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Abstract We introduce a new solution concept, called correlated-belief equilibrium.
The difference to Nash equilibrium is that, while each player has correct marginal
conjectures about each opponent, it is not necessarily the case that these marginal
conjectures are independent. Then, we provide an epistemic foundation and we relate
correlated-belief equilibriumwith standard solution concepts, such as rationalizability,
correlated equilibrium and conjectural equilibrium.

Keywords Correlated beliefs · Product measures · Nash equilibrium ·
Conjectural equilibrium · I-consistency

1 Introduction

Beliefs have recently become a very useful tool for game-theoretic analysis. One of
the main advantages from incorporating beliefs into our game-theoretic models is that
they allow us to explicitly distinguish between what players think that their opponents
will do and what their opponents actually do. Thus, they help us better understand
the implicit assumptions that are often present in the definition of a solution concept.
Take for instance Nash equilibrium (NE), which is the most well-known and widely-
used game-theoretic solution concept. According to the standard definition, a strategy
profile is aNE if each player’s strategy is optimal given the opponents’ strategies (Nash
1951). However, in a simultaneous-move game it is difficult to imagine that players
respond to the opponents’ actual strategies. Instead, it seems more natural to assume
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that they form beliefs about their opponents’ strategies and then they respond to these
beliefs. In this sense, one could say that a NE implicitly postulates that players respond
optimally to their beliefs about their opponents’ strategies and these beliefs turn out
to be correct. This alternative statement/interpretation of NE in terms of beliefs has
inspired the literature on the epistemic foundations for NE, e.g., in their leading paper
Aumann and Brandenburger (1995, p. 1161) begin with the preliminary observation
that “if each player is rational and knows the strategy choices of the others, the players’
choices constitute a Nash equilibrium in the game being played”.

Formally, a belief is modeled with a probability measure over the set of the oppo-
nents’ strategy profiles. Note that this does not necessarily need to be a product
measure, implying that the player may in principle hold correlated beliefs, even if in
reality her opponents choose their strategies independently from each other. A player
may hold correlated beliefs, for instance, either because she thinks that her opponents
use a correlating device (Aumann 1974, 1987) or because she thinks that their oppo-
nents’ beliefs are themselves correlated (Brandenburger and Friedenberg 2008). Thus,
as long as the players actually choose their strategies independently from each other,
the notion of correct beliefs that is implicitly present in the definition of NE, requires
each player (i) to have correct marginal beliefs about each individual opponent, and
(ii) to have independent marginal beliefs.

In this paper, we drop the requirement that players have independent marginal
beliefs, while maintaining the assumption that their marginal beliefs about each
individual opponent are correct. This induces a new solution concept called correlated-
belief equilibrium (CBE). Obviously, the predictionsmade by CBE are a coarsening of
the corresponding NE predictions.Moreover, it is straightforward that the two solution
concepts yield exactly the same strategy profiles in two-player games.

Our first aim is to provide an epistemic justification for this solution concept. To
do so, we begin by looking into the history of the epistemic foundations for NE. In
their seminal article, Aumann and Brandenburger (1995) proved that mutual belief in
rationality and common belief in conjectures suffice for a NE if there is a common
prior. This last assumption, while being often present in many game-theoretic results,
has been extensively criticized mostly on the basis of its conceptual foundations being
questionable (e.g., see Gul 1998). In fact, Feinberg (2000) characterized the common
prior assumption by means of a no-bet condition. In particular, he showed that a
common prior exists if and only if the players cannot agree on any (zero-sum) bet.
The fact that a common prior is characterized in terms of all possible bets makes it a
rather strong assumption. This is because some bets are defined in terms of conditions
that involve higher order beliefs, and in this respect they may not even be verifiable
based on hard evidence, e.g., consider the bet according to which Bob has to pay Ann
one monetary unit if she thinks that Carol will choose the strategy L with probability
more than 1/2, and she has to pay him one monetary unit otherwise. Obviously, in this
case there is no way to verify whether Ann reports her true beliefs or not, when she
says that she does indeed find it more likely that Carol will choose L .

Having recognized how restrictive the common prior assumption is, Barelli (2009)
replaced it with a weaker condition, called action-consistency (A-consistency), which
is characterized by the players not agreeing to take any bet described in terms of
the language generated by the pure strategy profiles. In other words, A-consistency
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postulates that the players cannot agree on any (zero-sum) bet whose outcome depends
solely on which pure strategy profile is played in the game. Note that in this case in
order to decide who wins the side bet it is necessary to observe the realized pure
strategy profile.

Let us now assume instead that the players cannot agree on any bet described in
terms of the language generated by any player’s individual pure strategies. That is, we
postulate that the players cannot agree on any (zero-sum) bet whose outcome depends
solely on an arbitrary single player’s pure strategy. Let us call this no-bet condition
I -consistency. Obviously, I -consistency is weaker than Barelli’s A-consistency, as it
requires players not being able to agree on fewer bets than A-consistency requires.
Then, we show that by replacing A-consistency with I -consistency in Barelli’s set
of epistemic conditions (for NE) we provide sufficient epistemic conditions for CBE
(see Theorem 1). We should point out that our epistemic conditions do not in general
suffice for NE (see Example 2).

The previously-mentioned result justifies CBE by simply allowing for more priors
than the ones that would lead to a NE. In this sense, similarly to the literature on the
epistemic conditions for NE, it describes a set of belief hierarchies which would be
consistent with CBE. Still, it does not explain how players would end up forming
such beliefs, and consequently why they would end up behaving in accordance to the
profiles that CBE predicts. We do this, by studying the relationship of CBE with other
solution concepts, and in particular with conjectural equilibrium, a solution concept
with well-established learning foundations which also permits false beliefs (e.g., see
Hahn 1977, 1978; Battigalli 1987; Battigalli and Guaitoli 1997).

Conjectural equilibrium does not necessarily require each player’s belief to be
correct in the probability it attaches to each pure strategy profile of the opponents.
Instead, it assumes that each player receives a signal—upon each pure strategy profile
being realized—and it requires each player’s belief not to contradict the empirical
distribution of the received signals. If the signals are precise enough to reveal the
strategy profile being played, then conjectural equilibrium coincides with NE. Now,
notice that observing such precise signals would lead each player to learn not only each
opponent’s mixed strategy distribution, but also the fact that the opponents choose
independently from each other. On the other hand, in a CBE players are implicitly
assumed to have learned each opponent’s mixed strategy, without having necessarily
learned that the opponents choose independently from each other. Indeed, we show
that CBE can be rewritten as a new variant of conjectural equilibrium with multiple
signals, each of them revealing one opponent’s strategy (see Theorem 2). We also
show that CBE is not a special case of the standard conjectural equilibrium with a
single signal function for each player (see Example 3).

Besides the conceptual foundations of CBE, we relate the predictions that our
concept makes with other standard solution concepts. Starting with rationalizabil-
ity, we prove that every CBE is correlated rationalizable, i.e., it survives iterated
elimination of strictly dominated strategies. This is rather straightforward to see,
as the correct-marginal-beliefs assumption that we maintain, together with ratio-
nality, directly imply that the support of a CBE is a (correlated) best response set.
On the other hand, this is not the case for independent rationalizability. In fact, it
turns out that CBE and independent rationalizability neither refine nor coarsen each
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other. This is also natural to expect, as the two generalize NE in different directions.
Now, turning to correlated equilibrium, we show that every CBE is essentially equiv-
alent to a subjective correlated equilibrium. While we provide a constructive proof
of this result which clearly illustrates the relationship between the two, notice that
this also follows from the standard result of Brandenburger and Dekel (1987), who
showed that every correlated rationalizable strategy profile is essentially equivalent
to a refinement of subjective correlated equilibrium, viz., a posteriori equilibrium.
Finally, we show that the same equivalence does not hold for objective correlated
equilibrium.

The paper is structured as follows: Section 2 introduces some preliminary defini-
tions, in Sect. 3 we define CBE and we prove some basic properties, Sect. 4 contains
our epistemic foundation of the concept, while in Sect. 5 we provide the formal link
to other solution concepts. All the proofs are relegated to the Appendix.

2 Preliminaries

2.1 Product measures

For a measurable space Y , let �(Y ) denote the space of all probability measures
over Y . If Y is finite, then �(Y ) is identified as usual by the simplex over Y . Let
Supp(ν) denote the support of an arbitrary ν ∈ �(Y ). Now, take a finite collection
of probability spaces (Y j , ν j )

n
j=1, and denote the respective product measure over

×n
j=1Y j by

⊗n
j=1 ν j . Moreover, let �

(×n
j=1Y j

) ⊆ �
(×n

j=1Y j
)
denote the set of

all product (probability) measures over ×n
j=1Y j .

2.2 Normal form games

Consider a finite normal form game
(
I, (Ai )i∈I , (ui )i∈I

)
, where I = {1, . . . , n}

denotes the finite set of players and Ai denotes the finite set of pure strategies of
an arbitrary player i ∈ I with typical element ai . As usual, let A:=×i∈I Ai and
A−i :=× j �=i A j , with typical elements a = (a1, . . . , an) and a−i = (a1, . . . , ai−1,

ai+1, . . . , an) respectively. Moreover, let ui : A → R denote player i’s utility func-
tion.

A randomization over a player’s pure strategies is called (mixed) strategy. Let
�i := �(Ai ) denote the set of player i’s mixed strategies with typical element σi . As
usual, σi (ai ) is the probability that σi attaches to ai . Furthermore, let � := ×i∈I�i

denote the set of mixed strategy profiles with typical element (σ1, . . . , σn). As long as
players are assumed to choose their strategies independently, we identify the mixed
strategy profile (σ1, . . . , σn) ∈ � with the product measure σ := ⊗

i∈I σi . Likewise,
let�−i := × j �=i� j denote the set of the strategy profiles chosen by i’s opponentswith
typical element (σ1, . . . , σi−1, σi+1, . . . , σn). Then again, as long as i’s opponents
choose their strategies independently, we identify (σ1, . . . , σi−1, σi+1, . . . , σn) ∈ �−i

with the product measure σ−i := ⊗
j �=i σ j .

Define i’s (objective) expected utility from the mixed strategy profile (σ1, . . . , σn)

by
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Ui (σi , σ−i ) :=
∑

ai∈Ai

σi (ai )
∑

a−i∈A−i

σ−i (a−i ) · ui (ai , a−i )

=
∑

a∈A

σ(a) · ui (a). (1)

Then, we say that σi is a best response to (σ1, . . . , σi−1, σi+1, . . . , σn) and we write
σi ∈ BRi (σ−i ) whenever it is the case thatUi (σi , σ−i ) ≥ Ui (σ

′
i , σ−i ) for all σ ′

i ∈ �i .
Finally, recall that a strategy profile (σ1, . . . , σn) is aNash equilibrium (NE)whenever
σi ∈ BRi (σ−i ) for all i ∈ I .

2.3 Beliefs

A belief—often called conjecture—of player i ∈ I is a probability measure μi ∈
�(A−i ). Notice that μi is not necessarily a product measure over A−i , thus implying
that player i may believe that her opponents’ strategies are correlated, even if in reality
they are chosen independently. The following definition formalizes what it means for
a player to have independent (marginal) beliefs.

Definition 1 Player i has independent (marginal) beliefswheneverμi ∈ �(A−i ). On
the other hand, we say that player i has correlated beliefs whenever μi ∈ �(A−i ) \
�(A−i ).

While we allow players to have correlated beliefs, we do not impose any assump-
tion regarding the source of correlation. That is, player i may hold correlated beliefs
either because she believes that her opponents j and k actually use a physical corre-
lating device similarly to Aumann (1974, 1987), or because she believes that j and k
have themselves correlated belief hierarchies like for instance in Brandenburger and
Friedenberg (2008). The former type of correlation is called extrinsic correlation,
whereas the latter is called intrinsic correlation.

We define i’s (subjective) expected utility from the mixed strategy σi ∈ �i given
the conjecture μi ∈ �(A−i ) by

Ui (σi , μi ) :=
∑

ai∈Ai

σi (ai )
∑

a−i∈A−i

μi (a−i ) · ui (ai , a−i ) (2)

=
∑

a∈A

(σi ⊗ μi )(a) · ui (a).

As usual, we say that σi ∈ �i is a rational/optimal strategy given the belief μi ∈
�(A−i ), and we write σi ∈ BRi (μi ), whenever it is the case that Ui (σi , μi ) ≥
Ui (σ

′
i , μi ) for all σ ′

i ∈ �i . Then, it is straightforward to verify that a mixed strategy
profile (σ1, . . . , σn) is a NE if and only if for every i ∈ I there is a conjecture
μi ∈ �(A−i ) such that σi ∈ BRi (μi ) and μi = σ−i . Whenever it is the case that
μi = σ−i we say that player i has correct beliefs.
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3 Definition and basic properties

The correct beliefs assumption, which is implicitly present in the definition of NE,
essentially postulates that each player (i) correctly guesses each opponent’s mixed
strategy, and (ii) has independent beliefs. Formally, player i has correct beliefs when-
ever μi satisfies the following two conditions:

Correct marginal beliefs (CMB): margA j
μi = σ j for all j �= i .

Independent (marginal) beliefs (IB): μi ∈ �(A−i ).

In this paper, we partially relax the correct beliefs assumption, by dropping IB while
maintaining CMB. That is, while we still assume that each player has a correct
marginal belief about each individual opponent, we do not require her to have inde-
pendent marginal beliefs. As a result we obtain a new solution concept, which we call
correlated-belief equilibrium.

Definition 2 A strategy profile (σ1, . . . , σn) is a correlated-belief equilibrium (CBE)
whenever there exists a tuple of conjectures (μ1, . . . , μn) such that for all i ∈ I ,

(a) σi ∈ BRi (μi ),
(b) margA j

μi = σ j for all j �= i .

It is obvious that the set of CBE is a coarsening of the set of NE. The following
result formally proves that this is the case.

Proposition 1 Every NE is a CBE.

Though rather straightforward, it is worthwhile to mention that the existence of a
CBE follows directly from the previous result.

Corollary 1 Every finite normal form game has a CBE.

In general the converse of Proposition 1 is not true, as illustrated by the following
example. In particular, it turns out that CBEmay predict strictly more strategy profiles
than NE does.

Example 1 Consider the following three-player game, with I = {Ann (a), Bob (b),
Carol (c)}. Ann chooses the matrix, Bob the row and Carol the column, i.e., Aa =
{L , R}, Ab = {A, B} and Ac = {C, D}. Furthermore, the payoffs are written in the
respective order, i.e., first Ann, then Bob and then Carol. Now consider the mixed
strategy profile (σa, σb, σc) where σa = (1 � L), σb = ( 12 � A ; 1

2 � B) and σc =
( 12�C ; 1

2�D). Note that this is not aNE, asAnn has an incentive to deviate to (1�R),
which would yield expected payoff equal to 1, instead of the 1/2 that σa yields. In other
words, σa is not a rational strategy, if Ann has independent beliefs. However, σa can be
sustained as a rational strategy if her conjecture isμa = ( 1

2 �(A,C) ; 1
2 �(B, D)

)
. In

this case, Ann has correct marginal beliefs, but not independent beliefs, viz., while μa

is such that margAi
μa = σi for each i ∈ {b, c}, it is not the case μa /∈ �(Ab × Ac).

Finally, notice that σi ∈ BRi (σ−i ) for every i ∈ {b, c}, thus implying that (σa, σb, σc)
is a CBE.
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A
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C D

1,1,1

0,0,0

0,0,0

1,1,1
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C D

1,2,2

1,2,2

1,2,2

1,2,2

L R

Still, some partial converse results can be established. First, we show that in two-
player games the set of NE coincides with the set of CBE. This is not surprising, as the
only difference between a CBE and a NE is that the latter requires the players to have
independent beliefs. However, if there are only two players in the game, each of them
has a unique opponent and therefore the marginal beliefs are trivially independent.

Proposition 2 In two-player games every CBE is a NE.

Second, we show that the set of pure strategy NE coincides with the set of pure
strategy CBE. Again, the reason is rather obvious, viz., if every player chooses a
pure strategy, the only conjecture with correct marginal beliefs is equal to the product
measure of the opponents’ (pure) strategies.

Proposition 3 Every pure-strategy CBE is a NE.

4 Epistemic foundations

In this section, we provide sufficient epistemic conditions for CBE, thus obtaining
a foundation for CBE. In particular, our conditions weaken the standard epistemic
foundations for NE by Aumann and Brandenburger (1995) and Barelli (2009).

4.1 Epistemic models

A belief hierarchy describes a player’s belief about the opponents’ss strategies (first
order beliefs), belief about the opponents’ strategies and first order beliefs (second
order beliefs), and so on. Formally, for an arbitrary player i consider the following
sequence of (Polish) spaces1: For each player i ∈ I , let �0

i := A−i , and for each
k > 0 recursively define �k

i := �k−1
i × (× j �=i�(�k−1

j )
)
. Then, a belief hierarchy

of player i is a sequence of Borel probability measures (μ1
i , μ

2
i , . . . ) ∈ ×k≥0�(�k

i )

satisfying coherency and common certainty in coherency, with Hi ⊆ ×k≥0�(�k
i )

being the set of all such belief hierarchies.2 As usual, μk
i ∈ �(�k−1

i ) denotes the k-th
order beliefs, and μ1

i ∈ �(A−i ) coincides with i’s conjecture.

1 Recall that a space is Polishss if it is separable and completely metrizable. Recall that the countable
product of Polish spaces is also Polish. Moreover, if Y is Polish, so is �(Y ) endowed with the topology of
weak convergence. For further details on Polish spaces, we refer to Aliprantis and Border (1994).
2 Recall that a belief hierarchy (μ1

i , μ
2
i , . . . ) is coherent whenever it is the case that marg�k−2

μk
i = μk−1

i

for all k > 1, and we denote the space of i’s coherent belief hierarchies by H1
i . Then, for each � > 0
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Belief hierarchies are typically represented using type space models. A type space
model is a tuple

(
(Ti )i∈I , (λi )i∈I

)
, where Ti is a Polish space of player i’s types, and

λi : Ti → �(A−i × T−i ) is a continuous function, with T−i := × j �=i Tj . Throughout
the paper we consider countable type space models. This is without loss of generality,
as our analysis can be directly generalized to arbitrary type space models. Each type
ti ∈ Ti is associated with a belief hierarchy hi (ti ) := (

μ1
i (ti ), μ

2
i (ti ), . . .

) ∈ Hi ,
where the k-th order beliefs assign probability

μk
i (ti )(E) :=

∫

(a−i ,t−i )∈A−i×T−i : (a j ,μ
1
j (t j ),...,μ

k−1
j (t j )) j �=i∈E

dλi (ti ) (3)

to an arbitrary Borel subset E ⊆ �0
i × (× j �=i Proj�(�0

j )×···×�(�k−2
j )

Hj
)
.

For a given type space model, S := ×i∈I (Ai ×Ti ) is the set of states (of the world)
with typical element s. Each Borel subset of S is called an event. Note that a state
specifies each player’s pure strategy as well as her entire belief hierarchy. In particular,
for each i ∈ I , there exists a function ãi : S → Ai , defined by ãi (s) := ProjAi

{s} for
an arbitrary s ∈ S. Then, let [ai ] := {s ∈ S : ãi (s) = ai } denote the event that player
i has chosen the pure strategy ai ∈ Ai , and as usual define the events [a] := ⋂

i∈I [ai ]
and [a−i ] := ⋂

j �=i [a j ]. Likewise, there exists a function t̃i : S → Ti , defined by
t̃i (s) := ProjTi {s} for an arbitrary s ∈ S. Then, let [ti ] := {s ∈ S : t̃i (s) = ti } denote
the event that player i’s type is ti ∈ Ti . Now, each state is indirectly associated with a
belief hierarchy, via the function μ̃k

i := μk
i ◦ t̃i , i.e., at a state s ∈ S, player i’s k-th

order beliefs are given by μ̃k
i (s) := μk

i (t̃i (s)), while i’s belief hierarchy at s is denoted
by h̃i (s) := (

μ̃1
i (s), μ̃

2
i (s), . . .

)
. Once again, i’s conjecture coincides with the first

order beliefs, i.e., at each s ∈ S, player i’s conjecture is denoted by μ̃i (s) := μ̃1
i (s).

Then, let [μi ] := {s ∈ S : μ̃i (s) = μi } denote the event that player i’s conjecture is
μi . Finally, the event

Ri :={
s ∈ S : ãi (s) ∈ BRi

(
μ̃i (s)

) }
(4)

contains the states where player i is rational.
Now, for every s ∈ S define the Borel probability measure β̃i (s) ∈ �(S), such that

for an arbitrary Borel event E ⊆ S,

β̃i (s)(E) := λi
(
t̃i (s)

)(
ProjA−i×T−i

(
E ∩ [ãi (s)] ∩ [t̃i (s)]

))
(5)

denotes the probability that player i attaches to E at the state s. Note that player i is
implicitly assumed to know both her own strategy and her own type at every state,

Footnote 2 continued
we recursively define H�

i :={
(μ1

i , μ
2
i , . . . ) ∈ H1

i : μk+2
i

(
�0
i ×(× j �=i Proj�(�0

j )×···×�(�k
j )
H�−1
j

)) =
1 for all k ≥ 0

}
as the set of belief hierarchies satisfying �-fold certainty in coherency, and we say that a

belief hierarchy satisfies common certainty in coherency if it is an element of Hi := ⋂
�≥1 H

�
i (Harsanyi

1967–1968; Mertens and Zamir 1985; Brandenburger and Dekel 1993).

123



Synthese (2016) 193:757–779 765

which is why she attaches probability 0 to every event that contradicts her actual
strategy-type profile.

We say that player i believes in E at all states that belong to the event

Bi (E) := {s ∈ S : β̃i (s)(E) = 1}. (6)

Moreover, we say that E is mutually believed if everybody believes in it, and we write

B(E) :=
⋂

i∈I
Bi (E). (7)

Finally, we say that E is commonly believed if everybody believes in it, everybody
believes that everybody believes in it, and so on. Formally, for each m ≥ 1 we
recursively define m-th order mutual belief in E by Bm(E) := Bm−1(B(E)) where
B0(E) := B(E). Then, the states that belong to the event

CB(E) :=
⋂

m≥0

Bm(E) (8)

are those at which E is commonly believed.

4.2 Epistemic conditions for Nash equilibrium

In their seminal paper, Aumann and Brandenburger (1995) provided a set of sufficient
epistemic conditions forNE, by showing that in a complete informationgame, common
belief of conjectures and mutual belief in rationality suffice for a NE, whenever there
is a common prior3. Recall that a Borel probability measure q ∈ �(S) is a common
prior if for every player i ∈ I and for every s ∈ S with q

([ãi (s)] ∩ [t̃i (s)]
)

> 0 it is
the case that β̃i (s)(E) = q

(
E ∩ [ãi (s)] ∩ [t̃i (s)]

)
/q

([ãi (s)] ∩ [t̃i (s)]
)
for every Borel

E ⊆ S. Then, Aumman and Brandenburger’s result is formally stated as follows.4

Theorem A (Aumann and Brandenburger 1995) Let (μ1, . . . , μn) be a tuple of con-
jectures and suppose that there is a common prior q ∈ �(S) that attaches positive
probability to a state s ∈ S such that s ∈ B(R1 ∩ · · · ∩ Rn) ∩CB

([μ1] ∩ · · · ∩ [μn]
)
.

Then, there exists a mixed strategy profile (σ1, . . . , σn) ∈ � such that

(i) margAi
μ j = σi for all j �= i and for all i ∈ I ,

(ii) (σ1, . . . , σn) is a NE.

In a more recent paper, Barelli (2009) generalized Aumann and Brandenburger’s
epistemic conditions, by substituting the common prior assumption and common
belief in conjectures with weaker conditions respectively. Formally, Barelli (2009)

3 For an alternative epistemic characterization of NE, see Perea (2007).
4 In their paper, Aumann and Brandenburger (1995) prove a slightly more general version of this result,
viz., they do not require common belief of the payoff functions, which we implicitly assume here.
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relaxed the common prior assumption, by introducing the weaker notion of action-
consistency. Accordingly, consider the set of A-measurable random variables, FA :=
{ f : S → R | ã(s) = ã(s′) ⇒ f (s) = f (s′)}. Henceforth, a function f ∈ FA is
called A-verifiable, as the value of f at some state reveals the strategy profile being
played at this state. Then, a probability measure q ∈ �(S) is called action-consistent
(A-consistent) whenever it is the case that

∑

s∈S
q(s) · f (s) =

∑

s∈S
q(s)

(∑

s′∈S
β̃i (s)(s

′) · f (s′)
)

(9)

for every i ∈ I and every f ∈ FA. In fact, whenever A is finite, Eq. (9) implies

q
([a]) =

∑

s∈S
β̃i (s)

([a]) · q(s) (10)

for every i ∈ I and every a ∈ A.
Then, Barelli (2009) characterized of A-consistency in terms of A-verifiable bets.

We define a bet as a collection { fi }i∈I of random variables such that
∑

i∈I fi (s) = 0
for all s ∈ S. A bet is A-verifiable whenever fi ∈ FA for all i ∈ I . Then, it can be
shown that there is an A-consistent probability measure in �(S) if and only if there is
nomutually beneficial A-verifiable bet, i.e., formally, q ∈ �(S) is A-consistent if and
only if there exists no A-verifiable bet { fi }i∈I such that∑s′∈S β̃i (s)(s′)· fi (s′) ≥ 0 for
all s ∈ Supp(q) and for all i ∈ I , with at least one inequality being strict. Furthermore,
for some A-consistent measure q ∈ �(S), the conjectures are said to be constant in
the support of q whenever there exists a profile of conjectures (μ1, . . . , μn) such that(
μ̃1(s), . . . , μ̃n(s)

) = (μ1, . . . , μn) for all s ∈ Supp(q).
Then, Barelli (2009) generalized Aumann and Brandenburger’s epistemic con-

ditions for NE, by simultaneously replacing their common prior assumption with
A-consistency, and common belief of the conjectures with constant conjectures in the
support of the A-consistent distribution. Formally, Barelli’s result is stated as follows.

Theorem B (Barelli 2009) Let (μ1, . . . , μn) be a tuple of conjectures and suppose
that there is an A-consistent q ∈ �(S) such that

(
μ̃1(s), . . . , μ̃n(s)

) = (μ1, . . . , μn)

for all s ∈ Supp(q). Moreover, assume that there is some state s ∈ Supp(q) such that
s ∈ B(R1 ∩ · · · ∩ Rn). Then, there exists a mixed strategy profile (σ1, . . . , σn) ∈ �

such that

(i) margAi
μ j = σi for all j �= i and for all i ∈ I ,

(ii) (σ1, . . . , σn) is a NE.

To see that Barelli’s conditions are weaker than Aumann and Brandenburger’s, first
observe that a common prior is always A-consistent. This is not surprising given the
existing characterizations of the two concepts. In particular, a commonprior essentially
says that the playerswill not agree to take any bet that is defined in terms of events in the
Borel σ -algebra S of events in S (Feinberg 2000), whereas A-consistency essentially
says that the players will not agree to take any bet that is defined in terms of events in
the sub-σ -algebra SA which is generated by the collection {[a]|a ∈ A} (Barelli 2009).
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Obviously, the former is more restrictive than the latter—by the fact that SA ⊆ S—
which is in accordance to our observation that a common prior is A-consistent.

Finally, in the existence of a commonprior, constant conjectures in the support of the
(action-consistent) common prior directly implies common belief of the conjectures.

4.3 Epistemic conditions for correlated-belief equilibrium

According to Barelli’s characterization, an A-consistent probability measure exists if
and only if there is no mutually beneficial bet that is described in terms of all players’
pure strategies. Now, let us relax this condition by instead assuming that players are not
able to agree on a bet which is described in terms of a single player’s pure strategies. In
order to do this, we first define, for an arbitrary i ∈ I , the set of Ai -measurable random
variables, FAi := { f : S → R | ãi (s) = ãi (s′) ⇒ f (s) = f (s′)}. Henceforth, a
function f ∈ FAi is called Ai -verifiable, as the value of f at some state reveals the
pure strategy chosen by player i at this state.

Definition 3 A probability measure q ∈ �(S) is called Ai -consistent whenever it is
the case that ∑

s∈S
q(s) · f (s) =

∑

s∈S
q(s)

(∑

s′∈S
β̃ j (s)(s

′) · f (s′)
)

(11)

for every j ∈ I and every f ∈ FAi . Moreover, we say that q ∈ �(S) is I-consistent,
whenever it is Ai -consistent for every i ∈ I .

Similarly to Barelli (2009), it can be shown that whenever Ai is finite, Eq. (11)
implies

q
([ai ]

) =
∑

s∈S
β̃ j (s)

([ai ]
) · q(s) (12)

for every j ∈ I and every ai ∈ Ai . Hence, if q is I -consistent, (12) holds for every
i ∈ I . Then, following the same steps as in Barelli (2009, Prop. 5.3), it can be shown
that there is an Ai -consistent probability measure in �(S) if and only if there is no
mutually beneficial Ai -verifiable bet, viz., q ∈ �(S) is Ai -consistent if and only if
there exists no Ai -verifiable bet { f j } j∈I such that

∑

s′∈S
β̃ j (s)(s

′) · f j (s
′) ≥ 0 (13)

for all s ∈ Supp(q) and for all j ∈ I , with at least one inequality being strict. Thus,
q ∈ �(S) is I -consistent if and only if there is no Ai -verifiable bet satisfying (13) for
any i ∈ I .

The intuition behind the previous characterization of Ai -consistency is the players
will not agree to take any bet that is defined in terms of events in the sub-σ -algebra SAi

which is generated by the collection {[ai ]|ai ∈ Ai }. That is, I -consistency essentially
says that the players will not agree on any bet that is described in terms of events in
SA1 , and they will not agree on any bet that is described in terms of events in SA2 ,
and . . . , and and they will not agree on any bet that is described in terms of events in
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SAn . Notice that for every i ∈ I it is the case that SAi ⊆ SA, thus implying that every
A-consistent prior is also I -consistent.

Then, the following result proves that if we replace A-consistency with I -
consistency in Barelli’s Theorem, the marginal conjectures will form a CBE rather
than a NE. Thus, we provide sufficient epistemic conditions for CBE.

Theorem 1 Let (μ1, . . . , μn) be a tuple of conjectures and suppose that there is an
I -consistent q ∈ �(S) such that

(
μ̃1(s), . . . , μ̃n(s)

) = (μ1, . . . , μn) for all s ∈
Supp(q). Moreover, assume that there is some state s ∈ Supp(q) such that s ∈
B(R1 ∩ · · · ∩ Rn). Then, there exists a mixed strategy profile (σ1, . . . , σn) ∈ � such
that

(i) margAi
μ j = σi for all j �= i and for all i ∈ I ,

(ii) (σ1, . . . , σn) is a CBE.

Note that I -consistency does not force players to agree on the probabilities they
attach an arbitrary event in SA, e.g., Ann and Bob do not need to have the same
conjecture about Carol and David jointly. However, it is still the case that under I -
consistency all players other than i necessarily agree on the probabilities they attach
to each event in SAi , e.g., Ann and Bob necessarily have the same marginal conjecture
aboutCarol, aswell as the samemarginal conjecture aboutDavid. This, explainswhy in
a CBE players can have different conjectures, but not different marginal conjectures.
On the other hand, under A-consistency, players agree not only on their marginal
beliefs, but also on their joint beliefs – as everybody’s conjectures are productmeasures
– and therefore A-consistency suffices for NE.

Still, it is natural to ask whether our (weaker) conditions of Theorem 1 also suffice
for NE.5 It turns out that this is not the case, as shown in the following example.

Example 2 Recall the game in Example 1, and consider the CBEσa = (1 � L),
σb = ( 12 � A ; 1

2 � B) and σc = ( 12 � C ; 1
2 � D). Now, consider a type space

model
(
(Ti )i∈I , (λi )i∈I

)
with a unique type for each player. i.e., Ti = {ti } for each

i ∈ {a, b, c}, where
λa(ta) =

(1

2
�

(
(A, tb), (C, tc)

) ; 1

2
�

(
(B, tb), (D, tc)

))
,

λb(tb) =
(1

2
�

(
(L , ta), (C, tc)

) ; 1

2
�

(
(L , ta), (D, tc)

))
,

λc(tc) =
(1

2
�

(
(L , ta), (A, tb)

) ; 1

2
�

(
(L , ta), (B, tb)

))
.

Moreover, consider the probability measure q ∈ �(S) defined by

q =
(1

2
�

(
(L , ta), (A, tb), (C, tc)

) ; 1

2
�

(
(L , ta), (B, tb), (D, tc)

))

and notice that it is I -consistent, while at the same time the conjectures are constant
in the support of q. Thus, the conditions of Theorem 1 are satisfied, and as expected

5 Recall that both Aumann and Brandenburger (1995), as well as the subsequent generalizations including
Barelli (2009), provide sufficient but not necessary conditions for NE.
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(σa, σb, σc) is a CBE. However, recall from Example 1 that (σa, σb, σc) is not a NE,
thus implying that the conditions ofTheorem1donot suffice forNE.Of course, the rea-
son is thatq is not A-consistent. Indeed, consider the A-measurable (indicator) function
f : S → Rwith f (s) = 1 for all s ∈ Supp(q) and f (s) = 0 otherwise, and notice that
while

∑
s∈S q(s)· f (s) = 1, it is also the case that

∑
s∈S q(s)

(∑
s′∈S β̃i (s)(s′)

) = 1/2
for i ∈ {b, c}, thus implying that Eq. (9) does not hold for every player.

Remark 1 Obviously, in two player games, it suffices to simply require mutual belief
in conjectures similarly to Aumann and Brandenburger (1995, Thm. A) The reason is
that—as we have already mentioned—in two player games the set of CBE coincides
with the set of NE.

Remark 2 In a recent paper, Bach and Tsakas (2014) further generalized Barelli’s
result—and a fortiori the one of Aumann and Brandenburger (1995)—by replacing
his epistemic conditions with respective pairwise epistemic conditions imposed only
for some pairs of players. A similar generalizations can be done for CBE, by assuming
pairwise mutual belief in rationality, pairwise I -consistency and pairwise constant
conjectures in the supports of the I -consistent distributions. However, due to space
limitations, we omit the presentation of this result.

Remark 3 Notice that throughout this section, for notation simplicity, we have focused
entirely on complete information games, even though our result can be directly
extended to type spaces with uncertainty about the payoff functions, as long as these
are mutually believed.

5 Relationship to other solution concepts

5.1 Conjectural equilibrium

CBE is not the first equilibrium concept in the literature that allows for correlated
beliefs. In fact, this idea was already present in conjectural equilibrium, which was
introduced by Hahn (1977, 1978), later formalized by Battigalli (1987) and further
developed by Battigalli and Guaitoli (1997) and Gilli (1999).6 The underlying idea
behind all these papers is that a player’s beliefs do not need to coincide with the
product measure induced by the opponents’ actual mixed strategy profile. Instead,
beliefs should only be confirmed for some events in A−i .

Formally, for an arbitrary player i ∈ I , let ψi : A → Mi be a signal function
with Mi being an arbitrary set of signals. Whenever the pure strategy profile a ∈ A is
played, player i does not necessarily observe it—even after the strategies have been
realized—and instead receives the signal ψi (a), thus considering possible the pure
strategy profiles in

ψ−1
i (mi ) := {a ∈ A : ψi (a) = mi }. (14)

6 This literature consists of a whole family of related solution concepts, such as for instance rationaliz-
able conjectural equilibrium (Rubinstein and Wolinsky 1994; Esponda 2013), self-confirming equilibrium
(Fudenberg and Levine 1993) and subjective equilibrium (Kalai and Lehrer 1993), just to mention a few.
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A natural example of a signal function is the own utility function, viz., suppose that
player i observes only his own utility, but not the pure strategy profile that induced it.
Then, for an arbitrary ai ∈ Ai , let

ψ−1
i (mi |ai ) := {a−i ∈ A−i : ψi (ai , a−i ) = mi } (15)

be the set of the opponents’ pure strategy profiles which together with ai would induce
the signal mi . A conjectural equilibrium captures the idea each player responds ratio-
nally to a (possibly wrong) conjecture about the strategies chosen by their opponents.
Still, this conjecture—though possibly wrong—is not contradicted by the signal that
the player observes after the actions have been realized. Formally, for a profile of
signal functions ψ = (ψ1, . . . , ψn), we say that a strategy profile (σ1, . . . , σn) is a
ψ-conjectural equilibrium, if for every i ∈ I there is a belief μi ∈ �(A−i ) such that

(a) μi
(
ψ−1
i (mi |ai )

) = σ−i
(
ψ−1
i (mi |ai )

)
for all mi ∈ Mi and for all ai ∈ Supp(σi ),

(b) σi ∈ BRi (μi ).

The underlying idea is that an arbitrary player i ∈ I observes a large sample of
realized combinations of the own action and the corresponding signal,

(
ai , ψi (a)

)
.

Then, the probability that the conjecture μi assigns to each signal (conditional on
each own pure strategy) is equal to the empirical frequency of this signal (conditional
on each own pure strategy). Therefore, i’s conjecture is confirmed by the observed
sample.

If the signal function of each player induces the discrete partition over A, i.e., if
ψi (a) �= ψi (a′) for any a, a′ ∈ A, a strategy profile is a conjectural equilibrium
if and only if it is a NE. Moreover, it is straightforward that for any given signal
functions (ψ1, . . . , ψn) the set of conjectural equilibria lies betweenNE and correlated
rationalizability, similarly to what happens with CBE.7 The natural question arising
then is whether there exists some ψ such that the set of CBE coincides with the set
of ψ-conjectural equilibria. The following example shows that this is not necessarily
the case, thus implying that CBE is not a special case of conjectural equilibrium.

Example 3 Consider the following three-player game, with I = {Ann (a), Bob (b),
Carol (c)}. Ann chooses the matrix, Bob the row and Carol the column, i.e.,
Aa = {L , R}, Ab = {A, B} and Ac = {C, D}. Furthermore, the payoffs are writ-
ten in the respective order, i.e., first Ann, then Bob and then Carol. Now take the
mixed strategy profile (σa, σb, σc) where σa = (1 � L), σb = ( 12 � A ; 1

2 � B)

and σc = ( 12 � C ; 1
2 � D), and observe that it is a CBE. In fact, it is the only

CBE with Ann choosing L . Then, let us show that there is no ψ = (ψa, ψb, ψc)

such that the set of ψ-conjectural equilibria coincide with the set of CBE. In par-
ticular, we show that for every ψ , either there is a ψ-conjectural equilibrium that
is not a CBE, or it is the case that (σa, σb, σc) is not a ψ-conjectural equilibrium.
First, observe that in order for (σa, σb, σc) to be a ψ-conjectural equilibrium it must
be the case that Supp(μa) ⊆ {(A,C), (B, D)}. Moreover, notice that ψa must be
such that ψa(L , A, D) = ψa(L , A,C) or ψa(L , A, D) = ψa(L , B, D), and like-
wise ψa(L , B,C) = ψa(L , A,C) or ψa(L , B,C) = ψa(L , B, D). Otherwise,
(σa, σb, σc) will not be a ψ-conjectural equilibrium. This is because, σ−a(A, D) > 0

7 The latter is formally proven in the next section.
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whereas μa(A, D) = 0, and likewise σ−a(B,C) > 0 whereas μa(B,C) = 0. Let us
assume that ψa(L , A, D) = ψa(L , A,C). This is without loss of generality due to
symmetry. Then, irrespective of what ψb and ψc are, it is the case that (L , A, D) is a
ψ-conjectural equilibrium but not a CBE. Indeed, verify that this is the case by taking
μ′
a = (1� (A,C)), μ′

b = (1� (L , D)) and μ′
c = (1� (L , A)). Hence, we conclude

that there is no signal structure ψ that makes the set of ψ-conjectural equilibria coin-
cide with the set of CBE.

A

B

C D

2,0,0

0,1,1

0,1,1

2,0,0

A

B

C D

2,0,0

2,1,1

2,1,1

2,0,0

L R

While CBE is not a special case of conjectural equilibrium, there still seems to
exist a very close link between the two. Indeed, as we show below, a CBE is indeed
equivalent to a new variant of conjectural equilibrium with multiple signals.

Let us begin by defining for each player i ∈ I the collection�i := {ψ1
i , . . . , ψ i−1

i ,

ψ i+1
i , . . . , ψn

i } of signal functions such that for an arbitrary j ∈ I the signal function

ψ
j
i : A → Mi reveals j’s pure strategy, i.e., ψ j

i (a1, . . . , an) = ψ
j
i (a′

1, . . . , a
′
n) if and

only if a j = a′
j . Then, we say that (σ1, . . . , σn) is a �-conjectural equilibrium if for

every i ∈ I there is a belief μi ∈ �(A−i ) such that

(a) μi
(
ψ−1
i (mi |ai )

) = σ−i
(
ψ−1
i (mi |ai )

)
for all ψi ∈ �i and all mi ∈ Mi and all

ai ∈ Supp(σi ),
(b) σi ∈ BRi (μi ).

Theorem 2 A strategy profile is a CBE if and only if it is a�-conjectural equilibrium.

The previous result provides a natural characterization of CBE. Indeed, recall that
a conjectural equilibrium allows the players’ conjectures to be false, but still requires
them to be consistent with the observed data which arrive in the form of signals.
Thus, a �-conjectural equilibrium postulates that each players receives separate data
for each opponent’s strategy and confirms her marginal conjectures. However, she is
not able—using these independently received signals—to test whether her opponents’
strategies are statistically independent or not, which is why her beliefs might be cor-
related. But then, this is exactly what happens in a CBE, viz., players are correct in
their marginal beliefs about every opponent, but perhaps wrong when assessing the
possibility of their opponents’ strategies being correlated.

5.2 Rationalizability

In this section we study the relationship between CBE and the different forms of
rationalizability. First, we relate CBE to correlated rationalizability, and subsequently
to independent rationalizability.
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There are two equivalent definitions of correlated rationalizability. First, according
to the iterative definition a strategy profile is correlated rationalizable whenever it sur-
vives the iterated elimination of strictly dominated strategies (IESDS).8 Alternatively,
according to the fixed point definition a strategy profile is correlated rationalizable if it
belongs to a product of justifiable strategy sets, with the property that each justifiable
strategy of each player is a best response to a (possibly correlated) belief over the
opponents’ justifiable strategy profiles (Brandenburger and Dekel 1987). Formally, a
set of justifiable strategies is called best response set and is defined as follows: Con-
sider some Di ⊆ Ai for each player i ∈ I with the property that, for every ai ∈ Di

there exists a conjectureμi ∈ �
(× j �=i D j

)
such that ai ∈ BRi (μi ). Then, we say that

D1×· · ·×Dn satisfies the best response property (with each Di being a best response
set), and every (σ1, . . . , σn) ∈ ×i∈I�(Di ) is called correlated rationalizable.

It is well-known that every NE is a correlated rationalizable strategy profile. In fact,
this is also true for every CBE, as the supports of the mixed strategies played in a CBE
have the best response property, as shown below.

Proposition 4 Every CBE is correlated rationalizable.

Clearly, the converse is not true, e.g., in two player games it is often the case that
Nash equilibria form a strict subset of the set of correlated rationalizable strategy
profiles.

In general, notice that the (fixed point) definition of correlated rationalizability
incorporates two assumptions, viz., each player is rational, and moreover each player
correctly believes that every opponent plays a justifiable strategy. In this sense, CBE
lies between NE and correlated rationalizability. Indeed, CBE postulates only CMB,
whereas correlated rationalizability does not require eiether IB or CMB.

Now, we turn our attention to independent rationalizability, which strengthens
correlated rationalizability in the sense that it requires each player to have indepen-
dent beliefs (Bernheim 1984; Pearce 1984). Formally, independent rationalizability is
defined as follows: Consider some Di ⊆ Ai for each player i ∈ I with the property
that, for every ai ∈ Di there is someμi ∈ �

(× j �=i D j
)
such that ai ∈ BRi (μi ). Then,

we say that D1 ×· · ·× Dn satisfies the independent best response property (with each
Di being an independent best response set), and every (σ1, . . . , σn) ∈ ×i∈I�(Di ) is
said to be independently rationalizable.

It is well known that there is amonotonic relationship in the strategy profiles that are
predicted by NE, independent rationalizability and correlated rationalizability, in the
respective order. Indeed, the following figure illustrates the relationship between the
different solution concepts that we have discussed so far, together with the additional
implicit condition that needs to be imposed in order to go from one to the other.

Correlated rationalizability

⇓ (+CMB)

Correlated-belief equilibrium

Independent rationalizability

⇓ (+CMB)

Nash equilibrium=⇒

=⇒
(+IB)

(+IB)

8 Recall that IESDS yields the strategy profiles that can be played under rationality and common belief in
rationality (Brandenburger and Dekel 1987; Tan and Werlang 1988).
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What is not straightforward from the previous figure is the relationship between
independent rationalizability andCBE, as the two concepts relax different assumptions
of NE, viz. in comparison with NE, CBE relaxes IB, whereas independent rational-
izability relaxes CMB. In fact, it turns out that none of the two concepts refines the
other. Indeed, it is straightforward that not every independently rationalizable strategy
profile is always a CBE, e.g., in two-player games, the set of CBE coincides with the
set of NE, and therefore there are games with independently rationalizable strategy
profiles that are not CBE. Furthermore, it follows from the following example that
there are games where a CBE is not independently rationalizable.

Example 4 Consider the following three-player game, with I = {Ann (a), Bob (b),
Carol (c)}. Again, Ann chooses the matrix, Bob the row and Carol the column, i.e.,
Aa = {L , M, R}, Ab = {A, B} and Ac = {C, D}. Furthermore, the payoffs are
written in the respective order, i.e., first Ann, then Bob and then Carol. Now, consider
the mixed strategy (σa, σb, σc) where σa = (1 � L), σb = ( 12 � A ; 1

2 � B) and
σc = ( 12 � C ; 1

2 � D), and observe that this is a CBE. Indeed, if we consider the
conjectures μa = ( 1

2 � (A,C) ; 1
2 � (B, D)

)
, μb = ( 1

2 � (L ,C) ; 1
2 � (L , D)

)
and

μc = ( 1
2�(L , A) ; 1

2�(L , B)
)
, both conditions ofDefinition 2 are satisfied.However,

notice that (σa, σb, σc) is not independently rationalizable, as the pure strategy L of
Ann is not a best response to any product measure over A−a = {A, B} × {C, D}.

A

B

C D

1,1,1

0,0,0

0,0,0

1,1,1

A

B

C D

2,2,2

1,2,2

1,2,2

0,2,2

A

B

C D

0,2,2

1,2,2

1,2,2

2,2,2

L M R

It follows from the previous discussion that the strategy profiles that can be played
under the different solution concepts satisfy the inclusion relationships shown in the
following figure. In general, whether these inclusions are weak or strict depends on
the game in hand.

Nash equilibria

Independently rationalizable profiles

Correlated-belief equilibria

Correlated rationalizable profiles
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Thus, a natural question that arises at this point is whether the shaded area is empty
or not. In other words, is it the case that a CBE is a NE if and only if it is independently
rationalizable? It turns out that this is not the case in general. To see this, consider
Example 1, and observe that every strategy profile is independently rationalizable,
while at the same time there exists a CBE which is not a NE.

At first glance, this last observation looks somewhat surprising. The reason is that
the conditions imposed in a CBE, together with those imposed by independent ratio-
nalizability, seem to suffice for a NE. However, if we take a closer look, we realize
that there may exist some independently rationalizable CBE (σ1, . . . , σn) such that for
some i ∈ I the only product measure νi over the opponents’ justifiable strategy pro-
files, which also satisfies σi ∈ BRi (νi ), induces different marginal conjectures than
μi , and therefore (σ1, . . . , σn) is not aNE. For instance, in Example 1, the only product
measures over {A, B} × {C, D} that make L a rational strategy, put probability 1 to
(A,C) or probability 1 to (B, D). However, none of these product measures induces
the same marginal conjectures as μa , and therefore the independently rationalizable
CBE is not a NE.

5.3 Correlated equilibrium

So far, correlation has entered the picture only in the form of players having correlated
conjectures. However, it is sometimes the case that the players’ actual strategies are
indeed correlated. Obviously, in this case the set of possible objective distributions
(over A) increases. Having recognized this possibility Aumann introduced the concept
of correlated equilibrium, which generalizes NE both in terms of strategy profiles, as
well as in terms of expected payoff vectors (Aumann 1974, 1987).

In this case, correlation takes place via some correlating randomdevice
(
, (Pi )i∈I ,

(πi )i∈I
)
, where  is a finite state space and Pi is i’s information partition over .9

The probability measure πi ∈ �() describes player i’s prior beliefs. If there is some
π ∈ �() such that πi = π for all i ∈ I , we say that there is a common prior,
and the correlating device is called objective. Otherwise, we say that the correlating
device is subjective. The Pi -measurable function âi :  → Ai determines the pure
strategy that player i undertakes upon observing the event Pi (ω), with Âi being the
set of all (Pi -measurable) contingent strategy plans. As usual, define Â := ×i∈I Âi

and Â−i := × j �=i Â j with typical elements â and â−i respectively. Obviously, each
â ∈ Â can be thought as a (P1 ∨ · · · ∨ Pn)-measurable function, mapping each ω to
the pure strategy profile

(
â1(ω), . . . , ân(ω)

)
.10

A tuple
(
, (Pi )i∈I , (πi )i∈I , (âi )i∈I

)
, consisting of a subjective (resp. objective)

correlating device and a contingent strategy profile, is called a subjective (resp. objec-
tive) correlated strategy profile. For each player’s prior, a correlated strategy profile
induces the probability distribution pi := (πi ◦ â−1) ∈ �(A) over the set of strategy
profiles, i.e., player i’s prior attaches probability

9 Note that the state space  conceptually differs from the state space S defined earlier in that each
ω ∈  corresponds to a realization of a physical randomizing device, whereas each s ∈ S corresponds to a
description of each player’s strategy and belief hierarchy.
10 As usual, (P1 ∨ · · · ∨ Pn) denotes the coarsest common refinement of the partitions (Pi )i∈I .
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pi (a) := πi
({ω ∈  : â(ω) = a}) (16)

to each a ∈ A. Of course, pi is not necessarily a product measure over A. In this
respect it becomes obvious that the set of correlated strategy profiles induces strictly
more distributions over A than the set of mixed strategy profiles does.

Player i’s expected utility from
(
, (Pi )i∈I , (πi )i∈I , (âi )i∈I

)
is equal to

Ui (âi , â−i ) :=
∑

ω∈

πi (ω) · ui
(
âi (ω), â−i (ω)

)

=
∑

a∈A

pi (a) · ui (a). (17)

Then, we say that âi is a best response to â−i , and we write âi ∈ BRi (â−i ), whenever
it is the case thatUi (âi , â−i ) ≥ Ui (â′

i , â−i ) for all â′
i ∈ Âi . A subjective (resp., objec-

tive) correlated strategy profile
(
, (Pi )i∈I , (πi )i∈I , (âi )i∈I

)
is a subjective (resp.,

objective) correlated equilibrium if âi ∈ BRi (â−i ) for all i ∈ I .
Note that in a correlated equilibrium players are allowed to have correlated beliefs.

However, the (possibly correlated) beliefs are not arbitrary. Instead they are derived
from the correlating device. In this respect, player i has correct beliefs about how the
strategies of her opponents are actually correlated, whereas in a CBE players do not
in general have correct beliefs about the source of correlation that they consider. This
implies that in principle there seem to exist games where CBE is a weaker concept
than correlated equilibrium. However, as Proposition 5 below indicates, this is not the
case, viz., the strategy profiles played in an arbitrary CBE can also be played in a
subjective correlated equilibrium.

Proposition 5 Suppose that (σ1, . . . , σn) is a CBE. Then, there exists a subjective
correlated equilibrium

(
, (Pi )i∈I , (πi )i∈I , (âi )i∈I

)
such thatmargAi

pi = σi for all
i ∈ I .

Of course, the converse of the previous result does not hold in general, e.g., in two-
player games, every CBE is a NE, and therefore there may exist correlated equilibria
with the property that the marginal distributions do not form a CBE. This is not very
surprising as in a correlated equilibrium—unlike what happens in a CBE—we allow
players to believe that their own strategy is correlated with their conjecture. Yet, in
order to prove Proposition 5, we construct a correlating device that rules out this type of
correlation, viz., we take the prior πi of every player to be equal to the product measure
σi ⊗μi . Thus, intuitively the predictions of a CBE can be obtained as predictions of a
special class of subjective correlated equilibria, namely those that satisfy independence
between each player’s own strategy σi and own conjecture μi .

An important implication of Proposition 5 is that the (subjective) correlation that
is incorporated in the conjectures in a CBE can be shifted to (objective) correlation
induced by a correlating device in a subjective correlated equilibrium. Of course, this
could be also done indirectly, by combining the well-known result of Brandenburger
and Dekel (1987) with our Proposition 4. In particular, Brandenburger and Dekel
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(1987) proved that correlated rationalizability is equivalent to a refinement of subjec-
tive correlated equilibrium, viz., a posteriori equilibrium. Therefore, since an arbitrary
CBE is correlated rationalizable (Proposition 5), it must also be the case that there
exists an a posteriori equilibrium inducing the same strategies as the CBE. Still, our
constructive proof of Proposition 5 clearly illustrates the differences in the degree of
correlation that may appear in a CBE and in a subjective correlated equilibrium.

Finally, a natural question that arises at this point is whether the previous result also
holds for an objective correlated equilibrium. As it turns out, this is not the case, as
illustrated in the following example.

Example 5 Consider the following game, with I = {Ann (a), Bob (b), Carol (c),
David (d)}. Ann chooses the matrix horizontally, Bob the matrix vertically, Carol
the row and David the column, i.e., Aa = {X,Y }, Ab = {L , R}, Ac = {A, B} and
Ad = {C, D}. Moreover, the payoffs are written in the respective order, i.e., first
Ann, then Bob, then Carol and then David. Now, consider the mixed strategy profile
(σa, σb, σc, σd) with σa = (1 � X), σb = (1 � L), σc = ( 23 � A ; 1

3 � B) and
σd = ( 23 �C ; 1

3 � D). Note that this strategy profile is a CBE. Indeed, if we consider
the conjectures μa = ( 2

3 � (L , A,C) ; 1
3 � (L , B, D)

)
, μb = ( 1

3 � (X, A,C) ; 1
3 �

(X, A, D) ; 1
3 � (X, B,C)

)
, μc = ( 2

3 � (X, L ,C) ; 1
3 � (X, L , D)

)
and μd =

( 2
3 �(X, L , A) ; 1

3 �(X, L , B)
)
, both conditions of a CBE are satisfied. In fact, notice

thatμa andμb are the only conjectures that satisfy the required conditions for Ann and
Bob respectively. Now, suppose that there exists an objective correlated equilibrium(
, (Pi )i∈I , π, (âi )i∈I

)
with margAi

p = σi for all i ∈ I . Then, it is necessarily the
case that Ann plays X and Bob plays L at all states ω ∈ Supp(π), and therefore p
assigns probability 1 to {X}×{L}×{A, B}×{C, D}. Moreover, both Ann and Bob are
rational, in the sense that X (resp. L) is a best response tomargAa

p (resp. tomargAb
p).

However, this cannot be the case as there is no probability measure p ∈ �(A)with the
property that margAa

p = μa and margAb
p = μb hold simultaneously. Therefore,

we reach a contradiction, implying that there is no objective correlated equilibrium
inducing the same marginal distributions as the CBE (σa, σb, σc, σd).
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The intuition behind the conclusion of the previous example becomes clear if we
go back to our informal discussion on the conditions that characterize the concept
of correlated equilibrium. Indeed, recall that—unlike what happens in a CBE—in
a correlated equilibrium players are required to have correct beliefs about how the
strategies of the opponents are correlated, and these beliefs are actually restricted
by the correlating device. Now, in the case of subjective correlated equilibrium, this
restriction is not very severe as it is canceled out by the flexibility that the different
priors provide. On the other hand, in an objective correlated equilibrium this flexibility
disappears, and therefore, in some games, CBE may yield predictions that objective
correlated equilibrium does not for any common prior, like for instance in Example 5.
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Appendix 1: Proof of Sect. 3

Proof of Proposition 1 Let (σ1, . . . , σn) be a NE, and for each i ∈ I defineμi := σ−i .
Then, (σ1, . . . , σn) is a CBE, as it is the case that margA j

μi = σ j (by construction of
μi ) and σi ∈ BRi (μi ) (by the fact that (σ1, . . . , σn) is a NE).

Proof of Corollary 1 Every NE is a CBE (by Proposition 1) and a NE always exists
(Nash 1951). Therefore, a CBE always exists.

Proof of Proposition 2 Suppose that (σ1, σ2) is aCBE.Then, it follows fromcondition
(b) in Definition 2 that μi = σ j . Furthermore, it follows from σi ∈ BRi (μi ) that
σi ∈ BRi (σ j ), thus implying that (σ1, σ2) is a NE.

Proof of Proposition 3 Suppose that (a1, . . . , an) is a CBE, implying that for every
i ∈ I there exists some μi ∈ �(A−i ) such that margA j

μi (a j ) = 1 for all j �= i .
Hence, it follows that μi (a−i ) = ∏

j �=i margA j
μi (a j ), and therefore ai ∈ BRi (a−i ),

which proves that (a1, . . . , an) is a NE.

Appendix 2: Proofs of Sect. 4

Proof of Theorem 1 Fix an arbitrary i ∈ I , and define σi ∈ �(Ai ) by σi (ai ) :=
q
([ai ]

)
for each ai ∈ Ai . Now, observe that for every j �= i , it follows by (12) that

q
([ai ]

) =
∑

s∈S
β̃ j (s)

([ai ]
) · q(s)

=
∑

s∈S
margAi

μ̃ j (s)(ai ) · q(s)

= margAi
μ j (ai ),
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thus completing the proof of part (i). Moreover, it follows directly from s ∈ B(R1 ∩
· · · ∩ Rn) that ã j (s′) ∈ BR j (μ j ) for every s′ ∈ [ti (s)]. Furthermore, for each a j ∈
Supp(σ j ) there is some s′ ∈ [ti (s)] with a j (s′) = a j . Therefore, we conclude that
σ j ∈ BR j (μ j ), which together with (i) implies that (σ1, . . . , σn) is a CBE.

Appendix 3: Proofs of Sect. 5

Proof of Theorem 2 For an arbitrary pure strategy profile a−i ∈ A−i there exists a
unique profile of signals (m j

i ) j∈I\{i} such thatψ
j
i (a−i ) = m j

i for all j ∈ I \{i}. Then,
by the definition of ψ

j
i it is the case that

(ψ
j
i )−1(m j

i |ai ) = {a j } ×
( ×
k∈I\{i, j}

Ak

)

for every ai ∈ Ai . Hence, it is the case that

σ j (a j ) = σ−i
(
(ψ

j
i )−1(m j

i |ai )
)
,

(margA j
μi )(a j ) = μi

(
(ψ

j
i )−1(m j

i |ai )
)
,

thus implying that σ j = margA j
μi if and only if σ−i

(
(ψ

j
i )−1(m j

i |ai )
) =

μi
(
(ψ

j
i )−1(m j

i |ai )
)
for all m j ∈ Mj . The rest of the proof follows trivially by simply

applying the definitions.

Proof of Proposition 4 Let (σ1, . . . , σn) be a CBE, and for each i ∈ I define
Ci := Supp(σi ) ⊆ Ai . Then, by Definition 2, there is some μi ∈ �(Ai ) such that
margA j

μi = σ j , which implies that μi ∈ �(C−i ). Moreover, again by Definition 2,
it is the case that σi ∈ BRi (μi ), which completes the proof.

Proof of Proposition 5 Let  := A and Pi :={ {ai } × A−i
∣
∣ ai ∈ Ai

}
. Moreover,

let πi := σi ⊗ μi . Furthermore, for each (a1, . . . , an) ∈ , define i’s contingent
strategy by âi (a1, . . . , an) := ai , thus completing the construction of a subjective
correlated strategy profile. Now, we are going to prove that this correlated strategy
profile constitutes a subjective correlated equilibrium. In fact, notice that for every
i ∈ I , it is the case that

Ui (âi , â−i ) = Ui (σi , μi )

≥ Ui (σ
′
i , μi )

for all σ ′
i ∈ �i , since (σ1, . . . , σn) is a CBE. Moreover, for each â′

i ∈ Âi there exists
some σ ′

i ∈ �i such that Ui (â′
i , â−i ) = Ui (σ

′
i , μi ) ≤ Ui (âi , â−i ), thus implying that

the correlated strategy profile constructed above is a subjective correlated equilibrium.
Finally, notice that, by construction, for every a ∈  it is the case that pi (a) =
πi

(
â−1(a)

) = πi (a). Therefore, it follows that
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margAi
pi = margAi

πi

= margAi
(σi ⊗ μi )

= σi ,

thus completing the proof.
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