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Feasible sets, comparative risk aversion, and

comparative uncertainty aversion in bargaining

Bram Driesen∗ Michele Lombardi∗ Hans Peters†

This version, May 2016

Abstract

We study feasible sets of the bargaining problem under two different as-
sumptions: the players are subjective expected utility maximizers or the
players are Choquet expected utility maximizers. For the latter case, we
consider the effects on bargaining solutions when players become more
risk averse and when they become more uncertainty averse.

JEL Classification: C78, D81
Keywords: Subjective expected utility, Choquet expected utility, comparative
risk aversion, comparative uncertainty aversion, bargaining

1 Introduction

In the classical bargaining problem of Nash (1950) a number of bargainers face
the task of finding a unanimous agreement over the expected utility allocations
resulting from the lotteries, i.e. finite probability distributions, over a set of
alternatives. In this paper we extend the bargaining problem by adopting the
Savage (1954) framework of decision making under uncertainty. We study the
consequences for the feasible set of a bargaining problem under two different
assumptions about the way bargainers make decisions: as subjective expected
utility maximizers or as Choquet expected utility maximizers. In the latter case,
the preferences of a bargainer are characterized by a utility function for riskless
alternatives and lotteries, and a capacity (non-additive probability measure)
for uncertain states of the world. Thus, the attitude of a bargainer towards
risk can be strictly separated from his attitude towards uncertainty, and we use
this feature to derive results about the effects of comparative risk aversion and
comparative uncertainty aversion on the outcomes assigned by specific (namely,
monotonic) bargaining solutions.
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The applications that we have in mind concern bargaining situations where
the agreement that the parties reach may be contingent on the future state of
the world that will materialize. For instance, the wages and labor conditions in
an agreement in the traditional bargaining problem between an employer and a
labor union may be made dependent on the future state of the economy.

1.1 Related literature

Most closely related to the present work is Köbberling and Peters (2003). In
that paper, the bargaining problem is extended by assuming that probabilities
in lotteries may be transformed by a probability weighting function, and overall
utilities are rank dependent (Quiggin, 1982). The paper distinguishes between
(comparative) utility risk aversion as expressed by concavity of the utility func-
tion for lotteries and (comparative) probabilistic risk aversion as expressed by
convexity of the probability weighting function. The effects of these attitudes
on bargaining solutions are in line with what we find in the present paper.

There are several papers, notably Safra and Zilcha (1993), Volij and Winter
(2002), and Rubinstein et al (1992), which study the qualitative predictions of
the Nash bargaining solution beyond the expected utility framework. Roth and
Rothblum (1982)1 show that under the Nash bargaining solution, it is disad-
vantageous to play against a more risk averse opponent, even in the case of
risky outcomes, provided that lotteries only attach positive probabilities to al-
ternatives that are preferred over the riskless disagreement alternative. Safra
and Zilcha (1993) show that this result breaks down if the expected utility as-
sumption is abandoned. This is confirmed by results in the present paper (see
Example 5.7). Volij and Winter (2002) show that increased risk aversion of one
bargainer is beneficial for that bargainer and hurts his opponent, given that
both bargainers are risk loving (so that the outcome is a lottery) in a model
adopting Yaari’s (1987) dual theory of choice under risk. On the other hand,
Rubinstein et al (1992) find that under their extension of the Nash bargaining
solution it is disadvantageous for a bargainer to be more risk averse, a result
which is not confirmed in our framework (see again Example 5.7). A prudent
conclusion that may be drawn from all these results is that the Nash bargaining
solution behaves irregularly under changes in risk attitudes, and that in this
respect it is also sensitive to the way in which risk and uncertainty are modelled
beyond the expected utility assumption. As will appear again in the present
paper (but for instance also in Safra and Zilcha, 1993, or Köbberling and Pe-
ters, 2003) bargaining solutions that are monotonic tend to behave much more
regularly under changes in attitude towards risk and uncertainty. Examples of
such solutions are the Kalai-Smorodinsky (Raiffa, 1953; Kalai and Smorodinsky,
1975) and egalitarian (Kalai, 1977) solutions.

1For other results on comparative risk aversion in the classical bargaining model under
expected utility see Kannai (1977), Kihlstrom et al (1981), Wakker et al (1986), and Safra et
al (1990).
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1.2 This paper

The set of riskless alternatives in this paper is the set of all divisions of one unit
of a perfectly divisible good among n bargainers or players. Each player has a
strictly increasing and concave utility function which depends only on the own
share of the good. Lotteries over riskless alternatives are included as well, and
under certainty the utility of a lottery is its expected utility. Further, a finite
set of states of the world is assumed.

In Section 3 we follow Savage (1954) and assume that each player attaches
subjective utilities to the states of the world. An act assigns to each state of the
world a riskless alternative or lottery. We show that the feasible set resulting
from considering all possible acts is comprehensive, compact and convex, and
strictly comprehensive if each player attaches positive probability to each state
of the world.

The results in Section 3 form the basis for those in Section 4, where we
assume that the players’ probability assessments over the states of the world
can be non-additive, and are described by capacities; players are then assumed
to be Choquet expected utility maximizers (Schmeidler, 1986, 1989). We show
that in this case the feasible set is convex if the capacities are convex. Moreover,
we define and characterize increased uncertainty aversion in terms of capacities
and increased risk aversion in terms of the utility functions for lotteries.

In Section 5, we show that for a monotonic bargaining solution, increased
uncertainty aversion of a player is disadvantageous for the opponents, whereas
increased risk aversion is advantageous for the opponents. We also show that
a more uncertainty averse player prefers his allocation to the one obtained by
his less uncertainty averse alter ego; whereas a less risk averse player prefers
his allocation to the one obtained by his more risk averse alter ego. For non-
monotonic bargaining solutions these results may break down, as we show by
examples for the Nash bargaining solution.

Section 6 concludes.

2 Preliminaries

Following Savage (1954), the analytical framework of decision making under
uncertainty involves a set of states of the world, a set of consequences, and a set
of acts – i.e., functions that map states of the world to consequences. Resolution
of uncertainty reveals the unique true state of the world, and thus, given an act,
provides a decision maker with certainty about the realized consequence.

The situation under consideration in this paper is one with multiple decision
makers, or players. Specifically, the player set is N = {1, . . . , n} where n ∈ N,
n > 1. The set of states of the world is Ω = {1, . . . ,K} where K ∈ N, K > 1.
The set of consequences is the set of (simple) lotteries – probability distributions
with finite support – on the set

A = {a ∈ Rn+ |
n∑
i=1

ai ≤ 1}
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of all possible divisions of one unit of a perfectly divisible good among the n
players;2 more formally, the set of consequences is:

L =

{
` : A→ [0, 1] | {a | ` (a) > 0} is finite,

∑
a∈A

` (a) = 1

}
.

Every lottery ` ∈ L induces a probability distribution with finite support
over player i ’s consumption space and, hence, induces a simple lottery li (·; `) :
[0, 1]→ [0, 1] defined by

li (xi; `) =
∑

a∈A: ai=xi

` (a)

for every share xi ∈ [0, 1] of the good. An act is a map f assigning to every
k ∈ Ω an element of A or a lottery ` ∈ L. The set of all acts is denoted by F .

Player i’s preferences over acts F are represented by a (reflexive) complete
and transitive binary relation <i⊆ F × F . As usual, we write f <i g instead
of (f, g) ∈<i. For each player i, a function Ui, mapping acts into the reals,
represents i’s preferences <i over F if for all f, g ∈ F , we have Ui(f) ≥ Ui(g)
if and only if f <i g. In this paper, we consider different specifications of the
functions Ui, and for these specifications examine the properties of the set

S = {(U1(f), . . . , Un(f)) | f ∈ F}.

For the sake of brevity, we write U(f) ≡ (U1(f), . . . , Un(f)) for every f ∈ F .

3 Subjective Expected Utility

In this section, the players in N are assumed to be Subjective Expected Utility
(SEU) maximizers (Savage, 1954). The premise of the SEU model is that each
player i evaluates an act f ∈ F based on his subjective belief about the states
of the world. Specifically, player i’s evaluation of an act f ∈ F is given by

Ui (f) =
∑
k∈Ω

πi (k)ui (fi(k)) ,

where πi : 2Ω → [0, 1] represents his subjective probability distribution over the
state space Ω,3 and the continuous, strictly increasing, and concave function ui :
[0, 1]→ R is player i’s expected utility function for lotteries: if f(k) is a lottery
then with some abuse of notation ui(fi(k)) denotes player i’s expected utility
for the lottery fi(k) = li (·; f (k)) resulting from f(k). Since the representation
of a player’s preference is unique up to positive linear transformations, we may
assume without loss of generality that ui(0) = 0 and ui(1) = 1 for every i ∈ N .

2Here, Rn+ = {x ∈ Rn | x ≥ 0}. We use the following vector inequalities: for all x, y ∈ Rn,
x ≥ y if xi ≥ yi for each i, x > y if x ≥ y and x 6= y, and x� y if xi > yi for each i.

3More precisely, πi is a probability measure: (i) πi(∅) = 0 and πi(Ω) = 1; (ii) for all E ⊆ Ω,
πi(E) =

∑
k∈E πi(k).
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For the sake of brevity, we denote u(a) = (u1(a1), . . . , un(an)) for every
a ∈ A. The set Ŝ = {u(a) | a ∈ A} contains all possible utility evaluations
attainable in any one state of the world k ∈ Ω.4 Since Ŝ does not depend on the
realized state of the world, it is immediate that S = Ŝ whenever players’ beliefs
about the realization of those states coincide. More generally, Ŝ is a subset of
S. To see this, observe that for any u(a) ∈ Ŝ, the act f with f(k) = a for all
states k satisfies U(f) = u(a).

The set Ŝ satisfies a number of appealing properties: it is non-empty, com-
pact, convex, and strictly comprehensive.5 We omit the obvious proof of this
but, in what follows, we verify which of these properties carry over when uncer-
tainty is introduced.

Proposition 3.1 Under SEU, the set S is comprehensive.

Proof. Let x ∈ S, and let y ∈ Rn be such that 0 ≤ y ≤ x. It is sufficient to
show that y ∈ S.

By definition of S, there is an f ∈ F such that U(f) = x. Since each ui
is strictly increasing, the inverse function vi exists, so vi(ui(ai)) = ui(vi(ai)) =
ai for all a ∈ A. Consider the function g : Ω → Rn defined by g(k) =
(v1(z1(k)), . . . , vn(zn(k))) where

zi(k) =

{
yi
xi
· ui(fi(k)) if xi > 0

0 otherwise

for each i ∈ N and k ∈ Ω. Since 0 ≤ zi(k) ≤ ui(fi(k)) for all i and k, and each
vi is strictly increasing, it follows that vi(0) ≤ vi(zi(k)) ≤ vi(ui(fi(k))) for all i
and k. Hence 0 ≤ g(k) ≤ f(k) for all k ∈ Ω, which by comprehensiveness of A
implies that g(k) ∈ A for each k ∈ Ω. Hence, g ∈ F , and thus by the definition
of S, U(g) ∈ S. Observe that for all i ∈ N ,

Ui(g) =
∑
k∈Ω

πi(k)ui(gi(k)) =
∑
k∈Ω

πi(k)zi(k)

=
∑
k∈Ω

πi(k)
yiui(fi(k))

Ui(f)
= yi ·

Ui(f)

Ui(f)
= yi.

Therefore, y = U(g), so that y ∈ S.

The set S is not necessarily strictly comprehensive. For instance, suppose
that n = K = 2. Assume that each player i has a linear utility function ui on
the interval [0, 1], and consider subjective beliefs π1 and π2 with π1 (1) = 1 and

4Due to concavity of the utility functions we do not need to include lotteries in the definition
of Ŝ. In fact, in this paper lotteries merely play an (only) implicit motivational role later on
when we define the concept of comparative risk aversion. See also Section 6 about generalizing
the set of consequences.

5A set T ⊆ Rn is said to be comprehensive if x ∈ T and 0 ≤ y ≤ x together imply y ∈ T .
The set T is strictly comprehensive if in addition, y 6= x implies the existence of z ∈ T with
z � y.
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π2 (1) = π2 (2) = 0.5. Then the set S is equal to the convex polytope in R2 with
vertices at (1, 0), (1, 0.5), (0, 1) and (0, 0), which is not strictly comprehensive.

The following proposition says that the set S is strictly comprehensive if the
subjective probability distribution of each player has full support.

Proposition 3.2 Under SEU, let πi(k) > 0 for each i ∈ N and k ∈ Ω. Then
S is strictly comprehensive.

Proof. Let x ∈ S and y ∈ Rn+ with x > y. Then by Proposition 3.1, y ∈ S. The
aim is to show that there exists a z ∈ S with z � y. Let i ∈ N with xi > yi.

By definition of S, there are acts f and g such that U(f) = x and U(g) = y.
Since Ui(f) > Ui(g), there must exist a k∗ ∈ Ω such that fi(k

∗) > gi(k
∗). Take

some 0 < ε < fi(k
∗)− gi(k∗), and define a ∈ Rn with

aj =

{
fj(k

∗)− ε if j = i

fj(k
∗) + 1

n−1 · ε if j 6= i

for all j ∈ N . Since aj ≥ 0 for all j ∈ N and
∑
j∈N aj =

∑
j∈N fj(k

∗) ≤ 1, it
follows that a ∈ A. Note that by construction, a � g(k∗), and thus, u(a) �
u(g(k∗)). Now construct the act h as follows:

h(k) =

{
a if k = k∗

g(k) otherwise.

For all j ∈ N we have

Uj(h) =
∑

k∈Ω\{k∗}

πj(k)uj(gj(k)) + πj(k
∗)uj(aj) >

∑
k∈Ω

πj(k)uj(gj(k)) = Uj(g),

where the inequality follows from the full support assumption. Hence, for z =
U(h) we have z ∈ S and z � y, as desired.

Proposition 3.3 Under SEU, the set S is compact and convex.

Proof. Since S is the image of the compact set F under the continuous function
U , it is compact.

To show that S is convex, let x, y ∈ S and λ ∈ [0, 1]. We show that λx +
(1 − λ)y ∈ S. By definition, there are acts f and g such that x = U(f) and
y = U(g). Observe that for each k, λf(k) + (1− λ)g(k) is an element of C, and
thus, λf + (1−λ)g ∈ F . Hence, U(λf + (1−λ)g) ∈ S. Since each ui is concave,
it follows that ui(λfi(k) + (1− λ)gi(k)) ≥ λui(fi(k)) + (1− λ)ui(gi(k)) for each
k ∈ Ω. Hence for each player i, Ui(λf + (1 − λ)g) ≥ λUi(f) + (1 − λ)Ui(g),
so that 0 ≤ λx + (1 − λ)y ≤ U(λf + (1 − λ)g). Since S is comprehensive by
Proposition 3.1, we conclude that λx+ (1− λ)y ∈ S, as desired.

It was pointed out earlier that S contains Ŝ, and that S = Ŝ whenever
players agree on a single subjective probability distribution π over the state
space. It turns out that the converse is true as well: if S = Ŝ, then players’
subjective beliefs coincide. For any T ⊆ Rn, the Pareto optimal set P (T ) is
defined by P (T ) = {t ∈ T | there exists no v ∈ T with v > t}.
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Proposition 3.4 Under SEU, Ŝ = S if and only if πi(k) = πj(k) for all i, j ∈
N and all k ∈ Ω.

Proof. We still have to show the only-if part. Suppose, for contradiction, that
(say) π1(k∗) = p > q = π2(k∗) for some k∗ ∈ Ω. Let z be a utility allocation
in the relative interior of the Pareto set of Ŝ. By the supporting hyperplane
theorem there is a hyperplane

H = {y ∈ Rn |
n∑
j=1

λjyj = c}

that supports Ŝ at the point z. By strict comprehensiveness of Ŝ, λj > 0 for
all j = 1, . . . , n. Define the function ψ : [0, 1] → [0, 1] by ψ(α) = max{β |
(α, β, z3, . . . , zn) ∈ Ŝ}. Note that ψ is well-defined since Ŝ is a compact set.
Let x1 = z1 + ε for some ε > 0, and x2 = ψ(z1 + ε). Consider an act f with
u(f(k)) = z for all k ∈ Ω \ {k∗}, and u(f(k∗)) = (x1, x2, z3, . . . , zn) ∈ Ŝ. Then

n∑
j=1

λjUj(f) = pλ1x1 + (1− p)λ1z1 + qλ2x2 + (1− q)λ2z2 +

n∑
j=3

λjzj

= c+ pλ1(x1 − z1) + qλ2(x2 − z2).

If q = 0, then
∑n
j=1 λjUj(f) = c + pλ1(x1 − z1) > c, so that U(f) /∈ Ŝ, a

contradiction. Now assume q > 0. Then
∑n
j=1 λjUj(f) = c+pλ1ε+λ2q(ψ(z1 +

ε)− ψ(z1)). Hence,
∑n
j=1 λjUj(f) ≥ c if and only if

ψ(z1 + ε)− ψ(z1)

ε
≥ −λ1p

λ2q
. (1)

Since Ŝ is convex and strictly comprehensive, ψ is strictly decreasing and con-
cave. Therefore, ψ is differentiable from the right at the point z1. In particular,
limh↓0(ψ(z1 + h) − ψ(z1))/h = −λ1/λ2. Since p > q it follows that for ε small
enough, ψ(z1 +ε)−ψ(z1)/ε > −λ1p/λ2q, which implies

∑n
j=1 λjUj(f) > c, and

thus again the contradiction U(f) /∈ Ŝ. This concludes the proof.

The results of this section form the basis for those in the next one, where
we consider Choquet expected utility.

4 Non-Additive Probabilities

Motivated by criticisms on the Savage framework (e.g., Ellsberg, 1961), Schmei-
dler (1989) introduced a generalization of Subjective Expected Utility, which
assumes that the probabilities agents attach to the occurrence of events need
not be additive. At the basis of this model is the concept of a capacity.

Definition 4.1 A capacity is a function µ : 2Ω → [0, 1] with the following
properties:

7



(i) µ(∅) = 0 and µ(Ω) = 1,

(ii) for all E, E′ ∈ 2Ω, E ⊆ E′ implies µ(E) ≤ µ(E′).

Rather than by a subjective probability measure over the state space, it is
now assumed that each player i’s beliefs are represented by a capacity µi. Acts
are evaluated by means of the Choquet integral.

Definition 4.2 For all vectors x = (x1, . . . , xK) ∈ RK+ , a player i endowed
with capacity µi is a Choquet Expected Utility (CEU) maximizer if player i’s
evaluation of x is

Cµi
(x) =

K∑
k=1

(
xτ(k) − xτ(k−1)

)
µi ({τ(k), . . . , τ(K)}) ,

where τ is a permutation of Ω such that xτ(1) ≤ xτ(2) ≤ . . . ≤ xτ(K) and
xτ(0) = 0.

Player i endowed with capacity µi and utility ui is a CEU maximizer6 if his
evaluation of the act f is

Ui(f ;ui, µi) = Cµi
(x) where x = (ui(fi(k)))k∈Ω.

As before, we are interested in the properties of the set S = {(Ui (f ;ui, µi))i∈N |
f ∈ F}. Note that if a player’s capacity is additive, he is an SEU maximizer.
Therefore, the results in the previous section are a special case of those obtained
here.

Definition 4.3 For all f, g ∈ F and i ∈ N with utility function ui, f and g are
comonotonic for i if there are no states k, l ∈ Ω such that ui(fi(k)) > ui(fi(l))
and ui(gi(k)) < ui(gi(l)). The set of all comonotonic acts for player i is called
a comoncone for i.

Each player i evaluates an act f as
∑
k∈Ω wkui(fi(k)) where each wk is of

the form [µi(E ∪{k})−µi(E)] with E ∈ 2Ω, and
∑
k∈Ω wk = µi(Ω)−µi(∅) = 1.

It is easily seen from the definition that the weights used in the evaluation
of two comonotonic acts, coincide. Thus, for all acts in the same comoncone
the weights assigned to different states remain unchanged. Since w ≥ 0 and∑
k wk = 1, these weights – for all intents and purposes – may be interpreted as

a player’s subjective probabilities. This means that our results on F under the
assumption of SEU, also hold for the intersections of players’ comoncones in F
under the assumption of non-additive beliefs.7

Let u = (u1, ..., un) and µ = (µ1, ..., µn) and let g ∈ F . Let T = {U(f ;u, µ) |
f is comonotonic with g for every i ∈ N}, where U(f ;u, µ) = (Ui(f ;ui, µi))i∈N .

6See Siniscalchi (2008) for a gentle introduction to Choquet expected utility.
7This would also follow from Schmeidler’s (1986) result that Cµ is first-degree homoge-

neous, and satisfies comonotonic additivity, i.e. Cµ(x + y) = Cµ(x) + Cµ(y) for any two
comonotonic acts x, y.
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Then, since any constant act is comonotonic with g for every i ∈ N , the set T
trivially contains Ŝ. Furthermore, by the same arguments as in Proposition 3.1
and Proposition 3.3 it follows that T is comprehensive, compact and convex.
Also strict comprehensiveness can be obtained by the following condition on
players’ capacities.

Definition 4.4 A capacity µ is strictly monotonic if for all E,E′ ∈ 2Ω, E  E′

implies µ(E) < µ(E′).

If a player’s capacity is strictly monotonic, then he attaches a strictly positive
weight wk > 0 to each state k ∈ Ω. Hence, if all players’ capacities are strictly
monotonic, then by the same argument as in Proposition 3.2, we have that T is
strictly comprehensive.

Since F is the union of finitely many (namely, less than (K!)n) intersections
of players’ comoncones, it follows that S is the union of finitely many com-
pact, convex, and comprehensive sets. In addition, if all capacities are strictly
monotonic, then the comprehensiveness is strict. Since compactness, compre-
hensiveness and strict comprehensiveness, are all preserved under finite union,
the following obtains as a corollary from the results in the previous section.

Corollary 4.5 Under CEU, the set S is compact and comprehensive. Further-
more, it is strictly comprehensive if players’ capacities are strictly monotonic.

Convexity is not preserved under finite union. Indeed, the set S need not be
convex, as the following example shows.

Example 4.6 Let n = K = 2, and let the players have linear utilities. Assume
that (µ1(1), µ1(2)) = (µ2(1), µ2(2)) = (0.9, 0.5). Then S = S1 ∪ S2, where

S1 = conv{(0, 0), (1, 0), (0, 1), (0.9, 0.5)}

and
S2 = conv{(0, 0), (1, 0), (0, 1), (0.5, 0.9)}.

Nontrivial convex combinations of (0.9, 0.5) and (0.5, 0.9) are not contained in
S.8

However, it turns out that convexity of players’ capacities is a sufficient
condition for convexity of S.

Definition 4.7 A capacity µ is convex if µ(E)+µ(E′) ≤ µ(E∪E′)+µ(E∩E′)
for all E,E′ ∈ 2Ω.

Definition 4.8 The core of a capacity µ is the set

core(µ) = {π | π is a probability measure s.t. π(E) ≥ µ(E) for all E ⊆ Ω}.
8 Note that this example also shows that Proposition 3.4 does not generalize to the non-

additive probability framework, i.e. if players share the same capacity, this does not necessarily
mean that S and Ŝ coincide.
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Thus, the core of a capacity consists of all probability measures dominating
the capacity values. It is well-known that the core of a convex capacity is
nonempty. Schmeidler (1986) shows the following result.

Lemma 4.9 The following statements are equivalent.

(i) The capacity µ is convex.

(ii) For all (x1, ..., xK) ∈ RK , Cµ (x) = minπ∈core(µ)

(∑
k∈Ω π (k)xk

)
.

Schmeidler subsequently showed that, for a convex capacity µ, Cµ(x+ y) ≥
Cµ(x) + Cµ(y) for any two x, y ∈ RK . A similar argument is used in the proof
of the following proposition.

Proposition 4.10 Assume CEU and suppose that µi is convex for each i ∈ N .
Then the set S is convex.

Proof. Let x, y ∈ S and λ ∈ [0, 1]. We show λx+ (1− λ)y ∈ S. By definition,
there are acts f and g such that x = U(f ;u, µ) and y = U(g;u, µ). Since
λf(k) + (1− λ)g(k) ∈ A for each k ∈ Ω, we have h = λf + (1− λ)g ∈ F , hence
U(h;u, µ) ∈ S. By Corollary 4.5, it is then sufficient to show that

0 ≤ λU(f ;u, µ) + (1− λ)U(g;u, µ) ≤ U(h;u, µ). (2)

Since x, y ∈ S ⊆ Rn+, the first inequality is trivially satisfied. To establish the
second inequality, consider any player i. Since the capacity µi is convex, it
follows from Lemma 4.9 that there is a π ∈ core(µi) such that Ui(h;ui, πi) =∑
k∈Ω πi(k)ui(hi(k)). Then

Ui(h;ui, πi) =
∑
k∈Ω

πi(k)ui(λfi(k) + (1− λ)gi(k))

≥ λ
∑
k∈Ω

πi(k)ui(fi(k)) + (1− λ)
∑
k∈Ω

πi(k)ui(gi(k)) (3)

≥ λUi(f ;ui, πi) + (1− λ)Ui(g;ui, πi), (4)

where (3) follows from concavity of ui and (4) again from Lemma 4.9. Now (2)
follows.

Convexity of players’ capacities is a sufficient condition for convexity of S,
but it is not a necessary condition, as is demonstrated by the following example.

Example 4.11 Let n = K = 2, and let the players have linear utilities. Assume
that (µ1(1), µ1(2)) = (µ2(2), µ2(1)) = (3/4, 3/5). Since 3/4 + 3/5 > 1, both
players’ capacities violate convexity. However, S = conv{(0, 0), (1, 0), (0, 1),
(3/4, 3/4)}, which is convex.

The remainder of this section is devoted to the concepts of comparative
uncertainty and risk aversion and the consequences for the feasible set S.

10



Schmeidler (1989) introduces a concept of uncertainty aversion in the CEU
framework and shows that it is equivalent to convexity of the capacity. In our
model we are interested in comparative uncertainty aversion. The next definition
coincides with the definition of comparative ambiguity aversion in Ghirardato
and Marinacci (2002), applied to our framework.9

Definition 4.12 Suppose that player i’s preferences over A are represented by
the utility function ui. (Player i endowed with) capacity µ′i is more uncertainty
averse than (player i endowed with) capacity µi if

Ui(f ;ui, µ
′
i) ≥ ui(η)⇒ Ui(f ;ui, µi) ≥ ui(η) for all f in F and all η ∈ [0, 1].

The interpretation of this definition is that if a more uncertainty averse
player (or decision maker) prefers an (uncertain) act over a sure payoff then so
does the less uncertainty averse player. Note that in Definition 4.12 we could
just as well write ‘η’ instead of ‘ui(η)’, but the present definition shows more
clearly the contrast with the definition of comparative risk aversion (Definition
4.14 below).10

The next proposition provides a characterization of the notion of comparative
uncertainty aversion in terms of a simple relation between the capacities. This
also follows from Theorem 17(i) in Ghirardato and Marinacci (2002), but we
include the simple proof both for completeness and because of the intuition it
provides, as follows. Consider a CEU maximizer i with convex capacity µi, who
has an alter ego endowed with the more uncertainty averse convex capacity µ′i
but the same expected utility function for simple lotteries in L. By exploiting
binary acts – acts f with f(k) = α if state k is in an event E ∈ 2Ω and f(k) = β
if not – one can show using the definition of comparative uncertainty aversion
that i’s alter ego attaches a lower mass to each event than i himself. That
is, µ′i(E) ≤ µi(E) for all E ∈ 2Ω. From the definition of the core, it is then
immediate that the core of the capacity µi is a subset of the core of the capacity
µ′i. Conversely, suppose i and his alter ego are endowed with the same expected
utility function but different capacities µi and µ′i such that µ′i(E) ≤ µi(E) for
every event E, and hence the core of µ′i is contained in the core of µ. Since
a generic CEU maximizer evaluates each act f using the subjective beliefs in
the core of his capacity that minimize his subjective expected utility of f , this
implies that i’s alter ego attaches a lower Choquet expected utility to any act f
than i himself does. Thus, if i’s alter ego prefers an act f to an uncertainty-free
act η, so does i, hence µ′i is more uncertainty averse than µi.

Proposition 4.13 Let i ∈ N and let µi and µ′i be convex capacities. The
following statements are equivalent.

(i) For all E ∈ 2Ω, µ′i (E) ≤ µi (E).

(ii) core (µi) ⊆ core (µ′i).

9We thank Peter Wakker for bringing this to our attention.
10In fact, ‘ui(η) for all η ∈ [0, 1]’ in Definition 4.12 may be replaced by ‘ui(l) for all lotteries

l over [0, 1]’.
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(iii) µ′i is more uncertainty averse than µi.

Proof. The implication (i)⇒ (ii) is immediate. Now assume (ii); we show (iii).
For any f ∈ F , (ii) and Lemma 4.9 imply

Ui(f ;ui, µ
′
i) = min

π∈core(µ′i)

∑
k∈Ω

π(k)xk ≤ min
π∈core(µi)

∑
k∈Ω

π(k)xk = Ui(f ;ui, µi)

where xk = ui(fi(k)) for all k ∈ Ω. Therefore, for every η ∈ [0, 1], Ui(f ;ui, µ
′
i) ≥

ui(η) implies Ui(f ;ui, µi) ≥ ui(η), so that (iii) holds.
Finally, assume (iii); we show (i). Let E ∈ 2Ω, and consider an act f with

fi(k) = α if k ∈ E and fi(k) = β if k /∈ E, where α and β are such that ui(α) >
ui(β). By (iii), it follows that for every η ∈ [0, 1] with Ui(f ;ui, µ

′
i) ≥ ui(η), we

have Ui(f ;ui, µi) ≥ ui(η). By choosing η such that ui(η) = Ui(f ;ui, µ
′
i), this

implies Ui(f ;ui, µi) ≥ Ui(f ;ui, µ
′
i), or equivalently,

µi(E)ui(α) + (1− µi(E))ui(β) ≥ µ′i(E)ui(α) + (1− µ′i(E))ui(β).

Since ui(α)− ui(β) > 0, this implies µ′i(E) ≤ µi(E), so that (i) follows.

In the present framework, the definition of comparative risk aversion is as
follows.

Definition 4.14 Suppose that player i is endowed with capacity µi. (Player
i endowed with) utility function u′i is more risk averse than (player i endowed
with) utility function ui if

Ui(f ;u′i, µi) ≥ u′i(η)⇒ Ui(f ;ui, µi) ≥ ui(η) for all f ∈ F and η ∈ [0, 1].

Comparative risk aversion can be characterized as follows.

Proposition 4.15 Suppose that player i is endowed with capacity µi. The fol-
lowing two statements are equivalent.

(i) u′i is more risk averse than ui.

(ii) There exists a continuous, strictly increasing and concave function v :
[0, 1]→ [0, 1] such that u′i = v ◦ ui.

Proof. The implication (i) ⇒ (ii) follows from Yaari (1969) by considering
constant acts. Now assume that (ii) holds and let f ∈ F and η ∈ [0, 1] such that

Ui(f ;u′i, µi) ≥ u′i(η), i.e.,
∑K
k=1 π(k)v(ui(fi(k))) ≥ v(ui(η)) for some probability

measure π. Then by concavity of v,

v(Ui(f ;ui, µi)) = v

(
K∑
k=1

π(k)ui(fi(k))

)
≥

K∑
k=1

π(k)v(ui(fi(k))) ≥ v(ui(η)).

Since v is strictly increasing, this implies Ui(f ;ui, µi) ≥ ui(η). Thus, (i) fol-
lows.
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5 Bargaining

Assuming that players are CEU maximizers and with notations as in the pre-
ceding sections, the set S can be regarded as the feasible set of a bargaining
problem with uncertainty. In this context we also write

B(u, µ) = {U(f ;u, µ) | f ∈ F} = {(U1(f ;u1, µ1), . . . , Un(f ;un, µn)) | f ∈ F}

instead of simply S. Throughout, capacities are assumed to be convex, so
that by Proposition 4.10 the set B(u, µ) is convex. We adopt the ‘welfaristic
approach’, which means that a bargaining solution depends exclusively on the
feasible set; in other words, if B(u, µ) = B(u′, µ′) for some utility-capacity
profiles (u, µ) and (u′, µ′), then a bargaining solution assigns the same point to
both bargaining problems. Formally, let

B = {S ⊆ Rn | S = B(u, µ) for some u = (ui)i∈N , µ = (µi)i∈N}.

A bargaining solution is a map ϕ : B → Rn such that ϕ(S) ∈ S for every
S ∈ B. In this section we collect some interesting observations about the effects
of increased uncertainty or risk aversion on bargaining solutions.

A possibly plausible condition on a bargaining solution is the following.

Definition 5.1 A bargaining solution ϕ is monotonic if ϕ(S) ≥ ϕ(S′) for all
S, S′ ∈ B with S′ ⊆ S.

Well-known bargaining solutions satisfying this condition are the Kalai-
Smorodinsky solution (Kalai and Smorodinsky, 1975) and the proportional bar-
gaining solutions (Kalai, 1977). Our first result is as follows.

Proposition 5.2 Let ϕ be a monotonic bargaining solution, and let B(u, µ) ∈
B.

(i) Let i ∈ N and B(u, µ′) ∈ B such that µ′j = µj for all j ∈ N \ {i} whereas
µ′i is more uncertainty averse than µi. Then ϕj(B(u, µ′)) ≤ ϕj(B(u, µ))
for all j ∈ N \ {i}.

(ii) Let i ∈ N and B(u′, µ) ∈ B such that u′j = uj for all j ∈ N \ {i} whereas
u′i is more risk averse than ui. Then ϕj(B(u′, µ)) ≥ ϕj(B(u, µ)) for all
j ∈ N \ {i}.

Proof. For (i), by Proposition 4.13 and Definition 4.2, we have B(u, µ′) ⊆
B(u, µ). For (ii), by Proposition 4.15 (which implies u′i(η) ≥ ui(η) for all η ∈
[0, 1]) and Definition 4.2, we have B(u, µ) ⊆ B(u′, µ). The proposition now
follows from monotonicity of ϕ.

Proposition 5.2 implies that if a player becomes more uncertainty averse
then this is disadvantageous for the other players, but if a player becomes more
risk averse then this is advantageous for his opponents. The latter is driven
by the fact that a more risk averse player has a more concave utility function.
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At lower levels, the utility of such a player increases more for any small incre-
ment in the underlying good, which means that satisfaction may appear faster,
and thus that opponents do not have to concede as much to reach a compro-
mise. On the other hand, if a player becomes more uncertainty averse, then by
Lemma 4.9 and part (ii) of Proposition 4.13, satisfaction is slower to appear,
and that player must accordingly be given more of the underlying good to reach
a compromise. Note that from the proof of the proposition it follows that also
the more uncertainty (risk) averse player has lower (higher) Choquet expected
utility, but such comparisons are meaningless since we are dealing with different
players. However, for the player who is replaced by a more uncertainty averse
or more risk averse person we have the observations in Proposition 5.4 below.

Definition 5.3 A bargaining solution ϕ is weakly Pareto optimal if for all S ∈ B
and x ∈ S, x 6� ϕ(S).

Proposition 5.4 Let ϕ be a monotonic and weakly Pareto optimal bargaining
solution, and let B(u, µ) ∈ B such that µj is strictly monotonic for every j ∈ N .

(i) Let i ∈ N and B(u, µ′) ∈ B such that µ′j = µj for all j ∈ N \ {i}, µ′i
is strictly monotonic, and µ′i is more uncertainty averse than µi. Let
f, f ′ ∈ F satisfy U(f ;u, µ) = ϕ(B(u, µ)) and U(f ′;u, µ′) = ϕ(B(u, µ′)).
Then Ui(f

′;ui, µ
′
i) ≥ Ui(f ;ui, µ

′
i).

(ii) Let i ∈ N and B(u′, µ) ∈ B such that u′j = uj for all j ∈ N \ {i} and u′i
is more risk averse than ui. Let f, f ′ ∈ F satisfy U(f ;u, µ) = ϕ(B(u, µ))
and U(f ′;u′, µ) = ϕ(B(u′, µ)). Then Ui(f ;ui, µi) ≥ Ui(f ′;ui, µi).

Proof. We prove (i), the proof of (ii) is analogous. By Proposition 5.2 we
have Uj(f

′;uj , µ
′
j) ≤ Uj(f ;uj , µj) = Uj(f ;uj , µ

′
j) for all j ∈ N \ {i}. By weak

Pareto optimality of ϕ and strict comprehensiveness of B(u, µ′) this implies
Ui(f

′;ui, µ
′
i) ≥ Ui(f ;ui, µ

′
i).

Proposition 5.4 says that a more uncertainty averse player prefers any act
giving rise to the bargaining solution outcome in his bargaining problem to any
act giving rise to the bargaining solution outcome in the problem with his less
uncertainty averse substitute. In contrast, a less risk averse player prefers any
act giving rise to the bargaining solution outcome in his bargaining problem to
any act giving rise to the bargaining solution outcome in the problem for his
more risk averse substitute – of course, under the conditions in the proposition.
The intuition for these results is similar to the intuition for Proposition 5.2.
Combining both propositions, and under the conditions in these propositions, we
may say that a player who becomes more uncertainty averse hurts his opponents
and does not prefer any act obtained in the solution to the original bargaining
problem; and a player who becomes less risk averse hurts his opponents and does
not prefer any act obtained in the solution to the original bargaining problem.

The following examples show that Propositions 5.2 and 5.4 do not hold for
a non-monotonic bargaining solution such as the Nash bargaining solution ν
(Nash, 1950), which assigns to every S ∈ B the point ν(S) which maximizes the
product Πi∈Nxi over the set S.
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Figure 1: A visual illustration of Example 5.5

Example 5.5 Let N = {1, 2} and Ω = {1, 2, 3}. The players’ capacities are µ1

and µ2, with µ1(1) = 1
4 , µ1(23) = 3

4 , and µ1(E) = 1
2 for all events E /∈ {1, 23,Ω};

and µ2(3) = 1
4 , µ1(12) = 3

4 , and µ1(E) = 1
2 for all events E /∈ {3, 12,Ω}. Let

u1(α) = u2(α) = α for every 0 ≤ α ≤ 1. Then one can check that

B(u, µ) = conv{(0, 0), (0, 1), (
1

2
,

3

4
), (

3

4
,

1

2
), (1, 0)} ,

and ν(B(u, µ)) = ( 5
8 ,

5
8 ). This point corresponds uniquely to the act f =

((0, 1), ( 1
2 ,

1
2 ), (1, 0)). Now let µ′ = (µ′1, µ2) with µ′1(23) = 5

8 and µ′1(E) = µ1(E)
otherwise. Then µ′ still consists of convex and strictly monotonic capacities, and
by Proposition 4.13, µ′1 is more uncertainty averse than µ1. We now have

B(u, µ′) = conv{(0, 0), (0, 1), (
1

2
,

3

4
), (1, 0)} ,

and ν(B(u, µ′)) = (1
2 ,

3
4 ), corresponding to the act f ′ = ((0, 1), (0, 1), (1, 0)).

It follows that 3
4 = ν2(B(u, µ′)) > ν2(B(u, µ)) = 5

8 , so that part (i) of Propo-
sition 5.2 does not hold for ν. Also, U1(f ;u1, µ

′
1) = 9

16 >
1
2 = U1(f ′;u1, µ

′
1), so

that part (i) of Proposition 5.4 does not hold for ν.

Remark 5.6 Example 5.5 shows that parts (i) of Propositions 5.2 and 5.4 do
not hold for the Nash bargaining solution. With linear utility functions and
convex and strictly monotonic capacities, we need three states for this, which
can be shown as follows. Suppose that Ω = {1, 2}. Then a bargaining problem

B(u, µ) = conv{(0, 0), (0, 1), (a, b), (c, d), (1, 0)}

with a+ b > 1 and c+ d > 1 can only be realized if either

(µ1(1), µ2(2)) = (a, b) and (µ1(2), µ2(1)) = (c, d)
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Figure 2: A visual illustration of Example 5.7

or
(µ1(1), µ2(2)) = (c, d) and (µ1(2), µ2(1)) = (a, b) .

But then [µ1(1) +µ1(2)] + [µ2(1) +µ2(2)] = (a+ c) + (b+ d) > 2, which implies
that at least one of the two capacities is not convex.

Example 5.7 Let N = {1, 2} and Ω = {1, 2}. The players have additive ca-
pacities: µ1(1) = µ1(2) = 1

2 , µ2(1) = 1
4 , and µ1(2) = 3

4 . Let u1(α) = u2(α) = α
for every 0 ≤ α ≤ 1. Then

B(u, µ) = conv{(0, 0), (0, 1), ( 1
2 ,

3
4 ), (1, 0)} ,

and ν(B(u, µ)) = ( 1
2 ,

3
4 ). This point corresponds uniquely to the act f =

((1, 0), (0, 1)). Now let u′1 : [0, 1] → R be defined by u′1(α) = 3
2α if 0 ≤ α ≤ 1

3
and u′1(α) = 1

4 + 3
4α if 1

3 < α ≤ 1. Let u′ = (u′1, u2), then u′1 is more risk averse
than u1 by Proposition 4.15,

B(u′, µ) = conv{(0, 0), (0, 1), ( 1
4 ,

11
12 ), ( 1

2 ,
3
4 ), ( 3

4 ,
1
2 ), (1, 0)} ,

and ν(B(u′, µ)) = (5
8 ,

5
8 ). This point corresponds to the act f ′ = ((1, 0), ( 1

6 ,
5
6 )).

Now ν2(B(u′, µ)) = 5
8 < 3

4 = ν2(B(u, µ)), so that part (ii) of Proposition 5.2
does not hold for ν. Also, U1(f ;u1, µ1) = 1

2 <
7
12 = U1(f ′;u1, µ1), so that part

(ii) of Proposition 5.4 does not hold for ν.

We conclude with an observation about the effect of a change of beliefs,
rather than of risk or uncertainty aversion.

Let B̃ ⊆ B be the class of bargaining problems with uncertainty B(u, µ),
where the capacities µj for j ∈ N are all additive, i.e., players are SEU maxi-
mizers. The next proposition states that if all players have the same beliefs then,
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if one player changes his beliefs, this is advantageous for the others, assuming
that a monotonic bargaining solution is employed.

Proposition 5.8 Let ϕ be a monotonic bargaining solution, and let B(u, π) ∈ B̃
with πi(k) = πj(k) for all i, j ∈ N and for all k ∈ Ω. Let i ∈ N and B(u, π′) ∈ B̃
such that π′j = πj for all j ∈ N \ {i} and π′i 6= πi. Then ϕj(B(u, π′)) ≥
ϕj(B(u, π)) for all j ∈ N \ {i}.

Proof. By Proposition 3.4 we have B(u, π) ⊆ B(u, π′). The proposition now
follows from monotonicity of ϕ.

The intuition for this result is that players j 6= i can exploit the ‘ignorance’
of player i. As a simple illustration, suppose that there are two players, 1 and
2, with the same expected utility function for lotteries, and two states of the
world, 1 and 2. If, initially, both players attach a probability of 99% to state 1,
then a likely bargaining outcome will be equal split in each state. Now suppose
player 2 changes his beliefs and attaches probability 99% to state 2. Then, very
likely, player 1 will secure almost all of the good in state 1, thus improving his
overall utility.

Observe that a result like this does not hold for general, nonadditive capac-
ities. In particular, as already mentioned in footnote 8, Proposition 3.4 does
not hold for nonadditive capacities. The following example demonstrates that
Proposition 5.8 also does not hold for non-monotonic bargaining solutions, by
considering the Nash bargaining solution ν.

Example 5.9 Let N = {1, 2} and Ω = {1, 2}. The players attach the same
probability to each state: π1(1) = π2(1) = 1

3 and π1(2) = π2(2) = 2
3 . Let

u1(α) = 2α for 0 ≤ α < 1
4 and u1(α) = 1

3 + 2
3α for 1

4 ≤ α ≤ 1. Furthermore, let
u2(α) = α for 0 ≤ α ≤ 1. Then

B(u, π) = conv{(0, 0), (0, 1), ( 1
2 ,

3
4 ), (1, 0)} ,

and ν(B(u, µ)) = ( 1
2 ,

3
4 ). Now let π′ be such that π′1(1) = π′1(2) = 1

2 and
π′2 = π2. Then

B(u, π′) = conv{(0, 0), (0, 1), ( 1
4 ,

11
12 ), ( 1

2 ,
3
4 ), ( 3

4 ,
1
2 ), (1, 0)} ,

and ν(B(u, π′)) = ( 5
8 ,

5
8 ). It follows that ν2(B(u, π′)) = 5

8 < 3
4 = ν2(B(u, π)),

so that Proposition 5.8 does not hold for ν.

6 Concluding remarks

In this paper, we have studied properties of the feasible set of a bargaining
problem under the assumption that the bargainers are subjective expected util-
ity (SEU) maximizers as well as under the assumption that they are Choquet
expected utility (CEU) maximizers. For the latter case, we studied the compar-
ative statics properties of monotonic bargaining solutions with respect to the
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changes in the degree of risk/uncertainty aversion. We found that an increase
in one’s opponent’s risk aversion is advantageous, and that an increase in one’s
opponent’s uncertainty aversion is disadvantageous. Further, a less risk averse
bargainer prefers his allocation to the one obtained by his more risk averse alter
ego, whereas a more uncertainty averse bargainer prefers his allocation to the
one obtained by his less uncertainty averse alter ego. Finally, we showed by
means of examples that the effect of changes in the degree of risk/uncertainty
aversion on the Nash bargaining solution is not conclusive.

Since CEU generalizes SEU, it follows that the comparative risk aversion
results for monotonic bargaining solutions hold for the SEU case as well. Of
course, uncertainty does not play a role in the SEU model.

Our (bargaining) results are derived under the so-called welfaristic assump-
tion: The bargaining solution depends only on the feasible set and not directly
on the underlying model. Hence, these results may or may not hold if the
welfaristic assumption is dropped.

As to the set of consequences in the paper, which is equal to all divisions of
one unit of a perfectly divisible good, this may with some modifications be gen-
eralized to an arbitrary compact set of (riskless) alternatives, as in Köbberling
and Peters (2003). Our choice in this paper is motivated by convenience, in
particular when deriving results about comprehensiveness of feasible sets. Also,
if no risk is involved (that is, only uncertainty regarding the state of the world
but no lotteries), the results still go through if risk aversion is interpreted as
diminishing marginal utility (see Peters, 1992).
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