, using the methods of
mathematical logic, that an algorithmic solution to that problem does not exist
[ManGhe87]. Such a demonstration usually takes the form of a reductio ad
absurdum: For a given (unsolvable) problem, we assume there exists an
algorithmic solution to the problem and then from ·that assumption we derive a
contradiction. Because of our faith that contradictions do not exist in logic and
mathematics, we conclude that the supposed algorithmic solution does not
exist. Thus, the problem which the algorithm was supposed to solve is labelled
unsolvable.

The fact that a problem is unsolvable in general does not mean that we can't
solve particular instances of that problem. It just means that there can be no
algorithm which solves the problem for all cases. We consider some examples
of this.

The unsolvable problem which Computer Scientists are most familiar with is the
halting problem, which establishes that there is no algorithm which takes any
program and any input datum as input and (correctly) decides whether or not
that program terminates when applied to that input datum. However, note that
the halting problem can be solved tor many particular programs. A trivial
example of this is the set of programs which contain no loops or function calls.
All the programs in this set can be proven to terminate for all inputs.
Nonetheless, the halting problem is unsolvable for the class of all programs.

Unsolvability will be our constant companion throughout this thesis. However,
all the instances of unsolvability which we will encounter can be understood as
special cases of the following result: Given an expression E, composed of
boolean and arithmetic operations and constants, and which contains at least
one free variable v which ranges over an infinite domain, there is no algorithm
which can decide whether or not there is an assignment to v such that E is true.
A proof of this result can be found in Alonzo Church's classic paper A Note on
the Entscheidungsproblem [Church36].

This result does not contradict the fact that for many expressions we can either
construct the required assignment or a proof that no assignment exists. Instead,
it demonstrates that we cannot construct an algorithm which will work for all
expressions. If we think we have constructed such an algorithm, then either it
does not work correctly in all cases, or tor some inputs it never terminates.

In practical terms, the aforementioned unsolvability result tells us the following:
Suppose we have an expression for which we are trying to find an assignment
Data Flow Testing page 27

which satisfies it or a proof that there is no such assignment. Although (we
assume that) there either exists such an assignment or there does not, we have
no guarantee that, if we work on the problem for some finite amount of time, we
discover which is the case. Maybe we will find the answer in our next attempt.
Maybe we will try for years and fail to find it. (Maybe if we would have tried just
another minute, we would have found the answer.) To those who find this
situation contrived or unlikely to occur in "real life", we encourage you to
continue reading.

We now return our attention to infeasible paths and observe that detecting
infeasible paths is an unsolvable problem [Hamlet88]. Here's why: Suppose
we have a path P and we want to decide if it is infeasible or not. Recall that the
input data which causes a path to be exercised can be characterized by a
logical expression. Let E be the expression which characterizes the input data
which exercise P. The question of whether P is infeasible or not is just the
question of whether there is an assignment to the free variables of E of some
input datum which causes E to evaluate to true or there is a proof that no such
input datum exists. We have just observed that this problem is unsolvable.
Hence the detection of infeasible paths is an unsolvable problem.

The fact that detecting infeasible paths is an unsolvable problem cripples all the
data flow testing criteria we have so far considered. In what remains of this
section, we will consider how unsolvability affects the original data flow criteria
and the feasible data flow criteria.

For any given original data flow criterion·, while constructing a set of paths which
satisfy that criterion presents no problem, finding a set of input data which
exercises those paths is in general unsolvable. For any feasible data flow
criterion, constructing a set of paths which satisfies the criterion is unsolvable,
however, if such a set can be identified, then constructing a set of paths which
exercises those paths is not difficult.

In conclusion, we have no choice but to abandon the original data flow criteria,
because these criteria cannot test programs with infeasible paths. However, the
feasible data flow criteria require the tester to face the unsolvable problem of
identifying feasible and infeasible paths. In the chapters which follow, we shall
only be concerned with the feasible data flow criteria.

Data Flow Testing page 28

3 Program Verification Formalisms

This thesis involves program verification formalisms in two ways: First, data flow
testing is usually supported by a program verification formalism called symbolic
execution [HanKin76]. We will see that symbolic execution cannot easily be
applied to array elements due to unsolvability. This limitation consequently
limits the data flow testing systems which depend on symbolic execution.
Second, this thesis presents a method for alleviating the aforementioned
problem based on the program verification formalism called weakest pre
condition, invented by Edsger W. Dijkstra [Dijkstra76]. This chapter devotes a
section to each formalism.

Symbolic Execution and Data Flow Testing

In this section, we review symbolic execution, discuss its application to data flow
testing, and examine why it has difficulty with array variables.

Symbolic Execution

The intuition behind symbolic execution is expressed well by its creators
[HanKin76]:

One can use a standard mathematical technique of inventing symbols to
represent arbitrary program inputs, and then attempt a proof involving
those symbols. If no special properties of the symbols, other than those
expected to hold for all inputs, are necessary for the proof, then the proof
is valid for each specific input. If special properties of the symbols must
be assumed in order to construct a proof, then an exhaustive case
analysis can be performed, providing a set of proofs, one for each case,
which collectively give a complete proof.

In this section, we expand on the above summary enough to motivate the
problem of this thesis.

To understand the basic methodology of symbolic execution, we need to
discuss: program states, program specification, symbolic values, and symbolic
execution states. Our knowledge of paths will also be useful.

A program state is a record of the current contents of each variable during the
actual (as opposed to symbolic) execution of a program. In the section on
Dijkstra's weakest pre-condition formalism, we offer a more formal definition, but
this intuitive notion suffices for now.

The first step in the employment of symbolic execution to prove the correctness
of a program is to formally specify that program. In the case of symbolic
execution, formal specification of a program entails the construction of two
logical expressions: one which describes the assumptions, if any, which we
make about the input state and the other which describes the conditions which

Program Verification Formalisms page 29

the variables should satisfy if the program terminates. The former is called a
pre-condition or an input assertion and the latter is called a post-condition or
an output assertion. Symbolic execution allows us to demonstrate the
correctness of a program by proving that, for any initial state which satisfies the
pre-condition, if the program terminates when applied to that initial state, the
program will terminate in a state which satisfies the post-condition. Note that
symbolic execution does not prove that the program will terminate, thus we
need to always say, "if the program terminates".

As Hantler and King mentioned in their summary above, symbolic execution
uses symbols to represent the contents of the variables in the program. This is
the distinctive feature of symbolic execution. We will use the names of Greek
letters in an underlined courier font for this purpose, for example, alpha and
beta. The symbols used to represent the contents of the variables when the
program begins execution will be called the symbolic values of the program.
Note that a symbolic execution of a program can be transformed into an actual
execution by replacing each symbolic value with an actual value of the correct
type, just as an algebraic computation can be transformed into an arithmetic
computation by replacing the algebraic variables with actual numbers.

A symbolic expression is an expression which includes at least one symbolic
value, for example, alpha , alpha + 1, or alpha * beta.

When we apply symbolic execution to a program, each variable in that program
is allowed to contain a symbolic expression as its contents. Thus, if one of the
variables in our program is x, then x can contain the symbolic expression 2 *
alpha + beta - 1, for example.

We can now discuss how assignment statements are evaluated in symbolic
execution. When symbolic execution is applied to an assignment statement, the
expression on the right hand side of the assignment operator is evaluated, and
the resulting value, possibly symbolic, is copied into the variable on the right
hand side of the assignment operator. Now we need to explain how an
expression is evaluated under symbolic execution.

Evaluating an expression, in the context of symbolic execution, involves two
steps:

1. Replace each variable with its contents, possibly symbolic.
2. Perform algebraic simplifications as desired.

For example, suppose x has as its contents the symbolic expression 2 *
alpha + beta + 1 and y has for its contents alpha - 1. Then the
assignment statement z : = x - y; is evaluated in the following manner:
First, the variables in x - y are replaced by their contents, yielding (2 *
alpha + beta + 1) - (alpha - 1) . Then we simplify the expression
to alpha + beta + 2. We then copy this symbolic expression into the
contents of the variable z.

Program Verification Formalisms page 30

,.

I
,,I

When we execute a real program on a real machine, the current state of the
program indicates the value that each variable contains. There is an analogous
notion in symbolic execution. A symbolic execution state has two components:

1. the current contents of each variable, which in the case of symbolic
execution, can be a symbolic expression,

2. the path condition, which is a logical expression which constrains the values
which the symbolic values of the program can take. The current path
condition characterizes all the input values which cause the path under
consideration to be executed.

We now describe how symbolic execution works for programs without loops.
This limited discussion will be adequate for our purposes. At the end of this
section, we will briefly consider how symbolic execution handles loops.

Symbolic execution begins by constructing a program graph, just like what we
discussed in Chapter one, except in this context, it is called an execution tree.
Then, we apply the following algorithm to each complete path through the
execution tree. If the application of this algorithm is successful for each path,
then we conclude that, for any initial state which satisfies the pre-condition, if the
program terminates when applied to that initial state, the program will be in a
state which satisfies the post-condition. If the following algorithms fails for even
one path, then the program is not verified with respect to its formal specification.

Repeat the following procedure until every complete path has been traversed:

• Initialize the variables with unique symbolic values and initialize the path
condition to the pre-condition.

• If an assignment statement is encountered, replace the contents of the
variable on the left hand side of the assignment operator with the value,
possible symbolic, to which the expression on the right hand side of the
assignment operator evaluates.

• If an if statement is encountered, then choose a branch to follow which
hasn't been traversed yet. Modify the path condition to reflect the constraints
on the symbolic values which must hold for this branch to be followed. This
modification involves replacing the variables in the boolean expression with
their values, possibly symbolic, and conjoining the resultant logical
expression with the previous path condition.

Just as assignment statements can change the contents of variables,
the boolean tests that control if and while statements can change the
path condition.

• If the end of the path is encountered, then a theorem must be proved which
establishes that the traversal of this path satisfies the post-condition. To
construct that theorem, first replace all the variables in the post-condition

Program Verification Formalisms page 31

.,,;

I
/

with the contents of those variables at the end of this symbolic execution.
The theorem to be proven states that the post condition logically implies the
expression constructed in the previous sentence. If this proof cannot be
carried out tor some path, then the verification fails.

Note that symbolic execution proceeds by traversing each path from beginning
to end and, at the end of each path, proving a theorem. We will later contrast
this approach with Dijkstra's symbolic execution.

Let's examine a simple example which puts the absolute difference of the
variables x and y into the variable abs_di ff.

if x >= y then
abs_diff := x - y

else
abs_diff := y - x;

Figure 3.1

The first thing we must do is formally specify the program. Since we don't need
to put any constraints on any of the values of the variables, our pre-condition is
simply the predicate true which returns the truth value true for every state
(Note that we have followed the convention of overloading the symbol "true".)
Our post-condition will be abs_di ff >= O and (abs_ di ff = x - y or
abs_di ff = y - x) . Note that a complete post-condition would also specify
that the code not change the values of x and y. For our simple purposes, we
can ignore this requirement.

The next step of the symbolic execution is to construct the execution tree. We
will not display this tree, because it is obvious.

Now, we set the path condition to the pre-condition, which is the predicate true,
and set the variables x and y to the symbolic values alpha and beta,
respectively.

There are two paths to traverse: the path where the boolean expression which
controls the if statement evaluates to true and the path where the expression
evaluates to false.

To traverse the path where the boolean expression evaluates to true, we
modify the path condition to reflect what must be true of the symbolic values for
the expression to evaluate to true. So the path condition becomes alpha >=
beta. Then we encounter the assignment statement abs_di ff : = x - y.
This statement causes the contents of abs_di ff to be changed to alpha -
beta. Now we are at the end of the first path, so we must prove that traversing
that path satisfies the post-condition. The theorem we need to prove is
constructed by first replacing all the variables in the post-condition with their
contents at the end of the path. Carrying out this replacement, we receive
alpha - beta >= 0 and (alpha - beta = alpha - beta or alpha

Program Verification Formalisms page 32

/

- beta = beta - alpha). We can simplify this to just alpha - beta >=
a.The theorem we need to prove is that the path condition at the end of the
symbolic execution implies the expression we just constructed. Thus, the
theorem we need to prove is:

alpha >= beta => alpha - beta >= 0

which is trivial. Thus, the verification has succeeded for this path. We would
verify the other path in an analogous manner and conclude that the program is
verified with respect to its formal specification.

We have covered the material necessary to appreciate the problem which
symbolic execution has with arrays. However, recall that, in the interest of
brevity and simplicity, we did not consider how to apply symbolic execution to
programs with loops. We conclude this section with a short discussion of this
neglected topic.

Symbolic execution traverses all the paths of the execution tree and proves that
at the end of each path the post-condition is satisfied. However, as we
discovered in our discussion of all-paths testing in Chapter two, an execution
tree which contains a loop has an infinite number of paths. This is a problem,
because a person or machine employing symbolic execution to verify a
program cannot traverse an infinite number of paths. The solution to this
problem is an inductive technique for traversing the paths which, for each loop
in a program, produces a logical expression which will be true regardless of
how many times the loop iterates. This induction obviates traversing an infinite
number of paths. This technique is conceptually identical to Hoare's loop
invariants [Hoare69], and like Hoare's invariants, has yet to be mechanized.

Having reviewed symbolic execution, we now turn to the relationship between
symbolic execution and data flow testing.

Symbolic Execution in Support of Data Flow Testing

Symbolic execution allows us to produce a logical expression which
characterizes the input states which cause a specified path to be exercised:
Just follow the algorithm explained in the last section until you reach the end of
the path. The path condition will contain a predicate which characterizes all the
input states which exercise that path.

Symbolic Execution and the Problem of Array Variables

Having just discussed symbolic execution and data flow testing, we turn to the
problem which motivates this thesis: only with difficulty can symbolic execution
be applied to reason about array elements.

Once again, the problem is unsolvability. In particular, consider the assignment
statement a [i J = o; in the middle of a complicated program. Determining
which array element is defined in that statement is an unsolvable problem.
Program Verification Formalisms page 33

/

While unsolvability did not deter Frankl and Weyuker from proposing the
feasible data flow criteria, it did deter many developers of symbolic execution
from considering programs with arrays. We will see that the wp_du method
"makes the best" of this unsolvable problem by reducing this unsolvability to a
problem for which there are many partial solutions.

Hamlet et. al. [HamGN93] review the methods by which most developers of
symbolic execution have attempted to handle arrays and summarize the
reasons that these attempts are unsatisfactory.

To avoid the problems presented by unsolvability, researchers in data flow
testing decided to ignore the fact that an array has individual elements and
instead, treat any definition of any array element as a definition of the entire
array and any use of any array element as a use of the entire array. As Hamlet
et. al. observe:

Data-flow testing systems have treated program arrays as aggregate
objects that are "set" by assignment to any element and "used" when
reference is made to any element. This treatment is clearly worst-case,
and not a very good approximation to what data-flow tests intuitively
cover.

It is not surprising that this simplified method is imprecise. In fact, it
makes errors of commission and omission: That is, it requires that we
test def-use pairs where the definition defines a different array element
than the use uses and it ignores def-use pairs that should be tested.
Consider the following code:

a[1] := l;

if x > 0 then
writeln(a[2]);

If we treat the array as an aggregate object, then we are forced to say that
the same variable is defined in the assignment statement and used in the
output statement. But clearly, the array element that is defined is not the
array element that is used. Any data flow criterion would require that we
test for a data dependency between the definition and use, but clearly,
this is wasted effort.

In addition to requiring wasteful tests, the method of treating arrays as
aggregate objects also fails to require that essential tests be conducted.
For example, consider the code fragment which exchanges two distinct
elements in array a, using a [1 J as temporary:

a[1] = a[i] ;
a[i] = a [j] ;
a [j] = a[1] i

Program Verification Formalisms page 34

/

Further suppose that i and j will not be 1. Then we can see that the only
array element which is defined and then used in this code is a [1 J •
However, if we interpret the array as an aggregate object, then we are
forced to say that the array variable is defined in the first statement and
used in the second, and defined in the second statement and used in the
third. Therefore, the method we are considering finds two data
dependencies which do not exist and overlooks the one that does exist.

In summary, if we want to test a program with arrays using a data flow criteria,
the only available method is to treat each array as a single variable, which
corrupts the data flow analysis.

This thesis addresses this problem, not by attempting another extension of
symbolic execution to include arrays, but by applying the weakest pre-condition
formalism.

Weakest Pre-Condition

In this section, we discuss Dijkstra's weakest pre-condition formalism
[Dijkstra76]. This formalism has two complementary uses: program verification
and program synthesis. It also is an elegant tool for investigating non
deterministic programs. Only the program verification faculty is relevant to our
discussion.

The steps in proving that a program is correct using the weakest pre-condition
formalism are as follows: First formally specify the pre-condition and the post
condition. Then apply the weakest pre-condition formalism, which is actually a
set of higher-order functions, each of which takes a post-condition as an input.
The weakest pre-condition formalism mechanically computes a logical
expression which characterizes all the input states which will cause the
program to terminate in a state satisfying the post-condition. For reasons which
will be explained shortly, this logical expression is called the "weakest
precondition with respect to that program and that post-condition". The program
is verified if the pre-condition which was specified originally logically implies the
weakest precondition.

In this section, we first explain the weakest pre-condition formalism, then
explore different methods for representing the weakest precondition.
One method we discuss is power functions [Antoy87].

To begin with, we need to define some terminology.

In the earlier part of this chapter, we gave an intuitive definition of the state of a
program. For our current discussion, we require a more formal definition. A
state is a function whose domain is the the set of all possible variable names
and whose range is the disjoint union of the set of values of each type in the
language. A state must map a variable to a value of the same type.

Program Verification Formalisms page 35

/

A predicate is a function which takes as input a state and returns true or false.
We will use the terms "logical expression" or "boolean expression" as synonyms
for the term "predicate".

A pre-condition and a post-condition are both predicates over states.

A predicate transformer is a function whose domain and range are the set of all
possible predicates. These functions are called "predicate transformers"
because they take a predicate as input and transform it into the predicate which
is the output of that function. The predicate transformers which we are
interested in are those which take post-conditions as inputs and compute
weakest pre-conditions as outputs. More specifically, each possible statement
in our programming language will have a predicate transformer associated with
it such that for a given post-condition, each predicate transformer will return the
weakest pre-condition with respect to the specified statement and post
condition.

Recall that the weakest pre-condition with respect to a statement and a post
condition is the predicate which characterizes all the input states which cause
the statement to terminate in a state which satisfies the post-condition. A pre
condition is weakest with respect to a statement and a post-condition when any
further constraint added to that pre-condition would cause the predicate to fail to
characterize all the input states which cause the statement to terminate in a
state which satisfies the post-condition.

Dijkstra·s weakest pre-condition formalism is a set of schemata for predicate
transformers which compute weakest pre-conditions. In this context, a schema
is a rule for generating predicate transformers which compute weakest pre
conditions. (In most other contexts, schema are used to generate axioms.)
More specifically, a schema is a definition of a predicate transformer which
contains free variables, such that when these free variables are instantiated, a
predicate transformer which computes weakest pre-conditions is created.

We now present the weakest precondition schemata for our subset of Pascal.
Note that Dijkstra defined his weakest precondition formalism for a language
which had more general if and while statements than we use in this thesis.

Let P a free variable ranging over all post-conditions.

The schema for the assignment statement predicate transformers is:

Let v be a variable and e be an expression of the same type as v.

wp(v := e, P) =
(P with e textually substituted for v)

When v and e are instantiated, a predicate transformer for that assignment
statement is produced.

Program Verification Formalisms page 36

/

The schema for the if statement predicate transformers is:

Let t be a boolean test, and let s 1, and s 2 be statements in the programming
language.

wp(if t then sl else s2, P) =
(t => wp(sl, P)) and (not t => wp(s2, P))

When t, sl, and s2 are instantiated, a predicate transformer for that if statement
is generated.

The schema for the while statement predicate transformers requires some
discussion. For every possible loop, the weakest precondition formalism
associates an infinite sequence of predicates, where the nth element of the
sequence is the weakest pre-condition which causes the loop to iterate exactly
n times. The weakest precondition for the loop states that there exists a natural
number k such that the loop iterates k times and that the kth element of the
sequence conjoined with the loop test is the weakest pre-condition.

This sequence of weakest preconditions is represented by { Hk (P) } , for all
natural numbers k.

Lett be a boolean test, and lets be a statement in the programming language.

wp(while t do s, P) = there exists a natural
number k such that Hk(P) is true where

HQ(P) =not t and P
Hk+l(P) =
t and wp(s, Hk(P)) for any natural number k

Note that Dijkstra does not give a soundness proof to establish that his
schemata of predicate transformers do in fact always compute the weakest pre
condition. Presumably, he omitted such a proof because he intended the
predicate transformers to be the most basic semantic description of the
programming language.

Dijkstra's definitions comprise an effective procedure (an algorithm guaranteed
to terminate on all inputs) for constructing a representation of the weakest pre
condition of a program with respect to a post-condition. This is the case
because a program can be interpreted as a composition of statements, and
such a composition of statements yields a composition of weakest pre-condition
predicate transformers.

Further, note that the weakest precondition formalism begins with a post
condition and mechanically "works backward to the beginning of the program"
to produce the weakest pre-condition. This is in contrast to symbolic execution,
which starts at the beginning of the program and traverses all the complete

Program Verification Formalisms page 37

/
il

paths to the post-condition. This difference will be important in the last section
of chapter six.

Let's examine a short example, which will demonstrate what we have just
discussed as well as motivate the need for alternative representations of the
weakest pre-condition.

sum : = 0;
i : = 1;
while i <= n do begin

sum : = sum + i;
i := i + 1

end;

Figure 3.2

We specify the pre-condition to be o <= n and the post-condition to be sum =
n*(n + 1)/2.

The weakest precondition can be represented as

(1) wp(sum := O; i := l,
there exists k such that Hk(sum= n*(n + 1)/2))

Note that the free variables t, sl, and s2 in the definition of the { Hk (P) }
sequence must be instantiated with the appropriate code from the program.

Although (1) is a correct representation of the weakest precondition, it is not a
useful one. The problem is that neither humans nor mechanical solvers can
easily manipulate the predicate transformers. Said plainly, (1) represents the
set of states which cause the program to terminate in a state satisfying sum =
n * (n + 1) I 2, but we cannot easily identify any of the members of that set.

This problem motivates us to search for other means of representing the
weakest pre-condition. In what remains of this section, we discuss two such
alternative methods: the ingenuous method and the power function method.
These alternative methods are used in Chapter six.

The ingenuous method involves finding an infinite sequence of predicates {
Gk } such that for every natural number n, Gn = Hn (P) and no element of {
Gk } involves a predicate transformer. The name of the method, "ingenuous",
is taken from Loeckx and Sieber1s work [LoeSie87]. The name is appropriate
because there really is no method, other than unmechanized intuition, for
generating the { Gk } sequence. Once we have invented such a sequence {
Gk } , we prove that it is equivalent to the sequence { Hk (P) } , and then we
use { Gk } instead of { Hk (P) } .

Program Verification Formalisms page 38

/1
I

I

Turning to the code in Figure 3.2, the following infinite sequence of predicates {
Gk } is equivalent to the sequence of predicates { Hk (sum = n * (n + 1) I 2
) } :

Go= HQ(sum= n*(n + 1)/2)

for all natural numbers k
Gk+l =
(i + k = n) and (sum+ (k + l)*i +
k*(k + 1)/2 = n*(n + 1)/2)

(Note that the '=' symbol is overloaded: it represents both equality between
natural numbers and definition of predicates.)

Note that a proof that { Gk } = { Hk (sum = n* (n + 1) /2) } would be
inductive, where we first establish that Gl = H1 (sum = n* (n + 1) /2) , and
then show that if, for some natural number k, Gk = Hk (sum = n * (n + 1) I 2
),thenGk+l = Hk+l(sum= n*(n + 1)/2). Wewillseeanexampleof
this kind of proof in Chapter six.

Once we have established that { Gk } = { Hk (sum = n* (n + 1) /2) } ,
then we can replace any element of the { Hk (sum = n * (n + 1) I 2) }
sequence in (1) with the associated element of the { Gk } sequence. Since
none of the elements of the { Gk } sequence contain predicate transformers,
the representation of the weakest pre-condition of the program in figure 3.2 is
considerably simplified.

(1) becomes:

wp(sum := O; i := 1, there exists k such that Gk

If k is o, then the wp predicate transformer yields n = o or n = -1.

If k is positive, wp yields

there exists a k such that k = n and
k * (k + 1) I 2 = n * (n + 1) I 2

which reduces to o < n.

Since k is either zero or positive, the weakest precondition for the program is -1
< = n. The program is verified if our pre-condition logically implies the weakest
pre-condition. Since our weakest pre-condition, o <= n logically implies -1
<= n , the program is verified.

Recall that the problem with the ingenuous method is that it is not
mechanizable. Since weakest pre-condition computations quickly overwhelm
the ability of the human brain to manage complexity, researchers searched for
another representation of the weakest pre-condition.

Program Verification Formalisms page 39

/

A problem shared by both Dijkstra·s definition of weakest pre-condition and the
ingenuous method is that each have features which prohibit mechanization.
Antoy1s research [Antoy87] has produced a representation of the weakest pre
condition which is amenable to mechanization. He focuses on the weakest
preconditions tor while statements, since they are the most difficult. His method
is called the power function method.

In essence, his method expresses the weakest pre-condition of a loop in terms
of first-order logic, in contrast to Dijkstra•s predicate transformers, which belong
to higher order logic. Expressions in first order logic are easier for machines to
manipulate.

Before we can state his representation of the weakest pre-condition of a
loop, we need to discuss: representing a state as a tuple, functional
abstraction, and power functions.

In this thesis, we have already represented program states as sets of
bindings and as functions. In this context, it is most convenient to
conceive of a state as being a tuple, where each field in the tuple
corresponds to a particular variable such that the field contains the value
of the variable. Referring back to the program in Figure 3.2, we can
represent the state as a triple, where, for example, the first field contains
the value of i, the second field contains the value of sum, and the third
field contains the value of n.

The functional abstraction of a code fragment is the function which accepts a
state as input (represented by a tuple) and alters that state in exactly the same
way that the code fragment alters the state of the machine. This is the idea
upon which denotational semantics is founded. Suppose that the symbol code
denotes a code fragment. Then [code] denotes the functional abstraction of
that code. For example, the functional abstraction of the loop body of the
program in Figure 2.3 can be represented as:

(2 } (i , sum, n } - > (i + l , sum + i , n }

where-> means 11 is mapped to 11
•

Applying the functional abstraction to a state is thus analogous to executing the
code with that state loaded into the machine's memory. Power functions help
us express the idea of executing some code repeatedly, which allows us to
model the execution of a loop that contains that code in it's body. More
specifically, given a functional abstraction [code], we represent the power
function associated with [code J as [code J *. A power function takes two
inputs: a natural number expressing the number of times we apply the
functional abstraction and an initial state.

Formally, let k be a natural number and s be a tuple representing the state.

Program Verification Formalisms page 40

(,,..

(3)

[code]*(k ..
3

) = {[code]*(k - 1 .. s) if k > o
s if k = 0

We can now explain how power functions are used to represent the weakest
pre-condition. Intuitively, the weakest pre-condition of a loop with respect to a
post-condition P is a predicate which characterizes all the states which cause
the loop to terminate in any state satisfying the post-condition. Expressed more
carefully, this weakest pre-condition characterizes all the states s such that a
natural number k exists which represents the number of times the loop iterates
and that when the functional abstraction of the loop body is applied to state s k
number of times, the resultant state will satisfy the post-condition.

Expressed symbolicaUy, the weakest pre-condition of a loop of the form

while t do b

with respect to the post-condition Pis:

(4)

(3 k)(P ([b] * (k .. s)) and

not [t]([b)*(k .. s)) and

('v' x)(0 <= x < k => [t 1 { [b 1 * { x .. s))))

Antoy proves the equivalence of (4) and Dijkstra's definition, (1).

The pleasant surprise of Antoy's work is that once the functional abstraction of
the body and test of the loop are specified (usually by a human), the weakest
pre-condition of the loop is expressed as the above first order logical
expression. Even if that formula is cumbersome for humans to manipulate,
mechanical manipulation is not difficult [Antoy87].

Therefore, given (2) and a functional abstraction of the loop test, (4) is a first
order expression of the weakest precondition of the loop for post-condition P.

This concludes our review of program verification formalisms.

Program Verification Formalisms page 41

,,.,.

4 Data Flow Testing for Array Elements

Before we introduce the wp_du method, we need to modify the data flow criteria
we introduced in the last chapter such that these criteria can be used to test
array elements.

To begin with, let's visualize what it means to employ data flow testing to
investigate array elements. In our previous discussions of data flow testing, we
considered each variable in the program and looked for paths which
investigated the definition and use of that variable. To apply data flow testing to
an array element, means to execute the program with input data which
investigate the definition and use of that element. We will discover that this is
more complicated than data flow testing for simple variables.

This chapter has three sections: In the first, we discuss why the data flow
criteria we have defined so far cannot be used to test array elements. We
observe that the expressiveness of graph theory is insufficient for the purpose of
defining data flow criteria for array elements. Thus, we abandon graph theory.
The second section redefines the previous data flow criteria without graph
theory. In the last section, we define the data flow criteria for array elements.

Data Flow Criteria Do Not Test Array Elements

The reason our previous definitions of feasible data flow cannot easily be
applied to array elements is because they do not make allowances for
ambiguous array elements. An ambiguous array element is an array element
reference where the expression which computes the subscript contains at least
one variable. For example, if a is an array, then a [i] and a [x + y - 7]
are ambiguous array elements, while a [3] and a [2 + s] are not.
Ambiguous array elements pose many difficulties.

To illustrate these difficulties, suppose the following two statements occur in the
middle of a complicated program:

a[i] := O;
writeln(a[j]);

The difficulties are: First of all, we cannot always determine which array
element is defined in the first statement or used in the second. Further, the
array elements which actually are defined and used may depend on the input to
the program. Finally, if these statements are executed more than once, they
may define and use different array elements each time. Note that none of these
difficulties exist with simple variables.

The result of these difficulties is that when we employ the existing data flow
criteria, either original or feasible, to test a particular array element, for example
a [2 J , we will not always be able to determine what nodes and edges define
and use a [2 J , and further, even if we are able to do that, executing a path

Data Flow Testing for Array Elements page 42

I"

which includes that definition and that use does not ensure that a [2 J will be
defined or used during the execution of that path. Let's consider an example.
Assume that a is an array indexed from 1 to 3.

i : = 1 i
while i <= 3 do begin

a[i] := i;
i := i + 1;

end;

readln (i) ;
writeln(a[i]);

Figure 4.1

c--1-i = = 1 ~---)
~--- ~-~

i > 3

c---;-:(~~-1~-)

-~~~-~-~~~-
c · 4 i : = i + 1 ; -___________ __,...

,..,..-- --...
(5 readln(i) ;) ___ I __ __

-------- ----------
(-- 6 writeln(a [i]) ; ._) ·----------- _ _,,..,.,-_ __,..-.,,.·

Figure 4.2

Let's assume that we are applying some feasible data flow criterion and we are
particularly interested in investigating a [2 J • In such a simple program, we

Data Flow Testing for Array Elements page 43

"

can see that a [2 J is defined at node 3 and, when the input datum read at
node 5 is 2, used at node 6. Note that in the general case, due to unsolvability,
we cannot always carry out such an identification. In this case, we consider
ourselves lucky and proceed. The criterion requires that we find a feasible path
which includes node 2 and later, before a [2 J is defined again, includes node
6. (1 , 2 , 3 , 4 , 2 , 3 , 4 , 2 , 3 , 4 , 2 , 5 , 6) is such a path.
Observe, however, that the criterion does not place any constraints on the input
datum which the tester provides. Rather, the criterion only requires that the
prescribed path be exercised. Therefore, the criterion is satisfied by executing
the above path with an input datum which is not 2. But we can see the test will
only be useful if the input datum is 2. Thus, the criteria as they are currently
defined, cannot be used to test array elements.

The question we now consider is: can the current data flow criteria be extended
to test array elements? In what remains of this section, we demonstrate that the
answer is: not without extending or abandoning graph theory as the formalism
in which we define the criteria.

Before we proceed, we need to establish a convention for discussing specific
array elements, without the obligation of actually naming an exact array element
for each discussion. We will let a [I J stand for some specific, unspecified
array element. In more technical terms, a is a free variable ranging over the
arrays in the program we are considering and I is a free variable which ranges
over the set of valid indices for the array we select for investigation. We will use
these free variables throughout this thesis.)

Note that a [r J is not an ambiguous array element, because we are using I
to stand for a particular valid array index. We now turn to the inadequacies of
graph theory as a formalism in which to define data flow testing for array
elements.

We saw in the last example that one significant problem in trying to employ data
flow criteria to test array elements is this: Once we have identified an array
element a [I J we want to investigate, and a definition of a [I J called DEF
and use of a [I J called USE (either of which may contain ambiguous array
elements) which we want to test, simply exercising a path which contains DEF
and USE is not sufficient to ensure that a [I J is defined at DEF or used at USE.
Note that for a [I J to be truly tested with respect to DEF and USE requires
executing the program with an input datum which exercises a path with the
property that a [I J is defined at DEF and before a [I J is defined again, a [
I J is used at USE. However, when we construct a set of paths to satisfy some
data flow criterion, we have no opportunity to express this requirement. This is
the problem.

To solve this problem, we could extend the data flow criteria the following
manner: instead of constructing only a set of paths to satisfy a data flow
criterion, we could instead construct a set of duples, where each duple
contained a path and a def-use pair which that path must test. Although this is a

Data Flow Testing for Array Elements page 44

solution to the above problem, we chose not to pursue it for reasons explained
in the next section.

In summary, we have seen that the current data flow criteria cannot be used to
test array elements.

Data Flow Criteria Expressed Without Graph Theory

In the previous section, we encountered problems in extending the data flow
criteria to array elements. We traced those problems back to our use of graph
theory. We now observe another reason that graph theory is inconvenient for
our purposes.

The wp_du method, which we introduce in the next chapter, is built on Dijkstra·s
weakest pre-condition formalism [Dijkstra76], which makes no use of graph
theory. Since it is easier to express the data flow criteria without graph theory
than to express the weakest pre-condition formalism within graph theory, we
here carry out the former.

For both of the aforementioned reasons, we redefine the data flow criteria we
have encountered so far. More specifically, in this section, we express the data
flow criteria in terms of the statements in the program, not the program graph.

We accomplish this redefintion of the criteria with an elegant procedure (i.e. a
simple trick): Recall that all our data flow criteria have been defined using the
terms: 11definition of a variable 11

,
11use of a variable 11

,
11 node 11

, and 11edge 11
• If we

simply redefine the first two terms so that they refer to the program itself, instead
of the program graph, and go back to the data flow criteria definitions and
replace all instances of 11node 11 and 11edge 11 by 11statement", we will have
effectively redefined the data flow criteria in the desired manner. That is how
the goal of this section is met.

For example, a definition of a variable, which formerly was associated with a
node in the program graph, is associated with the statement in the program
which contains that definition. Similarly, a c-use, which was formerly associated
with a node in the program graph, is associated with the statement in the
program which contains that use.

Identifying p-uses with parts of the actual program is more complicated. Recall
that a p-use of a variable was formerly an edge which departs from an empty
node, where that empty node represents the beginning of an if or while
statement which is controlled by a boolean expression which contains the
variable we are considering. However, no edges actually exist in the program
itself. So, for each variable in each boolean expression which controls an if or
while statement, we associate two p-uses: one p-use of that variable is the
statement which is executed immediately after the boolean expression
evaluates to true; the other p-use of that variable is the statement which is
executed immediately after the boolean expression evaluates to false. Thus,
although it appears strange at first, for a given boolean expression which
Data Flow Testing for Array Elements page 45

controls an if or while statement, each variable which occurs in that expression
has two p-uses, and these p-uses are identified with the statements which
follow the evaluation of that expression.

So, for example, returning to Figure 2.2 in Chapter two, the p-uses of x which
were represented as:

USE:
USE:
USE:
USE:

x,
x,
x,
x,

(2 I 3)
(2 I 6)
(3 I 4)
(3 I 5)

when we were using graph theory, are now represented as:

USE: x, 3
USE: x, 6
USE: x, 4
USE: x, 5

A use is either a p-use or a c-use.

We have succeeded in associating the definitions of variables and uses with
statements in the program itself. Since all our previous definitions depended on
the definitions of "definition of a variable" and "use of a variable" the old data
flow criteria are effectively redefined.

Now we can discuss applying data flow criteria to a program without reference
to graph theory.

The Data Flow Criteria Extended to Test Array Elements

In this section, we define data flow criteria which test array elements. However,
in contrast to how data flow criteria have been defined previously, we do not
make use of graph theory, for reasons discussed in the earlier parts of this
chapter.

Recall that the previous data flow criteria accept a set of paths as input and
either accept or reject that set. The new criteria we define will accept as input a
set of logical expressions and will either accept or reject the set.

Before we present the definitions of the criteria, we present two auxiliary
definitions and a caveat.

We say that a statement may define an array element a [r J if that statement
defines an ambiguous array element. A statement may use an array element a [
I J if that statement uses an ambiguous array element.

We also define the locution: a logical expression tests a def-use pair< DEF,
USE, a [I J > if and only if any input datum which satisfies that logical

Data Flow Testing for Array Elements page 46

expression causes an execution of the program where a [I J is defined at DEF
and then, before it is defined at another statement, used at USE. Note that if
there is no such input datum for the specified def-use pair, then the logical
expression is always false. We will see that the wp_du method gives a
computable procedure for generating such logical expressions.

A final note of caution before we present the criteria definitions: The definitions
we propose assume that the tester can carry out a task which is in general
unsolvable. This is not scandalous: recall that the definitions of the feasible
data flow criteria presented by Frankl and Weyuker require that the tester
identify feasible and infeasible paths, which we know to be an unsolvable
problem. The task we require is that the tester be able to determine whether a
logical expression, perhaps in higher order logic, is equivalent to false or not.
We will soon see why this task is necessary in our definitions of the data flow
criteria which can test array elements.

We present the new definitions for all-defs*, all-p-uses/some-c-uses*, and all
uses* for testing array elements. For clarity, we present these definitions in two
forms: in algorithmic and declarative forms. First we give the algorithmic
definitions.

Each algorithm begins with an empty set of logical expressions L.

If we are applying the all-defs* criterion for array elements, then for each array
element a [I] :

• For each definition called DEF which may define a [r J and for each
use called USE which may use a [r] , do the following:

• Construct a logical expression that tests the def-use pair< DEF,
USE, a [I] >.

• If that expression is not logically equivalent to false, then add it to
the set of expressions L.

Any set of logical expressions L constructed in this way satisfies the all-defs*
data flow testing criterion for array elements.

If we are applying the all-p-uses/some-c-uses criterion* for array elements,
then for each array element a [I] :

• For each definition called DEF which may define a [r J , do the
following:

• If there exists a p-use called P _USE for which there exists a logical
expression which tests < DEF, P _USE, a [I J > which is not
equivalent to false then:

Data Flow Testing for Array Elements page 47

• For every p-use called USE, construct a logical expression
which tests < DEF, USE, a [I J >. Add each expression
which is not equivalent to false to L.

• If there are no such p-uses, then identify a c-use called c_usE for
which there exists a logical expression which tests < DEF, c_usE,
a [I] >which is not equivalent to false. Add that expression to L.

Any set of logical expressions L generated by following the above algorithm
satisfies the all-p-uses/some-c-uses* data flow testing criterion for array
elements.

If we are applying the all-uses* criterion for array elements, then for each array
element a [I J :

• For each definition called DEF which may define a [I J , do the
following:

• Identify a use called USE for which there exists a logical expression
which tests < DEF, USE, a [I J > which is not equivalent to
false. Add that expression to L.

Any set of logical expressions L generated by following the above algorithm
satisfies the all-uses* data flow testing criterion.

We now present the declarative equivalents of the above algorithmic definitions.

Let L be a set of logical expressions.

L satisfies all-defs* if and only if:

for all arrays a and all array elements a [I J ,
for all definitions DEF which may define a [r J ,

for all uses USE which may use a [I J ,
E is a logical expression which tests
< DEF, USE, a [I J > and E is not false implies that
an expression which is logically equivalent to E is in L

To define all-p-uses/some-c-uses* we need the following definition: Let DEF be
a statement which may define a [I J , then:

dpu_arr{ DEF, a[I]) = { every p-use P_USE for which
there exists a logical expression which tests < DEF,
P_USE, a[I] > which is not equivalent to false }

Data Flow Testing for Array Elements page 48

L satisfies all-p-uses/some-c-uses* if and only if:

for all arrays a and all array elements a [I J ,
for all definitions DEF which may define a [I J ,

dpu_arr (DEF, a [I J) is not empty implies
for all p-uses P _USE which may use a [I J ,

Eis a logical expression which tests
< DEF, P_USE, a [I J >and Eis not false
implies that an expression which is logically
equivalent to Eis in L

and
dpu_arr (DEF, a [I J) is empty implies

there exists a c-use c_usE which may use a [I J such that
Eis a logical expression which tests
< DEF, C_USE, a [I J >and Eis not false and
an expression which is logically equivalent to
Eis in L

L satisfies all-uses* if and only if:

for all arrays a and all array elements a [I J ,
for all definitions DEF which may define a [I J ,

for all uses USE which may define a [I J such that
Eis a logical expression which tests
< DEF, USE, a [I J >and Eis not false and
an expression which is logically equivalent to Eis in L

Data Flow Testing for Array Elements page 49

5 The wp_du Method

In the previous chapters, we presented the background to the problem and
layed the foundation for its solution. Recall the problem is that data flow testing
cannot be used to test individual array elements. In this chapter, we explain the
solution: the wp_du method. This chapter has two sections which explain how
and why the wp_du method works, respectively. In the next chapter, we apply
the wp_du method to example programs.

What the wp_du Method Does

In this section, we present a black box description of the wp_du method and a
discussion of how repeated applications of the wp_du method can be used to
characterize test sets which satisfy any specified data flow criterion. We defer
an explanation of the mechanics of how the wp_du method actually works until
the next section.

A Functional Description of the wp_du Method

The wp_du method requires three items as input:

1. a program, which is written in a structured, imperative language. For this
thesis, we assume the program is written in the subset of Pascal described
in the Introduction.

2. an indication from the tester of which variable we want to investigate in this
application of the wp_du method. This variable can be either simple or an
array element. Since the difficult case is the investigation of the array
elements, we will assume that the variable we investigate is an array
element. Let a stand for the array under inspection. Let I be a free variable
which stands for the index of the array element we intend to investigate. So,
if the tester wanted to investigate the third element of array a, for example,
then I would stand for 3 for the duration of that application of the wp_du
method.

3. an indication from the tester of a statement of definition, which we will
identify by the name DEF, and a statement of use, which we will identify by
the name USE. We assume that DEF defines some array element, possibly
ambiguous, and USE uses some array element, possibly ambiguous.

The result of an application of the wp_du method is a logical expression which
characterizes the input data which cause DEF to execute at least once such that
a [I J is defined, and later, USE is executed at least once such that a [I J is
used. Further, a [I J is not defined between the aforementioned executions
of DEF and USE. In the language of the last chapter, the wp_du method
constructs a logical expression which tests the def-use pair < DEF, USE, a [
I] >.

The wp_du Method page 50

Two comments: First, the reader who favors formalization may find the
preceding description unsatisfying. Note that a formal treatment of the above
would require the construction of an operational semantics which allows us to
formally discuss sequences of states and statements [LoeSie87]. Such an
undertaking is beyond the scope of the present work. Second, the logical
expression produced by the wp_du method can be used in the construction of a
test set in at least two ways: either by incorporating that expression into a larger
logical expression which characterizes the entire test set or, using the
expression to generate individual test data which are added to the test set.

wp_du and the Characterization of Test Sets which Satisfy A Specified Data
Flow Criterion

With our general understanding of the wp_du method, we can substantiate the
claim that repeated applications of the method can be used to construct logical
expressions that characterize all test sets which satisfy any data flow criterion,
feasible or not.

Of course, the actual construction of a test set which satisfies a specified data
flow criterion is an unsolvable problem, so we can•t expect our construction to
succeed in every case. Our success in overcoming unsolvability will depend on
our method for generating assignments which satisfy a given logical
expression, which we do not consider here.

Suppose we choose a data flow criterion. For each variable, identify all the
statements which may define that variable and all the statements which may
use that variable. Note that the cartesian product of these definitions and uses
is the set of all def-use pairs which may define and may use that variable.

Each data flow criterion requires that a certain number of these def-use pairs be
tested. Regardless of what criterion is applied, each def-use pair can be
passed as input to the wp_du method. The method will return a logical
expression which characterizes all the input data which test that def-use pair.

If we apply the wp_du method to each def-use pair which our chosen criterion
requires us to investigate, we will construct a logical expression which tests
each def-use pair. To construct a test set which satisfies that criterion then
requires that, for each logical expression, we generate a datum which satisfies
that expression and add that datum to the test set. When we execute that
program on all the data in the test set, we will have successfully tested the
program with respect to the chosen criterion.

How the wp_du Method Works

In this section, we explain how the wp_du method works.

Recall from the previous section that the wp_du method takes three items as
input: a program, a variable, and a pair of statements, one called DEF, which
The wp_du Method page 51

defines the variable, and one called USE, which uses the variable. (Recall that
we are most interested in the case where this variable is an array element.)
From this input, the method produces a logical expression which characterizes
the input data which cause DEF to be executed such that the variable is defined,
and later, USE is executed such that the variable is used, and finally, the
variable is not defined between the aforementioned executions.

The wp_du method carries out this construction in two steps:

The first step is to construct a modified version of the original program. Call
the original program P and the modified program P ' . (Note that we usually call
P' an "instrumented" version of P.)

P ' is constructed such that it carries out the same computation as P except P '
a\so contains code which implements a finite state machine which monitors
whether the specified variable has been defined at DEF and not redefined
before a use at USE. The finite state machine requires one variable called
status, which can take on any of the following three values: not_defined,
defined, and def_used. At the beginning of P', status is initialized to
not_def ined. Further, P' is constructed such that status is set to def_used
exactly during the executions where the specified variable has been defined at
DEF and not redefined before a use at USE.

We will examine the finite state machine and the construction of P' soon.

The second step of the wp_du method is to compute the weakest pre-condition
such that P' terminates in any state which satisfies status = def_used. This
weakest pre-condition computation can be carried out in the same way as any
other weakest pre-condition computation. We'll see examples of such
computations in the next chapter. The result of this weakest pre-condition
computation is a logical expression which characterizes all the input states for
which DEF was executed such that the variable was defined, and after that, USE
was executed such that the variable was used, and finally, that variable was not
defined between the aforementioned executions.

Note that we do not use the weakest pre-condition formalism to prove the
correctness of the programs we consider because if we were able prove the
correctness of the program, then theoretically, we could dispense with testing.

Let's turn to the construction of the instrumented program mentioned in the first
step.

We are given:
• a program P
• an indication of which array we are investigating, call it a
• an assignment to the free variable I which determines which array

element we are investigating
• a statement DEF where a [I J may be defined, and
• a statement USE where a [I J may be used.

The wp_du Method page 52

Note that in any actual application of the wp_du method, the r would be
replaced by some value which specifies an array index. However, since we are
discussing the wp_du method in the abstract, we will not assign a specific value
tor.

We need to define a few more symbols. Let eoEF represent the expression
which computes the index of the array element defined in DEF. Let eusE
represent the expression which computes the index of the array element used
in USE. We will use MORE_DEF to refer to a statement, which is not DEF, where
a [I J may be defined. Each time we use the MORE_DEF symbol, we need to
specify what statement it refers to. Once the denotation of MORE_DEF has been
fixed, let eMoRE DEF refer to the expression which computes the index which is
defined by the -MORE_DEF statement.

We transform P into P' by adding code which implements the aforementioned
finite state machine. This is done in the following way.

Declare the variable status initialize it to not_ defined.

Include the following code immediately before DEF:

if (eoEF = I) and (status = not_defined) then
status := defined;

Include the following code immediately before USE:

if (eusE = I) and (status = defined) then
status := def_used;

Finally, identify all statements where a [r J may be defined, excluding DEF.
We precede each such statement with the following code, where MORE_DEF
refers to the statement currently being considered:

if (eMoRE_MF = I) and (status = defined) then
status := not_defined;

Recall that I, eoEF' eusE, and eMoRE DEF are free variables which do not appear in
the actual text of P • . Rather, an in-dex will be substituted for I and expressions
will be substituted in for eoEF' eusE' and for each instance of eMoRE_DEF·

This code implements the following finite state machine where the state of the
machine is the current value in the status variable:

The wp_du Method page 53

a [I] is defi ned at DEF a [I 1 is used at USE

a [I] is defined~ but not at DEF

Figure 5.1

Note that:

• the edge which leaves the not_defined node represents the code we
included before the DEF statement,

• the edge which connects the defined and def_used node corresponds to
the code which we included before the USE statement, and

• the edge which connects the defined and not_defined node corresponds
to the code we included before each statement, except DEF, which may
define a [I J •

Since status is initialized to not_def ined, not_def ined is the start state.
The finite state machine changes its state whenever the flow of control reaches
one of the if statements we added and the the boolean statement which
controls that if statement evaluates to true. In any other case, the finite state
machine does not change its state. What state the program terminates in
depends on the input state.

If the finite state machine is in the not_defined state (the variable status has
the value not_ defined), we know one of two things has occurred: Either a [I
] has not been defined at DEF or else a [I J was defined at DEF but was
subsequently defined at some other statement before being used at USE.

If the finite state machine is in the defined state, we know the most recent
definition of a [I J occurred at DEF. (Note that a [I J can be defined at DEF
many times in succession, so long as a [I J is not defined at some other
statement besides DEF.)

If the finite state machine is in the def_used state, we know that a [I J was
defined at DEF and, before it was defined at another statement, a [I J was
used at USE. Note that once the finite state machine enters the def_used state,
it cannot leave that state. The reason for this is that all that is required for an
The wp_du Method page 54

execution to test the def-use pair wrt a [r J composed of DEF and USE is for a [
r J to be defined at DEF at some point in the execution, and then be used at
USE before being defined at another statement.

Having completed the explanation of how the wp_du method works, we would
like to consider why the method works. Note that a formal soundness proof of
our method would require an operational semantics which is outside the scope
of this thesis.

In place of a formal soundness proof, we will explain two relations which hold
between the original program, P, and the corresponding instrumented program,
P' . We assume that it is obvious that if these two relations hold, then the wp_du
method is sound.

The first relation: for a given input state, P and P · always produce the same
result, excluding the status variable. (In terms of program transformations
[Morgan90], we say P' is a refinement of P.) This means, in addition, that P and
P' terminate for the same input states.

To see that this relation holds between P and P', the reader must see that the if
statements which are added to P to create P ' do not alter the computation which
the program carries out in any essential way. (Reminder: the status variable
is used only in the if statements explained above, therefore, it does not appear
anywhere else in P • .)

The second relation which holds between P and P ' is the following:

Suppose we have specified an array element a [r J to investigate, and
statements DEF and USE.

For all input state i for which P terminates,

P executed with i causes DEF to be executed such that a [r J is
defined, and before a [r J is defined again, USE is executed
such that a [r J is used

if and only if

P' executed with i causes P' to terminate with status containing
the value def_used.

To see this relation holds between P and P' , the reader should review the
construction of the finite state machine which P ' contains.

In conclusion, we have presented the wp_du method and a discussion of why it
works. In the next chapter, we examine some examples of the wp_du method.

The wp_du Method page 55

6 Examples of the wp_du Method

In the previous chapter, we presented the wp_du method and discussed how
repeated applications of the method to different def-use pairs can characterize
all the test sets which satisfy any specified feasible data flow criterion and
program. In this chapter, we present two programs to which we apply the
wp_du method. For each program, we identify one def-use pair with respect to
a particular array element a [I J , and compute the logical expression which
characterizes all the input data which test that def-use pair.

The programs we present are simple for two reasons: 1) we want the reader to
be able to intuitively verify that the wp_du method produces the correct result
and 2) the weakest pre-condition computations for even moderately
complicated programs are intractable for humans. Mechanical assistance is
clearly required for applying the wp_du method to such programs.

In the first example, we work through the weakest pre-condition computation
and supporting proofs in some detail. In the second example, we omit most of
these details.

All of our examples use an array a with elements indexed from 1 to n.

Example: Squaring

Consider the following program which a_ssigns to each array element the
square of its index. The algorithm used by this program is based on the fact that
the square of a number x is the sum of the odd integers from 1 to 2 * x - 1.

a[1 J := 1;
i : = 2;

while i <= n do begin
a[i] := a[i - 1] + 2 * i - l;
i := i + 1

end;

Figure 6.1

Examples of the wp_du Method page 56

The instrumented version of this program is:

status := not_defined;
a[1] := l;
i : = 2;

while i <= n do begin

end;

if (I = i - 1) and (status = defined) then
status := def_used;

if (I = i) and (status = not_defined) then
status := defined;

a[i] := a[i - 1] + 2 * i - l;
i := i + 1

Figure 6.2

Excluding the definition of a [1 J at the beginning of the program, there is only
one definition of an array element and one use of an array element. Notice that
both occur in the same statement. Therefore, we identify both DEF and USE with
this statement. Consequently, we precede DEF and USE statement with the
code which monitors the definitions and uses performed by this statement: a [i
J : = a [i - 1 J + 2 * i - 1 ; . The order of these if statements is of no
consequence. Finally, recall that there is no other statement besides a [1 J
: = 1; which defines an array element. Since we can see that the only array
element that is defined by this statement is a [1 J, we omit the MORE_DEF code
which monitors this statement.

Before we compute the weakest pre-condition of this code with respect to the
post-condition status = def_used, it is worthwhile to anticipate what result
we expect to achieve. Our computation will yield a weakest pre-condition which
characterizes all the input data which causes a [r J to be defined at DEF and
then used at USE without being defined any where else in between. (Recall that
r is a free variable ranging over the set of valid indices for array a.)

Usually, when the wp_du method is applied, r is set to the value of a particular
index. However, for simple programs like this one, we leave r unspecified, and
derive results that apply to all array elements.

Inspection of the code reveals that an array element a [r J will be defined at
DEF and used at USE, without intermediate definition, in the case where r is
greater than 1 and less than n. Said in a different way, a [1 J is never defined
at DEF and a [n J will never be used at USE. But if r is given any value
between these two extremes, then any execution of the program will test this
def-use pair. We see now that the weakest pre-condition produces this result.

Our proof strategy is to display a sequence of predicates { Gn } which we
prove, via an induction argument, to be equivalent to the sequence of
predicates { Hn (status = def_used) } which define the weakest pre-

Examples of the wp_du Method page 57

conditions for loop iterations. Then the existentially quantified k in Dijkstra's
definition of the weakest precondition of a while statement will be instantiated
with the number of loop iterations. The resulting logical expression will not
contain any predicate transformers, and so will be (relatively) easy to
manipulate. We will pass the resulting logical expression through the predicate
transformers of the assignment statements which precede the loop and the
result described in the previous paragraph will be obtained.

Define the sequence of functions { Gk } for all natural numbers k:

Go = HQ(status = def_used)

for all natural numbers k > 0,
Gk =

i + k - 1 = n and
((I= i - 1 and status<> not_defined) or
I in [i .. i + k - 2] or
status = def_used)

Note that in is being used to mean "is a member of" and [a .. b J is the set of
all integers between a and b inclusive.

Before we proceed with the proof, let's try to interpret the meaning of Gk for an
unspecified k greater than o. Recall that Gk is meant to be the weakest
precondition such that the loop iterates exactly k times and then terminates in
any state satisfying status = def_used. Gk is a logical conjunction. The first
conjunct, i + k - 1 = n, characterizes the states which will cause the loop to
iterate k times and then terminate. The second conjunct characterizes the
states which cause the loop to terminate in a state satisfying status =
def_used. This second conjunct is composed of three disjuncts, which we
examine.

If the loop begins in a state where I = i - 1 and status <> not_def ined
is true, then, in the first iteration, a [I J will be used at USE and status will be
set to def_used, if it does not already contain that value. If the loop begins in a
state where I in [i .. i + k - 2 J is true, then regardless of the value of
status, a [I] will be defined at DEF and used at USE without intermediate
definitions during the k iterations of the loop. Finally, if the loop begins in a
state where status = def_used is true, then, of course, it will terminate in a
state satisfying status = def_used.

We will begin our induction proof by establishing the base case that Gi = H1 (
status = def_used) and then take the inductive step where we assume
that for some natural number k, Gk = Hk (status = def_used) and then
we prove that Gk+l = Hk+l (status = def_used) .

Examples of the wp_du Method page 58

Base Case

By definition,

Gl =
i = n and
((I= i - 1 and status<> not_defined) or
status = def_used)

To see that Gl and H1 (status = def_used) are equal, we need to
represent H1 (status = def_used) without wp predicates. This can be
done by evaluating the predicate transformers.

H1(status = def_used) =

i <= n and
wp(loop body, HQ(status= def_used)) =

i <= n and
wp(first if; second if;

a[i] := a[i - 1] + 2*i - 1; i := i + 1,
i > n and status = def_used) =

i <= n and
wp(first if; second if; a[i] := a[i - 1] + 2*i - l,

i + 1 > n and status = def_used)

We now need to evaluate the above predicate transformer. This will be done in
two steps. First, we will now compute:

wp(second if; a[i] := a[i - 1] + 2 * i - 1,
i + 1 > n and status = def_used)

and call the result WP _IF2. Then we will compute

wp(first if, WP_IF2)

and call the result WP _IFl. We will then see that

i <= n and WP_IFl

which will be equal to Gl. Step one:

wp(second if; a[i] := a[i - 1] + 2 * i - 1,
i + 1 > n and status = def_used) =

((I = i and status = not_def ined) =>
i + 1 > n and defined= def_used)) and

((I <> i or status <> not_def ined) =>
(i + 1 > n and status= def_used)) =

Examples of the wp_du Method page 59

i + 1 > n and
(I <> i or status <> not_def ined) and
((I<> i or status<> not_defined) =>

status = def_used) =

i + 1 > n and
(I <> i or status <> not_def ined) and
status = def_used

which we call WP _IF2.

Step two:

wp(first if, WP_IF2 1 =

i + 1 > n and
((I= i - 1 and status= defined) =>

((I<> i or def_used <> not_defined) and
def_used = def_used)) and

((I<> i - 1 or status<> defined) =>
((I<> i or status<> not_defined) and

status= def_used)) =

i + 1 > n and
((I<> i - 1 or status<> defined) =>

((I<> i or status<> not_defined) and
status= def_used)) =

i + 1 > n and
((I= i - 1 and status= defined) or
((I<> i or status<> not_defined) and

status= def_used))

Call this WP_IFl. Note that

H1(status= def_used 1 =
i <= n and WP_IFl

which is equal to:

i = n and
((I= i - 1 and status= defined) or
((I<> i or status<> not_defined) and

status= def_used))

To see that this representation of H1 (status = def_used) is equivalent to
Gl, we need to do a substantial amount of symbol manipulation which involves
distributing and and or. Here it is:

Examples of the wp_du Method page 60

i = n and
((I= i - 1 and status= defined) or
((I<> i or status<> not_defined) and

status= def_used)) =

i = n and
((I= i - 1 and status= defined) or
(I <> i and status = def_used) or
(status<> not_defined and status= def_used)) =

i = n and
((I= i - 1 and status= defined) or
(I <> i and status = def_used) or
status = def_used) =

i = n and
((I= i - 1 and status= defined) or
status = def_used) =

i = n and
((I= i - 1 or status= def_used) and
(status= defined or status= def_used)) =

i = n and
((I= i - 1 or status= def_used) and
status <> not_def ined) =

i = n and
((I= i - 1 and status<> not_defined) or
(status= def_used and status<> not_defined)) =

i = n and
((I= i - 1 and status<> not_defined) or
status = def_used

which is equal to Gi.

Inductive Step

Now, we take the inductive step. Given that for some k, Gk = Hk (status =
def_used) , we need to prove that Gk+l = Hk+l (status = def_used) .

We begin with the definition of Hk+l (status = def_used) :

Hk+l(status = def_used 1 =
i <= n and
wp(loop body, Hk(status= def_used))

Let's focus on the wp (loop body, Hk (status = def_used)) conjunct.

Examples of the wp_du Method page 61

wp(loop body, Hk(status= def_used)) =
wp(loop body, Gk)

by inductive hypothesis. We will substitute in the definition of Gk and show that
wp (loop body, Gk) = Hk+l (status = def_used) . Let:

wp(loop body, Gk) =
wp(first_if; second_if;

a [i] : = a [i - 1] + 2 * i -1; i : = i + l, Gk)

We now need to evaluate the above predicate transformer. We will do this is
three steps. First, we will first compute:

wp (a [i] : = a [i - 1] + 2 * i -1 ; i : = i + 1 , Gk)

and call the result WP _POST_IF2. Second, we will compute:

wp(second_if, WP_POST_IF2)

and call the result WP _IF2. In the third step, we will compute:

wp(first_if, WP_IF2)

and call the result WP _IFl. Finally, we will see that

Gk+l = i <= n and WP_IFl

We then conclude that Gk+l = Hk+l (status = def_used) , which will
complete our induction.

Step one:

wp (a [i] : = a [i - 1] + 2 * i -1 ; i : = i + 1 , Gk) =

i + k = n and
((I= i and status<> not_defined) or
I in [i + 1 .. i + k - 1] or
status = def_used)

Call the expression on the right hand side of the equality WP _POST_IF2. Step
two:

Examples of the wp_du Method page 62

wp(second_if, WP_POST_IF2) =

((I= i and status= not_defined) =>
(i + k = n and
((I= i and defined<> not_defined) or
I in [i + 1 .. i + k - 1] or
defined= def_used))) and

((I<> i or status<> not_defined) =>
(i + k = n and
((I= i and status<> not_defined) or
I in [i + 1 .. i + k - 1] or
status= def_used)) =

i + k = n and
((I= i and status= not_defined) =>

((I= i and defined<> not_defined) or
I in [i + 1 .. i + k - 1] or
defined= def_used)) and

((I<> i or status<> not_defined) =>
((I= i and status<> not_defined) or
I in [i + l .. i + k - 1] or
status= def_used)) =

i + k = n and
((I= i and status= not_defined) =>

(I = i or
I in [i + l .. i + k - 1] or
defined= def_used)) and

((I<> i or status<> not_defined) =>
((I= i and status<> not_defined) or
I in [i + l .. i + k - 1] or
status= def_used)) =

i + k = n and
((I<> i or status<> not_defined) =>

((I= i and status<> not_defined) or
(I in [i + l .. i + k - 1] or
status= def_used)) =

i + k = n and
((I= i and status= not_defined J or
(I = i and status <> not_def ined) or
I in [i + 1 .. i + k - 1] or
status = def_used) =

i + k = n and
(I= i or I in [i + l .. i + k - 1] or
status = def_used) =

i + k = n and
(I in [i .. i + k - 1] or
status = def_used

Examples of the wp_du Method page 63

Call this WP _IF2. Step three:

wp(first_if, WP_IF2 1 =

i + k = n and
((I= i - 1 and status= defined) =>

(I in [i .. i + k - 1] or
def_used = def_used)) and

((I<> i - 1 or status<> defined) =>
(I in [i .. i + k - 1] or
status= def_used)) =

i + k = n and
((I= i - 1 and status= defined) or
I in [i .. i + k - 1] or
status = def_used)

By distributing or and and operators, we derive Gk+ 1. Here it is:

i + k = n and
((I= i - 1 and status= defined) or
I in [i .. i + k - 1] or
status = def_used) =

i + k = n and
I in [i .. i + k - 1] or
I = i - 1 or status = def_used) and
status = defined or status = def_used

i + k = n and
I in [i .. i + k - 1 J or
I = i - 1 or status = def_used) and

status <> not_def ined ' =

i + k = n and
(I in [i .. i + k - 1] or

)) =

(I = i - 1 and status <> not_def ined) or
(status= def_used and status<> not_defined)) =

i + k = n and
I in [i .. i + k - 1] or

(I = i - 1 and status <> not_def ined) or
status = def_used)

which is just Gk+l· Thus, the inductive step is complete. Thus we replace Hk (
status = de f_used) with Gk.

wp(status := not_defined; a[i] := 2; i := 2,
there exists a k such that Gk) =

Examples of the wp_du Method page 64

2 + k = n and
(I in [2 .. k + 1] or
(I = 1 and not_def ined <> not_def ined) or
not_def ined = def_used) =

2 + k = n and I in [2 .. k + 1

Let k be instantiated with n - 2 to receive:

I in [2 .. n - 1

which is the predicate 1 < r < n. And thus we get the result we anticipated.

Example: Reverse

The following program reverses the contents of an array. This program is
interesting because no array element is defined and then later used. Rather,
they are all used and then defined. In this sense, this program is a null case for
the wp_du method. Since no array element is defined and then used, the
wp_du method should compute a logical expression equivalent to false. This
is what happens.

We arbitrarily selected the statement a [n + 1 - i J : = t; to be DEF and
the statement t : = a [i J ; to be USE. Note that in addition to DEF, the
statement a [i J : = a [n + 1 - i J ; also defines an arbitrary array
element. That statement, therefore, is MORE_DEF.

status := not_defined;
i : = 1 i

while i <= n div 2 do begin
if (i = I) and (status = defined) then

status := def_used;
t := a[i] ;
if (i = I) and (status = defined) then

status := not_defined ;
a[i] := a[n + 1 - i] ;
if (n + 1 - i = I) and (status = not_defined)

then

end;

status := defined;
a[n + 1 - i] := t;
i := i + 1

Figure 6.2

Again, we use the ingenuous method. Below is the { Gk } sequence. We do
not include the proof that it is equivalent to { Hk (status = def_used) }
for all k.
Examples of the wp_du Method page 65

GQ = HQ(status = def_used

for all natural numbers k,
Gk+1=

i + k = n div 2 and

(i + k = I and status = defined) or
k + l k + l

(V (((A n + 2 - y - i <> I) or stat us <> def ined)
x=2 v=x

and (i + x - 2 = I and status =defined))) or
k + l

(((A n + 2 - x - i <> I) or status <> not_defined)
x = l

and status = defined)

Given that the { Gk } = { Hk (status = def_used) } , we follow the
same procedure as in the previous example: We substitute Gk for Hk (status
= def_used) in Dijkstra•s definition of the weakest pre-condition for a loop.
Then, we instantiate k to be the number of iterations, which in this case, is n
div 2. Finally, we pass the resulting expression through the weakest pre
condition predicate transformers of the statements which precede the loop. The
resulting logical expression evaluates to false.

In conclusion, we have seen the application of the wp_du method to simple
examples.

Examples of the wp_du Method page 66

7 Conclusion

Recall that the problem which motivated this thesis is that data flow testing could
not be applied to array elements.

In this thesis, we accomplished the following:

• Summarized path testing, data flow testing, and program verification
formalisms.

• Extended the data flow criteria to include the ability to test array
elements. This involved abandoning graph theory as the formalism
within which we defined our criteria, and then redefining those criteria
in terms of sets of logical expressions.

• Invented and justified the wp_du method and worked through some
examples.

The wp_du method is noteworthy because it offers a computable procedure for
constructing a logical expression which tests any def-use pair. These logical
expressions can be used to construct test sets which satisfy any chosen data
flow criterion. That is, although unsolvability permeates data flow testing, the
wp_du method avoids the limitations of unsolvability. Unsolvability looms only
when we try to generate data which satisfy some logical expression.

Conclusion page 67

Bibliography

[Antoy87] Antoy, S.: Automatically Provable Specifications, Ph.D.
Dissertation, University of Maryland, UMIACS-TR-87-28, CS-TR-
1876, 1987.

[Backh86] Backhouse, R. C.: Program Construction and Verification,
Prentice-Hall, 1986.

[Church36] Church, A.: A Note on the Entscheidungsproblem, Journal of
Symbolic Logic, vol. 1 no. 1, 1936.

[DerPla88] Dershowitz, N. and Plaisted, D. A.: Equational Programming,
Machine Intelligence 11, Clarendon Press, 1988.

[Dijkstra72] Dijkstra, E. W.: Notes on Structured Programming, contained in
Structured Programming, Academic Press, 1972.

[Dijkstra76] Dijkstra, E.W.: A Discipline of Programming, Prentice-Hall, 1976.

[Durbin92] Durbin, J. R.: Modern Algebra, John Wiley and Sons, 1992.

[FraWey88] Frankl, P. G. and Weyuker, E. J.: An Applicable Family of Data

[Gries81]

Flow Testing Criteria, IEEE Trans. Software Eng., vol. 14, pp.
1483-1498, Oct. 1988.

Gries, D.: The Science of Programming, Springer-Verlang, New
York, 1981.

[Hamlet88] Hamlet, R.: Special Section on Software Testing, Comm. ACM,
vol. 31, pp. 662-667, Jun. 1988.

[HamGN93] Hamlet, D., Gifford, B. and Nikolik, B.: Exploring Dataflow Testing
of Arrays, Proceedings of 15th Int. Cont. on Software Eng, May,
1993.

[HamTay90] Hamlet, D. and Taylor, R.: Partition Testing Does Not Inspire
Confidence, IEEE Trans. Software Eng., vol. 16, pp. 1402-1411,
Dec. 1990.

[HanKin76] Hantler, S. L. and King, J. C.: An Introduction to Proving the
Correctness of Programs, ACM Computing Surveys, Vol. 8, pp.
331-353, Sept. 1976.

[Hoare69] Hoare, C. A. R.: An Axiomatic Basis for Computing Programming,
Comm. ACM, vol. 12, pp. 576-580, 583, Oct. 1969.

Bibliography page 68

[Howden76] Howden, W. E.: Reliability of the Path Analysis Testing Strategy,
IEEE Trans. Software Eng., vol. SE-2, pp. 37-44, Sept. 1976.

[LoeSie87] Loeckx, J. and Sieber, K.: The Foundations of Program
Verification, John Wiley and Sons, 1987.

[ManGhe87] Mandrioli, D. and Ghezzi, C.: Theoretical Foundations of
Computer Science, John Wiley and Sons, 1987.

[Morgan90] Morgan, C.: Programming from Specifications, Prentice-Hall,
1990.

[RaWey85] Rapps, S. and Weyuker, E. J.: Selecting software test data using
data flow information, IEEE Trans. Software Eng., vol. SE-11, pp.
367-375, Apr. 1985.

Bibliography page 69

	Weakest Pre-Condition and Data Flow Testing
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1570652926.pdf.hY9oG

