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Abstract This paper introduces a multiperiod model for the optimal selection of a financial
portfolio of options linked to a single index. The objective of the model is to maximize
the expected return of the portfolio under constraints limiting its Value-at-Risk. We rely on
scenarios to represent future security prices. The model contains several interesting features,
like the consideration of transaction costs, bid-ask spreads, arbitrage-free option pricing,
and the possibility to rebalance the portfolio with options introduced at the start of each
period. The resulting mixed integer programming model is applied to realistic test instances
involving options on the S&P500 index. In spite of the large size and of the numerical
difficulty of this model, near-optimal solutions can be computed by a standard branch-and-
cut solver or by a specialized heuristic. The structure and the financial features of the selected
portfolios are also investigated.

1 Introduction

1.1 General statement of the problem

The main purpose of this work is to develop a multiperiod model for the selection of an
optimal portfolio of options subject to Value-at-Risk constraints, to demonstrate the compu-
tational feasibility of the approach, and to investigate some of the properties of the resulting
portfolios.
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In general terms, we are interested in the following situation. A fund manager considers
investing a total budget B into a portfolio of options written over a single underlying asset
(for instance, options over the S&P index) or in the riskless asset. He must make an initial
investment decision at the beginning of the horizon, and is allowed to rebalance the portfolio
at the end of a first intermediate period. The problem he faces is to select the quantities to
be invested in each option so as to optimize the expected value of the portfolio at the end
of the horizon, while satisfying predetermined Value-at-Risk constraints at the end of each
subperiod.

Although this optimization problem is rather easily stated, modelling it in a rigorous and
meaningful way turns out to be quite challenging. Before we discuss the formal details of
the model, let us first justify our interest in the problem.

1.2 Motivation

Value-at-Risk (VaR) and its variants, like Conditional Value-at-Risk (CVaR), are very pop-
ular concepts for measuring the risk associated with a portfolio of securities. Extensive re-
search has been performed on this subject, with much of the emphasis being placed on the
CVaR model (see e.g. Krokhmal et al. 2002). The CVaR is attractive for two main reasons:
it displays nice financial properties—it is a coherent measure of risk as defined by Artzner et
al. (1999), and it is easier to compute than the VaR, which uses a quantile of the portfolio re-
turns distribution. But since the adoption of the Comprehensive Basel II Accord by the Bank
for International Settlements (BIS 2006), the role of the VaR has become more central for
regulatory purposes. Financial institutions of BIS member countries have to comply strictly
with VaR requirements regarding credit risk, operational risk and market risk management.
Thus, limitations in VaR exposures typically represent binding constraints for active portfo-
lio management; see e.g. Esch et al. (2005).

The extant literature on portfolio management with VaR requirements has mostly focused
on estimating the VaR associated with a predefined portfolio. However, this approach does
not explicitly address the central problem of asset managers, whose objective is to account
directly for VaR in the selection of optimal complex portfolios.

We restrict here our attention to portfolios of options linked to a single financial asset.
Considering only one underlying asset allows us to focus on the core of the problem, namely,
portfolio selection under a VaR constraint. Even with only one underlying asset and several
linked options, the problem remains complex since the VaR cannot be computed a priori
without knowing the probability distribution of the portfolio returns, since the distribution
of the portfolio returns cannot be specified before selecting the optimal quantities of its
components (and before specifying their respective probability distributions), and since the
optimal quantities must be set so as to satisfy the VaR requirement for the whole portfo-
lio. This problem is therefore far more complex than computing the VaR associated with a
predefined portfolio.

1.3 Contributions

The inherent complexity of the model and of the optimization process justifies our use of a
methodology based on multinomial tree of scenarios. More precisely, the formulation of the
model relies on a collection of scenarios which provide a representative sample of values for
the returns of the underlying asset. Since the values of the options are indirectly determined
by the scenarios, this approach allows us to capture completely the random nature of the
problem.
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In order to model the distribution of the underlying asset returns and to generate the asso-
ciated scenarios, we do not restrict ourselves to standard parametric statistical distributions
(like the normal or the Student distribution), but we propose to sample from more general
distributions of returns. This approach has the advantage of providing great flexibility in the
construction of the model, allowing in particular to integrate different types of distributions
and various realistic constraints. We illustrate this with the computation of a distribution
of returns implied by the prices of the options available on the market at the time of the
investment.

All in all, our work appears to be unique in its simultaneous consideration of multiperiod
scenarios, of options, and of a broad range of realistic financial constraints including the
VaR measure. In the literature, these three features have been mostly developed in isola-
tion, and so cannot provide reasonable insights into realistic portfolio selection problems. In
particular, we pay special attention to the calibration of the parameters defining the tree of
scenarios, an issue which turns out to be quite tricky, but extremely relevant when dealing
with options.

Our first goal is to show that this approach is valid and tractable in practice. But, thanks
to our integrative framework, we can also go a step further, and investigate the composition
and the behavior of an optimal portfolio involving options under VaR requirements. We first
study the shape of the payoff function and the set of options required to reach the investor’s
goal. We provide comparisons with the CVaR measure. We also analyze the impact on the
VaR of the introduction of a risk-free asset in the options portfolio. This allows us to measure
a risk premium induced by the use of options alone. These results are illustrated on a case-
study using a set of put and call options written on the S&P500 index.

The results displayed in this paper indicate that, in line with conventional wisdom, the
optimal portfolio strategy actually activates a limited set of options, and shares the qualita-
tive features of a protective put. These findings, based on a rigorous optimization approach,
contribute to reconciling complex numerical methods with the actual practice of experienced
portfolio managers.

The paper is organized as follows. The next section presents the framework of the port-
folio management problem with an emphasis on its main financial features and on trees of
scenarios. Section 3 gives a complete description of the optimization model to be solved,
which is formulated here as a mixed integer linear programming problem, and Sect. 4 dis-
cusses the difficulties that arise when instantiating the set of scenarios. In Sect. 5, we report
on various numerical experiments with our optimization model and we analyze the results,
both in terms of computational efficiency and from the point of view of their financial in-
terpretation. Finally, the last section draws the main conclusions of our work and presents
some perspectives for future research.

2 Framework

Before presenting a mathematical formulation of the optimization model to be solved, we
first discuss its various components.

2.1 Risk measure

The Value-at-Risk (VaR) of a portfolio at level P is defined as the maximal loss of the
portfolio value with probability P , over a specific horizon:

VaR = min{V | Prob[loss ≤ V ] ≥ P }.
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If the probability distribution function of losses is continuous and strictly increasing, then
the VaR can be expressed more simply by the condition:

Prob[loss ≤ VaR] = P.

This risk measure, initially proposed by Edgeworth (1888), has become popular when intro-
duced by JP Morgan in RiskMetrics (1996). It has subsequently been proposed in the “1996
Amendment to the Basel I Capital Accord”, included in the Comprehensive Basel II Accord
and is fully applicable nowadays; see e.g. Esch et al. (2005).

In addition to Value-at-Risk requirements, risk management systems often impose “stop-
loss” procedures in order to limit the extent of the losses incurred on an individual position.
This is equivalent to setting a guaranteed amount at the end of the investment horizon.1 The
same requirement is met for insured portfolios with the Option-Based Portfolio Insurance
(OBPI) technique or the Constant Proportion Portfolio Insurance technique (CPPI) proposed
by Black and Jones (1987), as the portfolio becomes entirely invested in risk-free securities
when the loss incurred in the risky part reaches a given level (see Bertrand and Prigent 2005
for a discussion).

2.2 Market

Many professionally managed equity portfolios involve optional securities. They allow
traders or fund managers to shape the future payoff of their portfolios, for instance to ensure
a floor in the terminal payoff, which is easily achieved thanks to the intrinsic properties of
options. We assume that the manager’s main goal is to maximize the expected value of the
portfolio at the end of the investment horizon. To track real market conditions as closely as
possible, we take into account the bid-ask spreads and the transaction costs.

We have restricted this first investigation to the case of options linked to a same financial
index. Models with several securities and their corresponding derivatives could also be han-
dled by a similar approach but they require more parameters (see Schyns et al. 2009 for an
exploratory study). With one underlying index, clear conclusions are easier to draw.

Our model is specially intended for large investments and this allows us to formulate
some simplifying hypotheses. In particular, if the initial budget is large, then the fixed com-
mission cost is small with respect to the total invested amount and it can be neglected in the
model. Also, since the amount invested in each option can be assumed to be large, we can
consider only one proportional tax rate, namely, the rate which applies to the largest trading
amounts.

2.3 Multiperiod model

Due to various reasons (transaction costs, market opening times, etc.), it is usually impracti-
cal to trade continuously. A discrete multiperiod model is therefore a suitable compromise.
In this paper, we restrict our attention to a two-period model. The first aim of the two-period

1Note that the guarantee constraint is a special case of the Value-at-Risk constraint where the probability P

is set to 100%. We could actually impose several VaR constraints in our model. The methodology would be
similar for each of them, even if some simplifications could take place (indeed, several VaR constraints would
imply overlapping lower bounds). Alternatively, the manager could be imposed a limit on the Conditional
Value-at-Risk (a.k.a. Expected Shortfall) beyond the VaR level. This requirement limits the extent of the
expected losses when a disaster occurs. We discuss the implications of this requirement in Sect. 5.



Ann Oper Res (2010) 181: 683–708 687

approach is to model the degree of freedom given to the portfolio manager when he is of-
fered the opportunity to dynamically rebalance his positions. We define the optimization
model so as to provide a global optimal solution over the two periods.

In practice, the model could be used to optimize an investment over a fixed horizon of two
periods, such as the position taken by a front-office equity trader or, with a longer time frame,
by many closed-end funds. But it could also apply to an investor with a moving horizon, like
an open-end mutual fund. Such an investor would certainly not rebalance the portfolio at the
end of the first period according to the optimal solution found initially. Rather, a roll-over
strategy would be adopted and a new optimization would be carried out at the end of the first
period, taking into account all available information as well as a new investment horizon.

Finally, we impose the requirement that the portfolio be self-financing throughout the
lifetime of the investment: there is no additional cash-flow at the end of the first period.
This assumption naturally derives from the fact that we are considering a fixed horizon and
that the portfolio is closed at inception of the strategy. The budget constraint is a natural
requirement for this type of strategy. Extensions are however straightforward.

2.4 Multiperiod trees of scenarios

Trees of scenarios constitute a generic, relatively simple approach to represent future states
of the world in stochastic optimization problems (see e.g. Birge and Louveaux 1999 or
Prekopa 1995 for a broad introduction to stochastic programming). In finance, such trees
have been used in numerous models, both in computational and in theoretical frameworks,
as in Dembo (1991), Dybvig (1988, 1988), Gülpinar et al. (2004), Kallio and Ziemba (2007),
King (2002), Kouwenberg (2001), Larsen et al. (2002), Mulvey (1994), Muzzioli and Torri-
celli (2005), Naik (1995), Rockafellar and Uryasev (2000), Rubinstein (1994, 1998), etc.

Grinold (1999) ponders some of the relative advantages and drawbacks of scenario-
based approaches vs. mean-variance approaches when dealing with portfolio optimiza-
tion problems. In Grinold’s view, scenario-based models are mostly useful—and even
indispensable—for portfolio management problems involving options or assets with alter-
native distributions. They deal with the entire distribution of outcomes and thereby allow
for a broad variety of objectives. However, they also have to respond to several major chal-
lenges. In particular, setting up a tree of scenarios requires the solution of several complex
numerical problems, including the specification of the entire distribution of all assets.

In this paper, we consider scenario trees where each node (either internal or terminal)
represents a possible state of the world at a particular date; i.e., each node is characterized by
the sequence of asset values along the unique path from the root of the tree to the node under
consideration. The intrinsic quality of the tree depends on the process used to instantiate each
node and on the number of nodes. Without loss of generality, we assume that all scenarios
ending at a same date are equiprobable; they constitute a representative sample of asset
values at that date, which can be obtained by sampling from the probability distribution
function of the asset values (see Sect. 4.1). These values can be used, in turn, to price the
options linked to the underlying. (It would be straightforward to extend the model to the
case where the scenarios are not equiprobable.)

As explained in Sect. 2.3, we focus on the generation of two-period trees (see Fig. 1).
Thus, we consider a dynamic roll-over strategy of investment, whereby the investor can
rebalance his portfolio at some intermediate time instant before the end of the horizon. The
first period is associated with the initial period of investment and each subtree of the second
period corresponds to a portfolio rebalanced by the investor according to the state of the
world at the end of the first period.
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Fig. 1 Two-period tree of
scenarios

2.5 Options

All options considered here are European options with a one-period maturity, i.e., they are
created at the beginning of a subperiod, and they expire at the end of the same subperiod.2

For the first period, the initial characteristics of traded options are directly observable on
the market. For the second period, the set of available options is not initially known, as it
depends on the fluctuations of the underlying index during the first period. A major advan-
tage of multinomial trees of scenarios is precisely their ability to represent such dependent
outcomes. A realistic set of options can therefore be introduced separately for each subtree
of the second period by setting strike prices around the index value observed at the root node
of the subtree, according to usual market conventions. We return to this issue in Sect. 4.2.

2.6 Constraints

Note finally that the same guarantee and VaR constraints will be imposed for each subtree of
the second period; thus, whatever scenario materializes during the first period, the insurance
required by the investor must be satisfied in the corresponding subtree of the second period.
We also fix a guarantee constraint to be satisfied at the end of the first period. The level of
this constraint can be different and is typically lower than for the second period. This allows
the portfolio exposures to remain tightly under control throughout the investment horizon.3

3 Model

Informally, the manager’s problem is to select a portfolio with maximum expected value at
the end of the horizon, under the following constraints:

2Extensions to other maturities could be included in the model, but they complicate its formulation as well
as the interpretation of the results.
3A VaR constraint could also be imposed at the end of the first period, but is disregarded here in order to
simplify the model, and because the guarantee constraint is deemed sufficiently protective.
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• Budget: the initial cost of settlement does not exceed the available budget. Moreover, at
the beginning of the second period, the investor cannot invest more than the value of the
current portfolio.

• Guarantee: the value of the portfolio at the end of each period cannot be less than a
predefined fraction of the initial budget, under no circumstances.

• Value-at-Risk: with a predefined probability P , the final value of the portfolio cannot be
less than a predefined fraction of the initial budget.

In this section, we turn to a mathematical formulation of this portfolio optimization prob-
lem.

3.1 Notations

We consider a two-period tree as represented in Fig. 1. We denote by i = 0,1, . . . , n the
non-terminal nodes of the tree, with root-node 0 corresponding to the initial state. For
i = 0,1, . . . , n, each node i is the root of a subtree (also indexed by i) consisting of n

branches indexed by j = 1, . . . , n, and of n (immediate) successor nodes of i associated
with n distinct (partial) scenarios: each such scenario is defined by the sequence of asset
values along the unique path from node 0 to the end-node of the corresponding branch. Al-
ternatively, it is sometime handy to denote a node (including a terminal node) by a pair (i, j),
indicating that it is the j -th successor of node i in the subtree rooted at i (i = 0,1, . . . , n;
j = 1, . . . , n). The period under consideration in subtree i is denoted by t , where t = 1 in
the subtree i = 0, and t = 2 for all other subtrees.

Remember that we consider a single underlying asset. At each node i, Oi options are
available on this asset (i = 0,1, . . . , n). For i = 0,1, . . . , n, j = 1, . . . , n, k = 1, . . . ,Oi ,
and t = 1,2, the parameters of the model are

– B: the available initial budget;
– Si,j : the price of the underlying asset at node (i, j);
– Si,0: the price of the underlying asset at the root of subtree i (note that Si,0 = S0,i when

i ≥ 1);
– Ki,k : the strike price of option k for all immediate successor nodes of node i;
– pa

i,k : the ask price of option k for all immediate successor nodes of node i;

– pb
i,k : the bid price of option k for all immediate successor nodes of node i;

– T : the taxation rate;
– rt : the risk-free rate for period t ;
– �t : the length of period t ;
– θt : the percentage of the initial budget to be preserved at the end of period t in order to

respect the guarantee constraint;
– λ: the percentage of the initial budget to be preserved with probability P at the end of

period 2 in order to respect the VaR constraint.

Some of the main decision variables are

– xa
i,k : the (positive) quantity of option k bought at node i (long position);

– xb
i,k : the (positive) quantity of option k sold at node i (short position);

– zi : the amount invested (positive amount) or borrowed (negative amount) in the risk-free
asset at node i;

– αi,j : a {0,1} variable which takes value 1 only if the value of the portfolio exceeds the
VaR threshold λB in the j -th successor of node i.
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We assume without loss of generality that the portfolio is fully recomposed at the begin-
ning of each subperiod, that is, at the root node i of each subtree, taking into account the
securities available at the corresponding date. Thus, the variables xa

i,k , xb
i,k and zi completely

describe the portfolio selected at node i (they are not incrementally defined with respect to
the previous period).

For simplicity of notations, we will also assume from now on that the set of options under
consideration at each node i is ordered by type (calls first, puts last) and by increasing strike
price.

More parameters and variables will be introduced as they are needed, in particular for a
definition of the option pricing model in Sect. 4.2.

3.2 Portfolio value

The portfolio value can be easily determined at each node of the tree if we know the quan-
tities invested in each security. Indeed, the portfolio value at a node is essentially the sum
of the securities values weighted by the invested quantities. By construction of the tree, the
value of each security at each node is known (see Sect. 4 for details). This general scheme
just has to be slightly adapted to integrate the transactions costs, i.e., a given percentage of
the option values, and the bid, ask or maturity prices.

At maturity, the value of an option is given by:

vopt(S,K) =
⎧
⎨

⎩

S − K for a call option with S > K,

K − S for a put option with K > S,

0 otherwise,
(1)

where S is the underlying asset price and K is the option strike price.
A distinct portfolio is to be selected in each subtree i = 0,1, . . . , n. The cost incurred in

order to compose a portfolio at node i is given by:

V 0
i =

Oi∑

k=1

[pa
i,kx

a
i,k(1 + T ) − pb

i,kx
b
i,k(1 − T )] + zi . (2)

Assuming that the price of the underlying asset is S at the end of the corresponding
time period t , then, when the investor closes his positions, the final value of the portfolio
composed at node i is:

Vi(S) =
Oi∑

k=1

vopt(S,Ki,k)[xa
i,k(1 − T ) − xb

i,k(1 + T )] + zi(1 + rt )
�t . (3)

The expected portfolio value is obtained as the sum of the portfolio values at all terminal
nodes, multiplied by the probability of the associated scenarios (in our case, this simply
amounts to dividing by n2, since we consider this number of equiprobable scenarios).

3.3 Risk and investment limits

3.3.1 Guarantee constraints

Recall that θ1 and θ2 respectively denote the percentage of the initial budget to be preserved
at the end of period 1 and of period 2. In the scenario tree framework, these conditions natu-
rally translate into constraints which impose the minimum guarantee level at every relevant
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Fig. 2 Portfolio value as a
piecewise linear function of the
index value

leaf of the tree, namely:

V0(S0,j ) ≥ θ1B, j = 1..n; (4)

Vi(Si,j ) ≥ θ2B, i = 1..n; j = 1..n. (5)

However, an alternative model (initially proposed by Dert and Oldenkamp (2000) and
slightly adapted below) is more effective, in that it allows to impose the guarantee con-
straints for all possible values of the underlying, and not only for the values associated with
the scenarios, as in (4)–(5). We now briefly describe this model (see Dert and Oldenkamp
2000 for details).

Since each option is at maturity at the end of one of the subperiods, its payoff function is
piecewise linear with only one breakpoint at the corresponding strike price. This implies that
the portfolio value, which is a weighted sum of the payoffs of its individual components, also
is a piecewise linear function of the underlying index value. Thus, if the guarantee constraint
is satisfied at every breakpoint, i.e., at every strike price, then it remains satisfied in the
interval between every pair of strike prices; see Fig. 2 for an illustration of this observation.
This yields the constraints

V0(K0,k) ≥ θ1B k = 1..O0, (6)

Vi(Ki,k) ≥ θ2B i = 1..n; k = 1..Oi. (7)

In order to enforce the guarantee constraint for all possible nonnegative values of the
index, we must also pay special attention to the extreme values of the index, i.e., when the
index value falls under the smallest strike price or rises above the largest one. The minimal
possible value of the index is zero (in fact, the index can be viewed as an option with a null
strike price). Thus, by adding a virtual “zero” breakpoint, we take care of this first extreme
value with the constraints:

V0(0) ≥ θ1B, (8)

Vi(0) ≥ θ2B i = 1..n. (9)

For the values of the index larger than the largest strike price, since the payoff function
is linear, only two cases can occur: either the payoff function is nondecreasing, or it is
decreasing. In the first case, the guarantee constraint is always satisfied if it is imposed at
the largest strike price. In the second case, the constraint will always be eventually violated,
for large enough values of the index. To avoid the latter case, we simply impose that the
first derivative of the payoff function must be nonnegative beyond the largest strike price.
Fortunately, the first derivative is easy to obtain from (3): it is just a linear combination of
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the payoffs of the Oc
i calls (puts disappear from the expression since they are out of the

money for large index values). This leads to the constraints:

Oc
i∑

k=1

[xa
i,k(1 − T ) − xb

i,k(1 + T )] ≥ 0 i = 0..n. (10)

In the formulation (6)–(10), the minimum guarantee level is imposed for all nonnegative
values of the index, and not only for the values associated with the scenarios (no “leak”
can appear between successive values). Another advantage of the formulation (6)–(10) is
that the number of constraints to be applied is generally smaller than with the formulation
(4)–(5), since the number of options is usually smaller than the number of scenarios.

3.3.2 Value-at-Risk constraint

The VaR constraint is defined as the minimum payoff, say λB , to be achieved at the end of
period 2 with probability P . A tree of scenarios is very convenient to model this constraint:
if we consider that the set of leaves represents all possible outcomes, then the VaR constraint
is satisfied if and only if, for each second-period subtree, the value of the portfolio is greater
than or equal to λB in at least (P ×n) scenarios, where n is the number of scenarios in each
subtree.

This approach leads to a formulation involving binary variables which express that, for
a given leaf, either the threshold λB is reached, or not. More precisely, let us introduce n2

decision variables αi,j with values in {0,1}. Then the VaR requirements can be expressed
by the constraints:

Vi(Si,j ) ≥ αi,j λB + (1 − αi,j )θ2B, i = 1..n; j = 1..n; (11)

n∑

j=1

αi,j ≥ Pn, i = 1..n. (12)

Due to constraint (11), αi,j can be set to 1 only if the value of the portfolio exceeds the
VaR threshold λB at node (i, j) (j -th branch of subtree i); and due to constraint (12), this
must happen for at least Pn scenarios. On the other hand, when αi,j = 0, constraint (11) is
implied by the guarantee constraints as discussed above.

Of course, this formulation suffers from the same weakness as the formulation (4)–(5)
of the guarantee constraint (namely, it does not take all possible values of the index into
account), and it requires a large number of scenarios to provide an accurate representation
of the VaR constraint. But unfortunately, an alternative extended formulation similar to (6)–
(10) cannot be obtained for the VaR constraints: the main difficulty being here that the VaR
requirement λB must be achieved for a subset of Pn scenarios, but there is no way to know
a priori the subset of scenarios which will yield this required value.

Note that Dert and Oldenkamp (2000) have suggested a solution to this problem. Using
a theorem of Dybvig (1988), they propose to sort a priori the scenarios by increasing port-
folio values. (In order to do so, in their framework, they only need to know the state-prices
associated with the scenarios, but not the portfolio composition.) Then, it is easy to see that
the VaR requirement must be fulfilled only at the P -fraction of the leaves associated with
the highest values of the portfolio, and this can be expressed in the optimization model.

However, this approach is only valid when three strong assumptions are satisfied: mar-
ket completeness, market perfectness, normality of returns, and accuracy of the state-prices.
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None of these hypotheses are satisfied in our model since we usually consider more sce-
narios than securities (leading to an incomplete market), transaction costs, departure from
normality of returns, and a bid-ask spread for option prices. In particular, because the market
is incomplete, the state-prices are not univocally defined by the option pricing process, and
since the distribution of the index returns may depart from normality, the state prices are not
necessary monotonic with scenario values. We discuss these two issues and our modelling
choices in detail in Sects. 4.1 and 4.2.

3.4 The main optimization model

The core of the VaR optimization model can now be expressed by the mixed integer pro-
gramming (MIP) model VaROpt. In this model, ER denotes the expected value of the port-
folio at the end of the second period. The initial portfolio cost V 0

i at node i is given by the
expression (2), and the value Vi(S) of the portfolio composed at node i is given by (3) at
the end of the subsequent period if the price of the underlying is S at this time. The other
parameters, variables and constraints have been defined above.

VaROpt model

max ER = 1
n2

∑n

i=1

∑n

j=1 Vi(Si,j )

subject to

(budget constraints:)
V 0

0 ≤ B

V 0
i ≤ V0(S0,i ) i = 1..n

(guarantee constraints at the end of period 1:)
V0(K0,k) ≥ θ1B k = 1..O0

V0(0) ≥ θ1B
∑Oc

k=1[xa
0,k(1 − T ) − xb

0,k(1 + T )] ≥ 0

(guarantee constraints at the end of period 2:)
Vi(Ki,k) ≥ θ2B i = 1..n; k = 1..Oi

Vi(0) ≥ θ2B i = 1..n
∑Oc

k=1[xa
i,k(1 − T ) − xb

i,k(1 + T )] ≥ 0 i = 1..n

(VAR constraints at the end of period 2:)
Vi(Si,j ) ≥ αi,jλB + (1 − αi,j )θ2B i = 1..n; j = 1..n

(VaR confidence level:)
∑n

j=1 αi,j ≥ P n i = 1..n

xa
i,k, x

b
i,k ∈ R

+ i = 0..n; k = 1..Oi

zi ∈ R i = 0..n

αi,j ∈ {0,1} i = 1..n; j = 1..n
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3.5 Related work

The VaROpt model is a special type of probabilistically constrained stochastic program-
ming model (see Birge and Louveaux 1999; Prekopa 1995). Several related variants of port-
folio optimization models subject to VaR (or related) constraints have been investigated in
the literature. For instance, Dert and Oldenkamp (2000) propose a single-period model, and
they discuss the shape of the optimal portfolio payoff under guarantee or VaR constraints.
Daníelsson et al. (2001) establish that a simple variant of our model is already hard to solve
(formally, it is “NP-hard”). They also discuss the structure of the optimal portfolio. Gaivo-
ronski and Pflug (2004) consider the problem of minimizing VaR subject to a constraint on
the expected portfolio value. They note that

“VaR optimization is inherently more difficult than, for example, variance optimiza-
tion and efficient solution algorithms for this problem are lacking.”

Larsen et al. (2002) also mention that:

“Because of the multi-extremum structure of the VaR function, it is difficult to opti-
mize it with standardly available methods.”

For the same reason, Gilli et al. (2006) propose a local search (“threshold accepting”)
heuristic to minimize VaR.

Yiu (2004) considers a dynamic model where the objective is to maximize the expected
value of the portfolio under a VaR constraint which is imposed continuously over time.

Several authors concentrate on models involving Conditional Value-at-Risk (CVaR) con-
straints. Recall that CVaR is the expected return associated with the fraction of portfolio
values smaller than VaR, which implies that CVaR is smaller than or equal to VaR. For port-
folios with a normal return/loss distribution, these two measures can be shown to be equiv-
alent (Rockafellar and Uryasev 2000). Since CVaR is in many respects a “well-behaved”
risk measure (subadditive, convex), it is tempting to rely on its relation with VaR to handle
models involving VaR constraints or objective functions; see e.g. Krokhmal et al. (2002),
Larsen et al. (2002), Rockafellar and Uryasev (2000), etc., for such approaches. As noted
by Gaivoronski and Pflug (2004), however, VaR and CVaR may behave differently in some
realistic cases:

“We argue that for investor whose risk preferences are expressed in terms of Value-
at-Risk it is important to consider this measure directly because other risk measures
like variance, or even seemingly related CVaR, may represent a poor substitute.”

(See also Sect. 5 for a discussion of CVaR in relation to VaR.)
As already mentioned above, and when compared with these related papers, our work

appears to be unique in its simultaneous consideration of multiperiod scenarios, of options,
of a broad range of realistic financial parameters, and in the emphasis that it places on an
adequate calibration of the tree of scenarios (see the next section).

4 Instantiation of the tree of scenarios

In this section, we discuss two specific difficulties that arise when the VaROpt model de-
scribed in Sect. 3 is to be instantiated, namely: the generation of the scenarios, and the
determination of the option prices. These questions must be answered before we can solve
any instance of the VaROpt model.
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4.1 Distribution of asset prices

In order to generate the tree of scenarios, a first requirement is to model the probability
distribution of the values of the underlying asset over the two periods under consideration.
This important question is not exclusively linked to the VaR problem under consideration,
but constitutes a broad topic in itself. In order to handle it, we rely here on a characterization
of implied probability density functions derived from observed option prices, together with
stratified sampling. Note however that other methods could be used as well.

The implied distribution approach is based on papers by Breeden and Litzenberger (1978)
and Shimko (1993); its use in connection with scenario trees is discussed by Schyns et al.
(2005). In this approach, an analytical expression of the pdf is computed based on the in-
formation contained in the current option prices. This allows us to consider nonparametric
distributions of returns (well beyond classical, but frequently inadequate, normal or gener-
alized Student distributions) and to preserve consistency with the observed market prices,
without relying on long, outdated time series of prices.

Practically, a pdf representing the distribution of the underlying index price is computed
for each subtree of scenarios. For the first period, all the information required to generate the
pdf is extracted from options available on the market at the time of the investment and with
a maturity corresponding to the horizon of the subtree. For the second period, since options
cannot be observed ahead of time, we make a simplifying assumption of stationarity and use
the most recent set of options available on the market with the required maturity; therefore
the same pdf is used for each subtree of the second period.

When the pdfs have been computed, we use stratified sampling in order to obtain a sample
of n equiprobable states for each subtree. Stratified sampling preserves information relative
to the distributions in the parameterization of the tree. Thanks to this modelling choice,
complex continuous problems can be faithfully represented by a relatively small number of
nodes, which makes them computationally tractable.4

4.2 Option pricing

Once the tree has been instantiated with the prices of the underlying asset, we can turn to the
computation of the option prices. In order to be coherent with the VaROpt portfolio model
and to obtain meaningful results, the option pricing model must be carefully selected. We
now discuss this important point in detail.

4.2.1 Pitfalls of naive pricing procedures

The option values (vopt) at the leaves of each subtree can be easily determined from (1)
since the options are at maturity and the index value at each node is known. The main
calibration issue for an arbitrary option k, therefore, consists in determining its ask and bid
prices (pa

ik and pb
ik) at the root of the tree i where this option appears. If i = 0, then option k

is available at the start of the planning horizon and its price can be observed on the market. If
1 ≤ i ≤ n, on the other hand, then the option will only appear at the beginning of the second
period; therefore, its price is not initially observable and should be estimated, e.g., by the
Black and Scholes formula. However, it is important to realize that such straightforward
pricing procedures, when applied carelessly in a multiperiod scenario model, could lead to

4See Schyns et al. (2005) for a complete description of the procedure for a one-period tree.
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undesirable arbitrage opportunities for (at least) two different types of reasons which we
now proceed to discuss.

First, “real” arbitrage opportunities arising from the current market prices should be de-
tected and handled appropriately in a preprocessing phase. Note that such opportunities may
actually exist on the market and that the optimization model VaROpt can be seen as a tool to
detect them: indeed, when arbitrage opportunities exist in the model, the optimal expected
portfolio return is unbounded (infinite). But, in agreement with financial theory, such op-
portunities should disappear quickly when arbitragers manage to take advantage of them.
In contrast with this dynamic situation, the static optimization model VaROpt cannot ac-
count for any adjustment of option prices resulting from such actions. Given that the final
goal is to build a mid or long term portfolio using the VaROpt model (a goal which does
not preclude the consideration of arbitrage opportunities for independent investment deci-
sions), the investor must either discard any mispriced options from the optimization model
(thus reflecting the fact that such options are usually illiquid), or accept minor price adjust-
ments derived from the no-arbitrage conditions (such as those which may ensue from the
simultaneous action of arbitragers).

Second, some “artificial” arbitrage opportunities could occur due to the calibration of the
model. In particular, the tree of scenarios only provides a discrete, incomplete representation
of the real market and of the continuous distribution of the index prices, and some of the pa-
rameters can only be approximately estimated. Here again, this may translate in undesirable
arbitrage opportunities and in the prediction of infinite expected returns.

The theoretical framework for no-arbitrage pricing in scenario-based models is to be
found in papers by Naik (1995), King (2002), Kallio and Ziemba (2007). A delicate issue,
however, is that in incomplete and imperfect markets such as those considered here, the
no-arbitrage conditions do not uniquely determine arbitrage-free option prices. This point
is stressed, in particular, by King (2002), or by Kallio and Ziemba (2007); these authors
provide various characterizations of the range of admissible prices, but they propose few
guidelines as to how prices should actually be fixed in a numerical model.

Similar difficulties have been explicitly identified and discussed by several authors, e.g.,
Klaassen (1997, 1998) (who speaks of “spurious” profits), Kouwenberg and Vorst (1998)
(who refer to artificial occurrences of “money machines”), Gülpinar et al. (2004), and
Schyns (2001). In order to resolve them, to identify unsuitable option prices, and to ad-
just the prices of the remaining options as required, we rely on a pricing procedure adapted
from Schyns et al. (2005) and based on no-arbitrage conditions; see also Klaassen (1997,
1998), Kouwenberg and Vorst (1998), Schyns (2001) for related proposals.

4.2.2 Arbitrage-free pricing

In order to set up the VaROpt model, we must estimate the bid and ask prices pb
i,k and pa

i,k

to be used in (2), for every period i and every option k = 1, . . . ,Oi considered in period i.
In line with the approach adopted by Kallio and Ziemba (2007), the no-arbitrage con-

ditions for model VaROpt should express that the portfolios associated with the scenario
tree cannot generate nonnegative payoffs at every node of the tree, and at least one strictly
positive payoff in some node. Using duality theorems as in Kallio and Ziemba (2007), this
can be turned into equivalent conditions on the bid and ask prices pb

i,k and pa
i,k (which, as

noted earlier, do not uniquely determine the prices).
In order to implement the approach, therefore, we develop a pricing process which con-

sists of three successive stages: for i = 0,1, . . . , n and k = 1, . . . ,Oi ,

(a) determine tentative bid and ask prices pb
i,k and pa

i,k ;
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(b) check for the existence of arbitrage-free prices p̃i,k which lie as close as possible to (and
if possible within) the corresponding range [pb

i,k,p
a
i,k];

(c) remove the options whose price p̃i,k does not fall in the spread range [pb
i,k,p

a
i,k].

We now successively discuss the three stages in more detail.

Stage (a): Tentative prices. At the root of the tree (when i = 0), pb
i,k and pa

i,k are simply
taken to be the observed bid and ask market prices.

At the beginning of the second period (for i = 1, . . . , n), as already mentioned, the prices
are not observable. Therefore, we first compute the Black-Scholes (henceforth BS) price of
each option k based on the volatility of the pdf associated with the corresponding subtree i.
This BS price is denoted targeti,k . Then, a bid price pb

i,k = targeti,k − δi,k and an ask price
pa

i,k = targeti,k + δi,k are determined. The bid-ask spread (2δi,k) is determined as a function
of the target price (based on a quadratic regression of the observed spreads at the first period
with respect to the corresponding mean option prices).

This procedure, albeit somewhat ad hoc, yields realistic target prices and bid-ask
spreads,5 and appears to provide an adequate description of the range of option prices arising
in the second period of the model.

Stage (b): Arbitrage conditions. Rather than excluding arbitrage opportunities which may
arise from the cash flow streams associated with the complete tree of scenarios, we choose
for simplicity to impose non-arbitrage conditions on each subtree i = 0,1, . . . , n. This
slightly stronger condition allows us to reduce the sizes of the pricing subproblems to be
solved, as explained hereunder.

More precisely, for each subtree i = 0,1, . . . , n and each option k = 1, . . . ,Oi , we want
to make sure that the spread range [pb

i,k,p
a
i,k] contains a price p̃i,k such that the collection of

prices p̃i,k satisfy the following no-arbitrage conditions for each i:

⎛

⎜
⎜
⎜
⎝

1
p̃i,1
...

p̃i,Oi

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

(1 + r) . . . (1 + r)

pi,1,1 . . . pi,1,n

...
...

...

pi,Oi ,1 . . . pi,Oi ,n

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ψ̃i,1

ψ̃i,2

ψ̃i,3
...

ψ̃i,n

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (13)

p̃i,k ≥ 0 (k = 1, . . . ,Oi), ψ̃i,j > 0 (j = 1, . . . , n), (14)

where Oi is the number of options in the subtree, r is the risk-free rate, p̃i,k is the initial
price of option k, pi,k,j = vopt(Si,j ,Kk) is the final value of option k in scenario j , and
ψ̃i,j is the Arrow-Debreu state-price attached to scenario j . The quantities p̃i,k and ψ̃i,j are
unknown and should be determined by solving the system (13)–(14) subject to the additional
conditions

pb
i,k ≤ p̃i,k ≤ pa

i,k for k = 1, . . . ,Oi. (15)

5As pointed out by a reviewer, arbitrage-free bid and ask prices can be computed by LP models similar to
(13)–(14), and expressing the minimal, resp. maximal, capital needed to sub-replicate, resp. super-replicate
each option. In our numerical experiment, however, the gap between these theoretically-derived bounds ex-
ceeds by orders of magnitude the real spreads observed on financial market, which emerge as a result of
the interaction between buyers, sellers and market makers. In this respect, our approach delivers much more
realistic estimates.
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Note that the existence of solutions to (13)–(14) guarantees that the system of prices p̃i,k ,
k = 1, . . . ,Oi does not induce arbitrage opportunities in the subtree i. Moreover, no new
arbitrage opportunities can arise if the prices p̃i,k are increased by a positive amount to
reflect the buyer’s prices pa

i,k , or are decreased by a positive amount to reflect the seller’s
prices pb

i,k . This intuitive observation is formally expressed by Proposition 1 in Kallio and
Ziemba (2007).

Thus, in conclusion, we can check for the absence of arbitrage opportunities by solving
the system of linear inequalities (13)–(15). If this system has a solution, then the bid and
ask prices pb

i,k , pa
i,k can be used in the portfolio selection model VaROpt: since both models

involve the same set of scenarios, no arbitrage can arise in VaROpt under this system of
prices. (Note that the prices p̃i,k themselves are not explicitly used in the portfolio selection
model: we are only interested in asserting their existence, not their exact value.) If the system
(13)–(15) has no solution, however, we would like to be able to reject a (hopefully) small
subset of options in order to restore the no-arbitrage conditions.

For this purpose, rather than solving (13)–(15), we solve instead the following model,
where the variable ẽa

i,k (resp., ẽb
i,k) measures the amount by which the option price p̃i,k

deviates from the target ask price pa
i,k (resp., from the target bid price pb

i,k):

Pricing model (subtree i)

min
∑Oi

k=1(ẽ
b
i,k + ẽa

i,k)

subject to arbitrage equations (13)

ẽb
i,k ≥ pb

i,k − p̃i,k (k = 1, . . . ,Oi)

ẽa
i,k ≥ p̃i,k − pa

i,k (k = 1, . . . ,Oi)

ẽa
i,k ≥ 0, ẽb

i,k ≥ 0 (k = 1, . . . ,Oi)

p̃i,k ≥ 0 (k = 1, . . . ,Oi)

ψ̃i,j > 0 (j = 1, . . . , n).

(16)

Stage (c): Removal of options. At the end of the previous stage, after having solved
model (16), any option whose arbitrage-free price p̃i,k does not fall within the bid-ask range
[pb

i,k,p
a
i,k] is rejected from our portfolio optimization model. Alternatively, it might also be

possible to adjust the bid-ask spread of these options around the prices p̃i,k . The first choice,
however, seems preferable since it allows us to stick to marked-to-market prices. In practice,
in our numerical experiments, very few options are rejected (see Sect. 5).

5 Case study

5.1 Experimental setting

The theoretical model presented above has been tested on a set of real-world option data.
The objectives of this experiment are twofold. From a computational perspective, we want to
investigate how fast an optimal, or nearly optimal, portfolio of options under VaR constraints
can be computed. From a financial perspective, we want to examine the nature and features
of portfolios constructed under VaR and guarantee constraints.

We consider a portfolio of options on the S&P500 index. The risk-free asset is included in
order to allow more flexibility in market risk management. Conversely, inclusion of the index
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itself is not allowed in the portfolio, as it would be redundant with simple combinations of
long calls and short puts. In the context of this study, the utility of the index is essentially to
model the future and the option prices.

We consider a one year investment horizon, with the opportunity to rebalance the invest-
ment after two months. Note that the first period is shorter than the second one, which is
justified in the framework of a roll-over strategy: the investor is able to rebalance his port-
folio in the short term, but a longer horizon is also taken into account in the optimization
process. At the end of the first period, a new problem can be formulated, based on a different
horizon and on updated data.

To construct the implied pdfs, the S&P500 price and the corresponding option prices have
been collected on the CBOE on an arbitrary date, namely February 16, 2006. The S&P500
price at this date was 1289.38 USD. The distribution of returns for the first period is based
on all the available options with a remaining maturity of two months. For the second pe-
riod, options with a maturity of ten months are used. Each subtree contains 80 equiprobable
branches, that is, 6400 possible states of the world are under consideration at the end of the
investment horizon.

The risk-free rate for each period is set according to the T-bill rates with corresponding
maturities, respectively at 0.91% and 3.81% for each period. Implicit dividend yields are
extracted from the application of the put-call parity on option prices and are coherent with
observed values. A simple tax rate of 0.17% is applied on option transactions.

For the first period, 67 different options (calls and puts) are observed on the market, and
their bid and ask prices are used to instantiate the option pricing model (16). For the second
period, a distinct set of options is created in each subtree (note that these options cannot
be initially observed). Namely, 15 virtual calls and 15 virtual puts are created at each node
i = 1,2, . . . , n, with strike prices spaced by 25 USD around the index value corresponding
to node i. For each such option, bid and ask prices are computed as explained in Sect. 4.2.2.

We impose a guarantee on the final portfolio value, which must be larger than or equal to
θ2 = 80% of the initial budget. To reduce the exposure, a second guarantee constraint is set
at θ1 = 50% at the end of the first period.

The VaR constraint must be satisfied at the end of the horizon with a (typical) confidence
level P = 95%. Several VaR thresholds are also considered, ranging from λ = 80% up to
λ = 110% of the initial budget.6

5.2 Optimization

The global problem involves 2467 options, which are modelled by a tree containing 6400
terminal nodes (or scenarios) and 81 internal nodes. Arbitrage-free prices are obtained by
optimizing the option pricing subproblem (16) associated with each subtree. For these sub-
problems, the CPLEX optimization software (version 10, running on a 2 GHz notebook
computer) provides the optimal solutions in a fraction of a second. Only one (extreme) put
must be rejected for the first period, and no option is rejected for the second period (the BS
prices are almost arbitrage-free for the second period).

As expected, the portfolio optimization VaROpt model is much harder to solve. It is a
mixed integer programming (MIP) problem. Branch-and-cut algorithms are typically used
to solve MIP problems, see e.g. Caprara and Fischetti (1997). At every iteration of a branch-
and-cut algorithm, lower and upper bounds on the optimal value of the problem are com-
puted. The lower bound is the value of the best feasible solution computed so far. The upper

6Remember that no VaR constraint is imposed at the end of the first period.
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Table 1 Optimization results

VaR (λ) 104% 100% 96% 92% 88% 84% 80%

Expected return 6.86% 17.30% 27.73% 38.20% 48.59% 59.01% 69.44%

Final gap 7.14% 6.28% 5.45% 4.19% 3.02% 1.80% 0.00%

Semi-stdev 3.06% 17.30% 31.67% 46.05% 60.46% 74.90% 89.34%

CVaR 102.70% 98.81% 94.94% 90.71% 87.42% 83.83% 80%

Omega 3.65 3.65 3.64 3.65 3.63 3.63 3.62

bound provides a (pessimistic) estimate of the gap between the value of this solution and
the optimal value of the problem. This gap decreases in the course of the iterations, as better
feasible solutions are found and/or more accurate upper bounds are computed.

Unfortunately, branch-and-cut algorithms are often time-consuming and, after a number
of iterations, the residual gap usually decreases slowly, so that the process may have to be
terminated before the optimal solution has been found or confirmed.

The standard branch-and-cut algorithm of CPLEX has been used in our experiments; its
computation time has been limited to one hour. The results of this optimization process are
presented in Table 1. The second line of the table displays the expected return associated
with the best portfolio obtained within the one hour limit. The portfolio obtained is feasible,
but it is not certified to be optimal. The gap gives an indication of the maximum additional
return that could be obtained if the optimization process was able to terminate within the
time limit.7

With its confidence level being set at P = 95% (a rather high value), the maximal attain-
able value for the Value-at-Risk should be close to (1 + r), where r is the risk-free rate. The
annual risk-free rate is equal to r = 4.75% and indeed no feasible solution exists for VaR lev-
els higher than λ = 105%, corresponding to an increase of 5% of the initial budget. We also
notice that, the more constrained the problem, the larger the gap (this is quite typical when
solving MIP problems). When the VaR is set at λ = 80%, the problem is extremely easy
because the guarantee constraint dominates the VaR constraint and the problem becomes
a continuous linear programming problem. But when the VaR constraint is strengthened,
more computing time is required to reduce the gap, and one hour is not enough to close it
completely.

The portfolio semi-standard deviation (ssd) is another classical measure of risk and, since
it shares some properties with the VaR, we have also displayed it in Table 1. It is classically
defined as the standard deviation of the portfolio values where all values larger than the
expected value are replaced by the expected value, i.e., with the same notations as in the
VaROpt model:

ssd =
√
√
√
√

1

n2

n∑

i=1

n∑

j=1

[min{0,Vi(Si,j ) − ER}]2

Observe that the volatility (as measured by ssd) increases with the exposure to risk (as
measured by λ) and with the increase of the expected return. The semi-standard deviation
values are of the same order of magnitude as the expected returns.

7Note however that a positive gap does not mean that the available portfolio is necessarily suboptimal: with
more computing time, CPLEX may be able to decrease the upper bound, and hence the gap.
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Fig. 3 Expected portfolio returns vs. VaR

Also, recall that the CVaR (Conditional Value-at-Risk) is the expected return associated
with the fraction of portfolio values smaller than VaR. In the scenario tree model, we ap-
proximate it by the expression:

CVaR = 1

[(1 − P )n2]
[(1−P)n2]∑

k=1

V(k)

where {V(1), . . . , V(n2)} is the set of final portfolio values Vi(Si,j ) sorted by increasing order.
Two remarks should be made. First, by definition, CVaR is always smaller than VaR.

Secondly, observe that we compute CVaR at the confidence level P on the whole set of final
leaves although the VaR constraint was separately specified for each subtree of the second
period. This is not incoherent since the local VaR constraints imply exactly the same VaR
level at the global level. The advantage is that only one CVaR value, instead of n ones, needs
to be computed to perform the comparison.

CVaR and VaR are expressed as percentages of the initial budget. In our experiments,
CVaR follows the same trend as VaR and is always close to it; see Table 1. (This is in
agreement with the conclusions reported for instance by Rockafellar and Uryasev (2000),
although Gaivoronski and Pflug (2004) make the opposite observation in their case-studies.)

Except for a VaR of 104%, which is not economically reasonable, all portfolios’ expected
returns seem very high with respect to the risk exposure, even after accounting for the re-
maining optimization gap. It turns out that the expected return is nearly a linear function of
the VaR level. This is best seen in Fig. 3, where the best available expected return is rep-
resented as a function of the VaR, together with the upper bound on the optimal expected
return.

Finally, Table 1 displays the Omega ratio proposed by Keating and Shadwick (2002),
a performance measure for actively managed portfolios that suits particularly well the in-
clusion of options. The Omega ratio is defined as the quotient of the truncated mean return
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above a reservation value divided by the truncated mean return below the same reservation
value. In other terms, it can be interpreted as the ratio of a call option to a put option on the
actively managed portfolio (see Kaplan and Knowles 2004). We took the risk-free rate as the
reservation rate. The ratio indicates a very stable value of Omega around 15:4 (3.62 to 3.65).
The fact that the portfolio achieves similar option-adjusted performance levels, irrespective
of the VaR level, reinforces our observation of an almost-linear pattern of portfolio returns.
This provides some indication that higher levels of return are not obtained at the expense
of a dramatic increase in risk (measured through the expected downward deviation from the
benchmark), but rather through a proportional risk exposure.

5.3 Features of the optimal portfolios

In this section, we intend to discuss some of the most remarkable features of the (near)
optimal portfolios obtained when solving the VaR model. We should note, however, that
this discussion is not easy to express synthetically, since every feasible solution of the VaR
model gives rise to several portfolios: indeed, for every possible state of the world at the end
of the first period, the investor has the opportunity to rebalance his portfolio in a different
way. Therefore, there are as many final portfolios as there are scenarios in the first period,
and this considerably complicates the discussion.

Also, for the sake of conciseness, we limit ourselves to the results obtained when the
VaR is fixed at λ = 100% (which is an attractive value for the investor), but most of the
conclusions remain valid for other levels of VaR as well.

The portfolio payoff solely depends on the investment made in each subtree of the second
period and on the final index price. With 80 possible portfolios for the second period, it is
not reasonable to draw a figure for each case. In Fig. 4, we focus on the second-period
portfolios linked to two special scenarios, namely, on those portfolios associated with the
largest decrease during the first period, or with a stationary index value during the first
period. The figure displays the value of each of these two portfolios at the end of period 2,
as a function of the index value at that time.

In order to plot faithfully these portfolio values, we have again exploited the properties
that were used to model the guarantee constraint; i.e., the portfolio values were only com-
puted at the option strike prices and linearly interpolated between these prices. The strike
prices increase from 800 USD up to 1625 USD, which is coherent with the final index values
in the tree ranging from 570 USD up to 1750 USD (with an initial price of 1289.38 USD).
For the sake of clarity and since the payoff for all portfolios is flat for large index values, the
figure was truncated at 1350 USD.

We also draw the “range” of the payoffs generated by the subtrees of the second period:
that is, for each strike price defined at the end of the second period, independently of the
subtrees, we compute the value of the 80 portfolios and we display the smallest and largest
values obtained. This gives rise to two curves, where each curve is therefore typically the
combination of portfolio values associated with different subtrees. The curve of smallest
values provides a guarantee on the final portfolio value: whatever happens at the end of
the first period, the portfolio value never dives below this level at the end of the invest-
ment horizon. The largest value indicates the highest return that can possibly be reached at
the end of the second period. Note also that the segment of line between two strike prices
is only an approximation of the real extreme possible portfolio returns. In such intervals,
the approximation is pessimistic for the lowest values and optimistic for the largest val-
ues.

Let us first consider the case of the second-period portfolio linked to the first-period
scenario corresponding to the smallest index value. As seen in Fig. 4, the shape of the payoff
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Fig. 4 Portfolio value vs. index price

function is very regular. Except for very small deviations, only two return values dominate
the graph, namely the values corresponding to the guarantee level and to the VaR level.
Between these two values, the payoff evolves in a linear fashion. For extreme index prices,
we observe a flat portfolio payoff function, corresponding to the VaR level on one side,
and a linearly decreasing return down to the guarantee level on the other side. This kind of
shape is well known in finance, and is a generic feature of VaR models; see, e.g., Dert and
Oldenkamp (2000) or Liang et al. (2005).
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When we look at final portfolios corresponding to slightly larger index values at the end
of the first period, the same behavior is observed. The only differences are essentially limited
to slight shifts of the two breakpoints.

Such simple shapes can be obtained using very few options. Three options with strike
prices associated to the guarantee and VaR levels appear to suffice.

This behavior can be explained by the high expected rate of return and very large skew-
ness of deeply out-of-the-money option payoffs. In order to maximize the expected portfolio
return, the optimal strategy thus involves trading these kinds of options (with a long bias),
while the proportion invested in the riskless asset is large enough to ensure the non-violation
of the VaR and guarantee constraints.

When we next consider the final portfolios associated with larger values of the index
at the end of the first period, and especially for the case of the index stationarity plotted
in Fig. 4, we observe that the payoff function is nearly flat around the VaR level. This
shape is the most frequently encountered in our numerical experiments (75% of the largest
index values). Such a shape can be and is obtained by investing only in the risk-free as-
set and therefore by avoiding the options. In other words, the investor tries to maximize
his investment for small values of the index price and invests only in these cases in op-
tions.

Analyzing the composition of the portfolios confirms the previous observations. Table 2
gives the total number of long and short positions in puts and calls for each VaR level during
the second period, i.e., the total number over the 80 portfolios of the second period. In a
given portfolio, we can observe up to two long positions on puts, one short put, one long
call and one short call.

Table 2 also displays the percentage of the initial budget invested in the risk-free asset.
The constraints for the first period are weak and therefore the investments essentially aim at
satisfying the final constraints. The risk-free amounts initially invested correspond approxi-
mately to the minimal amounts required to reach the VaR level at the horizon of investment.
This means that the optimal solution consists in locking the VaR level, and then using the
remaining budget to maximize the return (for small index values).

More precisely, the initial portfolio always consists of a large investment in the risk-free
asset and of a long position in a put (strike price 1175 USD). With the increase of the VaR
level, the position in the put is replaced by a larger investment in the risk-free asset. This
leads to an interesting conclusion. Indeed, if we assume a roll-over strategy, then the investor
will never construct the portfolios proposed for the second period, but he will only invest in
the initial, very simple portfolio. At the end of the first period, he will use again a similar
model to re-optimize his investment. This suggests that, under the VaR constraint, when the
horizon of investment is repeatedly rolled over, the strategy of holding only one position in
a single option at any time probably approaches the best one.

Table 2 Portfolio composition

VaR 104% 100% 96% 92% 88% 84% 80%

long puts 29 23 22 47 34 23 3

short puts 20 18 29 35 21 18 0

long calls 4 5 4 14 4 5 0

short calls 4 4 4 14 5 4 0

risk-free 99.29% 95.47% 91.65% 87.83% 84.01% 80.19% 76.37%
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5.4 Discussion

The pattern depicted in Fig. 4 is rather atypical and may appear to contradict results by Dert
and Oldenkamp (2000), who rely on a theorem of Dybvig (1988) to establish that, under
certain conditions, higher portfolio values are associated with higher index values in the
optimal portfolio. Actually, such bullish patterns occur frequently when we apply our model
on various data sets, and they can be expected to arise in practice as well. Therefore, we now
provide some additional comments about the pattern of returns observed in Fig. 4.

First let us recall that Dert and Oldenkamp (2000) make two main assumptions in their
paper: market completeness and normality of the index returns. They also state:

“(. . . ) the assumption of lognormally distributed index returns, a positive risk pre-
mium, and the objective of maximizing expected return imply the optimality of port-
folios with monotonic payoff functions. However, practitioners may want to make
different assumptions on the return distribution of the underlying value, which do not
necessarily imply optimality of monotonic payoff functions.”

More precisely, we observe that, depending on the distribution of the index, the state-
price densities are not always decreasing functions of the index prices—which Dybvig’s
theorem does not rule out—and, therefore, while not violating Dybvig’s theorem, the op-
timal portfolio values should not always be ordered like the index prices. Thus, payoffs
corresponding to bearish, butterfly or strangle patterns can also appear when considering
alternative distributions that imply various orderings of the state prices relative to the index
payoffs.

In this paper, we do not assume a normal distribution of the index prices, but an implied
distribution based on the initial option prices. This pdf departs significantly from normality;
in particular, it features a large skewness.

A second explanation for the pattern displayed in Fig. 4 is that we consider an incomplete
market with frictions. Therefore, Dybvig’s theorem is not applicable in this context, which
may also explain the occurrence of alternative patterns for the optimal portfolios.

For the above reasons, the precise relation between portfolio values and index values
is not easily stated, and model VaROpt cannot be reduced to a simple continuous linear
programming model as was the case under the assumptions made by Dert and Oldenkamp
(2000).

Note however that for all distributions we considered, some of the conclusions remain
similar: the optimal portfolio only involves a few options (puts or calls, depending on the
pattern), and the shape of the portfolio payoff is strikingly simple (one level associated
with the guarantee constraint and another one associated with the VaR constraint). Dert and
Oldenkamp (2000) drew similar conclusions.

Based on these observations, it appears possible to develop a heuristic approach to di-
rectly compute a “near-optimal” portfolio. This is explained in the next section.

5.5 Heuristic approach

Note that the complexity of the portfolio optimization model VaROpt is due to the presence
of the binary variables αi,j , which identify those scenarios where the VaR requirement λB

is satisfied. If the values of these binary variables could somehow be initially “guessed”,
then the optimization problem would boil down to a simple continuous linear programming
problem, rather than a difficult MIP. Dert and Oldenkamp (2000) rely on this observation,
since the highest portfolio values are associated with the highest index values in their model
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Table 3 Heuristic approach

VaR 104% 100% 96% 92% 88% 84% 80%

Heuristic return 6.70% 17.16% 27.62% 38.07% 48.53% 58.99% 69.44%

Branch-and-cut return 6.86% 17.30% 27.73% 38.20% 48.59% 59.01% 69.44%

(see above). A related observation is also heuristically exploited by Gaivoronski and Pflug
(1999).

In general, however, it seems difficult to correctly guess the values of the variables αi,j .
From our previous experimental results, it appears that (for the data set at hand), the investor
tries to optimize his investment for the lowest values of the index (this is analogous to a
bearish investment strategy). Therefore, assuming at the outset that the portfolio exceeds
the VaR for the 95% of the scenarios corresponding to the lowest index prices, accordingly
setting the corresponding αi,j -variables to 1, and optimizing the remaining model seems
intuitively appealing.

As shown in Table 3, this simple and very fast heuristic approach already yields excellent
results (for the sake of comparison, the results delivered by the branch-and-cut algorithm are
also reproduced in Table 3). These observations suggest that a near-optimal solution could
probably be found analytically, without a costly enumeration process.

Note that the above heuristic is clearly inspired by the results obtained for this specific
data set. We can assume, however, that when performing more experiments, other patterns
could be observed for the portfolio payoff function: investment in options when the index
price is high (analogous to a bullish strategy), or when the index price is either stable or
volatile (analogous to a volatility, or to a butterfly strategy), etc. Thus, we could develop a
family of heuristics by successively considering several such schemes. The heuristic solu-
tions obtained in this way would quickly provide a sample of feasible solutions (which could
also be used, for instance, e.g., as alternative starting points of a branch-and-cut process).
A complete investigation of these ideas is left for further research.

6 Conclusions

This paper presents a scenario tree model for a complex computational problem, namely
the selection of an optimal portfolio involving options, subject to Value-at-Risk (VaR) con-
straints. We have shown that formulating this problem as a mathematical optimization prob-
lem requires some special care, especially for the generation of scenarios and for the deter-
mination of associated option prices which rule out arbitrage opportunities. The resulting
mixed integer programming problem is very large, but can be solved (approximately) by
CPLEX or by ad hoc heuristics.

Beyond the methodological discussion, an application to real data could presumably pro-
duce very complex investment strategies. However, at least two of our conclusions appear to
be strikingly simple. First, the optimal solutions obtained for different VaR levels feature an
almost linear relation between risk (measured by VaR) and return. This would be a standard
result in an asset pricing model framework, provided that the VaR is a measure of risk shared
by all investors. Yet, this cannot be the case since Value-at-Risk is not a coherent measure of
risk. Second, the optimal trading strategy can be roughly summarized by a combination of a
risk-free investment with long positions in a set of out-of-the-money puts. Thus, even though
this solution emerges from a complex optimization program, it can still be interpreted in a
simple manner.
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A strength of our model is its flexibility. Indeed, the generic model already integrates sev-
eral realistic financial constraints, and the methodology provides many degrees of freedom
in order to consistently instantiate additional real market features or requirements. Work in
progress includes the consideration of options characterized by different horizons of invest-
ment over different periods, as well as the simultaneous consideration of several securities
and associated derivatives. In order to handle these complex problems, it may prove neces-
sary to resort to efficient heuristics, since exact methods tend to become prohibitively time
consuming for the resulting models.
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