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Marinitoga lauensis sp. nov., a novel deep-sea hydrothermal vent thermophilic anaerobic heterotroph 

with a prophage 

 

Stéphane L’Haridona*, Léna Gouhiera
, Emily St. Johnb and Anna-Louise Reysenbachb 

 

Univ Brest, CNRS, IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280, 

Plouzané, Francea; Portland State University, Department of Biology and Center for Life in Extreme 

Environments, P.O. Box 751, Portland, OR 97207 USAb. 

 

The EMBL 16S rRNA gene sequence accession number of strain LG1T is MH457605.  

The genome sequence has been deposited in GenBank under the accession number QHLX00000000.  

*Corresponding author: Stéphane L’Haridon, Laboratoire de Microbiologie des Environnements Extrêmes 

(LM2E), IUEM, Place Nicolas Copernic, F-29280 Plouzané, France 

E-mail address: stephane.lharidon@univ-brest.fr  

 

ABSTRACT 

A novel moderately thermophilic, heterotrophic anaerobe, designated strain LG1T, was isolated 

from the Mariner deep-sea hydrothermal vent field along the Eastern Lau Spreading Center and 

Valu Fa Ridge. Cells of strain LG1T were motile rods, occurring singly or in pairs, 0.6 µm in width 

and 1.2 µm in length. The strain LG1T grew between 40 and 70°C (optimum 50-55°C), at a pH 

between 5 and 8 (optimum pH 6.5) and with 7.5 to 50 g L-1 NaCl (optimum 30 g L-1). Sulfur, cystine 

and thiosulfate were reduced to sulfide, and cell yield was improved in the presence of cystine. Strain 

LG1T was an organotroph able to use a variety of organic compounds. Phylogenetic analysis based on 

16S rRNA gene sequence comparisons indicated that strain LG1T was affiliated to the genus 

Marinitoga within the order Petrotogales. It shared 95.34-96.31 % 16S rRNA gene sequence similarity 

with strains of other Marinitoga species, and is most closely related to Marinitoga okinawensis. 
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Genome analysis revealed the presence of a prophage sharing high sequence homology with the 

viruses MPV1, MCV1 and MCV2 hosted by Marinitoga strains. Based on the data from the 

phylogenetic analyses and the physiological properties of the novel isolate, we propose that strain 

LG1T is a representative of a novel species, for which the name Marinitoga lauensis sp. nov. is 

proposed; the type strain is LG1T (=DSM 106824=JCM 32613). 

 

Keywords: Marinitoga, Petrotogaceae, Petrotogales, Thermotogota, Deep-sea hydrothermal vent, Lau 

Basin 

 

INTRODUCTION 

Members of the phylum Thermotogota [36] are anaerobic, non-spore-forming bacteria that grow by 

respiration or by fermenting various organic compounds, including sugars and complex proteinaceous 

substrates. In many cases they are also able to reduce sulfur compounds. Members of the phylum have a 

characteristic outer sheath-like structure called a ‘toga’. The order Petrotogales is the fourth order of the 

phylum Thermotogota. The order Petrotogales encompasses one family, the Petrotogaceae, with six genera: 

Defluviitoga, Petrotoga, Geotoga, Oceanotoga and Marinitoga [5]. To date, six species belonging to the 

genus Marinitoga have been described: Marinitoga camini, M. piezophila, M. hydrogenitolerans, M. 

litoralis, M. okinawensis, M. artica [1,23,26,27,34,35]. Marinitoga strains have mostly been isolated from 

deep marine hydrothermal environments with the exception of M. litoralis which was isolated from a coastal 

hot spring. Bacterioviruses that infect strains of the phylum Thermotogota have also been described in the 

genus Marinitoga. The three bacterioviruses, MPV1, MCV1 and MCV2, belonging to the Siphiroviridae 

family, infect the strains M. piezophila strain KA3T, M. camini DV1197 and M. camini DV1155, 

respectively [16,20]. M. piezophila strain KA3T also harbors a second mobile genetic element, a plasmid 

(pMP1) of 13.3 kb that uses the MPV1 viral capsid to propagate, illustrating a complex evolutionary 

relationship between a bacterial host, an extrachromosomal element and a virus [16]. Here we report the 

description of a novel thermophilic anaerobic Marinitoga species from a deep-sea hydrothermal vent in the 
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southwestern Pacific that also harbors a prophage and expands our knowledge of the presence of this genus 

in deep-sea hydrothermal environments. 

 

 

 

Materials and methods 

 

Deep-sea hydrothermal vent deposits were collected using the ROV Jason II in April 2015 during 

the RR1507 expedition to the Eastern Lau Spreading Center and processed as described previously 

[11,29,30]. 

Samples (5% inoculum of anaerobic rock slurry) were inoculated anaerobically into the enrichment 

media composed of (per liter): 25 g NaCl, 4 g MgCl2. 6H2O, 3.75 g MgSO4. 7H2O, 0.25 g NH4Cl, 0.33 g 

KCl, 0.14 g CaCl2. 2H2O, 10 ml trace element solution (DSMZ medium 141), 0.5 g NaHCO3, 0.2 g yeast 

extract, 0.2 g tryptone, 0.2 g casamino acids, 0.14 g KH2PO4. The pH was adjusted to 6.8 at room 

temperature. The medium was boiled under N2 gas, cooled, 0.5 g of cysteine-hydrochloride added, and then 

dispensed anaerobically and autoclaved. Before inoculation, Na2S (0.004 M final concentration) was added 

from a sterile anaerobic stock solution, pH was adjusted to 6.5 with a N2/C02 (80/20) gas phase. Cultures 

were incubated for 4 days at 55°C without shaking. A pure culture was obtained after repeated serial 

dilutions and from single colonies on enrichment medium solidified with 0.8% gellan gum (Phytagel™, 

Sigma-Aldrich). After the third transfer on a plate, a single white colony was picked, serially diluted, and 

designated as strain LG1T. Purity of this isolate was confirmed by microscopy and sequencing of the 16S 

rRNA gene. Strain LG1T was isolated from a sample from the Mariner vent field (20° 10’ S; 176° 36’ W) at 

1913 m depth (sample number J2-816-3-R1).  

Cell morphology and motility were examined by phase-contrast microscopy and transmission 

electron microscopy (JEM 100 CX II; JEOL). Transmission electron microscopy observations were 

performed after negative staining with uranyl acetate (2 %, w/v). 
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All physiological characterizations were done at 55°C, pH 6.5 and with 25 g L-1 NaCl in the medium 

described above and supplemented with 5 g L-1 L-cystine, unless stated otherwise. Growth was determined 

by measuring the turbidity (600 nm) of cultures incubated in Bellco tubes. Cell numbers were determined by 

direct cell counting using a flow cytometer (CyFlow Space; Partec). The temperature range for growth was 

determined between 30 and 85°C (with 5 °C increments). The effect of NaCl on growth was determined 

between 0 and 8% (w/v) NaCl (with increments of 0.5%). The pH range for growth was examined in the 

medium with a carbonate buffer.  

Carbon sources were tested in triplicate in minimal medium supplemented with 0.02% (w/v) yeast 

extract. The following substrates were tested as sole carbon sources at a final concentration of 5 g L-1: D (-)-

fructose, D(+)-galactose, D(+)-glucose, glycogen, D(-)-ribose, D(+)-maltose, lactose, cellobiose, starch, 

succinate, pyruvate, acetate, formate, tryptone, yeast extract, beef extract, casamino acids and brain heart 

infusion. Unsupplemented medium was used as a negative control. The ability of strain LG1T to use electron 

acceptors was tested by adding elemental sulfur (5 g L-1), L-cystine (5 g L-1), sodium thiosulfate (20 mM), 

sodium sulfate (20 mM) or sodium sulfite (5 mM) to a medium prepared without terminal electron 

acceptors. Production of H2S was analysed as described by Cord-Ruwish (1985) [9]. Carbon source 

utilization or terminal electron acceptors were confirmed by three subsequent transfers.  

Growth under 100% H2 or 100% N2 was compared both in the presence and absence of sulfur. The 

tolerance to O2 was tested using 0, 2, 5, 10, 15 and 20% O2. 

Genomic DNA of strain LG1T was isolated using the procedure described by Charbonnier & Forterre 

(1994) [7]. The precipitated DNA was collected using a sterile glass rod, washed in 70 % ethanol, and dried 

at room temperature for 10 to 15 min. The DNA was suspended in TE overnight at 4 °C. Sequencing of the 

Marinitoga lauensis genome was carried out at the Yale Center for Genome Analysis (YCGA) using the 

PacBio RS II.  Pre-assembly, assembly and final genome curation were performed at the YCGA using the 

Hierarchical Genome Assembly Process (HGAP) with the SMRT analysis v. 2.3.0 software suite, which 

utilized the P_PreAssemblerDagcon module for pre-assembly, the P_AssembleUnitig module for initial 

assembly, the P_Mapping module to map reads back to assembled contigs and the P_AssemblyPolishing 
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module to generate final consensus sequence contigs. Completion and contamination were assessed using 

CheckM [25]. Open reading frames were predicted in Prokka [31] and annotated using the Rapid Annotation 

using Subsystem Technology web server (RAST) [4,6,24], with additional annotation using the Clusters of 

Orthologous Groups of proteins database [27]. The NCBI Conserved Domain database was also used for 

manual annotation as needed [17,18]. Transfer RNAs were identified using the tRNAscan-SE 2.0 web server 

[15], CRISPR regions were predicted with CRISPRCasFinder [8] and ribosomal RNAs were identified with 

Rfam v.12.0 and Infernal v.1.1.2 [21,22]. Whole genome synteny plots were constructed using Circos [13].  

16S rRNA gene sequence similarity was assessed using EZBioCloud, supplemented with alignments 

in Geneious v.10.0.2 [12]. 16S rRNA genes were aligned using the Geneious aligner, and regions with 

>50% sequence variability were manually masked. Maximum-likelihood phylogenetic analysis was 

performed using RAxML v. 8.2.4 [33] with 1000 replicate bootstrap trees. Concatenated protein trees were 

built using a set of 16 ribosomal proteins [3] individually aligned using Muscle [10]. Maximum-likelihood 

analysis and bootstrapping were performed as described above. Phylogenetic trees were visualized using the 

Interactive Tree of Life [14]. 

 

Results and discussion  

 

Strain LG1T was isolated from a porous hydrothermal mound covered with white and orange 

microbial mat in the Mariner vent field along the Valu Fa Ridge in the Southwestern Pacific. On solid 

medium, round creamy-coloured colonies with a diameter of 2-3 mm were observed after 4 days of 

incubation at 50°C. Cells of strain LG1T appeared as rods and stained gram-negative. The cells were 

surrounded by a "toga" (Fig. 1), an outer sheath-like structure ballooning over the ends which is 

characteristic for members of the Thermotogota [28,36]. The “toga” was not easily visible during the 

exponential growth phase, but it was prevalent during the stationary growth phase. The presence of balloons 

was also visible at the end of growth (Fig. S1). The rods were about 1.3-3.8 µm long and about 0.65-0.9 µm 

wide. Most of the rods were motile. A long single polar flagellum about 6 µm long was visible under TEM 

(Fig. 1). 
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Isolate LG1T grew between 40 and 65°C (optimum at 50-55°C) while no growth was detected at 

35°C and 70°C. Growth of isolate LG1T was observed in NaCl concentrations of 0.7-5% (w/v), with an 

optimum at 3%. No growth was observed at 0.5 and 6% (w/v) NaCl. Isolate LG1T grew between pH 5.4 and 

pH 7.9, with an optimum around pH 6.5. No growth was detected at pH 5 and 8. 

 The novel isolate grew chemoorganotrophically on a variety of proteinaceous and carbohydrate 

substrates. The strain grew well in the presence of yeast extract (0.2%) and tryptone (0.2%). The presence of 

yeast extract was required in small amounts (0.02%) for growth on other substrates. Growth was enhanced 

by D-glucose, D(-)-ribose, D(+)-galactose, D (-)-lactose, cellobiose, fructose, D(+)-maltose, glycogen, 

starch, acetate, pyruvate, formate, peptone, brain heart infusion and casein. No growth was observed on 

casamino acids. Ammonium, nitrate, nitrite, gelatin and yeast extract were used as nitrogen sources while 

urea was not.  

In the presence of sulfur or L-cystine, the final cell yield and growth rate were enhanced and 

hydrogen sulfide was produced. No growth occurred in the presence of a gas phase of 100 % hydrogen, in 

the presence or absence of an electron acceptor. The presence of oxygen in the gas phase completely 

inhibited growth. The results of the comparative analyse between strain LG1T and species of the Marinitoga 

genera are presented in Table 1. 

Based on phylogenetic analysis of the LG1 16S rRNA gene, it clusters most closely with the 16S 

rRNA gene of Marinitoga okinawensis (96.31%) (Fig. 2). The 16S rRNA sequence similarity between LG1 

and M. okinawensis is below the previously accepted cutoff of 98.7% for species delineation [32, 8]. The 

16S rRNA gene of strain LG1T shows similar levels of sequence similarity (95-96%) to other members of 

the genus Marinitoga, but only 83-84% sequence similarity to members of the Geotoga.  

 The draft genome of strain LG1T is a high quality assembly (~355x coverage) that is slightly larger 

in size than its relatives in the genus Marinitoga (2.595202 Mbp; Table S1) and contains more predicted 

protein-coding sequences than are found in other Marinitoga genomes. Eighty-eight percent of the protein 

coding genes in the M. lauensis draft genome have a homolog in the genome of M. camini str. DV1155 as 

determined by pairwise BlastP comparison (E ≤ 0.00001) [2]. The genome contains tRNAs corresponding to 

ACCEPTED M
ANUSCRIP

T



7 
 

all 20 standard amino acids and the complete 5S, 16S and 23S rRNA genes. Phylogenetic analysis using 

concatenated ribosomal proteins, also clusters strain LG1T with other members of the Marinitoga (Fig. S2). 

Circos-based synteny plots comparing strain LG1T with other Marinitoga spp. show a relatively high level 

of gene homology across the genome (Fig. S3A-B).  

Strain LG1T encodes three copies of an archaeal-type 2,3-bisphosphoglycerate-independent 

phosphoglycerate mutase, which was also identified in M. piezophila by COG annotations. If functional, this 

gene would complete the Embden-Meyerhof-Parnas glycolytic pathway in strain LG1T. The Entner-

Doudoroff glycolytic pathway is incomplete in the draft genome.  

The genome of strain LG1T also encodes for several ABC-type dipeptide/oligopeptide transporter 

subunits and branched-chain amino acid transporter subunits, proteases and peptidases, consistent with its 

ability to use such organic substrates such as casein and peptone. The draft genome also contains all 21 core 

genes required for the bacterial flagellum [15,37]. 

A putative prophage region of strain LG1T was identified through pairwise comparisons with the 

proviral sequences of MCV1, MCV2, and MPV1, although no viral particles were observed under TEM. A 

region ~47.6 kb in length was identified, showing similar structure to other described Marinitoga-associated 

viral sequences (Fig. S3C-D). Two putative proviral regions were also identified in the genome of 

Marinitoga sp. 1137 (Genbank NZ_CP009471.1), which have not been previously described. In this 

analysis, these two regions were treated as a single provirus. Of the 80 ORFs predicted in the proviral 

sequence (Table S2), 53 have homologues (E ≤ 0.00001) in one of the other Marinitoga-associated proviral 

regions, based on BlastP [2]. Twenty-two of the remaining ORFs without predicted Marinitoga viral 

homologues could not be assigned a putative function with RAST, COG or the NCBI Conserved Domain 

(CD) Database. The strain LG1T proviral sequence include a putative CRISPR/Cas system-associated cas4 

gene, which was also identified in the proviral region of Marinitoga sp. 1137 by comparative BlastP [2]. 

Notably, the proviral cas4 gene does not show any significant homology to a cas4 gene identified in the 

genome of strain LG1T, suggesting it was not acquired from its host. In contrast, four genes were identified 
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in the proviral sequence with significant homology (E ≤ 0.00001) to an adenine-specific DNA methylase 

found in the strain LG1T genome, suggesting these genes may have been acquired from the host.  

Comparative analysis of the LG1T proviral genome with the proviral sequences of MCV1, MCV2, 

MPV1 and Marinitoga sp. 1137 revealed several core genes shared by all five viruses. These include several 

DNA-processing enzymes, namely, a Holliday junction resolvase, a single-stranded DNA binding protein 

and a site-specific DNA recombinase [20]. The provirus of strain LG1T also has key genes for viral particle 

assembly [20], including a major capsid protein, tail tape-measure protein and a phage-related tail protein. 

The major capsid protein gene of the strain LG1T provirus shows strong amino acid sequence similarity 

(91.2-95.6%) to the major capsid protein genes of MCV1, MCV2 and MPV1 but is not significantly similar 

to the Marinitoga sp. 1137 major capsid protein. Although all five proviral sequences contain a terminase 

large-subunit, however the strain LG1T proviral gene sequence only shows significant homology to the 

terminase large-subunit gene found in Marinitoga sp. 1137. All five proviral sequences encode for a LexA 

type transcriptional repressor, which has been suggested to function in viral cycle control [19]. The five 

sequences also contain multiple transcriptional regulators with XRE domains, and they share several 

hypothetical protein genes with no putative function assigned.  

It was demonstrated that the MPV1 virions of M. piezophila not only carry the viral DNA but 

preferentially package a plasmid of 13.3 kb (pMP1) also carried in M. piezophila. The presence of a plasmid 

in LG1T strain was not demonstrated, either both by total DNA extraction or plasmid extraction methods. 

 

Conclusion 

The species of the genus Marinitoga have been isolated from various deep-sea hydrothermal vents 

around the world, Mid-Atlantic Ridge, East-Pacific Rise, the Okinawa trough and also from a coastal 

thermal spring in the Southern Indian Ocean. Strain LG1T extended our detection of the genus Marinitoga to 

deep-sea vents in the Southwestern Pacific. Three viruses, hosted by Marinitoga strains isolated from 

geographically distant hydrothermal vents, MPV1, MCV1 and MCV2 have been described. The presence of 

a prophage signature in the genome of the strain LG1T sharing numerous similarities with the genomes of 
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the described viruses indicates that the presence of mobile elements are a widespread feature in the genus 

Marinitoga and suggests that the acquisition of prophage and virus in the genus Marinitoga is very old and 

well conserved. Viruses play also an important role in horizontal gene transfer (HGT) which is well-known 

and relatively high in the phylum Thermotogota. 

 

Description of Marinitoga lauensis sp. nov. 

Marinitoga lauensis sp.nov. (lau.en’sis. N.L. fem. adj. lauensis of or pertaining to Lau, referring to the deep-

sea vents in the Lau basin in the south-western Pacific Ocean, from which the type strain was isolated). 

Cells are motile rods and occur singly. Colonies are creamy, circular and convex. Obligately 

anaerobic. Obligate chemoorganotroph; the growth occurs preferentially on complex peptide organics such 

as yeast extract, peptone, tryptone and beef extract. Sulfur, cystine and thiosulfate were reduced to sulfide, 

and cells yield was improved in the presence of cystine. Optimal growth occurs at 55-60°C, pH 6.5 and 3% 

(w/v) NaCl.  

The type strain LG1T (=DSM 106824=JCM 32613) was isolated from a deep-sea hydrothermal chimney 

located at the deep-sea hydrothermal vent field Mariner (20° 10’ S; 176° 36’ W) at 1913 m deep.  

The DNA G+C content of this strain is 27.9 mol%. The EMBL 16S rRNA gene sequence accession 

number of strain LG1T is MH457605.  This Whole Genome Shotgun project has been deposited at 

DDBJ/ENA/GenBank under the accession QHLX00000000. The version described in this paper is version 

QHLX01000000. 
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FIGURE 

 

 Fig. 1. Transmission electron micrograph of strain LG1T showing the flagellum. 

  

ACCEPTED M
ANUSCRIP

T



16 
 

Fig. 2. Maximum-likelihood phylogenetic analysis of 16S rRNA genes in the Thermotogota. Bootstrap 

support of ≥80% is indicated by the closed circles. The scale bar represents 0.01 nucleotide substitutions per 

site. Persephonella marina EX-H1T (AF188332.1) and Thermus thermophilus HB8T (X07998.1) were used 

as the outgroups (not shown). 

 

The formal proposal of the new species "Marinitoga lauensis sp. nov.," is given in Table 1. The digital 

protologue under the Taxonumbers TA00749. 
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Table 1. Diagnostic and descriptive features of the six described species of Marinitoga.1 strain LG1T data 

from our study; 2. M. okinawensis TFS105T (Nunoura et al., 2007); 3. M. hydrogenitolerans AT1271T 

(Postec et al., 2005); 4. M. litoralis MC3T (Postec et al., 2010); 5. M. camini MV1075T (Wery et al., 2001); 

6. M. piezophila KA3T (Alain et al., 2002); 7. M. artica (Steinsbu et al., 2016);  +, Positive ; -, negative ; (+), 

weakly positive ; ND, no data available. 

  1 2 3 4 5 6 7 

Origin Lau Basin SOT  MAR  SIO MAR EPR AMOR 

Latitude 20°10’ S 24° 51' N 36° 12' N 38° 43' S 37° 51' N 12° 48' N 71°26’N 

Longitude 176°36’ E 122° 42' E 33° 54' W 77° 31' E 31° 31' W 103° 56' W 48°75’W 

Depth (m) 1914 1365 2275 0 980 2630 700 

pH for 

growth 
              

Range  5.4-7.9 5.0 – 7.4 4.5 – 8.5 5.5 – 7.5 5 – 9 5 – 8 5-7.5 

Optimum  6.5 5.5 – 5.8 6 6 7 6 6.5 

Temperature 

for growth 

(°C) 

              

Range 40 - 70 30 - 70 35 - 65 45 - 70 25 - 65 45 – 70 45-70 

Optimum 50 - 55 55 - 60 60 60 55 65 65 

NaCl 

concentration 

for growth 

( g L-1) 

              

Range 7.5 - 50  10 - 55 10 - 65 8 - 46 10 - 45 10 – 50 15 - 55 

Optimum 30 30 - 35 30 – 40 26 20 30 25 

Carbon 

sources  
              

Casamino 

acids 
- - - + - + - 

Casein + - + + - + - 

Cellobiose + - - + (+) (+) (+) 

Galactose + - - + - (+) - 

Glucose + + - + + (+) + 

Pyruvate + - + + + - (+) 

Starch + + - + + (+) + 

Tryptone + + - + + + + 

                

100 % H2 -  + + + - - - 

Tolerance of 

O2 
No  No < 4 % < 4 % ND ND ND 
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G + C content 

(mol%) 
27.9 28 27.2 26.2 29 29.2 27 
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